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Constructing an analysis-suitable parameterization for the computational domain from its 
boundary representation plays a crucial role in the isogeometric design-through-analysis 
pipeline. PDE-based elliptic grid generation is an effective method for generating high-
quality parameterizations with rapid convergence properties for the planar case. However, 
it may generate non-uniform grid lines, especially near the concave/convex parts of the 
boundary. In the present work, we introduce a novel scaled discretization of harmonic 
mappings in the Sobolev space H1 to remit it. Analytical Jacobian matrices for the 
involved nonlinear equations are derived to accelerate the computation. To enhance 
the numerical stability and the speed of convergence, we propose a simple and yet 
effective preconditioned Anderson acceleration framework instead of using computationally 
expensive Newton-type iteration. Three preconditioning strategies are suggested, namely 
diagonal Jacobian, block-diagonal Jacobian, and full Jacobian. Furthermore, we discuss a 
delayed update strategy of the preconditioner, i.e., the preconditioner is updated every few 
steps to reduce the computational cost per iteration. Numerical experiments demonstrate 
the effectiveness and efficiency of our improved parameterization approach and the 
computational efficiency of our preconditioned Anderson acceleration scheme.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The advent of Isogeometric Analysis (IGA) Hughes et al. (2005) sheds light on bridging the gap between Computer-
Aided Design (CAD) and downstream Computer-Aided Engineering (CAE). Compared with the conventional finite element 
method (FEM), IGA employs the same spline-based basis functions in geometry modeling and numerical simulation. It avoids 
redundant data type conversions from spline-based CAD models to linear mesh models and thus eliminates geometry errors 
during the subsequent analysis stage.
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Fig. 1. Parameterizations generated by penalty function based method Ji et al. (2022b) and EGG method Hinz (2020). (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

However, most modern CAD systems describe the geometries of products using the so-called boundary representation 
(B-Rep) Cohen et al. (2010). Constructing an analysis-suitable spline-based parameterization for the computational domain 
from its B-Rep constitutes the first and essential step in the isogeometric pipeline. The task of generating an analysis-suitable 
parameterization consists in constructing a spline-based mapping x(ξ ) from the parametric domain �̂ to the computational 
domain �. For an analysis-suitable parameterization, its bijectivity always comes first, then it should minimize angle and 
area distortion. Xu et al. (2013c); Pilgerstorfer and Jüttler (2014) reveal that parameterization quality significantly affects 
the accuracy and efficiency of the subsequent analysis.

Harmonic mapping theory gains much attention for planar parameterizations owing to its good mathematical properties 
and solid theoretical foundations. Various computational techniques for approximating the inverse of a harmonic mapping 
have been developed, such as the variational harmonic method Xu et al. (2013b), least-squares fitting Nguyen and Jüttler 
(2010); Falini et al. (2015), minimizing (modified) Winslow’s function Gravesen et al. (2012); Ji et al. (2021), and the PDE-
based elliptic grid generation (EGG) approach Hinz et al. (2018a); Hinz (2020).

Although all the above methods attempt to approximate the inverse harmonic mapping in finite-dimensional spline 
spaces, their numerical behavior can be quite different. Fig. 1 shows a slice of a rotary twin-screw compressor with a 
challenging geometry, particularly the extreme aspect ratios between the clearance of both rotors. This geometry is from a 
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real-world use case. A broad range of parameterization techniques shows good performance on many established benchmark 
geometries, while then failing when utilized in real-world applications, unfortunately. The parameterization produced by the 
recently developed penalty-function based method Ji et al. (2022b) is shown in Fig. 1(a). For this challenging geometry, an 
appropriate selection of the relevant setting parameters becomes essential. In addition, the size of the parametric domain 
significantly affects the parameterization result, which is undesirable as this is an artificial parameter that needs to be set by 
the user. By contrast, the PDE-based EGG method Hinz et al. (2018a) produces a well-pleasing parameterization, as shown 
in Fig. 1(b).

In the PDE-based method, one needs to solve a coupled system of nonlinear equations, and thus the Newton-type solvers 
are suggested by Hinz et al. (2018a). However, the Jacobian matrix or a function that implements its application to a vector 
(so-called matrix-free Newton-Krylov methods) is needed during nonlinear iterations, which may be quite expensive for 
large-scale problems.

In 1962, Anderson (1965, 2019) developed a technique called extrapolation algorithm for accelerating the convergence 
of nonlinear fixed-point iterations. This technique is now called Anderson acceleration (AA) in the applied mathematics 
community. Unlike Newton-type methods, one advantage of AA is that it does not require the expensive computation or 
approximation of the Jacobian matrices.

In this paper, we propose several efficient solving strategies for the PDE-based EGG parameterization method. The basic 
idea is to convert the nonlinear problem into a fixed-point iteration problem and then apply (preconditioned) AA to speed 
up the convergence. Our main contributions are as follows:

• One disadvantage of EGG is that some nonuniform grid elements may occur, in particular, near the convex part and 
the concave part of the boundary. To weaken its impact and improve the quality of the parameterization, we develop a 
novel scaled version of harmonic maps in the Sobolev space H1.

• Jacobian matrices are of vital importance during nonlinear iterations. To enhance the computational efficiency and the 
numerical stability, we furthermore derive analytical Jacobian matrices for both discretizations in the Sobolev space H2

and H1.
• AA algorithm is adopted to avoid the calculation of Jacobian matrix and reduce computational overhead. To improve its 

robustness and accelerate convergence, we propose a framework of preconditioned AA schemes. Three preconditioning 
strategies are proposed, namely diagonal Jacobian preconditioner, block-diagonal Jacobian preconditioner, and full Ja-
cobian preconditioner. To reduce the computational cost per iteration, we update the preconditioner for AA every few 
steps. Numerical experiments show the effectiveness of the proposed update strategy.

2. Related work

This section reviews the related works on parameterizations for IGA and Anderson acceleration.

2.1. Analysis-suitable parameterization construction for IGA

Before leading into isogeometric simulation, the foremost step is to construct an analysis-suitable parameterization. Co-
hen et al. (2010); Xu et al. (2013c); Pilgerstorfer and Jüttler (2014) point out the profound role of the parameterization 
quality in the downstream analysis. The first criterion of high-quality parameterizations is bijectivity. In addition to bijectiv-
ity, low angle and area distortion is preferred. In this section, we classify the existing approaches by the way to treat the 
bijectivity constraints.

1) Algebraic methods are those that solve one linear system at most. A typical representative is the discrete Coons method 
Farin and Hansford (1999), a particular transfinite interpolation (TFI). Gravesen et al. (2012) introduce several linear 
parameterization methods, such as the spring patch and the mean value coordinates, where one linear system is solved. 
These methods win in efficiency but lose in robustness. In particular, they tend to fold for complex domains. Thus they 
are typically employed for constructing an initial guess only in the parameterization pipeline.

