
Numerical Linear Algebrawith Applications, Vol. 1(4),369-386 (1994)

GMRESR: a Family of Nested GMRES Methods

H, A. Van der Vorst

Mathematica/ll/stiture, Utrecht UI/ilnsity, Budapest/aan 6, 3584 CD Utrecht, The Netherlands

and

C. Vuik

Department o/Teclmica/ Mathematics and Complller Science, Delft UI/iversitv, Mekelweg 4,2602
CD DeI/t, The Netherlands

Recently Eirola and Nevanlinna have proposed an iterativ<: solution method for unsymmetric linear systems,
in which the preconditioner is updated from step to step. Following their ideas we suggest variants of
GMRES, in which a preconditioner is constructed per it<:ration st<:p by a suitable approximation process,
e.g., by GMRES itself. Our numerical experimenb indicate that this may lead to considerable savings in
CPU-timc and memory requirements in typical CFD applications.

KEY WORDS GMRES Unsymmetric linear systems Iterative solver

1. Introduction

The GMRES method, proposed in (13]. is a popular method for the iterative solution of
sparse linear systems with an unsymmetric nonsingular matrix, In its original form, 50-

called full GMRES, it is optimal in the sense that it minimizes the residual over the current
Krylov subspace. However, it is often too expensive since the required orthogonalization
per iteration step grows quadratically with the number of steps. For that reason, one often
uses in practice variants of GMRES, The best-known variant, already suggested in [13], is
to restart after each cycle of m iteration steps: GMRES(m). A disadvantage of this approach
is that the convergence behavior in many situations seems to depend quite critically on the
value of m (for examples see, e,g" [9]), Even in situations in which satisfactory convergence
takes place, the convergence is less than optimal, since the history is thrown away so that
potential superlinear convergence behavior is inhibited [18].

CCC I07U-5325194/U40369-!8
@1994 by John Wiley & Sons, Ltd.

Receil'ed Jalll/ary 1992
Revised 17 May 1994

370 H. A. Van der Vorsl and C. Vuik

Another approach is to apply polynomial preconditioning (in combination with a pos-
sibly available preconditioner, e.g., ILU). To that end a fixed low degree polynomial is
constructed, e.g., the III-th degree iteration polynomial obtained from the first III iteration
steps [11). A disadvantage of this approach is that this polynomial does not take advan-
tage of the current residual, i.e., this preconditioner may be strong in reducing eigenvector
components that have already vanished in the iteration process.

We propose a variant of the GMRES algorithm, in which it is allowed to take a different
preconditioner in each iteration step. For a special, though rather meaningful, choice we
prove robustness of the resulting algorithm (GMRESR). Numerical examples have been
added in order to demonstrate the possibilities of this novel approach. Though we have
made a choice for the implementation of the new algorithm, it will be clear that there are
other possibilities. For example, the preconditioner can be constructed differently for parts
of the domain (in a POE context), and the choice of preconditioner per domain. or even the
choice of domains, may be different for each iteration step of GMRESR.

Other GMRES-Iike iteration schemes with a variable preconditioner have been proposed
recently by Saad [14] and Axelsson and Vassilevski [2). In Saad's scheme (FGMRES)
a Krylov subs pace is generated that is different from ours, and it is possible to give an
example for which FGMRES suffers from breakdown (in this example it is essential that
the preconditioner is different in each iteration step). Furthermore, in GMRESR it is easy
to truncate the orthogonalization process, or to select specific orthogonalization directions.
We also believe that the derivation of our algorithm is rather general (in fact GMRESR is
only a special case), and that it gives new insights into the method, as well as into GMRES.

The method proposed in (2) is a generalized conjugate gradient method. Variant 1 in (2]
(algorithm 1) produces, in exact arithmetic, and with the same innerloop as in GMRESR,
identical results as GMRESR (though at considerably higher computational costs and with
a Gram-Schmidt orthogonalization procedure instead of a modified version). Our proposed
innerloop leads to a wider applicability of the method.

The outline of this paper is as follows. In section 2 basic ideas behind the new algorithm
are presented, while in section 3 the iteration scheme for GMRESR is proposed. In section
4 some theoretical properties are analysed. Implementation aspects for specific choices of
the algorithm are discussed in section 5. Finally, we present some numerical examples in
section 6. These examples illustrate the effectiveness of our approach in relevant situations.

2. Rank-one updates for the preconditioner

Iterative methods can be derived from a splitting A = H-1
~ R of the matrix. In (6)

the suggestion is made to update the matrix splitting with information obtained in the
iteration process. We will give the flavour of this method here since it turns out that it has
an interesting relation with GMRES. This relation is exploited for the construction of new
classes of GMRES-like methods, that can be used as cheap alternatives for the increasingly
expensive full GMRES method. One such alternative, GMRESR, will be discussed in more

detail in section 3.
Assume that the matrix splitting in the kth iteration step is given by A = Hi: I - Rk.

Then we obtain the iteration formula

.:.::~:~tIf~~~~:;'
"
'. ',.;..

GMRESR: a Family of Nested GMRES Methods

The idea is now to construct Hk by a suitable rank-one update to Hk-I:

Hk = Hk-I + Uk-It,Ll

which leads to

or

T= Tk-I - A(Hk-l + Ilk-I Vk_1)rk-I

= (1- AHk-l)rk-l - AUk-lvI-lrk_l

(1- AHk_t>rk_1 - Ilk-IAuk-l

The optimal choice for the update would have been to select Uk-I such that

or

371

(2.1)

(2.2)

Ilk-IUk-1 = A-I(I- AHk-l)rk-1

However, A -I is unknown and the best approximation we have for it is Hk-I. This leads
to the choice

(2.3)

(2.4)

The constant Ilk-l is chosen such that IIrk 111is minimal as a function of Ilk-I. This leads to

Since Vk-I has to be chosen such that Ilk _I = vI- Irk -I, we have the following obvious
choice for it

1 T _
Vk-I = _ ,(1- AHk_l) AlIk-l

IIAuk-llll
(note that from the minimization property we have that rk .1 Aih-l).

