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The Influence of the Exact Evaluation of Radiation
Fields in Finite Precision Arithmetic on the Stability
of the Time Domain Integral Equation Method

Elwin van ’t Wout, Duncan R. van der Heul, Harmen van der Ven, and Cornelis Vuik

Abstract—Transient electromagnetic scattering phenomena
can effectively be simulated with time domain integral equation
methods. The stability and accuracy of the marching on in time
scheme is usually established with exact evaluation of the radiation
fields. Due to singularities in their analytical expressions, straight-
forward evaluation in finite precision arithmetic can jeopardize
the accuracy of the radiation fields. Computational experiments
confirm this and show that it can even lead to late-time instability
of the numerical model. Hence, a reformulation is necessary to
remove the singular behavior and obtain the robustness required
for industrial application. To this end, highly accurate and well-be-
haved expressions for the quasi-exact integration method in finite
precision arithmetic will be derived in this paper. Numerical
experiments confirm the robustness and stability of the improved
Marching on in Time scheme.

Index Terms—Accuracy, electric field integral equation, robust-
ness, stability, time domain analysis.

I. INTRODUCTION

T HE time domain integral equation (TDIE) method can be
used to model transient electromagnetic scattering phe-

nomena [1]–[3]. The formulation in time domain allows for the
analysis of broadband excitation of scattering surfaces with non-
linear responses. As a boundary integral scheme, the number of
spatial degrees of freedom scales favorably to volume methods.
Moreover, no artificial boundary is necessary to truncate the
computational domain.
The numerical discretization follows the prevailing marching

on in time (MoT) scheme, which is based on collocation and
is a special form of the space-time Galerkin scheme [4]. In-
dustrial application has long been hindered by late-time insta-
bility. Many approaches have been introduced to enhance sta-
bility [5]–[13]. The most effective one seems the use of quasi-
exact integration methods that compute the discretization ma-
trices with very high accuracy [10], [12].
The Galerkin discretization in space of the boundary inte-

gral operator results in discretization matrix elements expressed
as 4-D integrals over the scattering surface. Two quasi-exact
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methods for the evaluation of these integrals have been estab-
lished for TDIE methods in electromagnetics on arbitrary 3-D
objects [10], [12]. The first method uses analytical expressions
of radiation fields to compute the inner two integrals exactly.
The second method uses analytical expressions for the inner
three integrals, leaving one integral to be evaluated by numer-
ical quadrature.
The main purpose of quasi-exact integration is to accomplish

highly accurate computations of the elements of the discretiza-
tion matrices. This is necessary because computational experi-
ences with TDIE methods in electromagnetics show that sta-
bility is very sensitive to numerical errors, such as quadrature
errors.
The choice of integration method is based on a trade-off be-

tween accuracy, efficiency, and implementation effort. In this
paper, exact evaluation of the radiation fields [10] will be used,
because this method is in our experience necessary and suffi-
cient to obtain stability. The analytical expressions of radiation
fields can be applied to specific basis functions only, namely
the customary Rao-Wilton-Glisson (RWG) spatial basis func-
tions and the family of piecewise polynomial temporal basis
functions, which include most of the commonly used basis func-
tions [14].
This work builds upon the elegant analytical expressions for

the radiation fields as function of the geometrical properties of a
source triangle and an observation point, as introduced in [10].
To the best of the authors’ knowledge, the evaluation of these
expressions in finite precision arithmetic has not been addressed
in literature. In our experience, this is a crucial element of a
robust numerical scheme.
In this paper we show that the analytical expressions of [10]

are ill-behaved for certain important limit cases, for example
when the observation point is projected close to a vertex of the
source triangle. Because of this, a straightforward formulation
in finite precision arithmetic can result in large errors in the radi-
ation fields, and basically undermines the accuracy of the exact
evaluation of the radiation fields. A computational experiment
confirms this and shows it can even lead to late-time instability
of the MoT scheme.
Therefore, a robust formulation will be derived that will be

