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Design of Temporal Basis Functions for Time
Domain Integral Equation Methods With Predefined

Accuracy and Smoothness
Elwin van ’t Wout, Duncan R. van der Heul, Harmen van der Ven, and Cornelis Vuik

Abstract—A key parameter in the design of integral equation
methods for transient electromagnetic scattering is the definition
of temporal basis functions. The choice of temporal basis functions
has a profound impact on the efficiency and accuracy of the nu-
merical scheme. This paper presents a framework for the design
of temporal basis functions with predefined accuracy and varying
smoothness properties. The well-known shifted Lagrange basis
functions naturally fit in this framework. New spline basis func-
tions will be derived that have the same interpolation accuracy as
shifted Lagrange basis functions and with the added advantage of
being smooth. Numerical experiments show the positive influence
of smoothness on the quadrature error in the numerical inte-
gration procedure. The global accuracy in time of the numerical
scheme based on shifted Lagrange and spline basis functions has
been experimentally analyzed. For a given interpolation error
the experiments confirm the expected accuracy for the shifted
Lagrange basis functions, but remarkably show a higher order of
accuracy for the spline basis functions.

Index Terms—Computational accuracy, electric field integral
equation, interpolation, time domain analysis.

I. INTRODUCTION

T IME DOMAIN integral equation (TDIE) methods can
model transient electromagnetic scattering phenomena

accurately and efficiently. They are appealing tools for the
computational electromagnetic community since the radiation
condition is automatically imposed and only the surface of
an object has to be discretized. Because the equations are
fully formulated in time-domain, the method has the potential
to analyze wide-band and nonlinear scattering. Most TDIE
methods can function on unstructured triangular meshes and
without constraints on the Courant-Friedrichs-Lewy (CFL)
number which allows a great flexibility in the choice of spatial
and temporal mesh sizes. However, widespread use of TDIE
methods has been lagging behind because of instabilities and
relatively long computation times. With the inception of accel-
erators based on plane-wave and fast Fourier techniques the
efficiency has been improved such that objects of industrial
interest can be modeled [1], [2]. Stability has been enhanced
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by the combined use of filtering [3], implicit time stepping
[4], accurate evaluation of the system matrix [5], carefully
tailored temporal basis functions [6], Calderón preconditioning
[7], space-time Galerkin discretization [8], and convolution
quadrature [9]. Since stable results can be obtained for a very
wide range of time step sizes [5], modern TDIE methods can
be used for all practical purposes [4].
The marching-on-in-time (MOT) scheme has been used ex-

tensively to discretize the electric field integral equation (EFIE).
Its marching procedure results in an efficient algorithm. One of
the main choices to be made for the MOT scheme is the defi-
nition of temporal basis functions. Without any counterpart in
frequency domain solvers, many different temporal basis func-
tions have been proposed in the literature [6], [10]–[25]. Linear
functions have first been used as building block of the temporal
basis functions [10], followed by the introduction of temporal
basis functions with quadratic Lagrange polynomials [11]. The
associated family of shifted Lagrange basis functions is still one
of the most popular choices of temporal basis function.
The choice of temporal basis function has influence on the

accuracy, efficiency, and stability of the TDIE method [6],
[16]. This makes a proper design of temporal basis functions of
paramount importance for the performance of MOT schemes.
Temporal basis functions are constructed according to user
defined design criteria. Important are efficiency, bandlimited-
ness, smoothness, and accuracy, which may conflict with each
other. To the best of the authors’ knowledge, no comprehensive
analysis of the accuracy in time for MOT schemes has been
given in literature.
The purpose of this paper is to define a framework for the

design of temporal basis functions for use in TDIE methods,
with the focus on the influence of different formulations on the
accuracy of the method.
The discretization procedure in time that has been used in