In principle the implementation of the method is quite straightforward, but note that the
computation of rk-I, ih-I and Vk-I involves four matrix vector multiplications with A (and
also some with Hk-d. This would make the method too expensive for being of practical
interest. Also the updated splitting is most likely a dense matrix if we carry out the updates
explicitly.

We will now show, still following the lines set forth in [6], that there are orthogonality
properties, following from the minimization step, by which the method can be implemented
much more efficiently.

We define

2. Ek = I - AHk

From (2.2) we have that rk = EUk -I, and from (2.3):

"<..'
".'

372 H. A. Van der VorSI and C. Vuik

or
(2.5)

Furthermore:

(2.6)

(3) => = I ~ AHk_1 - Aih-I (Aih_I)T (/ - AHk-t> 1 z
IIAukliz

(/ - Ck~,CLI)Ek-1

k-ln(/-c;c;)Eo = U - Pk-I)Eo
;=0

We see that the operator Ek has the following effect on a vector. The vector is multiplied
by Eo and then orthogonalized with respect to Co, ... , Ck-I. Now we have from (2.5) that

1
Ck = ~EkH

ak .

and hence
Ck ..1 Co Ck - 1 (2.7)

A consequence from (2.7) is that

k-I k-Iflu -CjcJ) = 1- LCjcJ = 1- Pk-I
j=O j=O

(2.8)
k

Pk = LCjcJ
j=o

The actual implementation is based on the above properties. Given Tk we compute Tk..,.1 as
follows (and we update Xk in the corresponding way):

and therefore

With ~(O) = EOTk we first compute (with the Cj from previous steps):

k-I k-I

EkTk = ~(k) == U - L CjcJ)~(()) = n(l - CjcJ)~(O)
j=O j=O

The expression with L leads to a Gram-Schmidt formulation; the expression with n leads
to Modified Gram-Schmidt.

The computed updates -c T ~ (0) Cj for Tk+ 1 correspond to updates
.I

for Xj+l' These updates are in the scheme, given below, represented by 1).

From (2.3) we know that/

GMRESR: a Family of Nested GMRES Methods 373

ii(= Hk EkTk = Hk~(k)

Now we have to make Aih "" Ck orthogonal w.r.t. co, ..., Ck-I, and to update ilk accord-
ingly. Once we have done that we can do the final update step to make Hk+(' and we
can update both .q and r(by the corrections following from including Ck. The orthogo-
nalization step can be carried out easily as follows. Define clk) =' OIkCk = AHkEkrk ::::

(l-Ed£krk (see(2.S» =(l-£O+Pk_I£O)~(k) (see(2.6» =AHo~(k)+Pk-I(l-

AHo)~(k) = clO) + Pk_I~(kl - p(_,clO). Note that the second term vanishes since ~(k) .1
co• Ck-I.

The resulting scheme for the kth iteration step becomes:

Remarks

1. The above scheme is a Modified Gram-Schmidt variant, given in [20], of the original
scheme in [6].

2. If we keep Ho fixed, i.e., Ho = I, then the method is not scaling invariant (the results
for pAx = ph depend on p). In [20] a scaling invariant method is suggested.

3. Note that in the above implementation we have 'only' two matrix vector products per
iteration step. In [20] it is argued that in many cases we may also expect comparable
convergence as for GMRES in half the number of iteration steps.

4. A different choice for Ilk-I does not change the formulas for Vk-l and £(-1. For each
different choice we can derive similar schemes as the one above.

5. From (2.2) we have

In view of the previous remark we might also make the different choice lh-l =
Hk-I rk-I. With this choice. we obtain a variant which is algebraically identical to
GMRES (for a proof of this see [20j).This GMRES variant is obtained by the following
changes in the previous scheme:

Take Ho = 0 (note that in this case we have that Ek-Irk-I = rk-I, and hence we
may skip part J of the above algorithm). and set ~(k) = rk, r](k) = O. In step 2 start with

(0) _ elk)
It k -" •

The result is a different formulation of GMRES in which we can obtain explicit for-
mulas for the updated preconditioner (i.e .. the inverse of A is approximated increasingly
well): The update for H(is Ilke[Ek and the sum of these updates gives an approximation
for A-I.

374 H. A. Van der Vorsl and C. Vuik

3. A recursive variant of GMRES

In the GMRES-variant discussed at the end of the previous section, we are still free to select
Uk a little bit different. Remember that the leading factor Hk-l in (2.3) was introduced as
an approximation for the actually desired A-I. With ih-I = A-lrk~l, we would have
that rk = Ek-Irk-I ~ J-lk-Irk-I = 0 for the minimizing Mk-I. We could take other
approximations for the inverse (with respect to the given residual rk-l, e.g., the result vector
y obtained by a few steps GMRES applied to Ay = rk-l. This leads to the GMRESR family
of nested methods that we will describe now in more detail.

When we do the approximate solution for Ay = rk-l by a few steps of GMRES, then
this is equivalent by stating that A -I r is approximated by QJlIII (A)r, where QJlIII represents
the polynomial that is implicitly constructed in III iteration steps of GMRES. Note that this
polynomial depends on the residual r, so that we have effectively different polynomials in
different steps of the (outer) iteration process. We will make this dependence explicit by
adding the number of the current GMRES-EN iteration as an index to QJl.