shown to be well-behaved for all limit cases. This results in im-
proved accuracy in finite precision arithmetic evaluation com-
pared to the straightforward case. In fact, the same computa-
tional experiment remains stable in late-time. The novel formu-
lation thus improves the robustness and stability of the TDIE
method and is an important step towards industrial application.
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This paper improves the accurate evaluation of the inner 2-D
integral over the source elements on the scattering surface. The
integrand of the outer 2-D integral over observation elements
has a higher level of continuity and standard quadrature proce-
dures are thus more effective. Extensive numerical simulations
performed by the authors do not suggest that evaluation with a
higher accuracy is necessary.
This paper will proceed as follows: Section II summarizes the

model equation and its discretization. The existing quasi-exact
integration method will be summarized in Section III, along
with a presentation of some additional details. The implications
of finite precision arithmetic will by discussed in Section IV
and a straightforward formulation that eliminates the singular
behavior will be applied. Because this straightforward formu-
lation adversely effects stability, a robust formulation will be
derived in Section V. In Section VI, tolerance regions are con-
structed according to specific requirements such that all singu-
larities are prevented in a consistent manner. The numerical ex-
periment in Section VII confirms that while the straightforward
formulation of the analytical expressions results in an unstable
MoT scheme, the robust formulation is stable. The conclusions
will be presented in Section VIII.

II. MODEL FORMULATION

Let us consider a perfect electric conductor (PEC) surrounded
by free space. On the interface, the incident and scattered field
satisfy a homogeneous Dirichlet boundary condition for the tan-
gential component of the electric field. With the Stratton-Chu
formulation, the scattered field can be expressed in terms of the
electric current distribution acting on the interface. A substitu-
tion of the Stratton-Chu formulation into the interface condition
results in the model equation

(1)

which is the differentiated electric field integral equation (EFIE)
[1]. The EFIE has to be solved for the electric surface current
density on location and time . The dot notation
has been used to denote differentiation in time. The other vari-
ables are denoted as: the incident electric field, which is zero
for ; the scattering surface with outward pointing unit
normal ; ; the retarded
time; and and the nabla operator with respect to and ,
respectively. The speed of light is given by with
and the permittivity and permeability of free space, re-

spectively.
The surface of the scatterer is approximated by a set of

connected triangular elements and in time a uniform partitioning
with levels for is adopted. The
electric surface current density is expanded as

(2)

with and denoting the basis functions in space and time,
resp. The numerical discretization in space is given by the
Galerkin scheme with RWG functions [15], i.e.,

(3)

where the triangular facets and share edge of length
, and and the free vertices. Collocation is performed in

time, that is, the EFIE is point matched in subsequent time levels
. The temporal basis functions interpolate

the solution from discrete time levels in retarded time levels.
The piecewise polynomials of degree , i.e.,

...
...

(4)

will be used since they include many of the popular temporal
basis functions [14], including the shifted Lagrange interpolants
[16]. Because the temporal basis functions are discretely causal,
they satisfy the marching criterion [8]. Then, the discrete model
equations can be written as the MoT scheme

(5)

where and denote the discrete surface current density and
incident field at time , resp. The discretization matrices
represent the interaction of each triangle pair at each retarded
time level. An arbitrary matrix element is given by

(6)

where denotes the surface mesh.

III. ANALYTICAL FORMULATION OF RADIATION FIELDS

This section describes the analytical formulation of the radi-
ation fields and explains its incorporation in the MoT scheme.
Most of the material discussed here has been introduced in [10].
This section aims to introduce the nomenclature that will be
used in subsequent sections and provides additional details that
will be used in the analysis of the evaluation in finite precision
arithmetic.
For conciseness, only the application to the differentiated

EFIE (1) will be considered in this paper, but the same algo-
rithm can also be used for other boundary integral equations,
including the MFIE, PMCHWT, and Müller equations [10].

A. Derivation of Standard Intersection Integrals

The goal of this section is to rewrite the elements of the dis-
cretization matrix (6) into a standardized form. First, the local
support of the RWG function (3) is used to simplify the integra-
tion domain into pairs of observer and source triangular facets,
denoted by and , resp. A numerical quadrature procedure
will be used for the outer integral over the observer triangle.
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Fig. 1. Three cases of the contour integration, with the edge (black), the pro-
jection point (red cross), and the contour (blue), where the inside of the triangle
is located above the edge. (a) The keyhole contour for a pole inside the triangle.
(b) The indented contour for a pole on the edge. (c) The line contour for a pole
outside the triangle.

