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a b s t r a c t 

One-dimensional models for multiphase flow in pipelines are commonly discretised using first-order Fi- 

nite Volume (FV) schemes, often combined with implicit time-integration methods. While robust, these 

methods introduce much numerical diffusion depending on the number of grid points. In this paper we 

propose a high-order, space-time Discontinuous Galerkin (DG) Finite Element method with h -adaptivity 

to improve the efficiency of one-dimensional multiphase flow simulations. For smooth initial boundary 

value problems we show that the DG method converges with the theoretical rate and that the growth rate 

and phase shift of small, harmonic perturbations exhibit superconvergence. We employ two techniques 

to accurately and efficiently represent discontinuities. Firstly artificial diffusion in the neighbourhood of a 

discontinuity suppresses spurious oscillations. Secondly local mesh refinement allows for a sharper repre- 

sentation of the discontinuity while keeping the amount of work required to obtain a solution relatively 

low. The proposed DG method is shown to be superior to FV. 

© 2017 Published by Elsevier Ltd. 
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1. Introduction 

Multiphase flow plays an important role in many industrial ap-

plications, such as in the petroleum and nuclear industry. In the

petroleum industry a typical example of multiphase flow is the

transport of oil and gas through long multiphase pipeline systems.

For the design and optimization of such systems it is important to

accurately predict the pressure and flow rate of both oil and gas

along the pipeline as a function of time. An important example is

the prediction of slug flow, which has a large influence on the siz-

ing of receiving facilities at the outlet of the pipeline such as slug

catchers or separators. A slug is a pocket of liquid that fully cov-

ers the pipe cross sectional area and that moves with relatively

high velocity along the pipeline. Some slugs are initiated due to a

flow instability at the gas/liquid interface of stratified flow in the

pipeline, which marks the transition from stratified flow to hydro-

dynamic slug flow. The motion of these slugs, and of oil and gas

in general, is governed by partial differential equations describing

conservation of mass, momentum and energy. However, for oil and

gas pipelines the numerical solution of these equations in three di-
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ensions is prohibitively expensive due to the multi-scale nature

f the problem: the pipeline length can be of the order of 100 km,

hereas the size of oil droplets or gas bubbles can be of the or-

er of millimetres. In order to obtain a computationally tractable

odel which retains the most important physical effects, averaging

echniques are typically applied to the governing equations, lead-

ng to a one-dimensional model. The one-dimensional two-fluid

odel [1,2] is the most commonly used model to simulate two-

hase flow in pipelines or channels. It is capable of describing the

ransition from stratified flow to slug flow [3] . As such, the two-

uid model is a slug-capturing model in which slugs are a result

f growing hydrodynamic instabilities. 

Numerical solutions to the two-fluid model equations are in

eneral obtained by finite difference methods or finite volume

ethods, both in commercial codes such as OLGA [4] and LedaFlow

s well as in academic research codes [3,5–8] . These finite differ-

nce and finite volume methods are almost exclusively first order

n space and time. For example, the slug capturing code TRIOMPH

rom [3] uses a finite volume method on a staggered grid, being

rst order accurate both in space and time. A main reason for the

se of first order schemes is related to the ill-posedness of the ba-

ic two-fluid model (when surface tension or hydrostatic pressure

ariation are not taken into account) and its non-conservative na-

ure. These properties make the application of high-order meth-

http://dx.doi.org/10.1016/j.compfluid.2017.06.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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ds as developed for single-phase flow (such as Essentially Non-

scillatory (ENO) schemes) non-trivial. The artificial diffusion in-

roduced by first order methods effectively regularizes the differ-

ntial equations through damping non-physical instabilities asso-

iated with ill-posedness [9] . However, a major disadvantage of

rst order methods is that any physical instabilities will also be

amped due to excessive numerical diffusion [6] . As a result, very

ne meshes are required (see e.g. [3] ); Bonizzi and Issa [10] recom-

end that the grid size should be less than half of the diameter of

he pipe to capture the natural growth of disturbances. For practi-

al pipeline simulations this is computationally far too expensive. 

A few studies on the use of high-order methods for the numer-

cal solution of the two-fluid model have been performed. Holmås

t al. [11] use a pseudo-spectral Fourier method to solve the two-

uid model and indicate a gain in computational time of sev-

ral orders of magnitude with respect to classical finite difference

chemes; especially the first order upwind method has excessive

umerical diffusion. Fullmer et al. [9] show improved accuracy of

 second order method over a first order method, although the

econd order method leads to non-monotone results. In all cases,

hese high-order upwind schemes can have unfavourable stability

roperties [6] , giving a numerical growth rate which is quite dif-

erent from the physical growth rate of instabilities. Consequently,

igh-order methods are not yet commonly applied for solving the

wo-fluid model equations. 

The purpose of this paper is to present an efficient high-

rder numerical method that can simulate stratified and slug flow

y solving the compressible two-fluid model. To overcome the

ommon issues associated with high-order methods we propose

n h -adaptive space-time Discontinuous-Galerkin Finite Element

ethod (DGFEM) scheme. This method allows a mesh to be refined

ocally ( h -refinement). In smooth regions of the flow a coarse mesh

s used, while a fine mesh is used to resolve the physics around

harp gradients, such as near a slug front or tail, or when the flow

ecomes locally single phase. This is believed to lead to a more

fficient numerical method compared to classical low-order finite

ifference or finite volume methods on fixed grids. The scheme can

e extended to include p -coarsening near discontinuities. 

Several quite different adaptive space-time DG methods with

daptive refinement have been described. The tent-pitcher algo-

ithm [12,13] creates a partial ordering of unstructured elements in

pace-time such that a discrete system can be solved on each el-

ment solely based on boundary data from lower elements in the

artial ordering. Multiple elements can be solved for simultane-

usly if they are independent of each other. Since all characteris-

ics should exit an element face in the same direction, this would

ield very flat elements (in time) if the eigenvalues of the system

ave a very large positive and negative component. 

Another technique proposed by Gassner et al. [14] involves a set

f elements that are unstructured in space and extruded in time,

here the time length of an element is variable. The flux contri-

ution to an element is applied separately from the volume contri-

ution after the volume contributions of all neighbouring elements

ave been computed. The scheme allows local h - and p -adaptation.

ince this method is essentially explicit, the time length restriction

s severe for problems with very large characteristic speeds. 

For a multidimensional multiphase flow application Sollie et al.

15] use a structured space-time base mesh subdivided in time-

labs, a sequence of sets of elements with the same time interval.

 discrete system is solved per time-slab using an explicit inte-

ration scheme for pseudo time. Coarse elements in which there

s an interface, described by a level set on the coarse mesh, are

ubdivided, allowing locally unstructured elements, such that the

nterface matches element boundaries. This front tracking scheme

equires several iterations to recompute the refinement as the level

et depends on the flow field and vice versa. In one-dimensional
ultiphase flow applications this scheme requires, in absence of

 level set, a non-trivial mechanism to locate jumps in the liquid

old-up within an element. 

Fidkowski and Luo [16] describe an adjoint based adaptive

pace-time DG scheme for the compressible Navier–Stokes equa-

ions. The space-time mesh is the tensor product of an unstruc-

ured spatial mesh and time-slabs. Both the spatial mesh and the

et of time-slabs can be refined locally, maintaining the tensor

roduct structure of the space-time mesh. The refinement decision

s based on the solution of an adjoint problem and requires storing

he solution on all time-slabs, which is infeasible for long running

imulations. 

In this paper we use a structured coarse space-time mesh, di-

ided into time-slabs, and allow repeated, structured refinements

n space and time of individual elements. Per element the decision

o refine is based on a smoothness indicator. Spurious oscillations

n the neighbourhood of discontinuities are suppressed by adding

rtificial viscosity to the model [17,18] . 

The outline of this paper is as follows. In Section 2 we re-

all the governing equations of the compressible two-fluid model,

nd introduce a new term associated with the hydrostatic pres-

ure variation which is generally neglected in the literature. In

ection 3 the new h -adaptive DGFEM discretisation for the com-

ressible two-fluid model is introduced. In Section 4 a second or-

er Finite Volume discretisation of the same compressible two-

uid model is given, which will be used to assess the performance

f the new DGFEM. In Section 5 we analyse the stability of the

wo-fluid model and the DGFEM discretisation. Section 6 shows

he results for two representative test cases. 

. Governing equations of the compressible two-fluid model 

We employ two different one-dimensional models for the sim-

lation of two-phase flow. We label the two phases with G for gas

nd L for liquid, but the following also applies to a lighter liquid

nd a heavier liquid. For both models we assume that at least one

hase is compressible. 

.1. Two-fluid model 

The first, and most general, of the two models is a two-fluid

odel for stratified flow in a horizontal, round pipe. Each phase is

epresented by a mass and momentum balance equation, respec-

ively given by 

 t (A βρβ ) + ∂ s (A βρβu β ) = 0 , (1)

nd 

 t (A βρβu β ) + ∂ s (A βρβu 

2 
β + A β p av ,β − A β p int ) 

+ A β∂ s p int + 

∑ 

γ ∈{ L , G , W } 
γ � = β

τβγ P βγ = 0 , (2) 

here β ∈ {L, G} denotes a phase, t [s] is time, s [m] is the pipe

ongitudinal distance, ρβ [ kg m 

−3 ] is the density of phase β ,

 β [ m s −1 ] is the average velocity of phase β in longitudinal direc-

ion, A β [m 

2 ] is the area occupied by phase β and P βγ [m] is the

ength of the interface of phase β with γ ∈ {L, G, W}, where W

enotes the pipe wall, p av, β [Pa] is the average pressure of phase

, p int [Pa] is the pressure at the interface, h int [m] is the height

f the interface with respect to the centre of the pipe, r [m] is

he radius of the pipe and τβγ [ N m 

−2 ] is the average interface

tress between phase β and phase or wall γ . For an illustration

f some quantities, see Fig. 1 . The model is the result of applying

ross-sectional averaging per phase of the three-dimensional con-

ervation of mass and the Navier–Stokes equations. See [19] for the
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Fig. 1. Illustration of phase areas and perimeters as used in the two-fluid model. 
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derivation of this model. The model is similar to the models used

by Liao et al. [6] and Fullmer et al. [8] . A difference worth noting

is the hydrostatic pressure term p av, β in the momentum Eq. (2) ,

which is present due to the compressibility of the phases. 