the MOT scheme will be interpreted as a finite element method.
Intrinsic to the finite element method is the projection of the
solution on a function space of finite dimension. This interpola-
tion procedure introduces truncation errors that can be analyzed
with the aid of Taylor series, resulting in clear accuracy condi-
tions for polynomial basis functions. In this way a framework
will be derived that can be used to design temporal basis func-
tions with predefined interpolation accuracy. The well-known
shifted Lagrange basis functions naturally fit in this framework,
thus motivating its widespread use.
The presented framework can also be used to design novel

temporal basis functions. It will be shown that smoothness
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can be obtained without impinging on interpolation accuracy.
For instance, the cubic spline basis functions are two times
continuously differentiable whereas the interpolation accuracy
is the same as for cubic Lagrange basis functions. Numerical
results will confirm that smoothness reduces the errors from the
quadrature procedure. Surprisingly, the experimentally com-
puted global accuracy in time for the MOT scheme using spline
basis functions is orders better than for the shifted Lagrange
basis functions.
The main contribution of this paper is the presentation of

a careful analysis of the accuracy in time for TDIE methods.
With the resulting framework, temporal basis functions can be
designed with predefined accuracy and smoothness characteris-
tics, including novel spline basis functions.
This paper will proceed as follows: Section II summarizes

the model equations and its discretization, in particular the de-
sign of temporal basis functions. In Section III the interpolation
error of the temporal basis functions will be analyzed. The anal-
ysis will then be used to acquire a framework for the design of
temporal basis functions with specific accuracy and smoothness
characteristics. The numerical results in Section IV illustrate the
consequences of the various temporal basis functions on the ac-
curacy and efficiency of the MOT scheme. Conclusions will be
presented in Section V.

II. FORMULATION

The first part of this section summarizes the governing equa-
tions and the discretization method. Several important design
criteria for temporal basis functions will be explained in the
second part.

A. Time Domain Integral Equation Method

Consider a perfect electric conductor (PEC) surrounded by
free space. With the Stratton-Chu formulation, backscattered
fields from the object can be expressed in terms of the elec-
tric current distribution on the scattering surface. Substitution
of the formulation of the scattered fields into the interface con-
ditions results in the electric field integral equation (EFIE) and
magnetic field integral equation (MFIE). The differentiated ver-
sions [1], that have no integral in time, will be used, i.e.,

(1)

(2)

the EFIE and MFIE, respectively, which are solved for the elec-
tric surface current density on location and time . The
dot notation has been used for differentiation
in time. The other variables are denoted as: and the in-
cident electric and magnetic field, respectively, which are zero
for and the scattered electric and magnetic field,
respectively; the scattering surface with outward pointing unit
normal the retarded
time; and and the nabla operator with respect to and ,

respectively. The speed of light is given by
with and the permittivity and permeability of free space, re-
spectively.
The combined field integral equation (CFIE) is given by a

linear combination of the EFIE (1) and MFIE (2), i.e.,

(3)

for and the impedance [26].
Numerical discretization uses a triangular mesh on the sur-

face and a uniform partitioning in time with levels
for . The solution is expanded in terms of
spatial and temporal basis functions as

(4)

The Rao-Wilton-Glisson (RWG) functions are used for test and
basis functions in space [27]. In time, collocation is performed,
that is, the CFIE is point matched in subsequent time levels .
Temporal basis functions

(5)

are used to interpolate the solution from discrete time levels
in retarded time levels. For efficiency, causal basis functions
with small support will be considered, that is, for
all and with a small positive integer.
The discrete CFIE can be written as a marching procedure

(6)

where denotes the discrete surface current density at time
the incident field at time , and discrete interaction

matrices [6]. At every time level the discrete surface current
density can be calculated from known solutions only, resulting
in the Marching-on-in-Time scheme.