Then, the radiation fields are expressed by an integral operator
with respect to an observer point, denoted by . The expres-
sions can be simplified by considering the projection point, de-
noted by and defined as the orthogonal projection of onto
the plane through source triangle . This introduces the pro-
jection height, denoted by .
The temporal basis functions (4) are defined as piecewise

polynomials. To obtain a single expression for the radiation
field, the integration over the source triangle should be
partitioned into regions where the temporal basis functions
are uniquely defined. This is the case for all source points
satisfying for an integer . This
represents the discrete light cone of observer point with
interval . The integration should thus be reduced to

(7)

which is the intersection of the source triangle and the discrete
light cone.
Now, each element of the discretization matrix can be written

as a unique combination of standard intersection integrals,
given by

(8a)

(8b)

for .

B. Derivation of Standard Contour Integrals

Using Gauss’ theorem, surface integrals can be rewritten into
contour integrals. The standard intersection integrals (8) can
thus be simplified as the standard contour integrals

(9a)

(9b)

for , where denotes the unit out-
ward normal on situated inside the plane through the tri-
angle. Special care should be devoted to the definition of the

Fig. 2. Contour of an intersection of a triangle and discrete light cone. Depicted
are the triangle (green), observer point (blue point), projection (cyan dotted
line), projection point (red point), discrete light cones on the projection plane
(magenta dotted line) and contour (blue).

contour . The integrand of the scalar contour integrals (9b)
contains a singularity at , which occurs when the ob-
server point is projected onto the source triangle. This is an in-
tegrable singularity, so the integral operators converge and the
singular point is called a pole. Hence, the inside of contour
should exclude the pole, which can be done with a keyhole or
indented contour, see Fig. 1. Then, a limit process will be per-
formed such that the contour converges to the boundary of .
However, nonzero limit values of the standard contour integrals
can be obtained at the pole, which will be denoted by for

, called the standard pole integrals.
Remember that is given by the intersection of a triangle

and a discrete light cone. Therefore, the contour consists
of line segments and arcs only, see Fig. 2. The standard contour
integrals can thus bewritten as a unique combination of standard
line, arc, and pole integrals:

(10a)

(10b)

where the number of line segments and arcs depend on the in-
tersection shape. These numbers range from zero to three. An
analytical expression for the standard contour integrals can be
derived separately for each line segment and arc.

C. Analytical Expression for Standard Line Integrals

Let us consider an arbitrary line segment that is part of the
contour and denote its start and end point by and , resp. In
order to derive an analytical expression of the standard contour
integrals (9) on a line segment, let us introduce the local coor-
dinate system defined by

(11a)

(11b)

(11c)

where denotes the unit outward normal on the surface mesh.
The vectors and are situated in the plane of the triangular
mesh element and are oriented parallel and perpendicular to the
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line segment, resp. The location of the projection point w.r.t.
this line segment can be characterized by the parameters

(12a)

(12b)

(12c)

(12d)

The analytical expression of the vector line integrals from (10)
is given by

(13)

for , with

(14a)

(14b)

(14c)

for . The analytical expression of the
scalar line integrals is given by

and

or
(15a)

(15b)

(15c)

for . Notice that the scalar line integrals
are given by a recurrence relation (15c) which requires both an
odd and even initial term, given by (15a) and (15b) for 3 and
0, resp.

D. Analytical Expression for Standard Arc Integrals

Let us consider an arbitrary arc that is part of the contour and
denote its start andendpoint by and , resp.The analytical ex-
pressionof the standard contour integrals (9) onanarc is givenby

(16a)

(16b)

for , where denotes the angle of
the arc.

E. Analytical Expression for Standard Pole Integrals

The scalar standard contour integrals (10b) contain pole inte-
grals, with the analytical expression given by

(17)

for , where denotes the circum-
scribed angle, given by

inside triangle
on edge
on vertex
outside triangle

(18)

where denotes the inner angle of the two edges
connecting to vertex . Notice that the standard pole integrals
(17) can be written as the recurrence relation

(19)

for .