The areas of the liquid and gas phase cross sections are respec-

tively given by 

A L = r 2 arccos 

(
−h int 

r 

)
+ h int 

√ 

r 2 − h 

2 
int 

, (3)

and 

A G = r 2 arccos 

(
h int 

r 

)
− h int 

√ 

r 2 − h 

2 
int 

. (4)

The perimeters of the liquid-gas, liquid-wall and gas-wall inter-

faces are respectively given by 

P LG = P GL = 2 

√ 

r 2 − h 

2 
int 

, (5)

P LW 

= 2 r arccos 

(
−h int 

r 

)
, (6)

and 

P GW 

= 2 r arccos 

(
h int 

r 

)
. (7)

The hydrostatic pressure integrated over the liquid and gas phase

areas are respectively given by 

A L p av,L = p int A L + ρL g 

(
h int A L + 

1 

12 

P 3 LG 

)
, (8)

and 

A G p av,G = p int A G + ρG g 

(
h int A G −

1 

12 

P 3 LG 

)
, (9)

where g [ m s −2 ] is the gravitational acceleration. 

The shear stress term τβγ , β ∈ {G, L} is physically modelled by

the correlations of Taitel and Dukler [20] : 

τβγ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

2 

f βρβu β | u β | if γ = W 

1 

2 

f int ρG (u β − u γ ) | u β − u γ | if γ ∈ { G , L } , 
(10)

where μβ [Pa s] is the dynamic viscosity of phase β , the friction

factor f at the phase-wall interfaces and the gas-liquid interface are

respectively given by 

f β = 0 . 046 

( | u β | D βρβ

μβ

)0 . 2 

, β ∈ { L , G } , (11)

and 

f int = max { f G , 0 . 014 } , (12)

and the hydraulic diameters D β are given by 

D β = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

4 A L 

P LW 

if β = L , 

4 A G 

P + P 
if β = G . 

(13)
GW GL 
he two-fluid model is closed by defining the density ρβ and the

iscosity μβ for each phase β and the pipe radius r . Those val-

es are specific to a test case and are defined in Section 6 where

he numerical results are discussed. The remaining unknowns are

he interface pressure p int , the interface height h int and the phase

elocities u L and u G . 

.2. Homogeneous equilibrium model 

The second model considered is the homogeneous equilibrium

odel. That model is based on the assumption that the two phases

re mixed and flow with a single mixture velocity, u M 

[ m s −1 ] . Let

 M 

[m 

2 ] denote the area of the pipe cross section, 

 M 

= π r 2 , (14)

nd αβ the holdup of phase β , with the constraint that the

oldups sum to one, 

L + αG = 1 . (15)

he mass balance equations will then read: 

 t (A βρβ ) + ∂ s (A βρβu M 

) = 0 , (16)

ith the phase areas defined by 

 β = A M 

αβ. (17)

ompared to the two-fluid model only one, total momentum bal-

nce equation remains: 

 t ( A M 

ρM 

u M 

) + ∂ s 
(
A M 

ρM 

u 

2 
M 

+ A M 

p M 

)
= −τMW 

P M 

, (18)

here τMW 

[ N m 

−2 ] is the wall friction of the mixture, p M 

[Pa] is

he mixture pressure and ρM 

[ kg m 

−3 ] is the mixture density, an

rea-weighted average of the phase densities, 

M 

= αL ρL + αG ρG . (19)

he total momentum Eq. (18) is conservative, whereas the momen-

um per phase Eq. (2) for the two-fluid model is not conservative. 

For the wall friction we use Churchill’s friction factor. The wall

hear stress is given by 

MW 

= 

1 

2 

f MW 

ρM 

u M 

| u M 

| , (20)

ith friction factor f MW 

given by 

f MW 

= 2 

((
8 

Re 

)12 

+ ( 	1 + 	2 ) 
−1 . 5 

) 1 
12 

, (21)

arameters 	1 and 	2 given by 

1 = 

(
−2 . 457 ln 

((
7 

Re 

)0 . 9 

+ 0 . 27 

εpipe 

2 r 

))16 

, (22)

nd 

2 = 

(
37530 

Re 

)16 

, (23)

here εpipe is the pipe roughness. The Reynolds number of the

ixture is defined as 

e = 

2 rρM 

u M 

μM 

, (24)

nd the mixture dynamic viscosity is defined as the area-weighted

verage of the phase viscosities, 

M 

= αL μL + αG μG . (25)

he Homogeneous equilibrium model is closed by defining the

ensity ρβ and the viscosity μβ for each phase β , the pipe ra-

ius r and the pipe roughness εpipe . Those values are specific to a

est case and are defined in Section 6 where the numerical results

re discussed. The remaining unknowns are the mixture pressure

 , the liquid holdup α and the mixture velocity u . 
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. Discontinuous Galerkin discretisation of the two-fluid model 

In this section we derive the space-time DG discretisation for

oth models given in Section 2 , expressed in general form as 

 t f t j (q ) + ∂ s f s j (q ) + 

∑ 

k 

F s jk (q ) ∂ s q k − ∂ s (D j ∂ s f t j (q )) + g j (q ) = 0 , 

(26) 

here s ∈ S ⊆ R refers to space and t ∈ T := [0 , T ] to time, q :

 × T → R 

N is the vector of unknowns as a function of space-time

osition, f t : R 

N → R 

N the mapping from unknowns to conserved

uantities, f s : R 

N → R 

N the conservative part of the spatial flux,

 s : R 

N → R 

N×N the non-conservative part of the spatial flux and

 : R 

N → R 

N the source term. For brevity the arguments s and t

f q are omitted here and in the following. The diffusion coeffi-

ients D : R 

N are introduced for stability and will be discussed in

ection 3.4 . 

.1. Weak formulation 

Let (s a , s b ) × (t a , t b ) ⊆ S × T be a rectangular space-time ele-

ent. Let v : S × T → R be a function on the space-time domain.

ultiplying the general PDE (26) with test function v and integrat-

ng over the element gives 

 s b 

s a 

∫ t b 

t a 

v 

( 

∂ t f t j ( q ) + ∂ s f s j ( q ) + 

∑ 

k 

F s jk ( q ) ∂ s q k 

) 

d t d s 

+ 

∫ s b 

s a 

∫ t b 

t a 

v 
(
−∂ s 

(
D j ∂ s f t j ( q ) 

)
+ g j ( q ) 

)
d t d s = 0 . (27) 

ntegration by parts of the first, second and fourth term yields 

 s b 

s a 

∫ t b 

t a 

(
−∂ t v f t j ( q ) − ∂ s v f s j ( q ) 

)
d t d s 

+ 

∫ s b 

s a 

∫ t b 

t a 

v 
∑ 

k 

F s jk ( q ) ∂ s q k d t d s 

+ 

∫ s b 

s a 

∫ t b 

t a 

(
∂ s v D j ∂ s f t j ( q ) + v g j ( q ) 

)
d t d s 

+ 

[∫ s b 

s a 

v in f t j 
(
q in 

)
ds 

]t b 

t= t a 
+ 

[∫ t b 

t a 

v in f s j 
(
q in 

)
dt 

]s b 

s = s a 

+ 

[∫ t b 

t a 

v in D j ∂ s f t j 
(
q in 

)
dt 

]s b 

s = s a 
= 0 . (28) 

he superscript ‘in’ denotes the trace of a function from within the

lement, formally 

 

in ( s, t ) := lim 

ε→ 0 + 
q ( s − εn s ( s, t ) , t − εn t ( s, t ) ) , (29) 

ith n s , n t the unit outward normal of the element. The value at

he opposite side of the element boundary is denoted with super-

cript ‘out’: 

 

out ( s, t ) := lim 

ε→ 0 + 
q ( s + εn s ( s, t ) , t + εn t ( s, t ) ) . (30) 

.1.1. Temporal flux 

For the temporal flux at the time boundary we use plain up-

inding. This amounts to replacing q in in the t a -boundary integral

f Eq. (28) with q out . The total time flux boundary contribution be-

omes 

 tf := 

[∫ s b 

s a 

v in f t j 
(
q in 

)
ds 

]
t= t b 

−
[∫ s b 

s a 

v in f t j 
(
q out 

)
ds 

]
t= t a 

, (31) 

eplacing the second term in Eq. (28) . 
.1.2. Spatial flux 

The treatment of the spatial flux at the spatial element bound-

ries is based on an approximate Riemann solver. Since the sys-

em of PDEs is non-conservative, at least for the first model de-

cribed in Section 2 , standard Riemann solvers cannot be applied.

ol’pert [21] studied non-conservative systems and interpreted the

on-conservative product as a product of a function with a mea-

ure. Dal Maso et al. [22] generalised this interpretation of the

on-conservative product, known as the DLM-measure . At a dis-

ontinuity the non-conservative product is defined as the inte-

ral of F total over a path connecting both ends of the discontinu-

ty. Given a family of integration paths , this gives a rigorous def-

nition of weak solutions to the non-conservative system. These

eak solutions, however, depend on the chosen integration path.

ee for example Chalmers and Lorin [23] for a discussion on choos-

ng appropriate integration paths. Several conservative numerical

chemes and approximate Riemann solvers have been generalised

o non-conservative systems based on the theory by Dal Maso

t al. [22] : Lax–Friedrichs and Lax–Wendroff [24] , Roe’s approxi-

ate Riemann solver [25] , HLL [26] and the Osher Riemann solver

27] . Parés [28] introduced the concept of path-conservative nu-

erical schemes, as a generalisation of conservative schemes. 