B. Temporal Basis Functions

The choice of the temporal basis function (5) is the topic of
this paper. The present analysis will only make use of temporal
basis functions that result in efficient MOT schemes and which
can be designed with conditions on accuracy and smoothness.
Efficiency of a numerical scheme is given by the trade-off be-

tween the amount of work and accuracy. Generally speaking, a
temporal basis function with small support results in an inexpen-
sive TDIE method whereas a large support results in an accu-
ratemethod [28], [29]. In order to obtain the fastMOT algorithm
(6), causal basis functionswith small support will be used. These
compact temporal basis function are not bandlimited [6].
Accuracy and smoothness will be the main guidelines in the

present design of temporal basis functions. Accuracy of the
MOT scheme depends on various errors, including spatial dis-
cretization error, temporal discretization error, and quadrature
error. The different errors are coupled due to the presence of
retarded time levels in the CFIE. A higher order of accuracy
may be advantageous because less stringent requirements have
to be imposed on the mesh size for the same truncation error.
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The temporal discretization error will be isolated in this paper
to enable concise derivations of the design criteria. The present
analysis considers the interpolation error of temporal basis func-
tion as a measure of temporal discretization error. This results in
expressions of the order of interpolation accuracy with respect
to the size of support of the temporal basis functions.
Thequadrature error originates from the numerical integration

in space of surface currents in retarded time levels. Smoothness
of temporal basis functions is likely to improve the quadrature
accuracy. Piecewise polynomial temporal basis functions will
be considered because analytical expressions of the spatial inte-
grals are available [5], [30]. These quasi-exact methods improve
the integration accuracy considerably but are nontrivial to imple-
ment and preclude extension to spatial curvilinear elements.
For these reasons, the present analysis restricts to temporal

basis functions (5) that are defined by piecewise polynomials
which have a small support and are causal. They can conve-
niently be written as

...
... (7)

with polynomials of degree , and
the scaled time.

III. ACCURACY DESIGN OF TEMPORAL BASIS FUNCTIONS

The CFIE (3) has been discretized with the MOT scheme.
To isolate the properties of the time components, the spatially
discretized CFIE will be considered. This is a delay differential
equation in time that uses both the first and second derivative.
Its solution is a time-dependent vector that corresponds to the
electric surface current density on the spatial mesh.
The discretization procedure in time of the MOT scheme will

be analyzed with the theory of finite element methods [31]. An
analysis of the interpolation procedure results in a framework
for the design of temporal basis functions with a predefined
order of interpolation accuracy. Additional requirements on the
smoothness yield various temporal basis functions, including
shifted Lagrange and spline basis functions.
Evidently, the accuracy of interpolation has influence on the

global accuracy of the MOT scheme. However, it is not nec-
essary that the orders of interpolation and global accuracy are
exactly the same. In Section IV the global accuracy will be an-
alyzed experimentally for a number of different temporal basis
functions that can be defined within the current framework.

A. Interpolation

In finite element methods the solution of a differential equa-
tion is approximated in a finite dimensional subspace. The map
of the solution onto the finite element space is called interpola-
tion and is one of the sources of discretization errors. Temporal
basis functions determine the finite element space and the accu-
racy of interpolation. A thorough analysis of the interpolation
procedure will result in clear conditions on temporal basis func-
tions for small interpolation errors.

For an arbitrary function the interpolator defines the
interpolant by

(8)

for coefficients which will be defined later and tem-
poral basis functions (5). The interpolation error is given by

where the type of norm will be specified later. Re-
call that for the CFIE the first and second time derivative have
to be evaluated in the retarded time as well. Therefore, the inter-
polation errors and are also of interest.
The derivative of a function is interpolated with the derivative
of the same basis functions, i.e.,

(9)

(10)

For a correct interpolation procedure, two choices have to
be made, namely the definition of the finite element space and
the map onto this space. Since basis functions in the form of
(7) are used, the finite element space is defined by the space
of piecewise polynomials of degree . The map onto the finite
element space is based on the definition of the coefficients
that depend on , i.e.,

(11)

for a functional , called a nodal variable [31]. This nodal
variable should be chosen such that the interpolation can be
analyzed easily. Additionally, a natural requirement is that the
well-known shifted Lagrange basis functions should fit within
this choice for the nodal variables.
It is common practice to use an interpolation that is a

projection. A sufficient condition is for
with denoting the Kronecker delta.