The above sketched approach leads to a nested GMRES iteration process, in which
the outer iterations are formulated in the GMRES-EN way and the result of the III inner
iterations, in the kth outer iteration step, is represented by u1°) = QJl",.krk. The combined
process will be referred to as GMRESR and can be represented by the following iteration
scheme for the solution of Ax = b (if one wants to include conventional preconditioning
(e.g., ILV), then we assume that Ax = b represents the explicitly preconditioned system to
be solved):

GMRESR algorithm
1. Start: Select xo, Ill, tol;

ro=b-Axo,k=-l;

2. Iterate: while IIrk-i-lll: > tol do
k = k + 1;
u101 =!PIII.dA)rk (or other suitable approximations

for A-1rd;
(0) A (0).

ck = Uk '
fori = O..... k ~ 1 do

T (i)
('{i = ci ck ;

(i +1) (i)
ck = ck ~ ('{iCi;

(i+l) (i)
Uk = Uk - ('{iUi;

(kl (k) (k) (k)
(J = ck fliCk II:; Uk = Uk fliCk II:;
Xk+l =:q + UkC! rk;

rk+1 = rk - ("kc[rk;

Note: If the inner iteration process stagnates, i.e., if Au1°) ~ rk = rk then, in order to avoid
breakdown, we replace this inner iteration process by 1 step of LSQR [12]: u1°) = AT rk.

The GMRESR algorithm with this strategy will be referred to as 'GMRESR with LSQR-
switch'. In practical situations other strategies may turn out to be more effectively, and it
may also be more practical to relax the switch condition (for an example, see section 6).

If urn in the above scheme is computed as u1°) = Hark for any fixed nonsingular

/

GMRESR: a Family of Nested GMRES Methods

Table I. Comparison between GMRES variants for an example

Method matvec daxpy ddol Memory CPU time
GMRES(SO) 1220 35.000 35.000 50 17.0

GMRES 1~4 17.000 17.000 184 7.2
GMRESR(*.*.I.I0) 19~ 1386 1224 46 I.2

375

preconditioner Hn• then we have precisely the OMRES-EN variant described in [20]. For
7J'm.k replaced by I we obtain OCR (for OCR see [7]).

The GMRESR scheme leaves us an enormous amount of freedom in designing iteration
schemes. For instance, we are free to select a different m in each iteration step. This means
that we could solve the inner iteration also with a specified tolerance. The inner iteration
can be done with any iteration scheme, but this might prove only a theoretical advantage.
For, if one has decided to solve a given system with GMRES then it seems obvious to do
the inner iterations, which are done with the same operator A as the outer iterations, also
by GMRES. The above scheme opens the possibility for a highly recursive scheme, since
the iterations could be done with a similar scheme as above.

A more practical scheme, in our opinion. arises when the outer iteration is restarted after k
iterations, just as is common practice with OMRES, in order to limit memory requirements,
or to include only updates from the last j outer iterations (the truncated GMRESR version).
This trullcated GMRESR variant is ohtained if we replace the for-loop by

for i = max(O. k ~ j) k - 1 do

In our limited experience a truncation strategy seems to be much more efficient than a
complete restart after each j cycles. One might also discard those Ci s which do not lead to
a significant reduction of rk.,-I.

For the inner iterations "ve suggest using l1(S) cycles of GMRES(m), where 1I(s) may
depend on a tolerance s. The resulting scheme is denoted by GMRESR(k, j, l1(e), /1/). If
the outer iterations are not restarted this will be denoted by a *. instead of k. Likewise, a *
for the second parameter will denote that the process is not truncated.

Before further analyzing these schemes, we will give an example which serves to demon-
strate the potential of the new class of schemes. In Table 1 we have listed the amount of
work (in terms of matrix vector products, vector updates and inner products), the amount of
workspace (in terms of II-vectors) and the CPU-time (in seconds, for one processor of a Con-
vex C-240), required by some methods in order to solve a certain discretized Navier-Stokes
problem [19].

Note that the new scheme. hesides being more economic in memory space than its
competitors, is much faster in terms of CPU-time for this specific example. This motivates
us to investigate the method in more detail. A more elaborate comparison with variants of
GMRES, as well as with COS [15] and BiCGSTAB [17} will be made for relevant problems
in section 6. In sections 4 and 5 we will discuss theoretical properties and implementation
aspects of GMRESR.

376 H. A. Van der Vorsl and C. Vuik

4. Properties of GMRESR

In this section we analyze some properties of GMRESR(*, *, 1, m), or GMRESR(m) for
short. We will assume that the inner iteration is always started with initial guess ui~b:= 0

(note that in this notation uiO
) := ui~:11:= '2l'",.dA)rk). We will also assume that the inner

iterations are done with GMRES; the generalization to other schemes for the inner iteration
is obvious.

From the GMRESR scheme in section 3 we conclude that Ck is undefined if cY) := O. If
this happens, while rk I 0, then we will speak of a breakdown of GMRESR. In this section
we will consider the breakdown situation in more detail.

Furthermore, we will show that the breakdown situation is avoided by including the
LSQR-switch strategy (see section 3), and that then GMRESR is a finite method, just as
full GMRES. We will also show that it is not necessary to carry out all m inner iterations
if that would imply that we are beyond the tolerance for the outer iterations. Finally, we
wiII show that, in contrast to the original EN-method of which GMRESR has been derived,
GMRESR is scaling invariant.

In this section we wiII assume exact arithmetic. The residuals obtained by GMRESR are
denoted by an upper index GR, those of GMRES by an upper index G.

The next theorem says that GMRESR(*, *, 1, m) is a robust method, and that it is a
minimum residual method.