Due to the rather complex spatial flux of the two-fluid model

efined in Section 2 we did not consider deriving an analytical ex-

ression of the eigenvalues and eigenvectors of F total . Instead we

ely on numerical computation. Since the Osher Riemann solver

27] requires the eigenstructure to be known along the integra-

ion paths connecting both ends of discontinuities, we deemed this

ethod too expensive. The simpler Lax–Friedrichs method is in our

xperience not stable enough for the PDEs considered in this arti-

le. We settled for a linearised Riemann solver based on Roe’s ap-

roach [25] , which requires a single numerical evaluation of the

igenvalues and eigenvectors per spatial boundary point, but we

eplace Roe’s matrix with F total 
s (q av ) , where q av is the average value

f the inner and outer trace, 

 

av 
j = 

1 

2 

(
q in j + q out 

j 

)
, ∀ j. (32)

et F total 
s : R 

N → R 

N×N be the total spatial flux matrix, combining

he conservative flux Jacobian with the non-conservative flux ma-

rix: 

 

total 
s jl ( q ) = ∂ q l f s j ( q ) + F s jl ( q ) , (33)

nd let F t jl : R 

N → R 

N×N be the temporal flux Jacobian: 

 t jl ( q ) = ∂ q l f t j ( q ) . (34) 

et λk and X jk be the k th eigenvalue and eigenvector of the gener-

lised eigenvalue problem: 
 

l 

F total 
s jl ( q av ) X lk = 

∑ 

l 

F t jl ( q 
av ) X jk λk ∀ k. (35)

olving the linearised Riemann problem and selecting the centre

tate yields 

 

∗
j = q in j + 

∑ 

k,l if λk n s < 0 

X jk X 

−1 
kl 

(
q out 

l − q in l 

)
. (36)

his definition of q ∗ only applies for internal element boundaries.

he domain boundary conditions are described in Section 3.3 . Be-

ore continuing we need the following definition of integration

aths: 

efinition 1 (Integration paths, multidimensional version [22] ) . A

ipschitz continuous path φ : [0 , 1] × R 

N × R 

N → R 

N is called an

ntegration path if it satisfies the following properties: 

• The path defined by states q − and q + begins and ends in those

states respectively: 
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φ j 

(
0 ; q −, q + 

)
= q −

j 
and φ j 

(
1 ; q −, q + 

)
= q + 

j 
∀ j, ∀ q −, q + ∈ R 

N .

(37)

• If both states are equal, the path is constant: 

φ j ( τ ; q, q ) = q j ∀ j, ∀ q ∈ R 

N , τ ∈ [0 , 1] . (38)

• For every bounded set U of R 

N , there exists k ≥ 1 such that 

| ∂ τ φ(τ ; q −, q + ) − ∂ τ φ(τ ; w 

−, w 

+ ) | ≤ k | (q − − w 

−) − (q + − w 

+ ) |
∀ q −, q + , w 

−, w 

+ ∈ U , τ a.e. ∈ [0 , 1] . (39)

• Reversing the arguments reverses the path: 

φ(τ ; q −, q + ) = φ(1 − τ ; q + , q −) ∀ q −, q + ∈ R 

N , τ ∈ [0 , 1] . (40)

Proceeding with Roe’s approximate Riemann solver the contri-

bution of the spatial flux flowing inward is given by the following

term [∫ t b 

t a 

v in 
∫ 1 

0 

∑ 

k 

F total 
s jk ( φ) ∂ s φk d τ d t 

]s b 

s = s a 
, (41)

with φ = φ(τ ; q in , q ∗) . By Definition 1 and Eq. (33) this can be sim-

plified to 

R sf −
[∫ t b 

t a 

v in f s j 
(
q in 

)
dt 

]s b 

s = s a 

:= 

[∫ t b 

t a 

v in 
(

f s j ( q 
∗) − f s j 

(
q in 

))
dt 

]s b 

s = s a 

+ 

[ ∫ t b 

t a 

v in 
∫ 1 

0 

∑ 

k 

F s jk ( φ) ∂ s φk d τd t 

] s b 

s = s a 

. (42)

This term is to be added to the left hand side of Eq. (28) . 

We assume a linear path connecting the states q in and q ∗: 

φ j (τ ; q in , q ∗) := q in j ( 1 − τ ) + q ∗j τ. (43)

The choice of the integration path affects the solution to the dis-

crete system. Rhebergen et al. [26] have investigated the effect of

the path on the numerical solution, in particular the shock speed,

for a similar two-fluid model and have concluded that different

paths lead only to minimal changes in the solution. Furthermore,

they note that for a linear path a low-order Gauss integration

scheme is sufficient and yields the most computationally efficient

scheme. 

3.1.3. Diffusion 

Following the DGFEM formulation of Baumann and Oden

[29] for a convection-diffusion model the last term of Eq. (28) is

replaced by 

R diff := 

[∫ t b 

t a 

−1 

2 

D j ∂ s 
(
v out + v in 

)(
f t j 
(
q out 

)
− f t j 

(
q in 

))
dt 

]s b 

s = s a 

+ 

[∫ t b 

t a 

1 

2 

D j ∂ s 
(

f t j 
(
q out 

)
+ f t j 

(
q in 

))(
v out − v in 

)
dt 

]s b 

s = s a 
. 

(44)

Bassi and Rebay [30] have compared the stabilisation of the dif-

fusion term from Eq. (44) with a more elaborate local DG type

treatment [31] and they concluded that the latter is superior with

respect to the accuracy on coarse meshes. However, due to the

additional computational complexity we have chosen for the sim-

pler option. For an overview of stabilisation methods for diffusion

terms we refer the reader to Arnold et al. [32] . 
.1.4. Result 

Combining all additions and replacements defined above, the

esulting weak formulation is given by 
 s b 

s a 

∫ t b 

t a 

(
−∂ t v f t j ( q ) − ∂ s v f s j ( q ) 

)
d t d s 

+ 

∫ s b 

s a 

∫ t b 

t a 

v 
∑ 

k 

F s jk ( q ) ∂ s q k d t d s 

+ 

∫ s b 

s a 

∫ t b 

t a 

(−∂ s v D j ∂ s f t j ( q ) + v g j ( q ) ) d t d s + R tf + R sf + R diff = 0 . 

(45)

.2. Mesh and basis 

We use a structured partition E of the space-time domain S × T 
s (coarse) mesh. For each element E ∈ E we define a local basis

s a tensor product of one-dimensional Legendre basis functions

ith maximum order p for space and time, with support limited

o element E . The basis Q is defined as union of all element bases.

Given a space-time mesh E and basis, solving the complete dis-

rete system at once is in general too expensive and also unneces-

ary. We create a possibly finite sequence {E 0 , E 1 , E 2 , . . . } of subsets

f E, such that the sequence is a partition of E and all elements of

 k are a subset of time-interval S × [ t k , t k 1 ] . Let Q k be the subset of

asis functions with support on time slab k . Given a sequence of

ime slabs, we can solve each time slab one after another due to

pwinding in time ( Section 3.1.1 ). 

.3. Boundary conditions 

For the boundary conditions, if present, we use the same ma-

hinery as introduced in Section 3.1.2 for the internal element

oundaries. In absence of an outer value q out , the linearisation

tate q av , introduced in Section 3.1 , is chosen equal to the inner

alue q in . 

Assume that there are N L problem specific (external) boundary

onditions at the left boundary and N R at the right boundary, re-

pectively given by the following roots 

f j L ( q 
∗) = 0 , j ∈ { 0 , 1 , . . . , N L − 1 } , (46)

nd 

f j R ( q 
∗) = 0 , j ∈ { 0 , 1 , . . . , N R − 1 } . (47)

hese boundary conditions are supplemented with the following

internal) outflow boundary conditions: 
 

j 

X 

−1 
k j 

(
q ∗j − q in j 

)
= 0 for all k satisfying λk n s > 0 , (48)

here eigenvalues λk and eigenvectors X jk are defined by

q. (35) and n s is the spatial component of the unit outward nor-

al. Note that the number of boundary conditions being the sum

f all internal and external conditions, should equal the number of

quations n . 

.4. Artificial viscosity 

To incorporate artificial viscosity, we use the technique de-

cribed by Persson and Peraire [17] . For each time-slab we initially

olve the system without artificial viscosity. Then we add a suffi-

ient amount of viscosity, via parameter D of Eq. (26) , such that the

moothness is above a threshold for all elements. The algorithm is

llustrated in Fig. 2 with K set to zero. The smoothness indicator is

iven by [17] 

 s b 

s a 

∫ t b 

t a 

| q j − ˆ q j | 2 
| q j | 2 d t d s, (49)
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Fig. 2. DGFEM solver algorithm with a maximum of K adaptive mesh refinements. 

Fig. 3. Example of multilevel h -refinement near a discontinuity. 
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Fig. 4. Staggered grid layout of the FV scheme. 
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here ˆ q is equal to the solution q projected onto a solution space

ith degree p − 1 , one degree lower than the solution space for q ,

ence the difference q j − ˆ q j represents the high-frequency part of

he solution q j only. 

.5. Local refinement 

Discontinuities reduce the (uniform) scheme to first order in

esh width. When using a high-order basis, uniform refinement

s less effective when discontinuities are present. To increase the

fficiency (in terms of the number of elements in time slab k , E k ,
r the number of basis functions in time slab k , # Q k ) we apply lo-

al mesh refinement in the neighbourhood of discontinuities sev-

ral times, yielding a mesh where the element density increases

radually towards the discontinuity. A fictive example is given in

ig. 3 . 

The refinement scheme works as follows. For each time-slab

e compute a solution on a coarse mesh without artificial viscos-

ty. Based on the smoothness indicator we refine elements where

he smoothness is below a threshold and recompute a solution

n the refined mesh. The refinement step is repeated a prede-

ned number of times K or until all elements are smooth enough,

hichever is reached first. Finally, we add viscosity to elements

ith a smoothness below a threshold and recompute a solution

ne more time. The complete algorithm with refinement and arti-

cial viscosity is illustrated in Fig. 2 . 

