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Abstract—A key parameter in the design of integral equation
methods for transient electromagnetic scattering is the choice of
temporal basis functions. Newly constructed basis functions have
to meet requirements on accuracy, smoothness and efficiency,
while the requirement of bandlimitedness is dropped for the
nonlinear case. An analysis of the interpolation accuracy will
justify the widespread use of the shifted Lagrange basis func-
tions, because these have optimal accuracy, but introduce non-
smoothness in the calculated fields. Alternatively, a novel spline
basis function is proposed that has optimal accuracy under an
additional smoothness constraint. Computational results confirm
the expected smoothness and accuracy.

I. INTRODUCTION

Time Domain Integral Equation (TDIE) methods are used

to model transient electromagnetic scattering from complex

structures. When, for example, the scatterer is coated with

ferromagnetic or chiral radar absorbing materials, its response

will be nonlinear, and standard methods in the frequency

domain are not applicable. The boundary integral formulation

has the added advantage of being efficient because the number

of degrees of freedom scales squared instead of cubed with the

electrical size of the object. For realistic problems, efficiency

can be improved with plane-wave techniques [1]–[3].

Historically, many choices for the definition of TDIE meth-

ods have been inspired by the Method of Moments (MoM),

its frequency domain analogue. However, temporal basis func-

tions are not encountered in the MoM. Linear functions

have first been used as building block of the temporal basis

functions [4], followed by the introduction of basis functions

with quadratic Lagrange polynomials [5]. The associated

family of shifted Lagrange basis functions is still the most

popular choice as temporal basis function. Based on different

design criteria many other temporal basis functions have been

proposed, but with varying success [6].

To the best of the authors’ knowledge, no comprehensive

motivation for the choice of shifted Lagrange basis functions

has been found in literature. This paper will show the unique

advantage of the Lagrange polynomials: its optimal accuracy

for the given class of temporal basis functions. Although

optimal accurate, the piecewise smooth character of the shifted

Lagrange basis functions can result in nonsmooth solutions.

Smoothness can only be enforced when alleviating accuracy

requirements. As will be shown, a clever choice of require-

ments can maintain the global accuracy while introducing

smoothness. Aware of possible instabilities, this paper only

concentrates on the accuracy of the temporal basis functions.

All computational results presented are stable.

This paper starts in Section II by formulating the governing

integral equations for transient electromagnetic scattering.

How to construct temporal basis function for different criteria

is explained in Section III. The accuracy analysis of the

temporal basis functions is presented in Section IV. For

different accuracy conditions the analysis not only results in

the known Lagrange polynomials and quadratic splines, but

also gives a novel temporal basis function based on cubic

splines. In Section V computational results are shown for the

TDIE method with different temporal basis functions.

II. FORMULATION

For a closed and perfect electric conductor (PEC) with its

surface denoted by S, integral equations give a relation be-

tween the incident and the scattered electromagnetic field. The

scatterer is surrounded by free space and the incident fields

excite an electric surface current J(r, t) on S. This electric

surface current induces a scattered electric field Es(r, t) and

scattered magnetic field Hs(r, t). The differentiated scattered

fields are given by

Ės(r, t) =
∫∫

S

(
μ
J̈(r′, τ)
4πR

− 1
ε
∇∇′ · J(r′, τ)

4πR

)
dr′, (1)

Ḣs(r, t) = −
∫∫

S

(
∇× J̇(r′, τ)

4πR

)
dr′, (2)

for R = |r−r′|, τ = t− R
c denoting the retarded time, and ∇

and ∇′ denoting the nabla operator with respect to r and r′,
respectively. The surface conditions on the PEC scatterer are

−n × n ×
(
Ėi(r, t) + Ės(r, t)

)
= 0, (3)

n ×
(
Ḣi(r, t) + Ḣs(r, t)

)
= J̇(r, t), (4)

with n denoting the outward pointing unit normal on S.

Substitution of the scattered fields (1) and (2) into the sur-

face conditions (3) and (4) results in the EFIE and MFIE,
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respectively. After discretization, the CFIE is given by a linear

combination of the EFIE and MFIE, that is,

(1 − α)J̇ − n×
(α

η
n × Ės + (1 − α)Ḣs

)

= n×
(α

η
n × Ėi + (1 − α)Ḣi

)
, (5)

for 0 ≤ α ≤ 1 and η =
√

μ/ε the impedance.