2) Nonlinear constrained optimization methods are based on the observation that the Jacobian determinant of the parameter-
ization can be expressed by a higher-order NURBS function. Xu et al. (2011) set the nonlinear coefficients as inequality 
constraints to guarantee the bijectivity. Subsequently, Xu et al. (2013c) generalize this method to the volumetric case. 
By using a divide-and-conquer strategy, Wang and Qian (2014) present an accelerated optimization framework. To 
topology-consistent domains, Xu et al. (2017) introduce a computation reuse method. Ugalde et al. (2018) propose 
some sufficient conditions and a necessary condition for the bijectivity of biquadratic B-splines. Pan and Chen (2019)
develop a low-rank method for volumetric parameterization problems. However, the number of inequality constraints 
is usually quite large, which is impractical for large-scale problems. To this end, Pan et al. (2020) propose a collocation 
strategy to reduce the computational burden. Xu et al. (2019); Ji et al. (2022c) enhance the numerical accuracy by 
minimizing the curvature metric of the IGA solution surface.

3) Harmonic mapping-based methods become popular recently as they may avoid the arduous calculation burden of nonlin-
ear constraints. All of these types of methods attempt to approximate the stationary point of the well-known Dirichlet 
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energy satisfying given boundary conditions or its corresponding Euler-Lagrange equation. In this sense, the existing 
methods can be roughly classified into two categories.
The first type of methods minimizes Winslow’s function, also known as Most-Isometric ParameterizationS (MIPS) energy 
in the computer graphics community Hormann and Greiner (2000). However, these methods need an already bijective 
initial guess since the Jacobian determinant appears in the denominator position of the Winslow’s function. To this end, 
different foldover elimination manners are proposed. Su et al. (2019); Liu et al. (2020) project the Jacobian matrix to the 
K -bounded distortion space. Recently, Zheng and Chen (2022) apply a similar idea to THB-spline parameterizations. Ji et 
al. (2021) eliminate foldovers efficiently by solving a simple unconstrained optimization problem. Another idea is to use 
a penalty function and Jacobian regularization technique, which dates back to Garanzha and Kaporin (1999); Garanzha 
et al. (2021) in the mesh untangling problem. Wang and Ma (2021) adopt this idea to avoid extra foldover elimination 
steps. Ji et al. (2022b) propose a new penalty term to remove the numerical error of the previous penalty term. Apart 
from Winslow’s functional, some works follow the quasi-conformal theory, such as the Teichmüller mapping Nian and 
Chen (2016) and the low-rank quasi-conformal method Pan et al. (2018).
The second type of methods approximates the Laplace equation with Dirichlet boundary conditions. Martin et al. (2009)
adopt discrete harmonic functions for trivariate B-spline solids. Nguyen and Jüttler (2010) construct a parameterization 
using a sequence of harmonic maps. Xu et al. (2013b) develop a variational harmonic mapping method. Falini et al. 
(2015) compute a harmonic map from a physical domain to a parametric domain by boundary element method and 
then approximate its inverse map by least-squares fitting. Based on the principle of Elliptic Grid Generation (EGG), Hinz 
et al. (2018a,b); Hinz (2020) propose a PDE-based method for IGA-suitable parameterizations.

What is noteworthy is that the PDE-based EGG method has a nice convergence property and performs particularly well 
in computational domains with extreme aspect ratios, see Fig. 1(b). However, there are two main issues with it. First, it 
usually produces nonuniform elements near the concave/convex parts of the boundary for general domains. Second, the 
standard Newton method as adopted in Hinz (2020) is inefficient for large-scale problems. This paper devotes attention to 
an efficient solver named preconditioned Anderson acceleration for the PDE-based EGG method and to an improvement of 
the parameterization quality for general computational domains by introducing a scaled version in H1 space.

To complex computational domains, particularly high-genus domains, single patch parameterization may be insufficient. 
Multi-patch and multi-block techniques are widely adopted to decompose a given domain into several simple regions. 
Interested readers are referred to Xu et al. (2013a, 2015, 2018); Buchegger and Jüttler (2017); Xiao et al. (2018); Falini and 
Jüttler (2019); Haberleitner et al. (2019); Chen et al. (2019, 2022); Zhang et al. (2021); Bastl and Slabá (2021); Wang et al. 
(2022a); Shepherd et al. (2022a,b) and the references therein.

In addition, some works consider parameterization techniques using non-standard B-splines, such as T-splines Zhang et 
al. (2012, 2013), (truncated) HB-splines Falini et al. (2015); Pan and Chen (2022); Zheng and Chen (2022), toric patches Ji 
et al. (2022a), PHT-splines Chan et al. (2017), and subdivision methods Pan et al. (2021); Xie et al. (2020), and TCB-splines 
Wang et al. (2022b).

2.2. Anderson acceleration (AA)

Anderson acceleration methods are considered “essentially equivalent” to the nonlinear GMRES methods Carlson and 
Miller (1998); Oosterlee and Washio (2000); Walker and Ni (2011) and the direct inversion on the iterative subspace method 
Pulay (1980); Lin and Yang (2013). They are also in a broad category with methods based on quasi-Newton updating Fang 
and Saad (2009); Haelterman et al. (2010). On linear problems, for instance, Walker and Ni (2011) prove that AA without 
restarting (m = ∞) is equivalent in a certain sense to the GMRES method. Fang and Saad (2009) have shown a remarkable 
relation between AA and quasi-Newton methods for solving nonlinear equations, which utilizes the previous iterates to 
approximate the inverse Jacobian. The behavior and the potential of the non-stationary AA with dynamic window sizes 
have not been studied intensively. Here, the window sizes mean how many previous iterates are used in AA. For now, only 
a few results are available. Evans et al. (2020) propose a heuristic strategy to choose the damping factors based on the gain 
at each iteration. Pollock and Rebholz (2021) develop a strategy to alternate the window sizes dynamically. More recently, 
motivated by the hybrid linear solver GMRESR (GMRES Recursive) Vuik (1993); Van der Vorst and Vuik (1994), Chen and 
Vuik (2022a) propose a composite Anderson acceleration method with two window sizes.

Convergence acceleration by AA has been widely observed, the convergence analysis, however, has been reported only 
recently. In 2015, Toth and Kelley (2015) first prove that the stationary version of AA (sAA) without damping is locally 
r-linearly convergent if the fixed point map is a contraction. Later, Evans et al. (2020) extend the result to AA with damping 
factors. Recently, Pollock et al. (2019) apply sAA to the Picard iteration for solving the steady incompressible Navier–Stokes 
equations and prove that the acceleration improves the convergence rate of the Picard iteration. Sterck and He (2021)
extend the result to a more general fixed-point iteration of the form x = Q(x), given knowledge of the spectrum of Q′(x) at 
fixed-point x∗ . Besides, Wang et al. (2021) study the asymptotic linear convergence speed of sAA applied to the Alternating 
Direction Method of Multipliers (ADMM) method. Global convergence and sharper local convergence results of AA remain 
active research topics. For more related results about AA and its applications, we refer interested readers to the papers by 
Sterck (2012); Brune et al. (2015); Toth et al. (2017); Peng et al. (2018); Zhang et al. (2019, 2020); Bian et al. (2021); Chen 
and Vuik (2022b) and the references therein.
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3. Problem statement and notations

This section is devoted to introduce our problem statement and describe the notations.