.6. Implementation details 

The weak formulation is linearised by Newton’s method. The ja-

obian is computed using (automated) symbolic differentiation and

he linear system, part of Newton’s method, is solved using UMF-

ACK [33] . The algorithm is implemented in Python and uses the

nite element package Nutils. The implementation is available on-

ine [34] . 
. Finite volume discretisation 

.1. Spatial discretization 

We discretise the two-fluid model, i.e. Eqs. (1) and (2) , by us-

ng a finite volume method on a staggered grid. As indicated in

ig. 4 , the staggered grid consists of both p -volumes, p , and u -

olumes, u . Each volume consists of a liquid and a gas phase:

= L ∪ G , for both u - and p -volumes. We start with conserva-

ion of mass for a phase β , ( β is liquid or gas). Integration of Eq.

1) in s -direction gives: 

 t 

((
p 

β

)i 
ρ i 

β

)
+ (A βρβ ) i +1 / 2 u 

i +1 / 2 

β
− (A βρβ ) i −1 / 2 u 

i −1 / 2 = 0 , 

(50) 

ith the finite volume size approximated by 

p 

β

)i = A 

i 
β�s i p . (51) 

he finite volume size can be used to rewrite the semi-discrete

quation for conservation of mass into: 

 t 

(
A 

i 
βρ i 

β

)
+ 

(A βρβ ) i +1 / 2 u 

i +1 / 2 

β
− (A βρβ ) i −1 / 2 u 

i −1 / 2 

β

�s i p 
= 0 . (52)

he term (A βρβ ) i +1 / 2 requires interpolation from neighbouring

alues, which is described below. For conservation of momen-

um we proceed in a similar way. Integration of (2) in s -direction

ives: 

 t 

((
u 

β

)i +1 / 2 
ρ i +1 / 2 

β
u 

i +1 / 2 

β

)
+ (A βρβ ) i +1 

(
u 

i +1 
β

)2 − (A βρβ ) i 
(
u 

i 
β

)2 

= −A 

i +1 / 2 

β
(p i +1 − p i ) −

(
ρ i +1 

β
LG 

i +1 
β − ρ i 

βLG 

i 
β

)
−

∑ 

γ ∈{ L , G , W } 
γ � = β

τ i +1 / 2 

βγ
P i +1 / 2 

βγ
�s i +1 / 2 

u , (53) 

here 

u 
β

)i +1 / 2 = A 

i +1 / 2 

β
�s i +1 / 2 

u , (54) 

nd the level gradient terms are given by 

G G = hA G + 

1 

12 

w 

3 , LG L = hA L −
1 

12 

w 

3 . (55)

he discretisation of the homogeneous equilibrium model, Eqs.

16) and (18) , makes use of the same staggered grid layout. The

emi-discrete equations for conservation of mass and momentum

or this model will then read: 

 t 

(
A 

i 
βρ i 

M 

)
+ 

(A βρM 

) i +1 / 2 u 

i +1 / 2 
M 

− (A βρM 

) i −1 / 2 u 

i −1 / 2 
M 

�s i p 
= 0 , (56) 
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A  

t

ε  
and 

∂ t 
(
A 

i +1 / 2 
M 

ρ i +1 / 2 
M 

u 

i +1 / 2 
M 

)
+ 

((A M 

ρM 

) i +1 (u 

i +1 
M 

) 2 + (A M 

p) i +1 ) 

�s i +1 / 2 
u 

− ((A M 

ρM 

) i (u 

i 
M 

) 2 + (A M 

p) i ) 

�s i +1 / 2 
u 

= −τ i +1 / 2 
MW 

P i +1 / 2 
M 

. (57)

Several terms in Eqs. (52), (53), (56) and (57) require approxima-

tion. All terms that are not part of the convective terms are in-

terpolated using a central scheme, e.g. A 

i +1 / 2 
β

= 

1 
2 (A 

i 
β

+ A 

i +1 
β

) . The

convective terms, on the other hand, require more care in order to

prevent numerical oscillations. They are computed in an upwind

fashion using a high resolution scheme as follows. Let φ denote a

generic quantity on a cell face (either u 2 or ρA ) and let θ be a

smoothness indicator, given by 

θ i +1 / 2 = 

φc − φu 

φd − φc 
, (58)

where 

[ φu , φc , φd ] = 

{ [
φi −1 , φi , φi +1 

]
if u 

i +1 / 2 ≥ 0 , [
φi +2 , φi +1 , φi 

]
if u 

i +1 / 2 < 0 . 
(59)

and φd , φu and φc denote the downstream, upstream and central

quantities of the face under consideration. The smoothness indica-

tor is used to compute a slope-limiter l ( θ ), from which the face

quantity follows as: 

φi +1 / 2 = φc + 

1 

2 

l i +1 / 2 ( φd − φc ) . (60)

In the current study the van Albada limiter, 

l ( θ ) = 

θ2 + θ

θ2 + 1 

, (61)

has been used, mainly because of its continuous differentiability,

which is a favourable property when the fully discrete equations

are solved with a Newton solver. 

4.2. Boundary conditions 

Boundary conditions are set based on the characteristics of the

system at the boundary [35] . To determine the characteristic equa-

tions, the system is written in quasi-linear form: 

∂ t f t j ( q ) + 

∑ 

l 

F total 
s jl ( q ) ∂ s q l + g j ( q ) = 0 . (62)

Defining λk and X jk as the k -th eigenvalue and eigenvector of

F total 
s jl 

(q ) , see Eq. (35) , we can write Eq. (62) as: 

∂ t f t j ( q ) + 

∑ 

k 

X jk � k + g j ( q ) = 0 , (63)

where 

� k = λk 

∑ 

l 

X 

−1 
kl 

∂ s q l . (64)

Eq. (63) can now be used for time integration of the boundary

points where boundary conditions are set through � k by making

use of the sign of λk at the boundary. At the left boundary out-

going waves are associated with negative eigenvalues while at the

right boundary outgoing waves are associated with positive eigen-

values. In the case of outgoing waves, Eq. (64) can be used to

calculate � k by approximating ∂ s q l with finite differences calcu-

lated from the interior of the domain. On the other hand, incoming

waves are associated with positive eigenvalues at the left bound-

ary and negative eigenvalues at the right boundary. In the case of

incoming waves, � k can not be calculated from Eq. (64) , rather it is

set through the imposed boundary conditions at the left and right
oundary. As an example we consider the homogeneous equilib-

ium model for which we can expect two positive eigenvalues and

ne negative eigenvalue assuming subsonic flow. This will lead to

wo incoming waves at the left boundary (inlet), which are deter-

ined from the time dependent boundary condition for the mass

ow of the gas and the liquid by using Eq. (63) to solve for � k . At

he right boundary (outlet) we have one incoming wave, which is

et by fixing the outlet pressure. 

.3. Temporal discretization 

The semi-discrete equations of the two-fluid model (52) and

53) can be written in the form 

 t f t j ( q ) = G j ( q ) . (65)

he semi-discrete equations are solved with the BDF2 scheme

Backward Differentiation Formula): 

1 

�t 

(
f t j (q n +1 ) − 4 

3 

f t j (q n ) + 

1 

3 

f t j (q n −1 ) 
)

= 

2 

3 

G j (q n +1 ) . (66)

e have chosen the BDF2 scheme for the stability properties. The

cheme is strongly A-stable (L-stable) which enables us to use large

ime steps at the cost of damping of fast transients. Eq. (66) forms

 non-linear system of equations that is solved using a Newton ap-

roach: 

 

k 

[ 
1 

�t 
∂ q j f t k ( q 

m ) − 2 

3 

∂ q j G k ( q 
m ) 

] 
�q k 

= − 1 

�t 

(
f t j ( q 

m ) − 4 

3 

f t j ( q 
n ) + 

1 

3 

f t j 
(
q n −1 

))
+ 

2 

3 

G j ( q 
m ) . (67)

o solve the non-linear system, we solve for the increments in the

rimitive variables �q , but the final system that is solved is (66) ,

nd as a consequence mass and momentum will be conserved.

he Jacobians ∂ q j f t k (q ) and ∂ q j G k (q ) are computed automatically

y using finite differences. The constraint in the form A G = A − A L 

s used to close the system of equations. The time integration of

he homogeneous equilibrium model (56) and (57) is done in the

ame way. 

. Stability and well-posedness 

We introduce notions of stability and well-posedness in the

eneral setting of the following quasilinear system of PDEs on infi-

ite spatial domains, 
 

l 

F t jl ( q ) ∂ t q l + 

∑ 

l 

F s jl ( q ) ∂ s q l + g j ( q ) = 0 , (68)

here q : R × [0 , T ] → R 

N is a vector of quantities, F t , F s : R 

N →
 

N×N are matrices and g : R 

N → R 

N a vector. For readability the ar-

uments ( s, t ) of q are omitted. Note that both models introduced

n Section 2 can be written in this form. We assume that matrix

 t is invertible. However, at the location where one phase is van-

shing the two-fluid model given above yields a singular matrix F t .

his situation, which occurs when a full liquid slug body is formed,

s not considered in this article. Instead we restrict the simulations

o the formation and propagation of liquid hold-up waves, which

ever reach the top of the pipeline. 

Assume q is a solution to PDE (68) and constant in space and

ime. Adding a small perturbation ε : R × [0 , T ] → R 

N to q and lin-

arising the PDE in ε around q yields 
 

l 

F t jl ( q ) ∂ t εl + 

∑ 

l 

F s jl ( q ) ∂ s εl + 

∑ 

l 

∂ q l g j ( q ) εl = 0 . (69)

gain, for readability we omit arguments ( s, t ) of ε. Solutions to

his linear system of PDEs are of the form 

j ( s, t ) = r j e 
i ( ks −ωt ) , (70)
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here r ∈ C 

N is a vector, k ∈ R a wave-number and ω ∈ C . Substi-

uting the solution (70) into PDE (69) , moving the first term to the

ight hand side and dividing by i yields the following generalised

igenvalue problem with eigenvalue ω and eigenvector r , 

 

l 

(
kF s jl ( q ) − i∂ q l g j ( q ) 

)
r l = ω 

∑ 

l 

F t jl ( q ) r l . (71)

or a fixed wave-number k all eigenvalues ω and eigenvectors

 satisfying this equation define non-trivial solutions to the lin-

arised PDE (69) . 