IV. FINITE PRECISION ARITHMETIC

In this section, a thorough analysis of the consequences of
analytic evaluation of the contour integrals (9) in finite preci-
sion arithmetic will be derived. It will be shown that the analyt-
ical expressions of the radiation fields suffer from singular be-
havior when the projection of the observation point approaches
the boundary of the source element. A straightforward evalua-
tion in finite precision arithmetic will be given.

A. Straightforward Evaluation in Finite Precision Arithmetic

The required formulation of the analytical expressions of the
radiation fields in finite precision arithmetic can best be ex-
plained for the standard pole integrals (17), which depends on
the circumscribed angle (18). The piecewise definition of the
circumscribed angle makes it necessary to establish the loca-
tion of the projection point w.r.t. the triangular facet. For in-
stance, one has to check if a projection point coincides with a
vertex . Due to rounding errors, the check is not
meaningful in finite precision arithmetic. Instead, one has to use

for small compared to a characteristic length
scale of the surface mesh elements. Hence, when the projection
point is located in the tolerance region
around the vertex, they will be considered as if they coincide.
The standard pole integrals are then given by

(20a)

inside triangle and outside tol. regions
inside edge tolerance regions
inside tolerance region of vertex
outside triangle and tolerance regions

(20b)

for finite precision arithmetic. The full definition of the different
tolerance regions will be given in Section VI.
Similarly, the scalar line integrals (15) are piecewise defined

for and . Geometrically, this corresponds to pro-
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Fig. 3. Value of w.r.t. projection points close to an edge. Hori-
zontal axes denote the local coordinates from (11). The vertical axis and
colors in the surface plot depict the value of the integral. The shape of the source
triangle is depicted by the black lines. (a) The analytical expression, given by
(15) and (17). (b) The straightforward formulation for finite precision arithmetic,
given by (21) and (20), with as tolerance region.

Fig. 4. Value of w.r.t. projection points close to vertex
1. Horizontal axes denote the local coordinates from (11). The vertical
axis and colors in the surface plot depict the value of the integral. The shape of
the source triangle is depicted by the black lines. (a) The analytical expression,
given by (15) and (17). (b) The straightforward formulation for finite precision
arithmetic, given by (21) and (20), with as tolerance region.

jection on or outside an edge, resp. For finite precision arith-
metic, a tolerance region around the edge will be necessary and
the scalar line integrals are extended into

outside tolerance region
inside tolerance region

(21)

for , where the initial values and
are given by (15). The analytical expression of a standard

contour integral and its extended expression for finite precision
arithmetic are depicted in Figs. 3 and 4. For presentation, an
extremely large tolerance region has been used.
Fig. 3 depicts the case where the projection point is located

close to an edge. A constant approximation has been used inside
the edge tolerance region, which results in a discontinuity at the
boundary of the tolerance region.
When the observer point is projected close to a vertex, both

a vertex tolerance region and an edge tolerance region for the
adjacent edges are necessary. As depicted in Fig. 4, numerical
errors are present in the straightforward formulation whereas the
analytical expression of the contour integral is smooth. It will be
shown in Section V that different terms in the analytical expres-
sion cancel out on the edges of the triangular facets. Because
of the constant approximations inside the tolerance regions, this
cancellation is not effective anymore, which causes inaccurate
expressions for the standard contour integrals.

B. Requirements on Robust Formulations

In Section IV-A, an extended version of the analytical expres-
sions of radiation fields has been introduced, which is neces-

sary for finite precision arithmetic. This straightforward formu-
lation results in discontinuous and inaccurate expressions for the
standard contour integrals. Although these inaccuracies might
be small for each radiation field, they could accumulate into
inaccurate discretization matrix elements and ultimately in an
unstable MoT scheme, as will be experimentally confirmed in
Section VII.
This paper aims to derive a robust formulation for the quasi-