3.1. Problem statement

Mathematically, a planar parameterization is a spline-based mapping x from the parametric domain �̂ to the computa-
tional domain �, i.e.,

x(ξ) =
(

x(ξ)

y(ξ)

)
=

n1∑
i1=0

n2∑
i2=0

Pi1,i2 Ri1,i2(ξ), ξ = (ξ,η) ∈ �̂, (1)

where

Ri1,i2(ξ,η) = ωi1,i2 N p1
i1

(ξ)N p2
i2

(η)∑n1
i1=0

∑n2
i2=0 ωi1,i2 N p1

i1
(ξ)N p2

i2
(η)

(2)

are bivariate tensor-product NURBS basis functions of bi-degree (p1, p2), ωi1,i2 are weights, and Pi1,i2 ∈ R2 are the corre-
sponding control points.

Denote by II and IB the index set of the unknown inner control points and the known boundary control points, respec-
tively. Then the parameterization x in (1) can be split into two partial sums

x(ξ) = RTP =
∑
i∈II

Pi Ri(ξ)

︸ ︷︷ ︸
unknown

+
∑
j∈IB

P j R j(ξ)

︸ ︷︷ ︸
known

, (3)

where R and P represent the column collections of the NURBS basis functions and the control points respectively, Pi are 
unknown inner control points, and P j are the given boundary control points.

Our parameterization problem can be stated as follows: construct the unknown inner control points Pi , i ∈ II such that 
the parameterization x is bijective and has low distortions.

3.2. Notations

First, denote by

∇ξ R =
[

R0,ξ , R1,ξ , . . . , Rn,ξ

R0,η, R1,η, . . . , Rn,η

]
(4)

and

∇xR =
[

R0,x, R1,x, · · · , Rn,x

R0,y, R1,y, · · · , Rn,y

]
(5)

the partial derivatives of the basis functions w.r.t. the parameter coordinates ξ and the physical coordinates x, respectively. 
Then the Jacobian matrix of the parameterization x can be represented as

J =
[

xξ yξ

xη yη

]
= ∇ξ R P. (6)

We denote by |J | and J −1 its determinant and the inverse of the Jacobian matrix, respectively.
According to the transformation relation between two coordinates systems, we have that

∇xR = J−1∇ξ R. (7)

In addition, the first metric tensor

g =
[

g11 g12
g12 g22

]
=

[
xξ · xξ xξ · xη

xξ · xη xη · xη

]
= JJ T (8)

is of vital importance in characterizing the geometric properties of x.
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4. Elliptic parameterization method

4.1. Basic principle of elliptic grid generation

Elliptic grid generation (EGG) is a commonly used technique for generating structured grids from a given boundary 
description of the computational domain. Hinz et al. (2018a) introduce this method into computing IGA-suitable parameter-
ization.

The basic idea of EGG is to compute a harmonic mapping x between the parametric domain �̂ and the computational 
domain � by solving the following Laplace equations:{

�ξ(x, y) = 0
�η(x, y) = 0

s.t. x−1|∂� = ∂�̂. (9)

The problem (9) is a particular class of Dirichlet problems whose solution exists if ∂� satisfies C1,α Hölder continuity 
condition for some α ∈ (0, 1), and the uniqueness of the solution is guaranteed by the maximum principle. Since the 
parametric domain �̂ is assumed to be convex (usually a unit square), the unique solution x−1 offers a one-to-one mapping 
with the Jacobian J not vanishing between the interior of the parametric domain �̂ and the interior of the computational 
domain �, which is ensured by the Radó–Kneser–Choquet theorem Duren and Hengartner (1997).

According to the first variation formula, solving the equations �ξ = 0 with the specified boundary conditions in (9) is 
equivalent to finding a mapping x−1 that satisfies the same boundary conditions with minimal Dirichlet energy

E D = 1

2

∫
�

((
∂ξ

∂x

)2

+
(

∂ξ

∂ y

)2

+
(

∂η

∂x

)2

+
(

∂η

∂ y

)2
)

d�. (10)

Switching the integration in (10) from � to �̂ yields

E D = 1

2

∫
�̂

x2
ξ + x2

η + y2
ξ + y2

η

|J | d�̂, (11)

which is the well-known Winslow’s function. Many parameterization methods are proposed by minimizing the above 
Winslow’s function and its variants, e.g., Gravesen et al. (2012); Ji et al. (2021).

It means that the problem (9) and finding the minimum of Winslow’s function (11) are essentially equivalent in Sobolev 
space H1. What is particularly interesting is that, in a finite-dimensional spline space, the parameterizations produced by 
these two methods can be radically different (see again Fig. 1).

4.2. Discretization in Sobolev space H2

In the context of generating parameterizations for IGA, one is more interested in the mapping x from �̂ to �, which is 
the inverse of harmonic mapping x−1. To this end, the set of Laplace equations (9) is converted to its equivalent problem 
Xu et al. (2013b). The resulting nonlinear vector-valued second-order PDE problem reads:{

Lx = 0
Ly = 0

s.t. x|
∂�̂

= ∂�, (12)

where

L = g22
∂2

∂ξ2
− 2g12

∂2

∂ξ∂η
+ g11

∂2

∂η2
(13)

is a differential operator and gij denotes the entries of the metric tensor g in (8).
To have a better convergence, Hinz et al. (2018b) replace the differential operator L in (13) by

L̃ = L
g11 + g22

. (14)

The above operator (14) has a more consistent convergence criterion to various length-scaled geometries and a better 
convergence property in numerical experiments. Therefore, we follow this scheme in this paper.

Denote by 	 the spline space spanned by the NURBS basis functions in (3). Let 	0 = {Ri ∈ 	 : Ri |∂�̂
= 0} be the collection 

of Ri ∈ 	 that vanish on ∂�̂. Following the IGA setting, we have the following variational counterpart of (7)

∀Ri ∈ 	0 :
{

Fx = 0,

Fy = 0,
s.t. x|

∂�̂
= ∂�, (15)
6
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where

Fx =
∫
�̂

R L̃x d�̂, (16)

Fy =
∫
�̂

R L̃y d�̂, (17)

and R denotes the column collection of the NURBS basis functions Ri ∈ 	0.
Then the unknown inner control points can be obtained by solving the above nonlinear system where the known bound-

ary control points serve as Dirichlet boundary conditions.