Theorem 4.1. (a) 'GMRESR(*. *, I. m) with LSQR-switch' does lIot break down.
(b) In GMRESR the residual rk is minimized over the space

rl) + span (Cl). CI Ck-I}

Proof (a) Suppose that IIrf'R - A2J>",.dA)r.fRI12 ::: IIrpRII2 (the >-case is precluded in
GMRES), and that rpR 10.

We first consider the <-case.
Consequently it holds that c~O) := A'2l'",.dA)rpR I O. Since GMRES minimizes the

residual in the innerloop, we have that

. f h (OIT GR (())T (0)and It ollows t at ck rk = ck ck I O.
In the case of equality sign, the LSQR-switch is active, and with

wehavethatcl°)TrpR = (AATrpR)Tr.fR = IIATrpRII~ 10.
(O)T GR CRThe result ck rk 10, together with the fact that r/ .1 spanleo Ck-I}, leads to

c~O) 1span{co Ck-tl.
(k)Hence liCk 11210, and the method does not break down.

(b) The minimization property of GMRESR follows straight away from the construction of
the algorithm. •

From the proof of Theorem 4.1 it follows that the GMRESR algorithm without LSQR-
switch can only breakdown when the inner iteration process stagnates.

........../.:... . '
'.'

.<

./

GMRESR: a Family of Nested GMRES Methods 377

From the definition of GMRESR, in section 3, we have straight away the following result.

Lemma 4.1. For 'GMRESR(*, *, 1, m) with LSQR-switch' we have

k
1. rffJ = (I - Pdro, with Pk = L cicT the orthogonal projection onto span {co, ... ,

i=O

2. GMRESR is a finite method, i.e., r:?R = 0, for some k :::n.

The next lemma says that the Ck vectors in GMRESR are contained in a Krylov subspace.
This result will facilitate the comparison between GMRESR and GMRES.

Lemma 4.2. If GMRESR (withow LSQR-switch) does not breakdown within the first k
iterations and if the inner iterations are started with initial guess I/k~b = 0, then

k'/11
GR '"' irk = ro + L-Clk,jA ro

;=1

and span {co, cd c span{Aro Alk+l)/IIro}.

Proof The proof is by an induction argument in k. Note thatl/g)) is obtained by m steps
GMRES 10) { Aim-II} Th f . A (0) (A Am} h' h: Uo E span roo ro. ere ore, Co = . I/o E roo ro, w IC
gives the result for k = O.

US1'ng that rGR = rGR - ('I.cT rGR it follows by induction thatk+ I k ~ k k

h (k+l) 'J1> GRFurthermore, we note t at ck+1 = (/ ~ Pk)A"m,k+I(A)rk+1, and thus

It then follows by induction that

(k+l,
Ck+1 A1k+2)mq+1 = k I E span{Aro, ro}II<_~)112

•
From Lemma 4.2 and the well-known property that GMRES minimizes the residual over

its associated Krylov subspace, it follows that

In section 5 we will show that the computation of x:?R and r:?R together costs k . m matrix
vector products. This shows that GMRESR takes at least as many matrix vector products
as full GMRES in order to obtain comparable accuracy. However, as we will see in section
6, it is not always that many more.

378 H. A. Van der Vurs! and C. Vuik

Our standard choice in GMRESR is u10) = uYI!" == rzl'1II.dA)rFR. An obvious disad-
vantage of this choice is that always 111 GMRES iterations are applied in the inner iteration
and that might lead to a higher accuracy than we actually need in some cases. For example,
when rpR is close to satisfying the stopping criterion IIrfRII:! :s (01, then we expect that
the choice "1°) = Iti(~~:= 7Pj.dA)rpR with j (much) less than III will be sufficient to have

Ilrp+~112 < (01. The following lemma states that it is never necessary to solve the inner
iterations more accurately than the outer ones, and it leads to an obvious modification to
GMRESR.

Lemma 4.3. IfGMRESR (witlrollt LSQR-switch) does not break down and
ell' 10) . . (lJ) rii OR OR111'/ - AUk)/2 < (aI, J :s m, (hen wah Uk = ?i'j.dA)rk we have that IIrHI 112 < tal.

Proof From Theorem 4.1 we have that

Since::'k + A!J'j.dA)rpR E span (co cd we obtain

•The quantity IlrpR - A.J'j.dA)r?"'112 is equal to the norm of the jth residual in the
kth GMRES inner iteration. and this norm can be computed with lillie additional costs in
GMRES (see [13]).

It follows from Lemma 4.3 and Theorem 4.1 that if GMRESRdoes not break down, then
the sequence 1111',0 11'1121is monotonically decreasing.

The reduction that one may expect at least for a given matrix A is given by ('(III:

IIr,~II2
('(III = sup --

,_ ",111>" 1/1'0112
Il~

(note that the optimality property of GMRES gives ('(III E [0. 1]).
In the following lemma we compare the convergence behavior of GMRES(m) and

GMRESR(*, *. 1,111).

Lemma 4.4. If ('(II' < 1 then
GRIIrk+11I2~-=-- < am

IIrpRI12 -

Proof We apply 111 iteration steps of GMRES to AUk .• == rpR with Uk,ll = O. After this
the residual is equal to rfR - A:J>III.dA)rpR.

Using the definition of ('(III it follows that /lrfR - A!J'III.dA)rpR 112s: ('(1II/hGR 112.Hence,
since ('(III < I it follows from the proof for Theorem 4.1 that GMRESR(m) does not switch
to LSQR (and does not break down). From Lemma 4.3 it then follows that IIrf+~ 112 S
('(//IlIr?RII2. •

Corollary 4.1. IfGMRES does not stagnate in m iteration steps(H/hich means ('(/II < 1)for
a gilwl matrix A then GMRESR(*. *, I, 1/1) does not switch to L5QR and it cOl/verges a(
least as fast as GMRE5(m).

o" •'..