exact integration method where all analytical expressions of ra-
diation fields are well-behaved and hence eliminates this spe-
cific cause of instability. Well-behaved will be defined as
1) accurate, and
2) nonsingular.
The accuracy is defined as the difference between the formula-
tion for finite precision arithmetic and the analytical expression
of the standard contour integrals. Outside the tolerance regions,
the analytical expressions fromSection III are used, which intro-
duce no errors, apart from rounding errors. However, an approx-
imation will be used inside the tolerance regions. In the straight-
forward formulation, a constant approximation has been used.
In the next section, a robust formulation will be derived that is
highly accurate. In fact, for most cases the novel formulation
will be equivalent to the analytical expression.
The main reason for the necessity to use tolerance regions in

the analytical expression is the singular dependence on the lo-
cation of the observer point. That is, some terms in the exact
formulation contain a division by a parameter that can be ar-
bitrarily small. Although these singularities might be properly
defined for exact arithmetic, for finite precision arithmetic these
singularities could cause excessive rounding errors. To this end,
a division by a parameter in the robust formulation is only al-
lowed when the absolute value of the parameter has a strictly
positive lower bound.

V. ROBUST FORMULATION OF ANALYTICAL EXPRESSIONS

In Section IV-A a straightforward formulation has been intro-
duced for the analytical expressions of the radiation fields when
finite precision arithmetic is used. Because this straightforward
formulation contains expressions that are not well-behaved, a
robust formulation will be derived in this section.
It can be shown that the scalar line (15) and pole integrals

(17) are the only parts of the standard contour integrals (10)
that are not well-behaved, according to the requirements in
Section IV-B. The deficiencies occur near the boundary of each
triangular element and the novel expressions will, therefore, be
used inside the tolerance regions only. Due to cancellation of
some terms in their respective analytical expressions, one can
only achieve well-behaved expressions when the sum of the
contribution of the scalar line and pole integrals is considered,
as opposed to considering these separately.
The expressions in the robust formulation are well-behaved,

even for finite precision arithmetic. That is, the radiation fields
are represented very accurate and the singular behavior of the
original formulation is completely eliminated.

A. Robust Formulation Near an Edge

First, a robust formulation will be derived for projection
points close to an edge of the source triangle, but sufficiently far
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away from the vertices. The scalar line integrals (15) contain
terms in the form of with a constant .
The parameter , given by (12c), represents the distance from
the projection point to the edge and can, therefore, become
arbitrary small. However, the limit

(22)

converges, where and correspond to a projection
point inside or outside the source triangle, resp. This singularity
can be rewritten with the calculus identity

(23)

for arbitrary nonzero and .
Because the scalar line and pole integrals satisfy the recur-

rence relations (15c) and (19), it suffices to rewrite the scalar
line and pole integrals for and only. With the
use of (23), the sum of the scalar line and pole integrals can be
rewritten as

(24a)

(24b)

Fig. 5. Value of w.r.t. projection points close to an edge. Hori-
zontal axes denote the local coordinates from (11). The vertical axis and
colors in the surface plot depict the value of the integral. The shape of the source
triangle is depicted by the black lines. (a) The robust formulation, given by (24),
with edge tolerance region . (b) The absolute difference between the
robust formulation and analytical expression.

This novel formulation is depicted in Fig. 5. Because an exact
reformulation has been derived, no errors are introduced ex-
cept of rounding errors. This is in contrast to the straightfor-
ward formulation, as can be clearly seen with a comparison with
Fig. 3(b), where the same tolerance region has been used.
Important to notice is that because of the use of identity (23)

the singularities are shifted from small to small and .
Geometrically, the singularity has been replaced from the edge
to the vertices. Therefore, vertices have to be excluded from
the edge tolerance regions. This will be a requirement for the
definition of the tolerance regions, see Section VI.

B. Robust Formulation Near the Extension of an Edge

The singularity for small in the scalar line integrals (15)
occurs not only for projection near an edge, also for projection
near the extension of an edge. Therefore, a novel formulation
has to be derived for projection points close to the rays that
extend the edges. This ray tolerance region is depicted in yellow
in Fig. 9. Because the ray tolerance region is always outside the
source triangle, the standard pole integrals (17) are zero and only
the scalar line integrals have to be rewritten. Similar to (24), the
scalar line integrals can be expressed as

(25a)

(25b)

inside the ray tolerance regions.