To solve the CFIE, the surface current J(r, t) is expanded

in terms of NS spatial and Nt temporal basis functions as

J(r, t) =
NS∑
n=1

Nt∑
j=1

Jn,jfn(r)Tj(t). (6)

Spatially, a Galerkin testing procedure is applied. As spatial

test and basis functions the RWG function is used. The time

span is divided into uniform intervals with time steps ti = iΔt
for i = 0, 1, 2, . . . . Temporal point matching in subsequent

time levels tk results in the Marching on in Time (MOT)

algorithm [7].

III. CONSTRUCTION OF TEMPORAL BASIS FUNCTIONS

Temporal basis functions are constructed according to user

defined design criteria. Important are accuracy, smoothness,

efficiency, and bandlimitedness, which can conflict with each

other. How much emphasis is put on which criterium can

be inspired by the application of the TDIE method. In this

section it will be explained how these design criteria are used

to construct temporal basis functions.

Efficiency of the TDIE method is based on a trade-off

between the amount of work and accuracy. Generally speaking,

basis functions with a small support result in an inexpensive

TDIE method, while a large support results in an accurate

method. In this paper, only temporal basis functions of a

small support will be used: no entire-domain functions are

taken into account. Moreover, TDIE methods are solved as

a MOT algorithm, for which the unknown surface current

is solved efficiently from solutions at previous time levels.

Causal temporal basis functions naturally satisfy the marching

criterion. Therefore, the analysis is restricted to causal basis

functions only.

Bandlimitedness has been imposed on temporal basis func-

tions to exclude undesirable frequency content from the

TDIE method [7]. Since our main interest of application is

nonlinear scattering, bandlimitedness of the backscattered field

can not be assumed. Therefore, no limits will be imposed on

the frequency band of the temporal basis function.

Smoothness is desired because smooth surface currents

are expected from physical principles. Furthermore, smooth

functions will result in more accurate quadrature of the spatial

integrals.

Accuracy will be the most important issue for the con-

struction of temporal basis functions. The accuracy analysis

restricts to the error stemming from the time discretization

only, which is one part of the truncation error of the TDIE

method. With the aid of the accuracy analysis not only existing

basis functions can be justified, it also provides a structured

procedure to develop new basis functions. Abandoning optimal

accuracy gives way to incorporating smoothness into the

interpolation. Novel temporal basis functions can then be

constructed with a user-defined trade-off between accuracy and

smoothness.

Classic EFIE formulations use an integral with respect to

time, acting on the surface current. Because numerical proce-

dures for evaluating these integrals are tedious, a differentiated

formulation is often used. This liberates the equations from

time integrals, but is at the expense of a second order time

derivative. The time derivatives of the unkown functions are

represented by the derivatives of the interpolator. Because

differentiation reduces the interpolation accuracy by one order,

also the accuracy of the time differentiated functions is reduced

by one order.

IV. ACCURACY OF TEMPORAL BASIS FUNCTIONS

A key factor for the success of the MOT algorithm is

the proper choice of temporal basis functions Tj(t) for j =
1, 2, . . . , Nt. Therefore a thorough analysis of the interpolation

accuracy will be presented in this section. The basis functions

are chosen as Tj(t) = T (t − jΔt) for a predefined func-

tion T (t). The function T is called the interpolant, since it

interpolates functions at a retarded time level between several

discrete time steps. The interpolant has a bounded support

around zero, given by a fixed multiple of Δt.
The temporal accuracy is measured as the order with respect

to the time step size of the pointwise interpolation error. The

analysis starts with a general representation of temporal basis

functions. Imposing the orders of accuracy results in condi-

tions on the interpolation functions. The unique interpolator

satisfying the proposed conditions gives a representation of

the temporal basis function.

A. Optimal order accurate three-point interpolant

First, three-point interpolants will be analyzed. The corre-

sponding temporal basis function can be represented by a set

of three independent functions. That is,

T (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F0(t), −Δt < t ≤ 0,

F1(t), 0 < t ≤ Δt,

F2(t), Δt < t ≤ 2Δt,

0, else,

(7)

for arbitrary functions F0, F1, F2 that are twice continuously

differentiable inside their respective time intervals.