Based on the solution (70) we define: 

efinition 2 (growth, dissipation) . Growth (in time) is the real

art of −iω, or equivalently the imaginary part of ω. Dissipation

s the imaginary part of −ω. 

efinition 3 (dispersion) . Dispersion is the imaginary part of −iω,

r equivalently the real part of −ω. 

The system of PDEs (68) is called stable at q if there is no

strictly positive) growth, i.e. for all wave-numbers k all eigenval-

es ω of characteristic Eq. (69) satisfy Im ω ≤ 0. The system is

alled well-posed if the growth is bounded for all wave-numbers k .

n equivalent condition is that all eigenvalues λ of the following

eneralised eigenvalue problem are real, 

 

l 

F s jl ( q ) r l = λ
∑ 

l 

F t jl ( q ) r l . (72)

or models without source terms the notions of well-posedness

nd stability coincide, i.e. the system is either stable and well-

osed or unstable and ill-posed. To see this, note that the char-

cteristic equations, Eqs. (71) and (72) , are equivalent, with 

= 

ω 

k 
, (73) 

f Im λ > 0, then Im ω goes to positive infinity for the wave-number

 going to infinity, which implies unbounded growth, hence the

ystem is ill-posed. 

Both the two-fluid model and the homogeneous equilibrium

odel have no source terms in case the phases are inviscid. 

The homogenous equilibrium model is unconditionally stable.

he two-fluid model, however, is not unconditionally stable. When

he slip velocity, the velocity difference between the two phases,

ecomes too large the model becomes ill-posed [6] . This is a

nown problem of the two-fluid model. We refer the reader to

rosperetti [36] for an analysis. 

.1. Analysis of the DGFEM scheme 

In this section we analyse the effect of the DGFEM scheme on

igenvalue ω. We were unable to find the convergence rates for

he eigenvalues ˆ ω of the system obtained by applying the spatial

art of the DGFEM scheme. However, Ainsworth [37] was able to

rove convergence of the wave-number in otherwise the same set-

ing. The imaginary part of the wave number converges with order

 p + 2 in mesh width and the real part with order 2 p + 3 . Based

n this result and because the two problems are very related we

xpect similar convergence behaviour of the eigenvalues. 

For the analysis of the temporal part we continue with the evo-

ution of a single characteristic wave with eigenvalue ˆ ω of the spa-

ial part, 

 t w ( t ) = −i ̂  ω w ( t ) , (74)

hich admits the following solution: 

 ( t ) = w ( 0 ) e −i ̂ ω t , t > 0 . (75)
ultiplying this equation with a test function, integrating over

emporal element b with length �t and multiplying with the in-

erse of the mass matrix yields 
 

m 

T lm, 0 ˜ w mb + 

∑ 

m 

T lm, −1 ˜ w m,b−1 = −i ̂  ω ̃

 w lb , (76)

here ˜ w b ∈ C 

p+1 is the vector of coefficients representing w in ele-

ent b and matrices T lm, 0 , T lm, −1 ∈ R 

(p+1) ×(p+1) represent the time

erivative, acting respectively on the solution of element b and the

revious element. Moving the first term to the right hand side and

ultiplying the equation with the inverse of 

 lm 

:= T lm 0 + i ̂  ω δlm 

(77)

ives 

˜ 
 jb = 

∑ 

lm 

M 

−1 
jl 

T lm, −1 ˜ w m,b−1 . (78) 

ince the solution at element b depends only on the solution at the

ownwind end of the previous element we can restrict the discrete

volution equation (78) to downwind ends. Let R ∈ R 

p+1 be the re-

triction of a coefficient vector ˜ w to downwind ends and E ∈ R 

p+1 

ny expansion of value to a coefficient vector such that the restric-

ion of the expansion is one, 
 

l 

R l E l = 1 . (79)

ultiplying Eq. (78) with R and replacing ˜ w b with the expansion

f a scalar w̌ ∈ C gives the scalar equation 

ˇ
 b = G 

(
ˆ ω , �t 

)
w̌ b−1 = −

∑ 

lm 

R j M 

−1 
jl 

T lm 

E m 

w̌ b−1 . (80)

Lesaint and Raviart [38] have analysed this DGFEM scheme and

roved the following convergence theorem: 

heorem 1 (Convergence of downwind end values [38] ) . The

GFEM scheme (76) converges globally with order 2 p + 1 in time step

ize �t, i.e. the error after one step is 

 G ( ̂  ω , �t) − e −i ̂ ω �t | = O (�t 2 p+2 ) . (81)

This gives the following convergence result for the eigenvalues

ˇ  of the discrete system: 

orollary 1 (Convergence of eigenvalues of discrete system) . 

 ̌ω − ˆ ω | = O (�t 2 p+1 ) (82)

Furthermore, Lesaint and Raviart [38] showed that the DGFEM

cheme is strongly A-stable, or L-stable. 

. Numerical results 

We analyse the proposed DGFEM scheme using two test cases.

n Section 6.1 we present a Kelvin–Helmholtz test case and ver-

fy the theoretical stability results presented in Section 5.1 . This

est case refers to the wave formation at the interface of the flow

f air and water in a horizontal pipe at atmospheric pressure. In

ection 6.2 we analyse the performance of the DGFEM scheme

ith and without adaptive refinement. 

.1. Stability analysis using Kelvin–Helmholtz test case 

In this section we verify the theoretical results of Section 5 for

he two-fluid model discretised with the uniform DG and FV

chemes by comparing the theoretical and observed growth rate

nd dispersion of small sinusoidal waves on infinite domains. 

As initial condition we use a constant reference state q ref ∈ R 

N 

hat satisfies the system of PDEs with a sinusoidal perturbation

ith magnitude c , 

 initial , j ( s ) = q ref , j + c Re (r j e 
iks ) , (83)
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Fig. 5. Convergence of the relative error of the liquid holdup for the linear, inviscid 

Kelvin–Helmholtz test-case. 

Fig. 6. Convergence of the relative error of the growth rate at t = 1 s for the linear, 

inviscid Kelvin–Helmholtz test-case. 

t  

c  

w  

o  

b  

u  

a  

u

 

t  

c  

F  

i  

t

ω  

W  

0  

s

ω  

w

 

D  

v  

w  
where r ∈ R 

N is a unit eigenvector of the system linearised around

q ref , see Eq. (69) , and k is a wave-number. As a reference solution

we use the exact solution to the linearised model, given by 

q lin , j ( s, t ) = q ref , j + cRe 
(
r j e 

i ( ks −ωt ) 
)
, (84)

where ω ∈ C is the eigenvalue corresponding to the eigenvector

r . This is close to the real solution when the amplitude c is very

small. 

We start the analysis of the uniform DG and FV schemes with

the inviscid two-fluid model. We use the following reference state,

q ref = 

⎡ 

⎢ ⎣ 

p int 

h int 

u L 

u G 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

10 

5 Pa 
0 m 

1 m s −1 

15 m s −1 

⎤ 

⎥ ⎦ 

, (85)

and the following model parameters: pipe radius r = 0 . 039 m ,

gas density ρG = 1 . 1614 · 10 −5 p in kg m 

−3 , liquid density ρL =
10 0 0 kg m 

−3 , gravitational acceleration g = 9 . 8 m s −2 and viscos-

ity is set to zero. Note that any choice for the reference state q ref 

would be an equilibrium solution of the two-fluid model, because

the source terms, friction and longitudinal gravity forces, are ab-

sent. Since there is no viscosity, the model is either stable and

well-posed or unstable and ill-posed. In this case the chosen refer-

ence state is in the stable region, but close to the ill-posed region. 

At the reference state the two-fluid model has two large — in

magnitude — eigenvalues, associated with pressure waves, and two

significantly smaller eigenvalues, associated with mass transport.

For oil and gas applications — our main interest — the latter is

more relevant. Of the remaining two small eigenvalues we choose

one, but note that the following results hold equally true for the

other. 

We choose k = 2 π and let ω and r be the third (algebraically)

eigenvalue and eigenvector of the system linearised around q ref : 

ω = 8 . 070 . . . · 10 

0 , (86)

and 

r = 

⎡ 

⎢ ⎣ 

−9 . 980 . . . · 10 

−1 

1 . 394 . . . · 10 

−4 

1 . 294 . . . · 10 

−3 

6 . 255 . . . · 10 

−2 

⎤ 

⎥ ⎦ 

. (87)

Trailing dots indicate that the displayed value is rounded. The am-

plitude of the perturbation c is chosen such that the amplitude of

the liquid holdup perturbation is 10 −10 for DG and 10 −6 for FV.

We use a smaller perturbation for DG and quad precision arith-

metic because for the high-order DG scheme we would not able

to observe the expected rate of convergence otherwise. In absence

of friction the imaginary part of ω is zero, hence the amplitude of

the perturbation should remain constant. 

Let the relative error be the L 2 -norm of the difference between

the discrete solution and the reference solution divided by the L 2 -

norm of the reference solution. For FV we use the l 2 -norm instead

of the L 2 -norm. Fig. 5 shows the relative error of the liquid holdup

at t = 1 , obtained using the second order FV scheme and the DG

scheme with bases of order p , i.e. (p + 1) 2 basis functions per el-

ement. The horizontal axis shows the square root of the average

space-time density of the number of degrees of freedom, abbre-

viated as sqrtdofs, required to represent the discrete solution on

the space-time domain [0, 1] × [0, 1]. For the uniform DG scheme

the number of degrees of freedom is inversely proportional to the

area of an element and the square root (sqrtdofs) inversely pro-

portional to the width of an element, assuming a fixed aspect ra-

tio of the elements. For both schemes we set �t = �s . Reducing

the element width �s with a factor of two increases the sqrtd-

ofs by a factor two. A second order scheme theoretically reaches

second order convergence with respect to �s , hence order minus
wo in terms of sqrtdofs. All schemes converge with the theoreti-

al rate. We deliberately chose sqrtdofs as measure over the mesh

idth �s because the former is a good indicator for the amount

f work and memory that is required to find a discrete solution,

oth for uniform and non-uniform meshes, and the latter is not

niquely defined for non-uniform meshes. Using the sqrtdofs en-

bles us to give a unified analysis for both the uniform and non-

niform schemes. 