C. Robust Formulation Near a Vertex

For projection near a vertex, three parts of the standard con-
tour integrals (10) have to be rewritten to enable a robust for-
mulation. These are the scalar line integrals (15) on the two ad-
jacent edges and the standard pole integrals (17). To this end,
let us consider a projection point close to vertex 1, with edges
2 and 3 adjacent, as depicted in Fig. 6. The line integrals run
from to and from to over edge 2 and 3, resp. Two
sets of local coordinates (11) and parameters (12) have to be
used, namely for edge 2 and

for edge 3.
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Fig. 6. Arbitrary projection point and triangle with vertices
and edges . The contour is given by two line segments and one
arc passing through points . The angle of the projection point w.r.t.
vertex 1 is denoted by .

If the projection point is located on vertex 1, all parameters
, , , and are zero. But parameters and

have a lower bound, which allows for the use of

(26a)

(26b)

equivalent to calculus identity (23). By geometrical identities,

(27a)

(27b)

where denotes the angle of vertex 1 and the angle from
edge 3 to the projection point, as depicted in Fig. 6. The identi-
ties (26) and (27) are sufficient to derive a well-behaved expres-
sion for the standard contour integral . The derivation is given
by (29b), shown at the bottom of the (next) page. Notice that in
this derivation, only three location cases of the projection point
w.r.t. the vertex have been given, whereas the derivation for the
other cases is similar.
The standard contour integral cannot be rewritten exactly

into a well-behaved expression, because the geometrical iden-
tities (27) are not valid. Instead, one can combine it with the
approximations

(28a)

(28b)

that have been derived with a Taylor series. Notice that when
holds inside the tolerance region, the truncation error

is . The derivation of is given in (29a), shown at the
bottom of the (next) page. Remember that for larger the recur-
rence relations (15c) and (19) can be used [see (29a) and (29b)
at the bottom of the next page].

Fig. 7. Value of w.r.t. projection points close to vertex
1. Horizontal axes denote the local coordinates from (11). The vertical
axis and colors in the surface plot depict the value of the integral. The shape
of the source triangle is depicted by the black lines. (a) The robust formulation,
given by (29) and (24), with as tolerance region. (b) The absolute
difference between the robust formulation and analytical expression.

Fig. 8. Value of w.r.t. projection points close to
vertex 1. Horizontal axes denote the local coordinates from (11). The
vertical axis and colors in the surface plot depict the value of the integral. The
shape of the source triangle is depicted by the black lines. (a) The straightfor-
ward formulation, given by (21) and (20), with as tolerance region.
(b) The robust formulation, given by (29) and (24), with as tolerance
region. (c) The absolute difference between the robust formulation and analyt-
ical expression. (d) The convergence of the error in the robust formulation w.r.t.
the tolerance value.

The standard contour integral computed with the robust
formulation is depicted in Fig. 7(a). A comparison with the
straightforward formulation, depicted in Fig. 4(b) with the same
tolerance regions, shows that the robust formulation improves
the accuracy tremendously. The error is approximately ,
as depicted in Fig. 7(b), which confirms that only rounding er-
rors are present.
Fig. 8(a) and (b) depict the standard contour integral

for the straightforward and robust formulation, resp. Because
approximation (28) has been used in the derivation of the robust
formulation, an error in the order of is present, see Fig. 8(c).
This error is much larger that the error in the other expressions of
the robust formulation. For illustration purposes, the tolerance
regions in these figures have been chosen extremely large.When
applied to the MoT scheme, the tolerance regions will be orders
of magnitude smaller and the approximation error will drop
belowmachine precision. This has been verified experimentally,
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as depicted in Fig. 8(d). For large tolerance values, the approx-
imation error convergences quadratically, as derived in (28).
For tolerance values smaller than , the error remains
because the rounding error dominates the truncation error.

