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Abstract

Soil liquefaction describes a loss of strength of saturated sand upon sudden or cyclic loading. A slight disturbance of such a soil’s

fabric might lead to severe damage, e.g. the collapse of sea dikes. Accurate modeling of the state transition between saturated soil

and a liquefied soil-water mixture, as well as post-liquefaction phenomena, is crucial for the prediction of such damage. However,

developing an appropriate numerical model remains a challenging problem, especially when the simulation involves dynamic large

deformation processes. In order to make a first step towards an accurate simulation of soil liquefaction, a two-phase formulation

of the finite element method (FEM) in conjunction with the elastoplastic UBC3D-PLM model is investigated. The performance of

this approach is analyzed based on a shaking table benchmark.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Upon sudden or cyclic loading of loose, fully saturated sands, the pore water pressure can rapidly increase leading

to a reduction of the mean effective stress. Liquefaction occurs when a state of zero effective stress is reached, thereby

eliminating shear strength. The resulting loss of soil strength can induce substantial damages, such as the failure

of earth embankments and retaining structures. For instance, liquefaction in the Hanshin and Awaji island district

in Japan in 1995 caused by the Kobe earthquake resulted in widespread lateral displacement of the ground, normal

faulting, compression ridges, and the generation of quick sand [1]. The cost of ground failure-related damage to

the Port of Kobe is estimated at US$10 billion [2]. A more recent example is severe lateral ground movement in

Christchurch (New Zealand) in 2010 and 2011 [3]. Due to the high vulnerability to flooding in low-lying countries

such as the Netherlands [4], liquefaction of dike or dune sections poses a serious socio-economic threat.

Accurate modeling of the state transition from saturated soil to a liquid sand-water mixture and post-liquefaction

phenomena is necessary for the prediction and possible prevention of damages inflicted by liquefaction. This requires
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a continuum approach capable of capturing the complex two-phase dynamic behaviour of soil during the process of

strength reduction. Additionally, the method should be able to accommodate the large deformations of soil in its

liquefied state.

In this paper, a two-phase finite element method (FEM) which is a part of the advanced three-dimensional material

point method (MPM) software Anura3D [5,6] is considered together with the UBC3D-PLM model developed by

Plaxis [7]. The UBC3D-PLM model is a three-dimensional generalization of the widely known two-dimensional

UBCSAND model [8–10]. In [11] it is demonstrated that the UBC3D-PLM model has great potential for modeling

of liquefaction-related phenomena.

The performance of the proposed approach is examined by applying the numerical model to a shaking table problem

that is based on the well-documented case study in [10]. Despite the complexity of the liquefaction process, the

considered example can be reduced to a one-dimensional problem. The simplicity and comprehensive description of

this benchmark make it perfectly suited for validation and development of the presented approach.

Currently this study does not include large deformations. However, it provides a firm basis for the development of

accurate models for soil state transition. To the authors’ knowledge, it is also the first attempt to use the UBC3D-PLM

model with the FEM featuring a velocity-based two-phase formulation. In future research, the FEM will be replaced

by a “two-point” (“double-point”) MPM. The MPM introduced in [12] is an appropriate numerical tool for modeling

complex large-deformation problems in continuum mechanics. In this method, the material is represented by a set of

Lagrangian particles (material points) that move through a fixed Eulerian mesh. The material points carry the physical

properties of the continuum such as mass, strain and stress. With the two-point MPM, the soil skeleton and pore water

are represented by different sets of particles [13,14]. Therefore, it can be used for the simulation of the relative motion

of sand and water, which is essential for modeling post-liquefaction processes such as landslides, flow slides and soil

solidification.

The paper is structured as follows. In Section 2, a brief description of the numerical model is provided. In Section 3,

the shaking table benchmark is introduced. Moreover, this section gives an overview of the corresponding input

parameters and an analytical solution for the linear elastic version of the problem used to design the mesh. The

simulation results are discussed in Section 4. In Section 5, conclusions are drawn.

