Iterative Helmholtz Solvers Scalable Convergence using multilevel methods Delft University of Technology

Vandana Dwarka, Kees Vuik* June 23, 2021

Kees Vuik (TU Delft)

SIAM Geoscience 2021

Aim and Impact

- Joint-work with PhD candidate Vandana Dwarka
- Contribute to broad research on Helmholtz solvers
- Understand inscalability (convergence)
- This presentation: improve convergence properties
 - Two-level methods
 - Multilevel methods (multigrid and deflation)

Introduction - The Helmholtz Equation

• Inhomogeneous Helmholtz equation + BC's

$$(-
abla^2 - k^2) \, u(\mathbf{x}) = f(\mathbf{x}), \mathbf{x} \in \Omega \subseteq \mathbb{R}^n$$

- k is the wave number: $k = \frac{2\pi}{\lambda}$
- Practical applications in seismic/medical imaging and plasma fusion

 $^{^{1} {\}sf Images: \ https://www.chalmers.se/sv/institutioner/math/utbildning/grundutbildning-chalmers \ and \ Geosphere \ Inc.}$

Introduction - Numerical Model

• Start with analytical 1D model problem

$$-\frac{d^2 u}{dx^2} - k^2 u = \delta(x - \frac{1}{2}),$$

$$u(0) = 0, u(1) = 0,$$

$$x \in \Omega = [0, 1] \subseteq \mathbb{R},$$

- Discretization using second-order FD with at least 10 gpw
- We obtain a linear system $A\hat{u} = f$

$$A = \frac{1}{h^2}$$
tridiag $[-1 \ 2 - (kh)^2 \ -1],$

- A is real, symmetric, normal, indefinite and sparse
- Using Sommerfeld BC's A becomes non-Hermitian ⇒ non-selfadjoint

Kees Vuik (TU Delft)

Introduction - Challenges

- Negative & positive eigenvalues \Rightarrow limits Krylov based solvers
- Fast near-origin moving eigenvalues ⇒ slows convergence
 - CSLP (Helmholtz operator with complex shift)
 - Deflation + CSLP
 - Despite improvements problem remains
- Problems exacerbate in 2D & 3D and as k gets larger

Preconditioning - CSLP

- Preconditioning to speed up convergence of Krylov subspace methods
- Solve $M^{-1}Au = M^{-1}f$, *M* is CSLP-preconditioner.

$$M = L - (\beta_1 - \beta_2 i)k^2 I,$$
$$(\beta_1, \beta_2) \in [0, 1]$$

- Increasing k ⇒ eigenvalues move fast towards origin ⇒ inscalable CSLP-solver
- Project unwanted eigenvalues onto zero = Deflation

Figure: $\sigma(M^{-1}A)$ for k = 50 (top) and k = 150 bottom.

Preconditioning - Deflation

• Projection principle: solve *PAu* = *Pf*

$$\tilde{P} = AQ$$
 where $Q = ZE^{-1}Z^T$ and $E = Z^TAZ$,
 $P = I - \tilde{P}, \ Z \in \mathbb{R}^{m \times n}, \ m < n$

- Columns of Z span deflation subspace
- Ideally Z contains eigenvectors
- In practice approximations: inter-grid vectors from multigrid
- Use DEF + CSLP combined ⇒ spectral improvement

$$M^{-1}PAu = M^{-1}Pf$$

Monitor eigenvalues using RFA (Dirichlet)

Preconditioning - Deflation

Investigate near-null eigenvalue of <u>all</u> operators involved

Figure: $\lambda_i(PA)$, β^j , $\lambda_i(P^T M^{-1} A)$ for k = 500

- Eigenvalues of PA and $P^T M^{-1} A$ behave like $\hat{\beta} = \frac{\lambda'(A)}{\lambda'(A_{21})}$
- If near-kernel of A and A_{2h} misaligned ⇒ near-null eigenvalues reappear!
- Equivalent to $j_{\min}^h \neq j_{\min}^{2h}$

Preconditioning - Deflation

- Recall: deflation space spanned by linear approximation basis vectors
- Transfer coarse-fine grid ⇒ interpolation error
- Measure effect by projection error E $E(kh) = ||(I - P)\phi_{j_{\min},h}||^{2},$ $P = Z(Z^{T}Z)^{-1}Z^{T}$

k	<i>E</i> (0.625)	<i>E</i> (0.3125)
10 ²	0.8818	0.1006
10 ³	9.2941	1.0062
104	92.5772	10.0113
10 ⁵	926.135	100.1382
10 ⁶	9261.7129	1001.3818

Our Approach - Introduction

- Higher-order deflation vectors
- Rational quadratic Bezier curve ⇒ one control-point
- Weight-parameter *w* to adjust control-point

• w determined such that projection error minimized

Our Approach - Projection Error (1D)

k	w = 0.1250	w = 0.0575	w = 0.01875	w = 0.00125
	kh = 1	kh = 0.825	kh = 0.625	kh = 0.3125
10 ²	0.0127	0.0075	0.0031	0.0006
10 ³	0.0233	0.0095	0.0036	0.0007
10 ⁴	0.0246	0.0095	0.0038	0.0007
10 ⁵	0.0246	0.0095	0.0038	0.0007
10 ⁶	0.0246	0.0095	0.0038	0.0007