.y.,
. ,:.::::'.'
;....

.. •J
GMRESR: a Family of Nested GMRES Method!> 379

In [20] it is shown that the original method of Eirola and Nevanlinna [6] is not scaling
invariant. Since the idea of GMRESR originates from that method, we investigate the
convergence behavior of GMRESR with respect to scaling.

Definition 4.1. The qualltities associated with GMRESR, when applied to pAx = pb with
p > 0 are denoted by the accent' , e.g .• A = p A. b = pb, etc.

Lemma 4.5. GMRESR is scaling inmriant:

-GR .GRxk = '\k

Proof We prove the lemma by an induction argument in k, The induction hypothesis is:

'GR GR -GR GR' 1 _
xk = xk . rk = prk . Uk = -Uk. and Ck = Ck

P

F k ° 'h' d 'GR I . h h ,(0) ;Tf> (A" (0)'or' = we ave Xo = Xo an ro = pro. t IS easy to s ow t at I/o = '&11/.0)ro = lIO
h ~(O) - A' ,(0) ~ .(0) Th' . \' h' ' _ 1 d', - S' -GR_t us {o - I/o - peo' IS Imp les t at 110 - pliO an {o - co' mce Xl _

.to +1/026 TO we obtain .tfR = Xo+ ~I/o{l pro = x(?R and TfR = prfR (scaling invariance
in case of an LSQR-switch is easily verified).

B . .] . f II h ,(0) ((l) d '10) (0) F h GMRESRY slml ar arguments It 0 ows t at II k = 1/ k an ck = pCk . rom t e
scheme and the induction hypothesis it follows that t/k = ~Uk. Ck = Ck. ,tP+~= xP+~,

d -GR GR •an rk+1 = prk+I,
For the invariance property we have used the fact that the inner iterations are started with

I/i(~:)= 0, which is necessary in order to avoid shifts in the Krylov subspaces. Other starts
do not necessarily ensure the scaling invariancc of the process.

5. Implementation details

In this section we use results from sections 3 and 4, and [13] to obtain a cheaper imple-
mentation for GMRES in the inner iteration. Then we compare the amount of work and
required memory for full GMRES and GMRESR(*, *, 1, m) (this will be referred to as
GMRESR(m», Furthermore we will derive expressions for m that lead to optimal choices
with respect to work and memory requirements, We conclude this section with some indi-
cations for situations when GMRESR may be preferred over GMRES, In this section we
will assume that the LSQR-switch has not been activated. This facilitates the performance
analysis.

5.1. The inner iteration process

In the GMRESR scheme we do the inner iteration by GMRES for the calculation of uiO) =
'fP1I/.dA)rFR, Since the inner iteration has some special properties we modify GMRES
slightly in order to obtain a cheaper variant.

First of all we note that the inner iteration starts with Ii l:?) = 0, which implies that the

initial residual rpR - Auiob is equal to rpR. So the matrix vector product to calculate Aui~b
is not necessary in the inner iteration. Second, it follows from Lemma 4.3 that we can stop

380 H. A. Van der Vorst and C. Vuik

Table 2. Amount of work and memory for GMRES and GMRESR(m)

Method GMRES GMRESR(III)
steps
matvec
vector updates
inner products
memory vectors

In~
IIIg
I)
2'n.~
111I2
1 g
IIIg

II/gr

IIIgr, • III
(
11I-

ITIgr' 2, + IIlgr)

(
11I- lIl.r)

fflgr• T + T
21T1~r + //I

the inner iteration if the residual is less than to/. Finally, in [13]: p. 863, it is shown that the
residual can be calculated with 11/ + I vector updates instead of using a matrix vector product
as in the expression 1'", = b - Ax",. In most applications In will be small, e.g. In < 10,
which implies that III + I vector updates cost much less than a matrix vector product, so we

. 'I'd I I (0) A 10)use a Slml ar I ea to ca cu ate c
k

= Ilk .

We denote the Krylov subspace _basisvectors, generated by GMRES, by Vj; YIII is the
matrix with columns VI, ... , VIII and Hili is the In + I by III upper Hessenberg matrix generated
by GMRES (e.g., see [13]). Then we havelliol = ~~IIYIII,andhencecll)) = AulO) = AYIIIYm.

Since A V,II = V,II-rlHili it follows that dO) = YIII+IH",vlII. With these moditlcations we
obtain the following algorithm:

Algorithm for the computation of IIlO) and clOl

I. Start: Take to/ as in the outer iteration,
1'0 = rpR and 1'1 = 1'0/111'1)/12,

2. Iterate: for j ::: 1. i (where i is such that
i = 1/1 or Ilri 112 < tot)
do

!'j+l = APi;
for t = I.j do

htj = !'J~,Vt: !'j+1 = !'j+1 - ht}!'t;

hj-"-I.} = /I!'j+11/2; I'}+I = vj+l/hj+l.j;
3. (0)

Uk = YiYi
((J) - hck = Yi+l HiYi, were Yi

minimizes /I,Bel - HiYi 112
with 13 = IIrFRI12 and el. Yi E ~i.

5.2. The choice of 1/1

In order to compare the efficiency of GMRES and GMRESR(I/l), estimates for the amount
of work and the required memory of both methods are listed in Table 2. From these estimates
we derive optimal choices for 1/1 with respect to work and required memory. To that end
we assume that I/lgr . III ;= m~.We have already seen in section 4 that IIIgr . III ~ In~. In
situations where mg,. '111 is considerably larger than IN. we expect that GMRESR is far less
efficient with respect to CPU time and memory than GMRES. Hence, it is only attractive
to use GMRESR(III) when IIIgr '1/1 is not too far from III

g
.