D. Summary of Robust Formulation

The robust formulation that has been derived in
Sections V-A–V-C has to be incorporated into the evaluation
of the radiation fields. For a given observer point and source
triangle , different expressions for the standard contour
integrals (10) have to be used. That is:
• (24) for inside edge tolerance regions;
• (25) for inside ray tolerance regions;
• (29) for inside vertex tolerance regions;
• (15) and (17) for outside tolerance regions

where the tolerance regions will be defined in Section VI. All
expressions in this robust formulation are well-behaved, be-
cause no singular behavior is present and the radiation fields
are approximated with a very high accuracy. In fact, all expres-
sions outside the vertex tolerance regions are exact, except of
rounding errors. Inside the vertex tolerance regions, an approx-
imation with quadratic convergence w.r.t. the size of the toler-
ance region has been used.

E. Zero Projection Height

The robust formulation is used when the projection of the
observer point is located close to the boundary of the source

triangle only. But the derivation is not valid for zero projec-
tion height . This combination of projection on the triangle
boundary and a zero projection height can only happen when a
quadrature point is located on the triangle boundary. This will
never happen for the Gaussian quadrature rules [17]. In fact,
the tolerance values are required to be smaller than the distance
from each quadrature point to the triangle boundary. This is
easily satisfied for most quadrature rules, consequently no ad-
ditional formulations are necessary for zero projection height.

VI. TOLERANCE REGIONS

The tolerance regions are required for finite precision arith-
metic, as explained in Section IV. In Section V, accurate ex-
pressions for the standard contour integrals have been derived
for use within the edge, ray and vertex tolerance regions. In this
section, the full definition of the tolerance regions will be estab-
lished for specific design criteria.

A. Requirements on Tolerance Regions

The tolerance regions will be defined according to the fol-
lowing requirements:
1) the shape is based on parameters , , and only;
2) regions are disjoint;
3) regions fully cover the triangle boundary; and
4) tolerance values are dimensionless.

inside triangle

on edge 3

on vertex 1

inside triangle

on edge 3

on vertex 1

(29a)

inside triangle

on edge 3

on vertex 1

in triangle

on edge 3

on vertex 1

(29b)
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Fig. 9. Tolerance regions with , for a triangle given
by vertices ([0, 0], [2, 0], [0, 0.4]) and . The vertex tolerance regions
are depicted in blue, the edge tolerance regions in red, and the ray tolerance
regions in yellow.

The singularities present in the analytical expression of the radi-
ation fields are related to the local parameters , , or , de-
fined by (12). Only these parameter cause singularities at certain
locations of the projection point, for which a robust formulation
is necessary. Therefore, the tolerance regions will be based on
the parameters , , and only. To this end, two different
tolerance values will be used, one for tolerance regions based
on and and the other for , which will be denoted by

and , resp.
For the exact evaluation of radiation fields, the standard pole

integrals have to be evaluated only once for each contour. In
the robust formulation, the standard pole integrals are evaluated
in each tolerance region. Therefore, the projection point has to
be located in only one tolerance region and hence disjoint toler-
ance regions are required. Because singularities are present on
the whole boundary of the source triangle, the tolerance regions
should cover the full boundary.
Dimensionless tolerance values will be used because the ro-

bust formulation should be applicable to all surface meshes, in-
dependent of their length scale and local refinement. To this end,
the tolerance values will depend on a characteristic length scale
of the source triangle. In this paper, a factor will be used,
where denotes the area of source triangle .

B. Definition of Tolerance Regions

The edge, ray, and vertex tolerance regions are denoted by
, , and for , 2, 3. They are defined by

(30a)

(30b)

(30c)

and similar for , 3, where and
. Clearly, the tolerance regions are based on the pa-

rameters , , and only and the tolerance values are di-
mensionless. As can be derived, the tolerance regions are dis-
joint and cover the full boundary of the triangle. This can be
seen in Fig. 9 where the tolerance regions are depicted. Thus,
all requirements on the tolerance regions are satisfied.

Fig. 10. Surface mesh on the toroidal box of size , with the
arrows depicting the m shift of the edges.