4.3. Analytical Jacobian computation for the discretization in H2 space

The analytical Jacobian has a crucial influence not only on the overall computational efficiency but also on the numerical 
stability. In this section, we introduce the calculation of the analytical Jacobian matrix for the nonlinear system (15).

For the clarity of notations, we denote by ∂Px = ∂/∂Px and ∂Py = ∂/∂Py the partial derivatives w.r.t. all the x-coordinate 
components and all the y-coordinate components of the control points P. In addition, let us denote by (),α and (),αβ

(α = ξ, η and β = ξ, η) the first and the second derivatives over the parameters.
First, by taking the derivatives of the entries gij of the metric tensor, we have

∂Px g11 = 2xξ R,ξ , ∂Py g11 = 2yξ R,ξ ,

∂Px g22 = 2xηR,η, ∂Py g22 = 2yηR,η,

∂Px g12 = xηR,ξ + xξ R,η, ∂Py g12 = yηR,ξ + yξ R,η.

(18)

Through the product rules for derivatives and inserting the above formulas, we obtain

∂PxLx = x,ξξ ∂Px g22 − 2x,ξη∂Px g12 + x,ηη∂Px g11 + g22R,ξξ − 2g12R,ξη + g11R,ηη,

∂PyLy = y,ξξ ∂Py g22 − 2y,ξη∂Py g12 + y,ηη∂Py g11 + g22R,ξξ − 2g12R,ξη + g11R,ηη,

∂PyLx = x,ξξ ∂Py g22 − 2x,ξη∂Py g12 + x,ηη∂Py g11,

∂PxLy = y,ξξ ∂Px g22 − 2y,ξη∂Px g12 + y,ηη∂Px g11.

(19)

Next, the partial derivatives of the scaled differential operator (14) can be computed as follows

∂Px L̃x = ∂PxLx − L̃x (∂Px g11 + ∂Px g22)

g11 + g22
, ∂Py L̃x = ∂PyLx − L̃x (∂Py g11 + ∂Py g22)

g11 + g22
,

∂Px L̃y = ∂PxLy − L̃y (∂Px g11 + ∂Px g22)

g11 + g22
, ∂Py L̃y = ∂PyLy − L̃y (∂Py g11 + ∂Py g22)

g11 + g22
.

(20)

Finally, the Jacobian matrix for the nonlinear system (15) is given by

jac(F) =
[

∂Px Fx ∂Px Fy

∂Py Fx ∂Py Fy

]
, (21)

where

∂Px Fx =
∫
�̂

R∂Px L̃x d�̂, ∂Py Fx =
∫
�̂

R∂Py L̃x d�̂,

∂Px Fy =
∫
�̂

R∂Px L̃y d�̂, ∂Py Fy =
∫
�̂

R∂Py L̃y d�̂.

(22)

4.4. Discretization in Sobolev space H1

The parameterization produced by the nonlinear system (15) is shown in the left of Fig. 2. One can see that some non-
uniform elements appear near the duck’s head and belly, highlighted by a red circle. As claimed in Hinz et al. (2018a), 
this issue can be partially remitted by performing refinements on the current geometry to better approximate harmonic 
mapping. However, these refinement operations introduce needless control points and make the CAD geometries heavy, 
which may lead to some troubles in the subsequent analysis and other downstream processes. This phenomenon is an 
7
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Fig. 2. Duck example: the left shows the parameterization produced by the discretization (15) in the H2 space, where some non-uniform elements can be 
observed inside the red circle. The right shows the result produced by the discretization (30) in the H1 space. The color encodes the scaled Jacobian, with 
white representing optimal orthogonality.

inherent property of EGG that has been widely observed Xu et al. (2013b). Now, we expect to improve the quality of the 
parameterization while leaving the cardinality of the control points fixed. In this section, we introduce a scale factor and 
present a novel discretization for (9) in the Sobolev space H1 rather than H2 to address this problem.

Consider the first component of the system of Laplace equations (9) and multiply it by the test function Ri ∈ 	0, then 
we have

Ri�ξ = 0. (23)

According to the product rule of divergence, the following equation holds

∇x · (Ri∇xξ) − ∇x Ri · ∇xξ = Ri�ξ = 0. (24)

For better scalability, here, we introduce a scaling by dividing the above by the Jacobian determinant

∇x · (Ri∇xξ) − ∇x Ri · ∇xξ

|J | = 0. (25)

Integrating the above equation (25) over the computational domain � and transforming it to the parametric domain �̂, 
we obtain

0 =
∫
�

∇x · (Ri∇xξ) − ∇x Ri · ∇xξ

|J | d�

=
∫
�̂

∇x · (Ri∇xξ) − ∇x Ri · ∇xξ d�̂

(26)

According to Green’s formula and exploiting the vanishing of Ri ∈ 	0 on ∂�, we have∫
�̂

∇x · (Ri∇xξ)d�̂ =
∮
�̂

Ri∇xξ · n d�̂ = 0, (27)

where n is the outward-pointing unit normal vector on the boundary �̂.
Therefore, we obtain∫

�̂

∇x Ri · ∇xξ d�̂ = 0. (28)

Similarly, from �η = 0, we obtain∫
�̂

∇x Ri · ∇xη d�̂ = 0. (29)

Finally, the equivalent variational problem of (9) in the Sobolev space H1 reads

∀Ri ∈ 	0 :
{

Fx
H1 = 0,

Fy = 0,
s.t. x|

∂�̂
= ∂�, (30)
H1

8
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where

Fx
H1 =

∫
�̂

∇xR · ∇xξ d�̂,

Fy
H1 =

∫
�̂

∇xR · ∇xη d�̂,

(31)

and R denotes the column collection of the NURBS basis functions Ri ∈ 	0.
By solving (30), the resulting parameterization is shown in the right of Fig. 2. One can see that the parameterization 

quality is significantly improved both in terms of orthogonality and uniformity and the non-uniform elements disappear. 
Most importantly, there is no increment of the cardinality of control points.

4.5. Analytical Jacobian computation for the discretization in H1 space

We denote by ∂Px
j

and ∂Py
j

the partial derivatives w.r.t. the x-component and the y-component of the j-th control point 
P j , respectively.