If m~r '11I ~ IN. then the number of required matrix vector products is about the same for

..'
- .I. " GMRESR: a Family of Nested GMRES Methods 381

both methods; however the numbers of vector updates and inner products can be different.
Assuming that a vector update costs as much as an inner product, the amount of work w (in
suitable units), with respect to vector updates and inner products, is given by:

GMRES: wg(m~) === m;,
GMRESR(m): W~,.(lIIgr, Ill) = l.5m~r + IIIg,. . m2.

Using IIlgr == md m, the amount of work U'gr as a function of III is given by

I - ~.:"" ~
w~r(m) = ~-~-' + mg' III

, /11-

The minimum is attained for 111 "" ~3mg and is equal to ~.m :/3. Note that if mg grows the

amount of work in GMRES increases as m~, whereas the increase of work in GMRESR(m)

is equal to 2.5 11l~/3 which has a much smailer increase than m~.With respect to the optimal
value of III = V311lg we remark that it is a slow varying function of mg' Thus a given m is
near-optimal for a wide range of values of I1Ig. For numerical experiments with this choice
of m we refer to section 6,

In order to optimize III with respect to memory requirements, we denote the amount of
memory by:

GMRES: mem (m~) == m~

GMRESR(IIl): fIIelll(m~r.lII) "" 211lgr + III

Assuming again that 111",. = m,,/m we obtain mem(m",., m) == 211I0 + m. The optimal,'" (... '"
value of m in this case is equal to fII = J2m~, which implies that the amount of memory
is equal to 2/2m~. So the increase in required memory in GMRESR(m) as function of mg
is much less than for GMRES.

Note that the optimal m with respect to work is in general less than the optimal m with
respect to memory. It depends on the problem and the available computer, which value is
preferred. However, in our experiments we observe that for both choices the amount of
work and required memory is much less than for GMRES.

In order to obtain an optimal choice of m it is necessary to estimate IIlg. If the system
of equations is solved once the only possibility is to get an upper-bound of IIlg from an
analysis of the problem. If the system of equations is solved many times, e.g. a time de-
pendent problem, a nonlinear problem or many right-hand side vectors, then there are other
possibilities:

the first time the system is solved with full GMRES. We then assume that the value of
IIIg does not change much in other problems. Since many systems are solved, the extra
costs of full GMRES arc negligible.
the first time the system is solved with, e.g., GMRESR(5) and we use 5 . m~,. as an
approximation for IIIg in the remaining systems.

In this paragraph we give three conditions. under which GM RESR(III) is more efficient than
GMRES or GMRES(III).

382 H. A. Van der Vmsl and C. Vuik

Table 3. The results for f3 = I

Method iterations matvcc CPU time
GMRES(32) 1355 1355 69.0
CGS 288 576 5.8
Bi~CGSTA8 252 504 4.7
GMRESR(10) 3_6__ 3_6_0 12~.(_)

mg is relatively large, because if IIlg is small, e.g. less than 20, then the gain obtained
from GMRESR(m) is negligible,
mgr . m is approximately equal to lilli'

full GMRES has a superlinear convergence behavior, which implies that GMRES (m)
shows slow convergence for m « 1Il1i•

For a class of problems where these conditions holds we refer to [19).
Finally it is possible to use other iterative methods in the inner iteration. Possibilities are:

GMRES(m) where m may be different for every step of the outer iteration, or GMRESR(m)
itself, other implementations of GMRES (see [3] and [5]) or Bi-CG-methods: CGS [15],
Hi-CGSTAB [17]. Note that, by following the approaches suggested in [4] and [5], the inner
iteration process is well suited for parallel computation.

6. Numerical experiments

In this section GMRESR(m) is tested and compared with other iterative methods. In our
problems the LSQR switch was never activated, except for the very last example (which was
designed to obtain that effect). We start with an artificial problem: a convection diffusion
equation on a unit square. It appears that GMRESR(10) is a robust method for this class
of problems. Thereafter we specify some results for a practical problem, obtained from a
discretization of the Navier-Stokes equations. In these experiments we see the theoretical
properties of GMRESR(m), as discussed in sections 4 and 5, confirmed.

We describe some numerical experiments with a linear system obtained from a discretiza-
tion of the following PDE

uliJr.! = 0

where n is the unit square.
The exact solution u is given by u(x. y) = sin(rrx)sin(rry). In the discretization we

use the standard five-point central finite difference approximation. The step sizes in x- and
y-direction are equal to 11100. We use the 'following iterative methods: GMRES(m), CGS,
Bi-COSTAB and GMRESR(m). We use a more or less optimal choice of m to obtain results
using GMRES(IIl). We start with Xo = 0 and stop if I/rk 112/1/rol12 :::: 10-12, see Tables 3-5.
Using f3 = 100 the updated residual of Bi-CGSTAB satisfies Ilr21ol12 ::: 10-13 whereas

the norm of the exact residual is equal to 10-\1.
Note that in these examples OMRESR(10) is a robust method because it converges for all

.....<r
'j
;)

--I

GMRESR: a f'amily of Nested GMRES Methods

Table 4. The results for fi = 100

383

1\lethou
OMRES(4)
COS
Bi~COSTAB
OMRESR(IO)

Iterations matvec CPU time
256 256 4.H
n.C.
210 420 4.6
35 350 \\,0

Table 5. The results for f3 = 500

\fethod Iterations matvec CPU time
GMRES(4) 302 302 5.6
COS n.c.
Bi-COSTAB n.c.
GMRESR(IO) 36 360 13.0

our choices of {3. CGS and Bi-CGSTAB fail for f3 large, whereas for f> small the restarted
version ofGMRES has a slow convergence behavior. Contrary to GMRESR, where m = 10
is a good choice for a wide range of {3, the optimal value of m, used in GMRES(m), changes
considerable for different values of {3.