For the nodal variables and temporal basis functions that will
be used in this paper, this condition is satisfied a posteriori.

B. Quadratic Basis Functions

Consider temporal basis functions based on quadratic polyno-
mials. For an arbitrary time point , satisfying ,
the interpolant (8) reads

(12)

with as defined in (7). The pointwise interpolation error

(13)

will be used to analyze the accuracy of the interpolation. The
coefficients that determine the interpolation are defined
by (11). As nodal variable, use

(14)

for a constant . This choice allows a straightforward analysis
of the interpolation accuracy by using Taylor series. The inter-
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polant can then be written in terms of the unknown solution in
the arbitrary time point .
Quadratic polynomials may lead to an interpolation that is

third order accurate [31], to be precise,

(15)

To obtain this accuracy temporal basis functions have to satisfy

(16)

(17)

(18)

for , and
, as derived in the Appendix. The first equation is the well-

known unit sum condition for interpolants. Recall that the first
and second derivative have to be interpolated as well. Since the
derivatives of the same basis function are used, the interpolation
of the derivatives are based on polynomials of a lower degree.
This reduces the accuracy of interpolation for the derivatives, to
be precise,

(19)

(20)

The interpolation for the CFIE is thus first order accurate.
To obtain the claimed orders of interpolation accuracy, the

temporal basis function has to satisfy conditions (16)–(18). This
system of three equations can be solved uniquely as

(21)

For any constant this temporal basis function results in a first
order accurate interpolation of the CFIE. A sophisticated choice
of can be made by requiring a continuous basis function.
When satisfies

(22)

the temporal basis function will be continuous. The two solu-
tions and can be substituted into the general
representation (21) of the temporal basis function. The choice
of results in

(23)

which can be recognized as the quadratic Lagrange basis func-
tion [11]. The choice of results in

(24)

This is the temporal basis function based on quadratic B-splines
[20], [21]. Although only continuity has been required, the
spline basis function has a continuous derivative as well.

C. Cubic Basis Functions

To increase the interpolation accuracy of the MOT scheme
cubic basis functions can be used, since cubic polynomials may
result in fourth order accurate interpolation [31]. The derivation
of temporal basis functions that satisfy this accuracy will be
analogous to the derivation for quadratic basis functions.
The nodal variable that will characterize the basis functions

is chosen to be

(25)

for constants and . For cubic polynomials one can obtain
fourth order accurate interpolation. The differentiated functions
in the CFIE are interpolated with lower order polynomials and
therefore a lower order of accuracy can be obtained. So, an in-
terpolation procedure is searched for that satisfies

(26)

(27)

(28)

With a straightforward extension of the derivation in the
Appendix, it can be shown that cubic polynomial basis func-
tions have to satisfy

(29)

(30)

(31)

(32)

This system of equations can be solved uniquely as

(33)

(34)

(35)
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(36)

This general representation of temporal basis functions still has
the freedom to choose the parameters and . Some choices
of the parameters result in temporal basis functions that can be
found in literature [21]. However, to the best of the authors’
knowledge, this family of temporal basis function has not been
given in literature and therefore novel temporal basis functions
can be designed readily. The specific choices made in this paper
will be based on requirements on smoothness.
Requiring a continuous temporal basis function results in the

condition

(37)

When one requires a continuous derivative, the condition

(38)

has to be satisfied. Temporal basis functions that are con-
tinuous have to satisfy both conditions (37) and (38). Its unique
real-valued solution is . For this choice of
parameters, the temporal basis function reads

(39)

Although only continuity has been required, it is in
fact continuous. Therefore, it is called the cubic spline
basis function. This temporal basis function results in a second
order accurate interpolation procedure for the CFIE and has the
striking feature of being continuous.
Alleviating the smoothness requirement makes it possible to

design different basis functions. For continuity, condition (37)
on and is the only one and has infinitely many solutions.
Recall that the nodal variable (25) has been chosen such that
well-known basis functions can be obtained. To show this capa-
bility of the framework, consider the solution .
This choice results in

(40)

which is the cubic Lagrange basis function [15].
The various temporal basis functions introduced in this sec-

tion are depicted in Fig. 1 and their properties are summarized
in Table I.
In this section, quadratic and cubic temporal basis functions

have been designed that result in an interpolation procedure for
the CFIE with first and second order accuracy, respectively. The
current framework can readily be extended to higher order poly-
nomials with larger support. The natural extension of the nodal

Fig. 1. The shape of the temporal basis functions.