2. Numerical model

Here, the main aspects of the considered numerical approach are described. In the velocity-based, two-phase for-

mulation the velocities of water and solid phase are the principal unknowns. They are computed from the conservation

of momentum equations for water and sand-water mixture, respectively. The momentum equations are:

ρw
dvw,i

dt
=
∂p
∂xi
− ρwgi − nγw

ki
(vw,i − vs,i),

(1 − n)ρs
dvs,i

dt
= −nρw

dvw,i

dt
+
∂σi j

∂x j
− ρsatgi,

(1)

where ρw is the water density, vw,i is a component of the velocity vector of the water phase in the i-direction, p is the

pore water pressure, gi is a component of the gravitational acceleration vector in the i-direction, n is the porosity, γw is

the unit weight of the fluid, ki is the hydraulic conductivity of soil in the i-direction, vs,i is a component of the velocity

vector of the solid phase in the i-direction, ρs is the density of the solid phase, σi j is the total stress tensor, and ρsat is

the saturated density.

For two-phase analysis, the total stress is defined as:

σi j = σ
′
i j + pδi j, (2)

in which σ′i j and δi j are the effective stress tensor and Kronecker delta, respectively.

The pore pressure rate is then obtained from the storage equation representing the conservation of mass:

∂p
∂t
=

Kw

n

(
(1 − n)

∂vs,i

∂xi
+ n
∂vw,i

∂xi

)
, (3)
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where Kw is the bulk modulus of the water phase.

The effective stress rate is computed using the UBC3D-PLM model. The main features of this model are discussed

in Section 2.1. To discretize the momentum equations in space the classical finite element approach is adopted for

the resulting system of coupled partial differential equations. The semi-implicit Euler-Cromer method is used for the

time discretization. For further details the reader is referred to [15,16].

2.1. Constitutive relation

2.1.1. Elastic behaviour
In the UBC3D-PLM model, the elastic component of the response is determined by the elastic shear modulus, Ge,

and the elastic bulk modulus, Be, in the following way:

Ge = ke
GPA

(
p′

PA

)nG

,

Be = ke
BPA

(
p′

PA

)nB

.

(4)

Here, ke
G and ke

B are, respectively, the shear and bulk moduli numbers, PA is the atmospheric pressure, p′ is the mean

effective stress, nG and nB are the elastic exponents defining the dependence of stiffness on stress.

Purely elastic behaviour is predicted upon unloading, which is characterized by a decrease in the magnitude of the

stress ratio.

2.1.2. Plastic behaviour
Plastic strains are generated during first time loading and reloading. They are controlled by primary and secondary

yield surfaces. First time loading occurs when the stress ratio exceeds the highest stress ratio in the loading history.

In this case the primary yield surface based on isotropic hardening is activated. As the magnitude of the stress ratio

increases, the yield surface is “dragged” to a new location, expanding the elastic region. Unloading deactivates the

primary yield surface. During reloading the current stress ratio does not exceed the previous stress ratio limits and

the model produces less plastic strains when compared to first time loading. This is achieved by using a kinematic

hardening rule for the secondary yield surface which is activated upon reloading. Both yield surfaces are defined by

the Mohr-Coulomb yield function given by:

fm =
1

2

(
σ′max − σ′min

) −
(

1

2

(
σ′max + σ

′
min

)
+ c cot φp

)
sin φmob, (5)

where σ′max and σ′min are, respectively, the maximum and minimum principal effective stresses, c is the cohesion, φp

is the peak friction angle, and φmob is the mobilized friction angle.

The plastic potential function is based on the Drucker-Prager model and can be expressed as follows:

gm = q − 6 sinψmob

3 − sinψmob

(
p′ + c cot φp

)
, (6)

where q is the deviatoric stress and ψmob is the mobilized dilation angle. The mobilized dilation angle is computed

from φmob and the constant volume friction angle, φcv, in the following manner:

sinψmob = sin φmob − sin φcv. (7)

The hardening rule introduced in [8] is:

d sin φmob = 3kp
G

(
p′

PA

)np PA

σ′max + σ
′
min

(
1 − sin φmob

sin φp
R f

)2

dλ, (8)

where kp
G is the plastic shear modulus number, np is the plastic shear modulus exponent, Rf is the failure ratio and dλ

is the plastic shear increment.
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During first time loading kp
G is equal to kp

G0
, which is an input parameter. However, upon secondary loading it is

replaced by the updated plastic shear modulus:

kp
Gi = kp

G0

(
4 +

nrev

2

)
kdens f acdens. (9)

Here, nrev is the number of shear stress reversals from loading to unloading and vice versa, kdens is a factor between

0.5 and 1.0 required to correct the densification rule and f acdens is a densification factor extracted after curve fit.