Finally we take f3 as a function of x and y as follows (and see Table 0):

for x. -" E [~. ~f
(6.1)

for x. -"E [0. \ f \ [~.~f

For CGS the updated residual is such that IIr5s3 112 ~ 10-10 whereas the norm of the
exact residual is larger than 10-4; we consider this as a case of nonconvergence. Note that
in this problem GMRESR(lO) is the best method,

The following examples come from a discretization of the incompressible Navier-Stokes
equations. This discretization leads to two different linear systems, the momentum equations
and the pressure equation (for a further description we refer to [19]). Here we consider a
specific test problem, which describes the flow through a curved channel.

In the first example the problem is discretized with 16 x 64 finite volumes. The pressure
equations are solved with GMRES(m) and GMRESR(m). We start with Xli = 0 and stop
when IIr!; 112/IIrol12 ~ 10-0. This is essentially the same problem as the one for which results

Table 6. The results. where fi is given in (6.\)

Method

GMRES(32)
CGS
Bi-COSTAB
G\IRESR(10)

Iterations matvec CPU time
\418 141H 7(J

n.c,
n.t:.
56 560 IY

Method

384 H. A. Vander Vorsland C. Vuik

Table 7. GMRESR(IIl) applied to the pressure equations
III 4 8 12 16 18 20 22
iterations 45 23 16 12 11 10 9CPU time 1.15 0.89 0.90 1.05 1.09 1.23 1.30memory 94 54 44 40 40 40 40vectors

Table 8. Iterative methods applied to the momentum equations

Iterations CPU time Memory
vectors

":."" .

full GMRES
GMRESR(5)
GMRESR(8)

31 0.61 31
7 0.35 19
4 0.37 16

were reported in section 3, only the discretization is slightly different.
Full GMRES converges in 177 iterations and used 5.8 s CPU time. Restarting GMRES

is a bad idea, e.g. GMRES(50) takes 1313 iterates and 16 s CPU time to converge. In Table
7 we specify the results for GMRESR(II1). where 111 is chosen near the optimal value with
respect to work (111 = 8) and with respect to memory (m = 20). Note that in this example
m . IIlgr is approximately equal to IIlg for 4 :s m :s 22.

We observe a good correspondence between the predicted and the real optimal values of
m. Note that the optimal value of III with respect to memory is larger than that with respect
to work.

For this problem we also solve the momentum equations (see Table 8) with full GMRES
and GMRESR(m). The choices for III are m = 5, optimal with respect to work. and m = 8.
optimal with respect to memory. For both choices of III we observe a considerable gain in
computing time and memory requirements.

We have solved the pressure equations with a combination of GMRESR(m) with a
(M)ILU preconditioner (see [10]. [16] and [8]).

In Table 9 we show results. using an average of an ILU and a MILU preconditioner with
()'= 0.975 [I]. [19]: p.8. For large problems (32 x 128) GMRESR(m) is much better than
full GMRES. Since GMRES(IIl) converges very slowly for these examples we have not
included results for GMRES(m) in Table 9.

Our final example has been included in order to demonstrate the effect of the 'LSQR
switch'. The matrix A has as its columns el, eJ, ..., eIOO{X), el. where e

l
is the ith canonical

basis vector in 1Rl()(){)().For the right-hand side we take b = el' It is well-known that. with
the start Xo= O. GMRES produces the iterands Xl = ... = X9999 = 0 and xlOOOO = eIOOOO.

In this case we may expect stagnation in the inner iterations for any reasonable choice of
Ill. With the LSQR switch, however. GMRESR converges in only one iteration, owing to
the fact that LSQR converges in one iteration for this specific case.

In order to make the situation less trivial, we select a different right-hand side. The vector
b is chosen such that it leads to the solution x with

XU -I).100+ j "=' sin(7Ti / 100) sin(n'j /100)

Table 9.

GMRESR: a Family of Nested GMRES Methods

Iterative method applied to the pressure equation using a MILU preconditioner

Finite volume Iterations CPU time Memory
Method vectors
full GMRES 16 x 64 28 0.31 28
GMRESR(4) 16 x 64 9 0.27 22
full GMRES 32 x 128 47 2.19 47
GMRESR(5) 32 x 128 10 1.21 25

Table 10. Results for relaxed LSQR switch

385

s

0.9
1 - 10-7
I - IO-x

Iterations

2
4

> 100

i. j = L 100.
Furthermore, we change the switch criterion a little bit. Instead of switching only when

IIAut;/1 - rkll2 = IIrkll2, which seems not quite practical in actual computing, we switch

when IIAlt~~:1l ~ rkl12 ::: sllrkll2, for some suitable s close to I.
GMRESR(lO) is started with .\'0. as above, and for different values of s we have listed

the number of GMRESR iteration steps in Table 10.
This experiment indicates that it might be beller to take s in practice slightly less than 1.

7. Conclusions

We propose a class of new iterative methods, GMRESR(k, j, II(E), m), for the iterative
solution of a linear system Ax = b with unsymmetric nonsingular matrix A. These methods
are shown to be robust when an LSQR-switch is included.

It appears that the increase of vector updates. inner products and required memory, as
function of the amount of iterations, is much less than the increase of this quantities using
full GMRES. From our numerical experiments we conclude that GMRESR(*, *,1, m), even
without activating the LSQR switch, is a robust method.

Optimal choices for the parameter m are easily obtained and do not change very much for
different problems. In most experiments we observe for GMRESR(*, *, 1, m) a considerable
improvement, in computing time and memory requirements, in comparison with more
familiar GMRES variants.