TABLE I
INTERPOLATION ACCURACY FOR THE THREE TEMPORAL TERMS, THE TOTAL
INTERPOLATION ACCURACY OF THE CFIE AND THE SMOOTHNESS OF THE

VARIOUS TEMPORAL BASIS FUNCTIONS

variable is to include higher order derivatives. These extensions
introduce more degrees of freedom for the design of temporal
basis functions. As is derived in this paper, higher orders of in-
terpolation accuracy or better smoothness characteristics can be
obtained. However, the degrees of freedom can also be used to
fulfill other types of design criteria. For instance, the choice of
temporal basis function has an effect on the efficiency of the
linear solver. In every iteration of the MOT scheme (6) a system
of linear equations has to be solved, which is computationally
expensive for large condition numbers. The shape of the tem-
poral basis function has influence on the condition number of
discretization matrices. Further research is required to derive
concise conditions on these degrees of freedom.

IV. EXPERIMENTAL VERIFICATION

Four temporal basis functions have been designed with the
presented framework. In this section, the implications of the
different smoothness and accuracy characteristics on the per-
formance of the MOT scheme will be verified experimentally.
Particularly, the effect of smoothness on the quadrature accu-
racy and the effect of interpolation accuracy on global accuracy
in time will be analyzed.
Two test cases will be considered, namely a cube with edges

of 1 m and a sphere with a diameter of 1 m. As depicted in Fig. 2,
the cube and sphere are partitioned into 480 and 238 triangular
patches, respectively. A Gaussian plane wave

(41)

will be used as incident field, with the parameters given by:
polarization , propagation , pulse width
lm, and pulse delay lm. To get an equal contribution from
the EFIE and MFIE, the CFIE-0.5 will be used, i.e., in



276 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 1, JANUARY 2013

Fig. 2. The mesh of the cube and sphere used as test problem.

Fig. 3. Electric surface current density at the top face of the sphere.

(3). If not specified, the outer spatial integral has been calculated
with Gaussian quadrature with 7 points on each triangle patch
and the inner integral calculated analytically [30].

A. Smoothness

An important feature of the spline basis functions (24) and
(39) is the continuous derivative on the whole time axis whereas
shifted Lagrange basis functions (23) and (40) are only contin-
uous. The discrete surface current density calculated with the
spline basis functions is therefore expected to be smooth. To
verify this implication, the TDIE method will be used with a
large time step size, for which the effect of smooth basis func-
tions on the solution will appear. For the sphere and cube a time
step size of 1.13 lm and 0.71 lm has been used. As a reference
solution, the MOT scheme has been applied with a small time
step size of 0.014 lm and 0.029 lm for the sphere and cube, re-
spectively. The results depicted in Figs. 3 and 4 clearly show
that the smoothness properties of the temporal basis functions
lead to similar smoothness properties of the discrete electric sur-
face current density.

B. Accuracy

The global accuracy of TDIE methods depends on different
kinds of numerical errors. Important sources of errors are
• spatial discretization,
• temporal discretization,
• quadrature integration, and
• solution of the system of discretized equations.