As noted above we are interested in the rate of convergence of

he observed eigenvalue of the discrete system. Let q h be the dis-

rete solution and αL ( q h ) the liquid holdup of the discrete solution.

or DG the observed eigenvalue ω h can be computed by measur-

ng the ratio between the projections of αL ( q h ) on the sinus e iks at

ime t and 0: 

 h ( t ) = 

i 

t 
ln 

( ∫ 2 π
k 

0 
αL ( q h ( s, t ) ) e 

−iks ds ∫ 2 π
k 

0 
αL ( q h ( s, 0 ) ) e −iks ds 

) 

. (88)

e deliberately leave out the projection error, hence the term q h ( s ,

) in the denominator instead of q initial ( s ). Similarly for FV the ob-

erved eigenvalue ω h is given by 

 h ( t ) = 

i 

t 
ln 

(∑ n −1 
l=0 αL ( q h ( s l , t ) ) e 

−iks l ds ∑ n −1 
l=0 αL ( q h ( s l , 0 ) ) e −iks l ds 

)
, (89)

here n is the number of cells. 

Fig. 6 shows the relative error of the growth rate (see

efinition 2 ) at t = 1 s . For all DG schemes the growth rate con-

erges with order −(2 p + 1) with respect to sqrtdofs, or 2 p + 1

ith respect to the element width �s . That is significantly faster
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Fig. 7. Convergence of the error of the dispersion at t = 1 s for the linear, inviscid 

Kelvin–Helmholtz test-case. 
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Fig. 8. Convergence of the relative error of the liquid holdup for the linear, viscous 

Kelvin–Helmholtz test-case. 

Fig. 9. Convergence of the relative amplitude error of the liquid holdup for the 

linear, viscous Kelvin–Helmholtz test-case. 

Fig. 10. Convergence of the phase shift error of the liquid holdup for the linear, 

viscous Kelvin–Helmholtz test-case. 
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t  
han the rate with which the discrete solution converges. The con-

ergence rate meets the expected convergence rate of the spa-

ial part and the theoretical rate for the temporal part stated in

ection 5.1 . For the FV scheme, however, the amplitude converges

t a rate of −2 with respect to sqrtdofs, which is the same rate

s found for the discrete solution. Similarly, Fig. 7 shows the dis-

ersion error (see Defintion 3 ) at t = 1 . For the DG schemes the

ispersion converges even faster, with rate −(2 p + 2) , which is in

ccordance with the expected rate of convergence of the spatial

art, but it is better than the theoretical rate of convergence for

he temporal part. Regarding the growth rate and dispersion the

uperconverging DG scheme outperforms the FV. Next, we add vis-

osity to the model and reiterate the above convergence results.

he gas dynamic viscosity is set to μG = 1 . 8 · 10 −5 Pa s , the liquid

ynamic viscosity to μL = 8 . 9 · 10 −4 Pa s and the pipe roughness

o εpipe = 10 −8 . The turbulent wall friction and interfacial stress is

epresented by the model of Taitel and Dukler as was described in

ection 2 . We set the reference state to 

 ref = 

⎡ 

⎢ ⎣ 

p int 

h int 

u L 

u G 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

10 

5 Pa 
0 m 

1 m s −1 

13 . 978 . . . m s −1 

⎤ 

⎥ ⎦ 

, (90) 

nd add the following artificial body force to the right hand side

f both phase momentum Eq. (2) 

( 76 . 396 . . . ) A β . (91) 

he extra body force makes sure that q ref is an equilibrium solu-

ion of the model. Both the gas velocity and artificial body force

oefficient are obtained by numerically solving for the equilibrium

ondition: zero net momentum source per phase. 

Again, we use initial condition (83) with ω and r equal to the

hird (algebraically) eigenvalue and eigenvector, and with the am-

litude c such that the amplitude of the liquid holdup perturbation

s 10 −10 for DG and 10 −6 for FV. The third eigenvalue is given by 

 = 8 . 457 . . . · 10 

0 − 3 . 605 i · 10 

−1 . (92)

nd the third eigenvector by 

 = 

⎡ 

⎢ ⎣ 

9 . 496 . . . · 10 

−1 + 3 . 062 . . . i · 10 

−1 

−1 . 604 . . . · 10 

−4 − 2 . 132 . . . i · 10 

−5 

−1 . 852 . . . · 10 

−3 + 5 . 960 . . . i · 10 

−5 

−6 . 622 . . . · 10 

−2 − 9 . 132 . . . i · 10 

−3 

⎤ 

⎥ ⎦ 

(93) 

he eigenvalue has a negative imaginary part, hence the initial per-

urbation will grow in time. 

Fig. 8 shows the relative error of the liquid holdup with re-

pect to the exact solution of the linearised model (84) . The re-
ults are similar to the inviscid case. For the DG schemes the liq-

id holdup converges with rate −(p + 1) in terms of sqrtdofs. For

he FV scheme the rate of convergence is −2 . Also the results for

he growth rate and dispersion errors, shown in Figs. 9 and 10 ,

re similar to the inviscid case. The convergence of the dispersion

rror is now on par with the growth rate error and corresponds

o the theoretical analysis of Section 5.1 . We proceed with the

ame viscous model, but we increase the amplitude c of the ini-

ial perturbation such that the amplitude of the liquid holdup per-
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Fig. 11. Liquid holdup part of the discrete solution of the non-linear, viscous 

Kelvin–Helmholtz test case at time steps t = nk/ω, n ∈ { 0 , 1 , . . . , 6 } . 

Fig. 12. Second and third eigenvalue of the linearised discrete system of the non- 

linear, viscous Kelvin–Helmholtz test case at time steps t = nk/ω, n ∈ { 0 , 1 , . . . , 6 } . 
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Fig. 13. Evolution of the growth of the discrete liquid holdup of the non-linear and 

linear, viscous Kelvin–Helmholtz test case. 
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turbation is 10 −2 . The initial perturbation is now so large that the

non-linearity of the model becomes significant. The effect of the

non-linearity is visible in Fig. 11 , which shows the liquid holdup

of a discrete solution on part of the spatial domain at time steps

nk/ω, n ∈ { 0 , 1 , . . . , 6 } , and in Fig. 13 , which shows the amplitude

of the perturbation in time. The sinusoidal perturbation of the liq-

uid holdup grows in time and develops a shock. The third eigen-

value, shown in Fig. 12 in the upper half, confirms this: there is a

very rapid drop with respect to positive s . The second eigenvalue,

shown in the lower half of the same figure, grows towards the

third eigenvalue. At the last time step displayed the eigenvalues

‘touch’ each other and form a pair of complex eigenvalues, which

marks the end of the well-posedness of the model (see Section 5 ).

6.2. Convergence analysis using IFP test case 

We continue with the IFP test case, proposed by the French

Petroleum Institute and described by Omgba-Essama [39] . A 10 km

long pipe with a diameter of 0.146 m is fed at the left side with liq-

uid and gas at constant mass flow rates 20 and 0 . 2 kg s −1 , respec-

tively. At the other side the pipe is open at a pressure of 10 6 Pa. At

 = 0 s the flow is in steady state. Between t = 0 and 10 s the gas

mass flow rate at the left side changes linearly in time from 0.2 to

0 . 4 kg s −1 . In summary, at the left boundary we have 

A βρβu β = 

{
20 kg s −1 if β = L , 

0 . 2 kg s −1 if β = G , 
(94)
nd at the right boundary 

p = 10 

6 Pa . (95)

e use the following equation of state for the gas phase, 

G = 1 . 26 

p 

10 

5 
kg m 

−3 , (96)

nd an incompressible water phase with density ρL =
003 kg m 

−3 . The equations of state differ from the original

roblem definition. 

The rapid change in the inlet mass flow rate generates a wave

hat travels to the other side of the domain. The wave consists of

 transition in the liquid holdup over 20 to 30 m and travels with

oughly 2 to 3 m s −1 through the pipe. After approximately 4500 s

he wave has exited the pipe and the flow slowly settles to a new

teady state. 

.2.1. Analysis of the uniform DG and FV scheme 

We use the Homogeneous Equilibrium Model and apply the

econd order Finite Volume (FV) scheme and Discontinuous

alerkin (DG) schemes defined earlier to simulate this test case.

he ratio between the spatial and the temporal element size, or

oint distance for FV, is fixed at 16 / 125 s m 

−1 , which yields a

ourant number of approximately 10. This is well beyond any CFL

ondition for explicit schemes. However, since we are using im-

licit schemes and, for oil and gas applications, are more inter-

sted in the relatively slow transport of mass than the fast pres-

ure waves, this choice is justified. For the DG scheme we use a

asis of degree 2 and 4. 

Due to the very rapid transition in the liquid holdup and, conse-

uently, short distance over which the liquid holdup changes com-

ared to the length of the pipe, on coarse, uniform meshes the

ump is approximately a contact discontinuity . In the FV scheme a

imiter is applied to dampen spurious oscillations emanating from

his near-discontinuity and in the DG scheme viscosity is added

ocally, using the approach described in Section 3.4 . 

Fig. 14 shows the relative L 1 -error of the liquid holdup at 3600 s

or different discretisation schemes. In absence of an exact solution

e use, to compute the L 1 -errors, a reference solution obtained

sing the DG scheme with a sufficiently fine mesh. The horizon-

al axis displays the square root of the average number of dofs in

pace and time, abbreviated as sqrtdofs. For the Finite Volume and

iscontinuous Galerkin schemes with uniform meshes the sqrtd-

fs is inversely proportional to the number of spatial grid points

r elements, since the ratio of the time step size and the ele-

ent width, or point distance for FV, is held constant. Doubling



J.S.B. van Zwieten et al. / Computers and Fluids 156 (2017) 34–47 45 

Fig. 14. Convergence of the relative L 1 -error of the liquid holdup in terms of dofs 

for the IFP test case at t = 3600 s . 

Fig. 15. Convergence of the relative L 1 -error of the velocity in terms of dofs for the 

IFP test case at t = 3600 s . 
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Fig. 16. Convergence of the relative L 1 -error of the pressure in terms of dofs for the 

IFP test case at t = 3600 s . 