Consider an arbitrary retarded time instant τk, that is sit-

uated in the time interval t�−1 < τk ≤ t�. Substitution of

the interpolant (7) into the series expansion (6) of the surface

current results in

J(r, τk) =
NS∑
n=1

fn(r)
(
Jn,�F0(τk − t�)

+ Jn,�−1F1(τk − t�−1) + Jn,�−2F2(τk − t�−2)
)
. (8)

This interpolation has to represent the surface current accurate

for arbitrary τk. For three-point interpolators, third order
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accuracy can be imposed. Because time differentiation drops

the accuracy by one order, the first time derivative will thus

be interpolated second order accurate, and the second time

derivative will have first order accuracy. In total this results in

a first order accurate TDIE method. These accuracy conditions

are represented by

F0 + F1 + F2 = 1, (9)

F1 + 2F2 =
t� − τk

Δt
, (10)

F1 + 4F2 =
( t� − τk

Δt

)2

. (11)

The first equation is the well-known unit sum condition

for interpolants. These three accuracy conditions uniquely

determine the three-point interpolant as

T (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 t̃2 + 3

2 t̃ + 1, −1 < t̃ ≤ 0,

−t̃2 + 1, 0 < t̃ ≤ 1,
1
2 t̃2 − 3

2 t̃ + 1, 1 < t̃ ≤ 2,

0, else,

(12)

for the scaled time t̃ = t/Δt. This temporal basis function can

be recognized as the quadratic Lagrange basis function [5].

B. Smooth and accurate three-point interpolant

Given optimal accuracy for three-point interpolation, the

analysis results in a unique representation of the temporal basis

function. The resulting quadratic Lagrange basis function is

continuous, but nonsmooth in the discrete time levels. Because

the shifted Lagrange basis function is the unique solution, the

accuracy conditions have to be relaxed to give some freedom

for other conditions, like smoothness.

Quadratic Lagrange interpolants have a global accuracy of

order one, but the function itself and its first derivative are third

and second order accurate, respectively. A natural choice of

alleviating accuracy is to impose first order accuracy on the

basis function, as well as its first and second time derivative.

The global accuracy of the TDIE method is thus order one.

Additionally, a continuous derivative of the basis functions

is required. For these conditions, the interpolant is uniquely

defined as

T (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 t̃2 + t̃ + 1

2 −1 < t̃ ≤ 0,

−t̃2 + t̃ + 1
2 0 < t̃ ≤ 1,

1
2 t̃2 − 2t̃ + 2 1 < t̃ ≤ 2,

0 else.

(13)

This gives the temporal basis function based on quadratic

splines [6].

C. Optimal order accurate four-point interpolant

The quadratic Lagrange polynomials are the only three-

point interpolants that approximate functions third order ac-

curate. Improvement in accuracy can thus only be achieved

by increasing the number of support points. Four-point inter-

polants are represented by

T (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F0(t), −Δt < t ≤ 0,

F1(t), 0 < t ≤ Δt,

F2(t), Δt < t ≤ 2Δt,

F3(t), 2Δt < t ≤ 3Δt,

0, else.

(14)

Imposing the conditions

F0 + F1 + F2 + F3 = 1, (15)

F1 + 2F2 + 3F3 =
t� − τk

Δt
, (16)

F1 + 4F2 + 9F3 =
( t� − τk

Δt

)2

, (17)

F1 + 8F2 + 27F3 =
( t� − τk

Δt

)3

, (18)

results in interpolants that approximate functions fourth-order

accurate. The first and second time derivative is then interpo-

lated third and second order accurate, respectively, resulting in

a second order accurate TDIE method. The unique interpolant

satisfying these accuracy conditions is given by

T (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
6 t̃3 + t̃2 + 11

6 t̃ + 1, −1 < t̃ ≤ 0,

− 1
2 t̃3 − t̃2 + 1

2 t̃ + 1, 0 < t̃ ≤ 1,
1
2 t̃3 − t̃2 − 1

2 t̃ + 1, 1 < t̃ ≤ 2,

− 1
6 t̃3 + t̃2 − 11

6 t̃ + 1, 2 < t̃ ≤ 3,

0, else,

(19)

which is the cubic Lagrange interpolant [6].