Taking the partial derivatives of the inverse of the Jacobian matrix J gives

∂Px
j
J−1 = −J −1

[
∂ R j
∂ξ

,0
∂ R j
∂η ,0

]
J−1, (32)

and

∂Py
j
J−1 = −J−1

[
0,

∂ R j
∂ξ

0,
∂ R j
∂η

]
J−1. (33)

Since ∇xξ and ∇xη are merely the first and the second columns of J −1, i.e.,

[∇xξ,∇xη] =
[

∂ξ
∂x

∂η
∂x

∂ξ
∂ y

∂η
∂ y

]
= J−1, (34)

we have

∂Px
j
∇xξ =

(
∂Px

j
J−1

)
(:,1)

, ∂Py
j
∇xξ =

(
∂Py

j
J−1

)
(:,1)

,

∂Px
j
∇xη =

(
∂Px

j
J−1

)
(:,2)

, ∂Py
j
∇xη =

(
∂Py

j
J−1

)
(:,2)

,
(35)

where ( )(:,i) denotes the i-th (i = 1, 2) column of the matrix inside ( ).
Therefore, the full Jacobian matrix for the nonlinear system (30) is

jac(FH1) =
[
∂Px Fx

H1 ∂Py Fx
H1

∂Px Fy
H1 ∂Py Fy

H1

]
, (36)

where

(∂Px Fx
H1)(i, j) =

∫
�̂

∂Px
j
J−1∇ξ Ri · ∇xξ + ∇x Ri · ∂Px

j
∇xξ d�̂,

(∂Py Fx
H1)(i, j) =

∫
�̂

∂Py
j
J−1∇ξ Ri · ∇xξ + ∇x Ri · ∂Py

j
∇xξ d�̂,

(∂Px Fy
H1)(i, j) =

∫
�̂

∂Px
j
J−1∇ξ Ri · ∇xη + ∇x Ri · ∂Px

j
∇xη d�̂,

(∂Py Fy
H1)(i, j) =

∫
�̂

∂Py
j
J−1∇ξ Ri · ∇xη + ∇x Ri · ∂Py

j
∇xη d�̂

(37)

are the entries of the Jacobian blocks of nonlinear system (30).
9
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4.6. Equivalence between nonlinear systems and fixed-point problems

The problems in (15) and (30) both come down to the following nonlinear system

F(x) = 0, x ∈ Rn, F : Rn → Rn. (38)

The typical solvers for the above problem are Newton-type methods. For instance, the truncated Newton approach and 
the pseudo-time-stepping Newton approach are employed in Hinz et al. (2018a). However, calculating and updating the 
Jacobian matrix in each iteration is mandatory in these solvers, which can be computationally expensive, particularly for 
large-scale problems. To circumvent this issue and to reduce the computational overhead per iteration, we first convert the 
nonlinear system (38) into a fixed-point iteration problem

x = x + F(x). (39)

Then, the Anderson acceleration (AA) algorithm is employed to speed up the convergence of the iteration. Unlike Picard 
iteration which utilizes only one previous iterate, the A A(m) method proceeds by linearly recombining m previous iterates 
such that it approximately minimizes the linearized fixed-point residual in the least-squares sense. However, the main 
concern related to the above basic iterative scheme (39) is that the iterates may not converge or converge very slowly.

To further improve the numerical stability and the convergence speed of AA, in the present work, we use preconditioning 
strategies for the fixed-point problem. Specifically, let Mk be a non-singular matrix called the preconditioner at iteration k. 
Then we define the following preconditioned fixed-point iteration scheme

xk+1 = xk − M−1
k F(xk), (40)

In the next section, we will introduce various types of preconditioners Mk .

5. Nonlinear preconditioning

In this section, we will discuss how to choose a suitable preconditioner Mk .

5.1. Preconditioners for Anderson acceleration

Assume that x∗ is the solution to the nonlinear system F(x) = 0, and xk is an estimate for x∗ at the k-th iteration such 
that ‖ek‖ = ‖x∗ − xk‖ 
 1. According to Taylor’s expansion theorem, we have

0 = F(x∗) = F(xk) + jac(Fk)ek + 1

2
ET

kHkEk +O(‖ek‖3), (41)

where jac(Fk) is the n × n Jacobian matrix of F(x) at iteration k, Ek = diag{eT
k , . . . , e

T
k} is a diagonal matrix composed of the 

transposed residual vector eT
k , and

Hk = diag{H(1)(x),H(2)(x), . . . ,H(n)(x)}
is a block-diagonal matrix composed of H(i)(x) which is the Hessian matrix of the i-th nonlinear equation F(i)(x) (i =
1, 2, . . . , n) at iteration k.

Recalling the preconditioned fixed-point iteration (40), we have

F(xk) = Mk
(
xk − xk+1

) = Mk
(
(x∗ − xk+1) − (x∗ − xk)

) = Mk
(
ek+1 − ek

)
. (42)

Inserting the above formula (42) into (41) yields

0 = F(xk) + jac(Fk)ek + 1

2
ET

k HkEk +O(‖ek‖3)

= Mk
(
ek+1 − ek

) + jac(Fk)ek + 1

2
ET

k HkEk +O(‖ek‖3).

(43)

Multiplying M−1
k on both sides of equation (43), we obtain

0 = (
ek+1 − ek

) + M−1
k jac(Fk)ek + 1

2
M−1

k ET
k HkEk +O(‖ek‖3)

= ek+1 −
(

I − M−1
k jac(Fk)

)
ek + 1

2
M−1

k ET
k HkEk +O(‖ek‖3),

(44)

where I is the n × n identity matrix.
10
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Finally, we arrive at

ek+1 =
(

I − M−1
k jac(Fk)

)
ek − 1

2
M−1

k ET
k HkEk +O(‖ek‖3). (45)

If we set the preconditioner

Mk = jac(Fk) (46)

then (45) boils down to

ek+1 = −1

2
jac(Fk)

−1ET
k HkEk +O(‖ek‖3), (47)

that is, ‖ek+1‖ =O(‖ek‖2).
This means that, if we start from a sufficiently good initial guess and update the preconditioner Mk every iteration, our 

preconditioned AA scheme (40) may have a quadratic convergence rate, which is consistent with the standard Newton iter-
ation. However, we run into the same issue as Newton-type solvers. The high-overhead computation of frequently updating 
full Jacobian is needed, contrary to our original intention for using AA. To this end, we propose several more practical 
preconditioning strategies to solve the involved nonlinear systems effectively.

To find a better preconditioner Mk for our preconditioned AA scheme (40), we consider the following preconditioning 
strategies.

1) Constant preconditioner, i.e., Mk = αI, where α is a small positive real number in (0, 1]. This preconditioning strategy 
is quite simple and computationally cheapest since there is no need to compute the Jacobian matrix of the nonlinear 
system. However, one needs to manually tune the value of α. If one chooses α = 1, it degenerates to the no precon-
ditioning case. Notice that, according to (45), if the preconditioners Mk are too far away from the Jacobian, it only 
converges linearly or even diverges in some cases.

2) Full Jacobian preconditioner, i.e., Mk = jac(Fk). Essentially, this preconditioning strategy is using AA to accelerate New-
ton’s method. However, it is computationally expensive since we need to update this preconditioner at each iteration.

3) Diagonal Jacobian preconditioner, i.e., Mk = diag( jac(Fk)). The constant preconditioner is simple but does not nec-
essarily work well, while the full Jacobian preconditioner is the best choice in the sense of convergence speed but 
is computationally expensive. To balance a “good preconditioner” and “computation overhead”, this diagonal Jacobian 
preconditioner can be a candidate thanks to its relatively cheap computation.