Spatial discretization errors originate from the representation of
electric surface currents on an object by RWG functions on a

Fig. 4. Electric surface current density at the top face of the cube.

surface mesh. The analysis of these errors is outside the scope of
this paper. The temporal discretization error has been analyzed
in Section III by deriving error bounds on the interpolation error
of temporal basis functions. Quadrature errors are present since
the spatial integrals are computed with a quadrature procedure
on the triangular elements. The errors from solving the discrete
system can be neglected because an LU decomposition has been
used as linear solver.
Below, the quadrature and interpolation accuracy will be con-

sidered in more detail.
1) Quadrature Accuracy: The CFIE (3) is given by spatial

integrals over the triangular surface mesh. Gaussian quadra-
ture has been used to evaluate the integrals, which is effective
for smooth integrands. The integrands in the CFIE depend on
the temporal basis functions evaluated in retarded time levels.
Smooth temporal basis functions therefore yield integrands that
are smooth in space and the quadrature accuracy is expected to
improve.
Recall that the quadrature procedure is applied to the outer

integral only because the inner integral has been calculated with
analytic expressions [30]. As test problem the sphere has been
used with a time step size of 0.14 lm.
The discretized EFIE (1) consists of the terms

(42)

(43)

that can be related with the magnetic vector and scalar potential,
respectively [10]. denotes the surface mesh with quadra-
ture points on each triangular patch. Notice that the value de-
termines the matrix in the MOT scheme (6) of which the
discrete terms are an element. For each temporal basis function,
both terms will be computed with different numbers of quadra-
ture points. The convergence towards the reference experiment
with 73 quadrature points will be considered. The relative error
is therefore defined as
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Fig. 5. Relative error for the vector potential term on a sphere.

Fig. 6. Relative error for the scalar potential term on a sphere.

For a given , the norm

over all edge pairs has been used. The convergence results for
the vector potential term (42) is depicted in Fig. 5 with
and for the scalar potential term (43) in Fig. 6 with .
For the cubic basis functions, the smoothness of the spline

basis function indeed improves the convergence as depicted in
Fig. 5. For the quadratic basis functions, however, exactly the
same convergence is observed. This is expected because the
vector potential term (42) contains only, which is the same
for both quadratic Lagrange and spline basis function.
Because the scalar potential term does not have a time deriva-

tive, the smoothness properties of the temporal basis functions
are all different. Fig. 6 clearly shows that smoothness of the tem-
poral basis function improves the convergence with respect to
the number of quadrature points.
The positive influence of smooth basis functions on the

quadrature accuracy of the discrete terms has been verified
experimentally. But a faster convergence for the elements of
the interaction matrices does not necessarily imply more accu-
rate solutions of the MoT scheme. It is therefore not evident
that smoothness of temporal basis functions will also have a

Fig. 7. Relative error for the electric surface current density on a sphere.

TABLE II
EXPERIMENTAL ORDER OF INTERPOLATION ACCURACY

positive influence on the discrete surface current density of the
TDIE method.
The solution of the EFIE has been computed with the MOT

scheme for different numbers of quadrature points. The conver-
gence towards the reference solution for 73 quadrature points
will be considered. The relative error is given by

where denotes the coefficients in (4) computed with
quadrature points. The norm is defined in both discrete space
and time as

The convergence results depicted in Fig. 7 show a faster
convergence for spline basis functions compared to shifted
Lagrange basis functions of equal support. For this specific test
case, the increase in convergence rate for the surface current
density is not as prominent as for the matrix elements.
2) Interpolation Accuracy: In this paper, the accuracy

in time of the MOT scheme has been analyzed by deriving
bounds on the interpolation error, as summarized in Table I.
To validate the analysis, a given function will be interpo-
lated, for instance a Gaussian curve for

. The interpolant (8) calculated with a time step size
is denoted by and with by .

Then the order of interpolation accuracy can be computed as
and similar for the derivatives.