A striking feature of this definition is the vertex tolerance
region, which is not a circle as one might expect. There are two
reasons for the parallelogram shape. First, in order to establish
disjoint tolerance regions, the intersection of two edge tolerance
regions is considered as a vertex tolerance region. Second, the
robust formulation in the edge tolerance regions dictates that
the parameters and have a strictly positive lower bound.
When circles, defined by , are
used, the parameter might become arbitrary small when

in edge tolerance regions.

VII. EXPERIMENTAL CONFIRMATION

Two versions for the analytical computation of radiation
fields in finite precision arithmetic have been derived in
Sections IV and V, namely a straightforward and a robust
formulation, resp. The straightforward formulation can be
considered as a standard and correct choice to enable finite
precision arithmetic and serves its purpose in most cases. The
robust formulation on the other hand is more sophisticated
and uses well-behaved expressions for the radiation fields. It
should be stressed that the two formulations only differ within
the tolerance regions. Since tolerance values are very small,
hardly any projection points are located inside the tolerance
regions for small-scale objects. Therefore, the MoT solutions
hardly differ for the two formulations. However, when the
TDIE method will be applied for larger geometries, more mesh
nodes are required and the likelihood that projection points are
located inside the tolerance regions is increased.
Computational methods, like the TDIE method, have to be

robust in order to be applied in industry. Through an example
we will show that the accuracy of the evaluation of the radia-
tion fields strongly influences the robustness of the algorithm.
To this end, a configuration has been generated such that the
impact of the tolerance regions is large, but without resorting
to uncarefully chosen parameters. This configuration must in-
clude many observer points that are projected inside tolerance
regions. Then, many radiation fields are computed different for
the two exact formulations and differences in the MoT solutions
are expected.
The object is given by a toroidal box of size ,

modeled with a surface mesh of 628 triangular facets, locally re-
fined near the vertical edges of the box. As depicted in Fig. 10,
all vertical edges of the box are artificially shifted m to
create a challenging test case. Notice that this shift of mesh
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Fig. 11. Magnitude of the electric surface current density at the point (0.967,
0.749, 0.1) on the toroidal box, with two different formulations for analytical
expressions of the radiation fields.

Fig. 12. Eigenvalues (blue markers) of the MoT scheme on the toroidal box
and the unit circle (red line) in the complex plane. The zoom box depicts the
eigenvalues that determine stability. (a) Straightforward formulation. (b) Robust
formulation.

nodes is within the accuracy of almost all mesh generating pro-
grams. Because of the shift of the vertical edges of the box,
all observer points on the adjacent face of the box are pro-
jected inside tolerance regions. The tolerance values are set as

and .
The EFIE (1) has been discretized with RWG test and basis

functions in space and quadratic spline basis functions in time
[14]. The outer integral over observer elements is evaluated with
a 7-point Gaussian quadrature. The incident field is given by a
Gaussian plane wave, defined as

(31)

with polarization , propagation , width m,
and offset . No accelerator, such as the PWTD [1] and
TD-AIM [2], has been used.
The magnitude of the electric surface current density is de-

picted in Fig. 11 for 1600 timesteps. Initially, no differences
are visible between the two formulations. At late-time, how-
ever, the straightforward formulation with constant approxima-
tion results in a surface current that grows beyond any bound.
The novel robust formulation on the other hand remains stable.
This difference in stability has also been verified with a spectral
analysis, depicted in Fig. 12. The MoT scheme is stable if the
spectral radius of the amplification matrix is smaller than one
[11]. For this test case, and for the straight-
forward and robust formulation, resp.

VIII. CONCLUSION

The quasi-exact integration method is a key to the successful
application of MoT schemes in TDIE methods for electromag-
netics. Available analytical expressions for the exact evaluation
of the radiation fields have to be reformulated for evaluation
in finite precision arithmetic. The straightforward formulation
does not necessarily lead to the accuracy required for late-time
stability of the MoT scheme, because it is not well-behaved for
a number of limit cases. This is confirmed with a computational
experiment. Hence, a novel formulation with well-behaved ex-
pressions has been derived in this paper, along with specifically
designed tolerance regions. This robust formulation does not
impinge on the overall accuracy of the quasi-exact integration
method and results in a stable MoT scheme.
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