3. Shaking table benchmark

In the shaking table benchmark, a 38 m high column of loose, fully saturated sand is considered. The bottom of

the column is impermeable and subjected to an acceleration of 0.2g sin(3πt). Centrifuge tests presented in [10] were

carried out at Rensselaer Polytechnic Institute (RPI) for a scaled-down column. These experiments were performed

using a laminar box consisting of rings which were allowed to move laterally, parallel to the direction of shearing. The

laboratory results are compared with numerical data obtained with a finite difference method utilizing the UBCSAND

model for a prototype-scale benchmark referred to as RPI model 1 [10]. The complexity of the numerical analysis

was elegantly reduced to a one-dimensional representation of the problem by making the following assumptions. First

of all, each horizontal layer was allowed to change its volume in the vertical direction and undergo shear deformation

due to horizontal shear stress, while compression and expansion in the horizontal direction were prohibited. In ad-

dition, uniform strains and stresses along every horizontal plane were assumed. Figure 1 illustrates the experimental

and numerical setups considered in [10].

120g

0.2g, 1.5 Hz, 50 cycles

Fig. 1. Shaking table benchmark: schematic representation of experimental (left) and numerical (right) setups.

In this paper the motion of the column is studied with respect to its bottom surface. For this reason, the dynamic

boundary condition is replaced by an inertial force according to d’Alembert’s principle [17]. Mathematically, this

modification is equivalent to the substitution of horizontal displacement u(y, t) with w(y, t) defined as:

w(y, t) = u(y, t) +
0.2g
9π2

sin(3πt). (10)

Moreover, the grid nodes located on the same horizontal plane are tied in order to enforce the one-dimensional repre-

sentation of the three-dimensional discretization of the column.

3.1. Input parameters

Since the benchmark can be reduced to a one-dimensional problem, the size of the column base is not relevant and

is, therefore, set to 1 m × 1 m. A homogeneous soil column is assumed. Table 1 provides the input parameters for the

model. These values are based on the information provided in [10,18–20] for Nevada sand fully saturated with water.
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Table 1. Input parameters.

Parameter Soil column Parameter Soil column

Initial porosity [-] 0.40 Elastic bulk modulus number [-] 1067

Density solid [kg/m3] 2600 Elastic shear modulus exponent [-] 0.50

K0-value [-] 0.50 Elastic bulk modulus exponent [-] 0.50

Intrinsic permeability liquid [m2] 6.97 · 10−12 Plastic shear modulus exponent [-] 0.50

Young’s modulus [N/m2] 2.50 · 108 Failure ratio [-] 0.95

Poisson ratio [-] 0.20 Atmospheric pressure [Pa] 1.00·105

Cohesion [N/m2] 0 Densification factor [-] 0.50

Constant volume friction angle [ ◦] 31 Density liquid [kg/m3] 1000

Peak friction angle [ ◦] 32 Bulk modulus liquid [N/m2] 0.60 · 108

Elastic shear modulus number [-] 800 Dynamic viscosity liquid [Pa·s] 1.00 · 10−6

Plastic shear modulus number [-] 500 Gravitational acceleration [m/s2] 10

3.2. Mesh

In order to determine the required level of mesh resolution, preliminary simulations are performed with a linear

elastic stress-strain relation. This simplified model admits an analytical solution for this benchmark. The solution is

given by:

w(y, t) =
∑

n=1,3,5,...

An(t) sin
(
πny
2H

)
, (11)

where H is the column height and An is a time-dependent coefficient defined as:

An(t) = − 3.2gρH2

nπ3
(
n2G − 36ρH2

)
⎛⎜⎜⎜⎜⎜⎝sin(3πt) − 6H

n
√

G/ρ
sin

⎛⎜⎜⎜⎜⎜⎝nπ
√

G/ρ
2H

t

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ . (12)