Results with the norm are given in Table II. The experi-
mental accuracy perfectly matches the expected accuracy.
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TABLE III
EXPERIMENTAL ORDER OF ACCURACY ON A SPHERE, WITH THE SMALLEST

TIME STEP SIZE LISTED

TABLE IV
EXPERIMENTAL ORDER OF ACCURACY ON A CUBE, WITH THE SMALLEST TIME

STEP SIZE LISTED

3) Global Accuracy: The global accuracy in time of TDIE
methods depends on the interpolation accuracy but does not
necessarily have to satisfy the same orders of accuracy. With
Richardson’s extrapolation algorithm the global accuracy can
be investigated experimentally. Consider three experiments
with three different time step sizes, all on the same spatial
mesh. The -component of the discrete electric surface current
density on top of the object is denoted by , and

, for time step sizes , and , respectively.
The order of the global accuracy in time can be computed as

where the norm has been
used for lm. The results for the sphere and cube are
listed in Tables III and IV, respectively.
For the shifted Lagrange basis functions the experimental

order of accuracy converges to the expected and
for the quadratic and cubic version, respectively.

However, a global error of and is observed
for the quadratic and cubic spline basis function, respectively.
Apparently, the interpolation error does not restrict the global
accuracy when the spline basis functions are used and higher
orders of accuracy are obtained. The smoothness of the tem-
poral basis functions probably results in the higher orders of
accuracy. The actual cause of this remarkably better accuracy
for the spline basis functions is a topic for future research.
The focus of this paper has been on accuracy and smooth-

ness of MoT schemes. Numerical stability is also an important
property of computational methods. Our experiments indicate
that cubic spline basis functions are more prone to late-time in-
stability than Lagrange functions. This sounds counterintuitive,
since smoothness is expected to improve stability [6]. Due to the
shifted weights of the cubic spline basis function, more impor-
tance is given to past influences instead of immediate interac-
tions. The weaker diagonal dominance of the leading matrix in
the marching algorithm (6) possibly leads to accumulating nu-
merical errors. On the positive side, quadratic spline basis func-
tions result in stable solutions. The extension to stability of this
framework for the design temporal basis functions is a topic of
further research.

V. CONCLUSION

In this paper a framework has been derived to design temporal
basis functions with predefined interpolation accuracy. This re-
sults in spline basis functions that have the same interpolation
accuracy and have better smoothness properties compared to
shifted Lagrange basis functions. Numerical experiments show
a higher order of global accuracy for the spline basis functions
than for the shifted Lagrange basis functions with equal support.

APPENDIX
DERIVATION OF THE ACCURACY CONDITIONS

Temporal basis functions in the MOT scheme are denoted by
and formulated as . The definition of

will then give a representation of all temporal basis functions.
The class of causal basis functions with a small support can be
written as

(44)

for , and denoting quadratic polynomials and the
time step size. Consider an arbitrary retarded time level , for
which one can find a discrete time level such that

. With defined as , the analysis can
be restricted to an arbitrary .
The unknown solution of the spatially discretized CFIE in the

MOT scheme is denoted by . This solution is mapped to-
wards a finite dimensional space that include all temporal basis
functions. The solution inside this finite element space is de-
noted by and is defined by a series expansion in terms of
temporal basis functions as

(45)

The coefficients are defined by a nodal variable . In this
case, use

(46)

for a constant . For the derivatives of the solution, the deriva-
tive of the temporal basis functions are used, i.e.,

For quadratic polynomial basis functions (44) the interpola-
tion procedure results in

(47)

(48)

(49)
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The interpolation error of , and at an arbitrary retarded
time level is given by , and
, respectively, for , and
. To obtain the interpolation accuracy, the coefficients

are written as a Taylor series in the unknown functions in the
retarded time level. That is,

(50)

(51)

(52)

since . Substitution of the Taylor series
(50)–(52) into the interpolants (47)–(49) results in

(53)

(54)

(55)

with given by

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

with the abbreviations

(65)

(66)

(67)

To obtain a third order accurate interpolation scheme for ,
one needs , which is satisfied if

, and . These three conditions can be
rewritten into conditions on the temporal basis functions as

(68)

(69)

(70)

It can be shown that conditions (68), (69) and (70) imply
, and for

all . Hence and
.

Concluding, if a temporal basis function satisfies conditions
(68), (69) and (70), a first order accurate interpolation procedure
has been obtained for the MOT scheme of the CFIE.
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