Fig. 17. Pointwise error of the liquid holdup for the IFP test case with a coarse 

mesh of sixteen spatial elements, a basis of order four and adaptive refinement 

with a maximum of four levels. 
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he amount of spatial grid points or elements increases the sqrtd-

fs by a factor two. The FV scheme and DG schemes without local

efinement have a comparable performance: all converge roughly

ith rate minus one in terms of sqrtdofs. Due to the discontinu-

ty in the liquid holdup the theoretical order of convergence in the

 1 -norm is one with respect to the element width, hence minus

ne in terms of sqrtdofs. The DG scheme with a fourth order ba-

is is slightly more accurate than DG with a second order basis for

he same number of dofs and is actually a bit higher than the the-

retical limit. This is caused by the viscous limiter being a bit to

ggressive on coarse meshes, which adds to the L 1 error. 

Figs. 15 and 16 show the relative L 1 -error of the velocity

nd pressure at 3600 s versus sqrtdofs. Contrary to the liquid

oldup there is a significant performance difference between the

inite Volume and Discontinuous Galerkin schemes. The FV scheme

aintains a convergence rate of roughly minus one, which is simi-

ar to the convergence rate for the liquid holdup. The DG schemes,

owever, have a higher convergence rate ranging from minus one

nd half to slightly over minus two. Both the velocity and pres-

ure are continuous throughout the simulation, hence the rate of

onvergence is not theoretically bounded to one in mesh width. 

.2.2. Analysis of the h -adaptive DG scheme 

To improve the performance we apply local mesh refinement. In

he neighbourhood of the discontinuity, as sensed by the smooth-

ess indicator, we repeatedly subdivide elements in two by two

arts in space and time until either a predefined maximum num-
er of refinements is reached or the smoothness indicator drops

elow a threshold. The order of the basis functions is unchanged. 

Fig. 17 shows the pointwise error of the liquid holdup for a

G scheme with a basis of degree four, sixteen coarse elements in

pace and a maximum of four levels of refinement — the elements

t the finest level coincide with a uniform mesh with 128 spatial

lements. The pointwise error is the difference between the solu-

ion and the reference solution mentioned above. The pointwise er-

or is inevitably large near the discontinuity, but rapidly decreases

way from the discontinuity. Fig. 18 shows the number of refine-

ents: high near the discontinuity and gradually dropping to zero

way from the discontinuity, in line with the expectations. 

Fig. 19 shows the pointwise error of the liquid holdup at t =
600 s for uniform meshes with sixteen and 128 spatial elements

nd with an h -adaptive mesh with sixteen coarse spatial elements

nd a maximum of three levels of refinement, all with a basis

f degree four. The discontinuity is located approximately at s =
500 m . For all schemes the error is very large near the disconti-

uity and several orders of magnitude smaller away from the dis-

ontinuity. The errors of the fine uniform mesh and the mesh with

ocal refinement, having at its finest level elements of the same

ize as the fine uniform mesh, are quite similar, which shows that

dding more elements in the smooth region does not improve the

ccuracy. 

The convergence results of the h -adaptive scheme with an ini-

ial mesh of sixteen spatial elements and maximum numbers of re-

nement ranging from zero to four are displayed in Figs. 14–16 as

ashed lines, indicated with ‘ h -adaptive’. Compared to the uniform
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Fig. 18. Local refinement level for the IFP test case with a coarse mesh of sixteen 

spatial elements, a basis of order four and adaptive refinement with a maximum of 

four levels. 

Fig. 19. Comparison of the error of the liquid holdup for the IFP test case at t = 

3600 s for uniform DG schemes with sixteen and 128 spatial elements and the 

adaptive DG scheme with sixteen spatial coarse elements and a maximum of three 

levels of refinement, all with a basis of degree four. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Convergence of the relative L 1 -error of the liquid holdup in terms of wall 

clock time for the IFP test case at t = 3600 s . 
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DG schemes with bases of equal degree p , local refinement signif-

icantly improves the performance in terms of sqrtdofs. After four

levels of local refinement the rate of convergence with respect to

sqrtdofs is up to twice as high as for the uniform schemes. The

relative errors of the uniform DG schemes and of the h -adaptive

DG schemes with at its finest level elements of the same size as

the uniform scheme — for example the uniform scheme 64 spa-

tial elements and the h -adaptive scheme with sixteen spatial ele-

ments and a maximum of two levels of refinement — appear to

be roughly the same. This is expected because the error is dom-

inated by the discontinuity and both the uniform and h -adaptive

schemes have the same mesh width in the neighbourhood of the

discontinuity. 

The h -adaptive scheme requires more work to obtain a solu-

tion than the uniform scheme for the same amount of dofs . This is

partly because the h -adaptive scheme needs to obtain a solution on

a series meshes, increasing in level of refinement, before reaching

the final mesh. However, when comparing the amount of work for

an h -adaptive scheme with a uniform scheme that yields the same

accuracy we expect the former to be more efficient, given that the

difference in amount of dofs is substantial. Fig. 20 shows the per-

formance of the uniform and h -adaptive schemes measured in wall

clock time. The h -adaptive scheme is significantly faster than the

uniform scheme for the same accuracy. It must be noted that this

depends to some extent on the implementation. 
. Conclusions 

We have applied a space-time Discontinuous Galerkin Finite El-

ment Scheme to one-dimensional models for multiphase flow in

ipelines and compared the performance with a second order Fi-

ite Volume scheme. The solutions of the DGFEM scheme converge

n the L 2 -norm with the theoretically expected rate of convergence,

hich is order p + 1 in terms of element width, where p is the

rder of the basis functions. The second order FV scheme shows

he expected second order convergence. A linear stability analysis

hows that the amplitude and phase shift of a sine wave converge

ith a higher rate in the DG scheme, being order 2 p + 1 in terms

f the mesh width, while the second order FV scheme converges

nly with order 2. This shows that a second order DGFEM scheme

s superior to a second order FV scheme, with approximately the

ame number of dofs. 

For problems that develop discontinuities, high-order DGFEM

ethods suffer from spurious oscillations in the neighbourhood of

he discontinuities. To suppress these oscillations we have added

n artificial diffusion term to the model. The amount of diffusion

s determined by the smoothness of the solution: no diffusion in

mooth regions and enough diffusion in irregular regions. Because

he diffusion term is PDE-based, no special treatment is required

n unstructured meshes. 

To increase the efficiency of the DGFEM scheme, we have ap-

lied local refinement in both space and time. In case of discon-

inuities, there is a maximum rate of convergence of one with re-

pect to the uniform mesh width. By refining the mesh only in

he neighbourhood of discontinuities this limit is surpassed on the

lobal scale. While the refinement scheme requires per time slab

olving the discrete system for each refinement level (including the

niform initial mesh), we have shown that the calculation time for

he DGFEM scheme with local refinement is shorter compared to

he uniform scheme with elements of equal size as the finest ele-

ents in the adaptive mesh, while maintaining the same accuracy.

cknowledgement 

The support of Shell Projects & Technology in financing the

ork by the first author is greatly acknowledged. 

eferences 

[1] Stewart BH, Wendroff B. Two-phase flow: models and methods. J Comput Phys

1984;56(3):363–409. doi: 10.1016/0021-9991(84)90103-7 . 
[2] Ishii M, Hibiki T. Thermo-Fluid dynamics of two-phase flow. Springer New

York; 2011. doi: 10.1007/978- 1- 4419- 7985- 8 . 

http://dx.doi.org/10.1016/0021-9991(84)90103-7
http://dx.doi.org/10.1007/978-1-4419-7985-8


J.S.B. van Zwieten et al. / Computers and Fluids 156 (2017) 34–47 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[  

[  

 

[  

 

[  

[  

 

 

 

[  

 

[  

[  

 

 

 

 

 

[  

[  

 

[

[  

[  

 

 

[  

 

 

[  
[3] Issa RI, Kempf MHW. Simulation of slug flow in horizontal and nearly hori-
zontal pipes with the two-fluid model. Int J Multiph Flow 2003;29(1):69–95.

doi: 10.1016/S0301-9322(02)00127-1 . 
[4] Bendiksen KH , Malnes D , Moe R , Nuland S . The dynamic two-fluid model

OLGA: theory and application. Tech. Rep. SPE/19451. Institutt for Ener-
giteknikk; 1991 . 

[5] Evje S, Flåtten T. Hybrid flux-splitting schemes for a common two-fluid model.
J Comput Phys 2003;192(1):175–210. doi: 10.1016/j.jcp.2003.07.001 . 

[6] Liao J, Mei R, Klausner J. A study on the numerical stability of the two-fluid

model near ill-posedness. Int J Multiph Flow 2008;34(11):1067–87. doi: 10.
1016/j.ijmultiphaseflow.2008.02.010 . 

[7] Holmås H . Numerical simulation of waves in two-phase pipe flow using 1d
two-fluid models. Ph.D. Thesis, University of Oslo; 2008 . 

[8] Fullmer WD, Ransom VH, Lopez de Bertodano MA. Linear and nonlinear anal-
ysis of an unstable, but well-posed, one-dimensional two-fluid model for two-

phase flow based on the inviscid kelvinhelmholtz instability. Nucl Eng Des

2014;268:173–84. doi: 10.1016/j.nucengdes.2013.04.043 . 
[9] Fullmer WD, Lopez de Bertodano MA, Zhang X. Verification of a higher-order

finite difference scheme for the one-dimensional two-fluid model. J Comput
Multiph Flows 2013;5(2):139–56. doi: 10.1260/1757-482X.5.2.139 . 

[10] Bonizzi M, Issa RI. On the simulation of three-phase slug flow in nearly hori-
zontal pipes using the multi-fluid model. Int J Multiph Flow 2003;29(11):1719–

47. doi: 10.1016/j.ijmultiphaseflow.20 03.09.0 02 . 