Though we have only analysed one specific GMRESR variant, it is clear from our pre-
sentation that there is an overwhelming freedom in variants. Some of these are currently
investigated and will be reported separately.

REFERENCES

1. O. Axelsson and G. Lindskog. On the eige/ll'a!ue distribution of a class of preconditioning

386 H. A. Van der Vorsl <lndC. Vuik

methods. Numer. Math., 48. 479-498,1986.
2. O. Axclsson and P. S. Vassilevski. A black box generalized conjugate gradient solrel" with

inner iteratiollS and I'Qriable-step preconditioning. SIAM 1. Matri;\:Anal. Appl., 12,625-644,

1991.3. Z. Bai, D. Hu, and L. Reichel. A Newton basis CMRES implementation. Tech. Report 91-t)3,

University of Kentucky, 1991.4. A. T. Chronopoulos and S. K. Kim. s-Step OrtilOmill and CMRES implemented 011 parallel
computers. Tech. Report 90/43R. UMSI, Minneapolis, 1990.

5. E. de Stutler. A parallel varia lit ojCMRES(m). In Proc. of tile 13th {MACS World Congress
on Computation and Applied f',fath.. J. Miller and R. Vichnevetsky, editors, pages 682~683.

Criterion Press, Dublin, 1991.6. T. Eirola and O. Nevanlinna. Accelerating with rank-one updates. Lin. Aig. and its Appl., 121,

511-520, \989,7. S. C. Eisenstat, H. C. Elman anJ M. H. Schultz. Variational iterative methods for IlOlISymlllCtric
systems of linear equations. SIA.~J1. Numer. Anal., 20, 345-357, 1983.

8. \. Gustafsson. A class offtrst order factorization methods. BIT, 18, 142-156, 1978.
9. Y. Huang and H. A. van der Vors!. Some ohsernuions on the conwrgence behavior ofCMRES.

Tech. Report 89-09, Delft University of Technology. Faculty of Tech. Math., 1989.
10. J. A. Meijcrink anJ H. A. van cler VOtst. An iteratire solution met/lOd for linear systems of

whid1 tile coefficient matrix is a symmetric M-matrix. Math.Comp., 31. 148-162, 1977.
11. N. M. Nachtigal, L. Reichel anJ L. N. Trefethen. A hybrid GMRES algorithm for 1I()lI~ymmetric

matrix iterations. SIAM J. Matrix Anal. Appl.. 13,796-825, 1992.
12. C. C. Paige and M. A. Saunders. LSQR: All algorithm for sparse linear equations and sparse

least squares. ACM Trails. Math. Soft .. 8, 43-71. 1982.
13. Y. Saad and M. H. Schultz. G:\fRES: a generalized minimal residual algorithm for solving

nonsymmetriC linear systems. SIAM.J. Sci. Statist. CO/llput., 7, 856-869, 1986.
14. Y. Saad. A flexible III/ler-Outer preconditioned CMRES algorithm. SIAM J. Sri. Stat. Camp.,

14,461-469,1993.15. P. Sonneveld. CGS: a fast Lanc;;os-type solwr for lIonsymmctric lillear systems. SIAM J. Sci.
Statist. Comput., 10,36-52, 1989.16. H. A. van der Vorst. High performallce preconditioning. SIAM J. Sci. Statist. Comput., 10,

1174-1185,1989.17. H. A. van Jer Vats!. Bi-CGSHB: A fast and smoothly cOJ/\'l'I'gitrgI'ariant of Bi-CG for the
solution OfllOlI-symmetric lint!ll1"systems. SIAM 1. Sci. Statist. Compllt., 13,631-644,1992.

18. H. A. van der Varst and C. Vuik. The sllperlinear coJ/\'erge/lCl' hehadOllrofGMRES. J. Comput.
Appl. Math., 48, 327-341, 1993.

19. C. Vuik. Solution afthe discretized incompressible Nader-Sroke.5 equations with the CMRES
metlrod. Int. J. for Nllm. Meth. in Fluids, 16,507-523, 1993.

20. C. Vuik and H. A. van der Varst. A comparison of SOllie GMRES-like methods. Li,l. A/g. and
its Appl., 160, 131-162, 1992.

	page1
	titles
	GMRESR: a Family of Nested GMRES Methods
	1. Introduction

	images
	image1

	page2
	titles
	2. Rank-one updates for the preconditioner

	images
	image1

	page3
	titles
	.:.::~:~tIf~~~~:;'
	or
	or
	2. Ek = I - AHk

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7

	page4
	titles
	"< .. '
	372
	or
	(2.5)
	=
	IIAukliz
	n (/ - c;c;)Eo = U - Pk-I)Eo
	1

	images
	image1
	image2
	image3
	image4

	page5
	titles
	/

	images
	image1
	image2
	image3
	image4

	page6
	titles
	k = k + 1;
	(J = ck fliCk II:; Uk = Uk fliCk II:;

	page7
	titles
	/

	images
	image1

	tables
	table1

	page8
	titles
	4. Properties of GMRESR

	images
	image1
	image2

	page9
	titles
 /.: ..
	377
	II<_~)112

	images
	image1
	image2
	image3

	page10
	titles
	~-=-- < am
	IIrpRI12 -
	' ..

	images
	image1
	image2

	page11
	titles
	.y.,
	. ,:.::::'.'
	;

	page12
	titles
	. 'I'd I I (0) A 10)

	page13
	titles
	.. '
	. "
	I - ~

	images
	image1

	page14
	titles
	6. Numerical experiments

	images
	image1

	page15
	titles
 <r
	(6.1)

	images
	image1

	tables
	table1
	table2

	page16
	tables
	table1

	page17
	titles
	385
	7. Conclusions
	REFERENCES

	images
	image1

	tables
	table1

	page18