Table: Projection error E(kh) for various w

- Weight-parameter w chosen to minimize projection error
- In all cases projection error *strictly* < 1
- RFA confirms favourable spectrum

Two-Level Deflation - 2D

Table: GMRES-iterations with tol = 10^{-6} using Sommerfeld BC's and MG-approximation of CSLP(1,1). AD contains \underline{no} CSLP.

k	APD(0.1250)	APD(0.0575)	AD(0)
	kh = 0.625	kh = 0.3125	kh = 0.3125
100	4	4	3
250	5	4	4
500	5	5	5
750	7	5	5
1000	8	8	7

- DEF + CSLP needs 471 iterations for k = 250
- Close to wavenumber independence
- Weight-parameter w and CSLP less important as kh decreases

Two-Level Deflation - 2D Marmousi

 $\ensuremath{\mathbf{Table:}}$ Solve time (s) and GMRES-iterations for 2D Marmousi

	DEF-TL	APD-TL	DEF-TL	APD-TL						
	10 gpw									
f	Solve t	ime (s)	Iterat	tions						
1	1.72	4.08	3	4						
10	7.20	3.94	16	6						
20	77.34	19.85	31	6						
40	1175.99	111.78	77	6						
		20 gp	N							
1	9.56	3.83	3	5						
10	19.64	15.45	7	5						
20	155.70	122.85	10	5						
40	1500.09	1201.45	15	5						

Two-Level Deflation - 3D

Table: GMRES-iterations with tol = 10^{-6} using Sommerfeld BC's and MG-approximation of CSLP(1,1). AD contains \underline{no} CSLP.

1			
	k	APD(0.125)	AD(0)
		Iterations	Iterations
	10	4	4
	25	4	5
	50	4	5
	75	4	5

- DEF + CSLP takes 66 iterations for k = 40
- Wavenumber independent convergence
- Two-level method memory ⇒ multilevel methods

Multilevel methods

Multilevel Deflation

Pros

Close to linear complexity

Memory efficient

Recursive structure

Use as preconditioner with FGMREs

Cons

Needs more inner cycles

Convergence depends weakly on k

Multigrid

Pros

Linear complexity

Memory efficient

Recursive structure

- Use as stand-alone or preconditioner
- Cons

Diverges for Helmholtz Slow convergence for small *k*

New research on convergent multigrid solver!

Multilevel Deflation

• Apply two-level method recursively

• Only 1 FGMRES it. per level

- Krylov 'smoother' vs Multigrid
- max \$\mathcal{O}(n^{0.25})\$ iterations on indefinite levels
- 1 Jacobi iteration on all others
- Reduce time and memory

Algorithm 3.1 Two-level Deflation FGMRES Initialization: Choose u_0 and dimension k of the Krylov subspaces. Define $(k + 1) \times k \overline{H}_k$ and initialize to zero. Arnoldi process: $r_0 = f - Au_0$, $\beta = ||r_0||_2$, $v_1 = r_0/\beta$. for j = 1, 2, ...k do $\hat{v} = Z^T v_i$ $\tilde{v} = E^{-1}\tilde{v}$ $t = Z\tilde{v}$ s = At $\tilde{r} = v_i - s$ $r = \dot{M}^{-1}\tilde{r}$ $x_i = r + t$ $w = Ax_i$ for i = 1, 2, ..., j do $h_{i,i} = (w, v_i) \ w = w - h_{i,i} v_i$ end Compute $h_{j+1,j} = ||w||_2$ and $v_{j+1} = w/h_{j+1,j}$. Define $X_k = [x_1, x_2, ..., x_k]$ $\bar{H}_k = \{h_{i,j}\}_{1 \le i \le j+1, 1 \le j \le k}$ end Form approximate solution: Compute $u_k = u_0 + X_k y_k$ where $y_k = \arg \min_y \|\beta e_1 - \bar{H}_k y\|_2$. Restart: If satisfied stop, else set $u_0 \leftarrow u_k$ and repeat Arnoldi process.

Multilevel Deflation - 3D

Table: Number of outer FGMRES-iterations for kh = 0.625. Column 1 quadratic, column 2 linear deflation vectors.

-				
k	APD	DEF		
	Iterations	Iterations		
10	9	11		
20	9	12		
40	11	17		
80	14	45		

- Both methods benefit from multilevel implementation
- Reduced time and memory
- Convergence APD slightly depends on wavenumber
- What about heterogeneous models?