D. Smooth and accurate four-point interpolant
Optimal accuracy is uniquely obtained by cubic Lagrange

basis functions, which are continuous but have a discontinuous

time derivative in the discrete time levels. To obtain smooth

interpolants, the accuracy conditions have to be softened.

However, the same global accuracy can be achieved by alle-

viating the accuracy conditions on the interpolant and its first

derivative only. Continuity of the derivative can be imposed

additionally. The unique solution is defined by the cubic spline

interpolant, given by

T (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
6 t̃3 + t̃2 + 3

2 t̃ + 2
3 , −1 < t̃ ≤ 0,

− 1
2 t̃3 − t̃2 + 3

2 t̃ + 2
3 , 0 < t̃ ≤ 1,

1
2 t̃3 − t̃2 − 3

2 t̃ + 8
3 , 1 < t̃ ≤ 2,

− 1
6 t̃3 + t̃2 − 3

2 t̃, 2 < t̃ ≤ 3,

0, else.

(20)

In [6] also a temporal basis function based on cubic splines

has been used. Although both named cubic spline interpola-

tors, the definition of the basis function in [6] differs from

definition (20). The novel temporal basis function based on

the cubic spline interpolator (20) has the special property of

being both smooth and second order accurate. Concluding,

cubic spline basis functions have the same accuracy as cubic

Lagrange basis functions, and have the added advantage of a

continuous derivative.
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Fig. 1. Temporal basis functions.

Fig. 2. Electric surface current at the top face of a cube.

V. NUMERICAL RESULTS

The TDIE method with the temporal basis functions de-

scribed in previous sections and shown in Figure 1 is

applied to a PEC cube with edges of 1 m. A Gaussian

plane wave is used as incident field, that is, Ei(r, t) =
120πp 4√

πT
e−(4(c(t−t0)−r·k)/T )2 . The parameters are given

by: polarization p = x̂; propagation k = −ẑ; width T = 6 lm;

and delay t0 = 4 lm. The CFIE-0.5 is used with an implicit

time step size of 0.71 lm.

In Figure 2 the induced electric surface currents are shown.

The reference solution is obtained with a small time step

size of 0.012 lm. The surface currents calculated with the

TDIE method using shifted Lagrange basis functions show

discontinuities in the gradient. These nonsmooth solutions in

discrete time levels correspond with the piecewise smooth

character of the shifted Lagrange basis function. On the

contrary, the surface currents from the spline basis functions

are smooth, as expected from the its construction.

TABLE I
ORDER OF ACCURACY, WITH THE SMALLEST TIME STEP SIZE LISTED.

basis function 0.012 lm 0.023 lm 0.047 lm

quadratic Lagrange 1.096 1.099 1.185

quadratic spline 0.981 0.963 0.922

cubic Lagrange 2.064 2.086 2.344

cubic spline 1.970 1.929 1.834

Richardsons extrapolation algorithm can be used to approxi-

mate the accuracy of numerical methods. Considering the same

test problem with time step sizes of 0.012, 0.023, 0.047, 0.093,

and 0.186 lm, the order of accuracy can be predicted three

times. The accuracy according to Richardsons method, shown

in Table I, is very close to the expected order of one for the

quadratic and two for the cubic functions, confirming the equal

global order of accuracy of spline and Lagrange interpolants.

VI. CONCLUSIONS

In this paper, a thorough analysis of the accuracy of the tem-

poral basis functions used in the TDIE method is presented.

For a causal interpolator with a fixed bounded support, only

the Lagrange polynomials give an optimal order of accuracy.

The shifted Lagrange basis functions are piecewise smooth.

Global smoothness can only be obtained when alleviating

the accuracy conditions. However, by alleviating the accuracy

condition cleverly, the total accuracy of the TDIE method can

remain the same while contuinity of the derivative is required

additionally. This results in temporal basis functions based on

splines. For example, the novel cubic spline basis function

has a continuous derivative and is second order accurate,

which is the same global accuracy as the cubic Lagrange basis

functions. Numerical results confirm the expected accuracy

and smoothness of the TDIE method.
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