4) Block-diagonal Jacobian preconditioner. For example, to the Jacobian matrix in (21), we adopt its diagonal blocks

diag Block ( jac(F)) =
[
∂Px Fx 0

0 ∂Py Fy

]
as a preconditioner. This preconditioning strategy is a good balance between the convergence property and computation 
overhead. Compared with the full Jacobian preconditioner, it reduces the computational costs. It has relatively more 
computational costs than the diagonal Jacobian preconditioner, but it is a better approximation to the full Jacobian 
matrix.

Another important observation is that, unlike Newton-type solvers and gradient-based methods, the new iteration is a 
linear combination of several previous iterates in the AA iteration scheme. One benefit arises that frequent updating of 
computationally expensive preconditioners can be avoided. To enhance the computational efficiency, we update the pre-
conditioners every Nupdate step(s) instead of updating them each iteration. In our parameterization problems, the proposed 
preconditioned AA scheme typically converges within 1-2 update(s) of the preconditioner.

5.2. Overview of the proposed algorithm

Our preconditioned Anderson acceleration scheme with dynamic preconditioning strategy is summarized in Algorithm 1.
11
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Algorithm 1: Preconditioned Anderson acceleration: PreAA(m).
Input: P0: Initial guess for inner control points;

F(P): Nonlinear system;
m: Window size in AA;
Nmax: Maximum iterations;
tol: Tolerance of residual norm for convergence test;
Nupdate : Update the preconditioner every Nupdate steps.

Output: Pk+1: Optimized inner control points.
1 for k = 0; k ≤ Nmax; + + k do
2 Compute residual vector Fk = F(Pk); // (15) or (30)

// Check the termination criteria
3 if ‖Fk‖ < tol then
4 break;
5 end

// Update preconditioner
6 if k is evenly divisible by Nupdate then
7 Compute preconditioning matrix M; // Section 5.1
8 end

// Anderson acceleration
9 Compute mk = min{m, k};

10 Compute preconditioned residual vector Fk by solving MFk = −Fk;

11 Determine α(k) =
(
α

(k)
0 , · · · ,α

(k)
mk

)T
that solves

12 arg min
α=(α0,··· ,αmk )T

∥∥∥∥∥
mk∑
i=0

Fk−mk+iα

∥∥∥∥∥
2

2

, s.t. 
mk∑
i=0

αi = 1;

13 Update Pk+1 =
mk∑
i=0

α
(k)
i

(
Pk−mk+i +Fk−mk+i

)
;

14 end

6. Numerical experiments

In this section, we numerically investigate our H1 discretized parameterization technique and compare different pre-
conditioning strategies in detail. In addition, comparisons with state-of-the-art methods Ji et al. (2021, 2022b) are also 
performed.

6.1. Implementation details

The proposed method is implemented using C++. All numerical experiments are conducted on a laptop computer (Mac-
Book Pro 14-inch 2021, Apple M1 Pro CPU, and 16-GB RAM). The present implementation is based on the open-source C++ 
library G+Smo (Geometry + Simulation Modules) Jüttler et al. (2014); Mantzaflaris (2019). Eigen Guennebaud et al. (2010), 
a widely used C++ template library for linear algebra, is employed in matrix/vector operations and for solving the involved 
linear systems.

Algorithm’s parameter settings: there are several parameters in Algorithm 1. All involved parameters are set as default 
values though the convergence speed can be enhanced by tuning the involved parameters. We set the window size m = 5, 
and Nupdate = 10 means that the preconditioner is updated every 10 iterations. As to the stopping criteria, we set the 
maximum iterations Nmax = 1000 and the tolerance for the residual norm tol = 1e − 5, which proved to work well in our 
experiments.

6.2. Quality metrics for parameterization

The orthogonality and uniformity of the resulting parameterization significantly affect the numerical accuracy of the sub-
sequent analysis Pilgerstorfer and Jüttler (2014). Therefore, two quality metrics are employed here, one is for orthogonality, 
and the other is for uniformity.

• Scaled Jacobian

mS J = |J |
‖xξ‖‖xη‖ . (48)

It is easy to see that −1 ≤ mS J ≤ 1. For a bijective parameterization, mS J > 0 holds, for ∀ξ ∈ �̂. Once a negative value 
of mS J is detected, the parameterization x is folded somewhere. It reaches its optimal value 1 if the orthogonality of x
perseveres.
12
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Fig. 3. Male rotor example: performance comparisons between different solvers, including standard Newton’s iteration, AA(5), AA(5) composite AA(5), 
adaptive AA(5) composite AA(5), preconditioned AA(5) with block-diagonal Jacobian preconditioner, AA(5) with diagonal Jacobian preconditioner, and AA(5) 
with full Jacobian preconditioner.

• Uniformity metric

munif . = (
|J |

Rarea
− 1)2, (49)

where Rarea = Area(�)/Area(�̂) is the area ratio of the parametric domain �̂ and the computational domain �. This 
definition is based on the fact that the Jacobian determinant describes the area ratio of x at a given point. munif . attains 
its minimum value 0 if the parameterization conserves uniformity.

In our experiments, both quality metrics are evaluated on a dense sampling of 1001 × 1001 points including the bound-
aries. In our statistics, the maximum values of mS J and the minimum values of munif . are omitted, since they are attainable 
in every example.

6.3. Performance comparisons between different solvers

In this section, we study the numerical behavior of our preconditioned AA scheme with different preconditioning strate-
gies. Comparisons with other solvers are also provided, including the standard Newton’s method, the standard AA algorithm 
(AA(m)), and two recently developed methods Chen and Vuik (2022b): the AA composite AA method (AA(m,AA(m))) and 
the AA adaptive composite AA method (AAadp(m,AA(m))).

Fig. 3 shows a computational domain shaped by a male rotor. We start from its B-Rep composed of four B-spline curves 
and initialize the inner control points by computationally inexpensive Spring patch construction Gravesen et al. (2012). The 
residual norm of different solvers to function evaluations and computational time are shown in the right. One can see that 
Newton’s method shows the best convergence speed in terms of function evaluations, which converges within 4 iterations. 
In this example, AA(5), AA(5, AA(5)), AAadp(5, AA(5)), and the preconditioned AA scheme with diagonal Jacobian precon-
ditioner converge in 25 iterations. Our preconditioned AA scheme with full Jacobian preconditioner and preconditioned AA 
scheme with block-diagonal Jacobian preconditioner converge after 9 and 10 iterations, respectively, which is worse than 
the standard Newton’s method but better than the other AA schemes.