[11] Holmås H, Clamond D, Langtangen HP. A pseudospectral fourier method for a
1d incompressible two-fluid model. Int J Numer Meth Fluids 2008;58(6):639–

58. doi: 10.1002/fld.1772 . 
[12] Üngör A, Sheffer A. Tent-pitcher: a meshing algorithm for space-time discon-

tinuous Galerkin methods. In: Proceedings of the 9th international meshing
roundtable; 20 0 0 . https://www.cise.ufl.edu/ ∼ungor/abstracts/imr00.html . 

[13] Abedi R, Hawker MA, Haber RB, Matouš K. An adaptive spacetime discontinu-

ous galerkin method for cohesive models of elastodynamic fracture. Int J Nu-
mer Meth Eng 2010;81(10):1207–41. doi: 10.1002/nme.2723 . 

[14] Gassner G, Staudenmaier M, Hindenlang F, Atak M, Munz C-D. A space-
time adaptive discontinuous galerkin scheme. Comput Fluids 2015;117:247–61.

doi: 10.1016/j.compfluid.2015.05.002 . 
[15] Sollie WEH, Bokhove O, van der Vegt JJW. Spacetime discontinuous galerkin

finite element method for two-fluid flows. J Comput Phys 2011;230(3):789–

817 . doi: j.jcp.2010.10.019 . 
[16] Fidkowski KJ, Luo Y. Output-based space-time mesh adaptation for the

compressible navier-stokes equations. J Comput Phys 2011;230(14):5753–73. 
doi: 10.1016/j.jcp.2011.03.059 . 

[17] Persson P.O., Peraire J. Sub-cell shock capturing for discontinuous galerkin
methods. In: Proceedings of the 44th AIAA aerospace sciences meeting and

exhibit. American Institute of Aeronautics and Astronautics; doi: 10.2514/6.

2006-112 . 
[18] Barter GE, Darmofal DL. Shock capturing with PDE-based artificial viscosity for

DGFEM: part i. formulation. J Comput Phys 2010;229(5):1810–27. doi: 10.1016/
j.jcp.2009.11.010 . 

[19] van Zwieten JSB , Sanderse B , Hendrix MHW , Vuik C , Henkes RAWM . Efficient
simulation of one-dimensional two-phase flow with a new high-order discon-

tinuous galerkin method. Tech. Rep. 15–07. Delft Institute of Applied Mathe-
matics; 2015 . 

20] Taitel Y, Dukler AE. A model for predicting flow regime transitions in horizon-

tal and near horizontal gas-liquid flow. AIChE J 1976;22(1):47–55. doi: 10.1002/
aic.690220105 . 
[21] Vol’pert AI. The spaces bv and quasilinear equations. Math USSR Sbornik
1967;2(2):225–67. doi: 10.1070/sm1967v0 02n02abeh0 02340 . 

22] Dal Maso G , LeFloch PG , Murat F . Definition and weak stability of nonconser-
vative products. J Math Pures Appl 1995;74(6):483–548 . 

23] Chalmers N , Lorin E . Approximation of nonconservative hyperbolic systems
based on different nonconservative product definitions. Can Appl Math Q

2009;17(3):447–85 . 
24] Castro MJ, Pardo A, Parés C, Toro EF. On some fast well-balanced first or-

der solvers for nonconservative systems. Math Comp 2010;79(271):1427–72.

doi: 10.1090/S0025- 5718- 09- 02317- 5 . 
25] Toumi I. A weak formulation of Roe’s approximate Riemann solver. J Comput

Phys 1992;102(2):360–73. doi: 10.1016/0021-9991(92)90378-C . 
26] Rhebergen S, Bokhove O, van der Vegt JJW. Discontinuous galerkin finite ele-

ment methods for hyperbolic nonconservative partial differential equations. J
Comput Phys 2008;227(3):1887–922. doi: 10.1016/j.jcp.2007.10.007 . 

[27] Dumbser M, Toro EF. A simple extension of the osher riemann solver to non-

conservative hyperbolic systems. J Sci Comput 2011;48(1–3):70–88. doi: 10.
1007/s10915-010-9400-3 . 

28] Parés C. Numerical methods for nonconservative hyperbolic systems: a the-
oretical framework. SIAM J Numer Anal 20 06;44(1):30 0–21. doi: 10.1137/

050628052 . 
29] Baumann CE, Oden JT. A discontinuous hp finite element method for

convection-diffusion problems. Comp Meth Appl Mech Eng 1999;175(3–

4):311–41. doi: 10.1016/s0 045-7825(98)0 0359-4 . 
30] Bassi F, Rebay S. Numerical evaluation of two discontinuous galerkin meth-

ods for the compressible navier-stokes equations. Int J Numer Meth Fluids
2002;40(1–2):197–207. doi: 10.1002/fld.338 . 

[31] Bassi F, Rebay S. GMRES Discontinuous galerkin solution of the compress-
ible navier-stokes equations. In: Cockburn B, Karniadakis G, Shu C-W, edi-

tors. Discontinuous Galerkin methods. Lecture Notes in Computational Sci-

ence and Engineering, vol. 11. Springer Berlin Heidelberg; 20 0 0. p. 197–208.
doi: 10.1007/978- 3- 642- 59721- 3 _ 14 . 

32] Arnold DN, Brezzi F, Cockburn B, Marini LD. Unified analysis of discontinuous
galerkin methods for elliptic problems. SIAM J Numer Anal 2002;39(5):1749–

79. doi: 10.1137/S0036142901384162 . 
33] Davis TA. Algorithm 832: umfpack v4.3—an unsymmetric-pattern multi-

frontal method. ACM Trans Math Softw 2004;30(2):196–9. doi: 10.1145/992200.

992206 . 
34] van Zwieten JSB. joostvanzwieten/sample-code-paper-hstdg2017 v1; 2017. 

doi: 10.5281/zenodo.820673 . 
35] Olsen R . Time-dependent boundary conditions for multiphase flow. Ph.D. The-

sis, Norwegian University of Science and Technology (NTNU); 2004 . 
36] Prosperetti A. Two-fluid modelling and averaged equations. Multiph Sci Tech-

nol 2003;15:181–92. doi: 10.1615/MultScienTechn.v15.i1-4.160 . 

[37] Ainsworth M. Dispersive and dissipative behaviour of high order discontinuous
galerkin finite element methods. J Comput Phys 2004;198(1):106–30. doi: 10.

1016/j.jcp.2004.01.004 . 
38] Lesaint P, Raviart PA. On a finite element method for solving the neutron trans-

port equation. In: Boor CD, editor. Mathematical aspects of finite elements
in partial differential equations. Academic Press, New York; 1974. p. 89–123.

doi: 10.1016/B978- 0- 12- 208350- 1.50 0 08-X . 
39] Omgba-Essama C . Numerical modelling of transient gas-liquid flows (applica-

tion to stratified slug flow regimes). Ph.D. Thesis, Cranfield University; 2004 . 

http://dx.doi.org/10.1016/S0301-9322(02)00127-1
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0004
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0004
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0004
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0004
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0004
http://dx.doi.org/10.1016/j.jcp.2003.07.001
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2008.02.010
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0007
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0007
http://dx.doi.org/10.1016/j.nucengdes.2013.04.043
http://dx.doi.org/10.1260/1757-482X.5.2.139
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2003.09.002
http://dx.doi.org/10.1002/fld.1772
https://www.cise.ufl.edu/~ungor/abstracts/imr00.html
http://dx.doi.org/10.1002/nme.2723
http://dx.doi.org/10.1016/j.compfluid.2015.05.002
http://dx.doi.org/j.jcp.2010.10.019
http://dx.doi.org/10.1016/j.jcp.2011.03.059
http://dx.doi.org/10.2514/6.2006-112
http://dx.doi.org/10.1016/j.jcp.2009.11.010
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0018
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0018
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0018
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0018
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0018
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0018
http://dx.doi.org/10.1002/aic.690220105
http://dx.doi.org/10.1070/sm1967v002n02abeh002340
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0021
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0021
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0021
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0021
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0022
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0022
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0022
http://dx.doi.org/10.1090/S0025-5718-09-02317-5
http://dx.doi.org/10.1016/0021-9991(92)90378-C
http://dx.doi.org/10.1016/j.jcp.2007.10.007
http://dx.doi.org/10.1007/s10915-010-9400-3
http://dx.doi.org/10.1137/050628052
http://dx.doi.org/10.1016/s0045-7825(98)00359-4
http://dx.doi.org/10.1002/fld.338
http://dx.doi.org/10.1007/978-3-642-59721-3_14
http://dx.doi.org/10.1137/S0036142901384162
http://dx.doi.org/10.1145/992200.992206
http://dx.doi.org/10.5281/zenodo.820673
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0033
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0033
http://dx.doi.org/10.1615/MultScienTechn.v15.i1-4.160
http://dx.doi.org/10.1016/j.jcp.2004.01.004
http://dx.doi.org/10.1016/B978-0-12-208350-1.50008-X
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0037
http://refhub.elsevier.com/S0045-7930(17)30220-7/sbref0037

	Efficient simulation of one-dimensional two-phase flow with a high-order h-adaptive space-time Discontinuous Galerkin method
	1 Introduction
	2 Governing equations of the compressible two-fluid model
	2.1 Two-fluid model
	2.2 Homogeneous equilibrium model

	3 Discontinuous Galerkin discretisation of the two-fluid model
	3.1 Weak formulation
	3.1.1 Temporal flux
	3.1.2 Spatial flux
	3.1.3 Diffusion
	3.1.4 Result

	3.2 Mesh and basis
	3.3 Boundary conditions
	3.4 Artificial viscosity
	3.5 Local refinement
	3.6 Implementation details

	4 Finite volume discretisation
	4.1 Spatial discretization
	4.2 Boundary conditions
	4.3 Temporal discretization

	5 Stability and well-posedness
	5.1 Analysis of the DGFEM scheme

	6 Numerical results
	6.1 Stability analysis using Kelvin-Helmholtz test case
	6.2 Convergence analysis using IFP test case
	6.2.1 Analysis of the uniform DG and FV scheme
	6.2.2 Analysis of the h-adaptive DG scheme


	7 Conclusions
	 Acknowledgement
	 References