The column is discretized into 38 layers of size 1 m × 1 m × 1 m. Each layer consists of six tetrahedral elements

with one material point in the center of each element. Figure 2 demonstrates nearly exact agreement between the

displacements at the beginning of the simulation. After 1 s the relative L2 error is equal to 4.37 · 10−4 m. Although

after 30 s the relative error increases to 3.05 · 10−2 m due to the time-stepping error, the figure depicts considerable

similarity between the numerical solution and the analytical data at the end of the simulation. It is concluded that the

mesh is sufficiently fine for this numerical study.
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Fig. 2. Analytical and numerical solutions for linear elastic shaking table problem after 1 s (left) and 30 s (right).
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4. Results

In this section, the results obtained from the shaking table case study with a two-phase FEM in conjunction with the

UBC3D-PLM model are discussed. Figure 3 displays the initial mean effective stress and pore pressure distributions

over the column height, as well as the distributions after 2.5 s, 5 s, 10 s, 20 s, 30 s and 40 s after the beginning of the

simulation.
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Fig. 3. Mean effective stress (left) and pore pressure (right) distribution over column height after 0 s, 2.5 s, 5 s, 10 s, 20 s, 30 s and 40 s.

Before shaking, the magnitude of the mean effective stress increases with depth according to:

p′(y, 0) =
(1 + 2K0)

3
ρsubg(H − y). (13)

Here, p′ is the mean effective stress, y is the height level, K0 is the coefficient of lateral earth pressure, ρsub is the

submerged soil density, and H is the total height of the column.

After 2.5 s of cyclic loading, the mean effective stress becomes zero at the top of the column indicating local lique-

faction. The magnitude of the excess pore water pressure along the whole column increases significantly. The pore

pressure growth is accompanied by oscillations at y = 10 m and y = 22 m.

As the shaking continues, a top-down trend of the strength loss develops in the top part of the soil column, i.e.

liquefaction occurs first near the surface and then propagates downward. However, after 5 s, the model predicts near-

liquefaction at a height of 10.5 m. This is an unexpected result, because the magnitude of the mean effective stress in

the main part of the column above this level is significantly larger.

After 30 s, the upper 14 m of the column have completely liquefied and the near-liquefaction state is identified at the

bottom of the column, from y = 0 m to y = 12 m. In the middle part of the column the mean effective stress is limited

to −44 kPa. Following [10], the shaking is terminated at 33.3 s, while the simulation is continued until 40 s. At the

end of the simulation, excess pore pressure approaches the initial vertical effective stress distribution which implies

that total effective stress is vanishing.

In Figure 4 the numerical results are compared to experimental data extracted from [10]. The figure underlines the

observed merits and drawbacks of the approach adapted in this paper by illustrating the excess pore pressure time

history at different heights. At a height of 24.9 m the model predicts the soil behaviour with adequate accuracy. Near

the bottom surface, at y = 1.0 m, the initial growth of the pore pressure magnitude is faster than during the laboratory

experiment. However, after 15 s, the model depicts the liquefaction process correctly. At a height of 13.2 m, the

liquefaction process is significantly slower compared to measurements.

The early liquefaction of the bottom layers of the column was observed in the numerical analysis of [10] as well.

Initially the finite difference model predicted a bottom-up liquefaction trend. The simulation results followed the

top-down trend detected in the experiments after the soil density was increased with depth. It is expected that density

adjustment would improve the results obtained with the FEM approach. In addition, the detected deviations might be
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Fig. 4. Measured [10] and predicted excess pore pressure at y = 1.0 m, y = 13.2 m and y = 24.9 m.

reduced by further calibration of the UBC3D-PLM model parameters. For instance, the value of plastic shear modulus

has a strong influence on the oscillatory behaviour of stresses.

5. Conclusions

The objective of this preliminary study was to model soil liquefaction using a two-phase formulation of the FEM

in conjunction with the UBC3D-PLM constitutive model. The approach was tested on a shaking table benchmark

describing shear loading of a 38 m high column of loose saturated sand. The model prediction was compared with

experimental data reported in [10]. The results demonstrated that the FEM combined with an elaborate elastoplastic

constitutive equation was capable of simulating the shear-induced change of mean effective stress. The proposed

approach also partially reproduced the top-down liquefaction trend. It is expected that further calibration of the

model and adjustment of soil density with depth would render a closer fit to the experiments. In future research, this

benchmark will be used for validation and enhancement of the recently developed two-point MPM.
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