In this example, however, all AA schemes beat standard Newton’s method in terms of computational time. Although the 
analytical Jacobian matrix formulas are derived in (21), which greatly enhances the computational efficiency, the update of 
13



Fig. 4. Butterfly example: performance comparisons between different solvers, including standard Newton’s iteration, AA(5), AA(5) composite AA(5), adaptive 
AA(5) composite AA(5), preconditioned AA(5) with block-diagonal Jacobian preconditioner, AA(5) with diagonal Jacobian preconditioner, and AA(5) with full 
Jacobian preconditioner.

the full Jacobian matrix each iteration in standard Newton’s method can be still expensive. Notice that, our preconditioned 
AA scheme with block-diagonal Jacobian preconditioner is over four times faster than standard Newton’s method.

As shown in Fig. 4, a similar numerical performance can be observed for the butterfly geometry. In this example, our 
preconditioned AA scheme with the block-diagonal Jacobian preconditioner is almost six times faster than standard New-
ton’s method. Here, oscillations on the convergence curves of our preconditioned AA scheme are found. This is because the 
original (no preconditioning) residual norms are tracked for a fair comparison, and the preconditioned residual norms still 
descend steadily.

Next, we conduct tests on various nonlinear solvers on a multi-patch parameterization. Fig. 5(a) displays a single slice 
of a rotary twin-screw compressor that is parameterized by a 4-patch B-spline. The convergence performance of different 
nonlinear solvers on two representative patches, namely Patch 1 and Patch 4, is shown in Fig. 5(b) and Fig. 5(c), respectively. 
Our preconditioned AA scheme with a block-diagonal Jacobian preconditioner performs the best in terms of computational 
time. The other two patches exhibit similar numerical performance.

6.4. Parameterization quality improvement by scaled H1 discretization

As mentioned in Sec. 4.4, the parameterizations produced by the original discretized nonlinear system (15) in H2 space 
may have non-uniform elements. Specifically, the resulting grid lines are attracted to the concave part and repelled from 
the convex part of the boundary, as shown in Fig. 2. To this end, we introduce a scaled version of harmonic equations (9)
in Sobolev space H1.

Table 1 summarizes the parameterization quality metrics of different models by the H2 discretization and the H1 dis-
cretization. One can see that our scaled H1 discretization greatly improves the parameterization quality. A typical example 
is shown in Fig. 6. By solving the nonlinear system (15), the resulting parameterization is with folds inside the red circle, 
shown in the left. The negative scaled Jacobian in Table 1 also validates it. This example shows that though the bijectivity of 
harmonic mapping is guaranteed by Radó-Kneser-Choquet theorem in an infinite-dimensional space, it may produce invalid 
parameterization in a finite-dimensional spline space. To this end, Hinz et al. (2018a) suggest that a better approximation 
to the harmonic mapping can be obtained by several refinements. However, the problem is that refinements lead to more 
control points, and thus the model becomes heavier. The result produced by (30), with dramatically improved parameteriza-
Y. Ji, K. Chen, M. Möller et al. Computer Aided Geometric Design 102 (2023) 102191
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Fig. 5. Performance comparisons between different solvers over 4-patch parameterized rotary twin-screw geometry.
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Table 1
Comparisons between different parameterization methods, including barrier-function based method Ji et al. (2021), 
penalty function-based method Ji et al. (2022b), H2 discretization (15), and H1 discretization (30). The first two 
methods are solved by a standard L-BFGS method, whereas the last two methods (namely, those in H2 space and 
H1 space) are solved using our preconditioned Anderson acceleration method with the block-diagonal Jacobian pre-
conditioning strategy. The minimum and the average values of scaled Jacobian mS J , the maximum and the average 
values of the uniformity metric munif . , and the computational timings Ttotal (in seconds) are reported. All results 
with the best performance are highlighted in bold.

Model #DOFs Method mS J muni f . Ttotal(s)

min. avg. max. avg.

Duck (Fig. 2) 160

Ji et al. (2021) 0.2986 0.9243 62.9882 0.5913 0.0393
Ji et al. (2022b) 0.2986 0.9243 62.9875 0.5912 0.0722
H2 space (15) 0.2444 0.9276 131.3254 0.7845 0.0066
H1 space (30) 0.3022 0.9257 27.0234 0.3545 0.0195

Male Rotor (Fig. 3) 1352

Ji et al. (2021) 0.3737 0.9713 2.7579 0.1444 0.2204
Ji et al. (2022b) 0.3738 0.9713 2.7611 0.1444 0.2984
H2 space (15) 0.3140 0.9713 2.7749 0.1451 0.0590
H1 space (30) 0.5293 0.9644 0.7342 0.0688 0.1544

Butterfly (Fig. 4) 4418

Ji et al. (2021) 0.3095 0.9414 77.1353 0.6885 16.0262
Ji et al. (2022b) 0.3096 0.9414 77.1177 0.6886 27.4425
H2 space (15) 0.2913 0.9416 114.4743 0.7014 1.5317
H1 space (30) 0.2319 0.9596 30.2282 0.3838 4.5948

Plane (Fig. 6) 144

Ji et al. (2021) 0.3575 0.9145 45.6981 1.0526 0.0385
Ji et al. (2022b) 0.3575 0.9145 45.6983 1.0526 0.0539
H2 space (15) -1 - - - -
H1 space (30) 0.3716 0.9379 28.6562 0.7400 0.0538

Male screw (Fig. 7) 1616

Ji et al. (2021) -1 - - - -
Ji et al. (2022b) -1 - - - -
H2 space (15) 0.3469 0.9407 36.5805 4.6449 0.0436
H1 space (30) 0.4611 0.9474 26.1502 4.5278 0.0531

Female screw (Fig. 7) 1616

Ji et al. (2021) -1 - - - -
Ji et al. (2022b) -1 - - - -
H2 space (15) 0.2041 0.9443 60.6725 4.9954 0.0344
H1 space (30) 0.4388 0.9539 33.6031 4.7157 0.1320

Fig. 6. Plane example: the left shows the parameterization produced by the discretization (15) in the H2 space, where some folds can be observed inside the 
red circle. The right shows the result produced by the discretization (30) in the H1 space. The color encodes the scaled Jacobian, with white representing 
optimal orthogonality.

tion quality, is shown in the right of Fig. 6. Our method generates high-quality parameterization results with fewer control 
points, which is preferable in practice.

6.5. Comparisons with state-of-the-art parameterization approaches

In this section, we compare the proposed approach with state-of-the-art parameterization approaches. Specifically, two 
methods are considered. One is the barrier function-based approach Ji et al. (2021). Another one is the so-called penalty 
function-based approach Ji et al. (2022b). Both methods attempt to approximate the harmonic mapping by minimizing 
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Fig. 7. Screw examples: the first row shows the parameterizations generated by the discretization (15) in the H2 space for the male screw geometry and 
the female screw geometry. The second row shows the parameterizations generated by the discretization (30) in the H1 space for the male screw geometry 
and the female screw geometry. The color encodes the scaled Jacobian, with red representing optimal orthogonality.

Winslow’s function. Different from the barrier function-based approach, the penalty function-based approach avoids the 
foldover elimination steps by introducing a penalty term. Therefore, the resulting parameterizations should be the same 
upon convergence. Specifically, the following nonlinear optimization problem is solved in these two approaches

arg min
Pi ,i∈II

∫
�̂

(
E D + λEuni f .

)
d�̂, (50)

where E D is Winslow’s function as (11). To demonstrate the difference between different discretization methods, we set the 
trade-off parameter λ to 0 in our numerical experiments.

For a fair comparison, we re-implement these two approaches under the same computational environment (G+Smo), 
which is much more efficient than the original implementation using MATLAB. Interested readers may refer to the afore-
mentioned papers for more comparisons with the existing approaches.

The quality metrics and computational timings of different parameterization methods are reported in Table 1. As we ex-
pected, the barrier function-based method Ji et al. (2021) and the penalty function-based method Ji et al. (2022b) generate 
almost the same parameterization results in all models since both of them attempt to minimize Winslow’s function. Our dis-
cretization in the Sobolev space H1 generates higher-quality results in terms of not only orthogonality but also uniformity. 
As to computational efficiency, our method is much more efficient than the other methods except for the Plane example. 
Notice that, for the barrier and penalty function-based method with the Limited-memory BFGS solver, a slow convergence 
behavior is observed in the Butterfly example with 4418 degrees-of-freedom. However, our method is almost 4 times faster 
than these two methods.

As shown in Fig. 7, the resulting planar parameterizations can be adopted to generate 2.5-D volumetric parameterizations 
using extrude operations in some industrial applications. To complete these parameterizations, we first construct an analysis-
suitable planar parameterization for a single slice, apply a canonical rotation matrix to the resulting control points, and adopt 
an extrude operation along the z-direction in the physical space. After the extrude operation, the resulting parameterization 
has a degree of 1 in the third parameter direction. To these geometries with extreme aspect ratios, the methods based on 
minimizing the corrected Winslow’s function Ji et al. (2021, 2022b) encounter numerical difficulty, which is also observed 
in Fig. 1. As shown in Table 1, the minimum value of the scaled Jacobian is negative, which means that the resulting 
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Fig. 8. Problem setting and absolute error colormap of the 2D male rotor geometry. Here, the absolute errors in (c) and (d) are computed with DOFs = 
69960.

parameterizations are invalid. The discretization in H2 and H1 space produce valid parameterizations. It can be seen in 
Fig. 7 that the discretization in H2 space produces higher quality results. As a downside, the discretization in H2 space 
needs more computational time. However, by using the proposed Anderson acceleration with the block-diagonal Jacobian 
preconditioning strategy, its computational timing is still acceptable as shown in Table 1.

7. Application to IGA simulation

To demonstrate that our resulting parameterizations are applicable for IGA, we study the following Poisson’s problem 
with mixed boundary conditions over physical domain �:

⎧⎪⎨⎪⎩
−�u = f , in �,

u = g, on �D ,

n · ∇u = h, on � ,

(51)
N
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Fig. 9. Error convergence and Frobenius condition number of stiffness matrix during h-refinement.

Fig. 10. IGA solution and absolute error colormap of 3D screw geometry (DOFs = 30704).

where f ∈ L2(�) : � → R is a given source term, n is the outward pointing unit normal vector, ∂� = �̄D ∪ �̄N (with 
�D ∩ �N = ∅) defines the boundary, �D and �N are the parts of the boundary where Dirichlet and Neumann boundary 
conditions are prescribed, respectively.

To begin with, we examine Poisson’s equation (51) over the male rotor depicted in Fig. 8(a). In this scenario, mixed 
boundary conditions are applied to the boundaries, and Dirichlet boundary conditions are imposed using L2 projection. The 
exact solution, shown in Fig. 8(b), is given by uexact = sin(

x2+y2

50 ), while the source term is f = −�uexact. As demonstrated in 
Fig. 8(c) and Fig. 8(d), different parameterizations employing the same bi-cubic B-splines exhibit varying levels of absolute 
error. Notably, the parameterization constructed by the H1 discretization yields a lower error level than that constructed by 
the H2 discretization.

Fig. 9(a) illustrates the error convergence history during h-refinement. The plot indicates that our parameterization is 
IGA-suitable, as both L2 norm error and H1 norm error achieve the theoretical optimal convergence rate. Fig. 9(b) displays 
the Frobenius condition number history of the stiffness matrices during h-refinement. Consistent with observations in Ji et 
al. (2022a), the two resulting parameterizations exhibit a steady, linear increase in the stiffness matrix condition number 
as the number of degrees-of-freedom increases, while maintaining a low level (approximately 105 with DOFs=18632). It 
indicates that our parameterization method is reliable and suitable for practical applications in IGA.

Next, we solve Poisson’s equation (51) over the volumetric male screw geometry shown in Fig. 7. Prior to the IGA 
simulation, we perform one degree elevation along the z-direction to obtain a tri-quadratic B-spline representation. The 

exact solution is uexact = e
x2+y2

r2 sin( zπ
m ), where r = 36 and m = 200.

The numerical solution and its corresponding absolute error colormap, with degrees-of-freedom (DOFs) of 30704, are 
shown in Fig. 10. In Fig. 11, we plot the error convergence results for uniform h-refinements. One can see that the theoretical 
optimal convergence rate is attained for both L2 norm error and H1 norm error, which implies that our parameterization is 
IGA-suitable.
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Fig. 11. Error convergence history for h-refinement.

8. Conclusions and outlook

In this paper, we propose a novel preconditioned Anderson acceleration framework to enhance the numerical stability 
and computational efficiency of the PDE-based elliptic parameterization technique. The discretization of the scaled harmonic 
mapping is developed in the Sobolev space H1 to alleviate the inherent issue of the elliptic parameterization method, i.e., 
non-uniform elements near the concave and convex boundaries. The Jacobian matrices of the involved nonlinear systems 
are derived analytically, which greatly improves the computational efficiency. Numerical experimental results show that our 
preconditioned AA scheme effectively reduces the computational overhead per iteration and the total computational time. 
Compared with state-of-the-art approaches, our method shows better numerical performance and adaptation to challenging 
geometries with extreme aspect ratios.

In our parameterization problem, the analytical Jacobian matrices for the related nonlinear systems are available by 
careful derivation. However, for many other problems, an analytical Jacobian matrix may be difficult or even impossible to 
obtain. Therefore, a Jacobian-free preconditioner is worthy for investigation.

Multi-patch parameterizations are essential for complex geometries, particularly those with high genus topology. Using 
domain partitioning techniques to construct high-quality, analysis-suitable parameterizations for general CAD models from 
their boundary representations is one of our ongoing works. Besides, extending our elliptic parameterization approach to 
the fully volumetric case is of vital importance to practical applications. Here, one main concern is the lack of a theoretical 
bijectivity guarantee in 3D.
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