Multilevel Deflation - 2D Wedge

Table: Number of outer FGMRES-iterations for kh = 0.625

$\mathbf{k} = 2\pi\mathbf{f}$	п	$c(x,y) \in [50]$	00, 3000] m/s	$c(x, y) \in [1000, 6000] \text{ m/s}$		
f (Hz)		Iterations	CPU(s)	Iterations	CPU(s)	
10	10.201	9	0.428	9	0.598	
20	41.209	11	2.112	14	11.148	
40	162.409	17	47.080	19	86.171	
60	366.025	21	157.143	22	325.960	
80	648.025	23	459.561	25	774.926	

Multilevel Deflation - 3D Sine

Table: Number of outer FGMRES-iterations for kh = 0.625

$k(\mathbf{x})^2 = lpha + eta \sin(8\pi\mathbf{x}), lpha = 0.5(k_1^2 + k_2^2), eta = 0.5 k_2^2 - k_1^2 $									
		$\gamma =$	= 1	$\gamma = 2$					
$[k_1, k_2]$	п	Iterations	CPU(s)	Iterations	CPU(s)				
[8, 25]	68.921	8	3.041	6	4.026				
[16, 50]	531.441	26	133.688	15	123.218				
[24, 75]	1.771.561	49	1295.185	28	1359.926				

Multilevel Deflation - 3D Elastic Wave

- Coupled vector equations for time-harmonic
- Wedge domain
- 20 gpw (grid points per wavelength)

Table: Number of outer FGMRES-iterations.

$k = 2\pi f$	п	$\gamma = 1$		$\gamma=2$	
f(Hz)		Iterations	CPU(s)	Iterations	CPU(s)
1	19.968	8	2.871	8	3.598
2	147.033	11	87.214	9	77.971
4	1.127.463	15	1665.686	13	1735.294

2

 $^{^{2}}$ Image and model problem from: An MSSS-preconditioned matrix equation approach for the time-harmonic elastic wave equation at multiple frequencies, M. Baumann et al.

Multigrid

- Standard multigrid diverges for small k
- Open problem in math for 30 years
- But, convergence if:

Higher-order prolongation/restriction Coarsening on CSLP instead of original Helmholtz operator

- Small number of smoothing steps using ω -Jacobi
- GMRES(3) smoothing gives a fast solver
- Works for both *V* and *W*-cycles

Multigrid - 2D

• Constant *k* using Sommerfeld BC

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$) for constant k using tol. 10⁻⁵. ν denotes the number of ω -Jacobi smoothing steps.

	k =	= 50	<i>k</i> =	100	<i>k</i> =	150	k =	= 200	k =	250
	N =	6724	N = 1	26244	N = 1	57600	N = 1	102400	N = 1	160000
	N _D	= 8	N _D	= 8	N _D	= 4	N_D	= 8	N _D	= 4
γ	1	2	1	2	1	2	1	2	1	2
$\nu = 4$	58	58	104	108	155	159	209	213	267	271
$\nu = 5$	58	58	104	104	150	166	194	229	238	287
$\nu = 6$	55	58	99	102	139	167	183	222	226	283
$\nu = 7$	53	60	97	101	136	163	179	219	221	280
$\nu = 8$	53	60	95	104	131	161	178	212	218	277

- Coarsening on CSL (shift = 0.7)
- No level-dependent parameters!
- Linear interpolation diverges ($k = 50, \gamma = 1$)
- What about GMRES(3) smoothing?

Multigrid - 2D

Constant wave number using Sommerfeld BC

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$) for constant k using tol. 10^{-5} . ν denotes the number of GMRES(3) smoothing steps.

	k =	= 50	k =	= 100	k =	= 150	k =	= 200	k =	= 250
	N =	6724	N =	26244	N =	57600	N =	102400	N =	160000
	N _D	= 8	N _C	o = 8	N _L	b = 4	N _L	o = 8	NL	₀ = 4
γ	1	2	1	2	1	2	1	2	1	2
u = 1	14	7	24	10	39	19	51	24	64	29
$\nu = 2$	8	5	13	7	22	10	28	13	34	16
$\nu = 3$	6	5	10	6	16	9	20	10	24	12
$\nu = 4$	6	5	8	5	12	7	15	9	18	10
$\nu = 5$	5	5	7	5	11	7	13	8	15	9

- Coarsening + on CSL (shift = k^{-1})
- Iteration count with $\gamma = 2$ close to *k*-independent
- Linear interpolation 199 iterations ($k = 50, \gamma = 1$)
- What about heterogeneous problems?

$\underset{\text{Figure: } k(x, y)}{\text{Multigrid} - 2D \text{ random } k \text{ (high-contrast)}}$

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$) with tol 10⁻⁵. ν denotes the number of ω -Jacobi smoothing steps.

	(k_1, k_2)	(10, 50) = (10, 50)	(k_1, k_2)	(10,75)
γ	1	2	1	2
$\nu = 4$	102	96	111	107
$\nu = 5$	97	95	103	105
$\nu = 6$	95	95	101	104
$\nu = 7$	94	94	102	104
$\nu = 8$	94	94	102	104

×10⁻³

Multigrid - 2D random k (high-contrast) Figure: k(x, y)

Figure: u(x, y)

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$) with tol 10⁻⁵. ν denotes the number of GMRES(3) smoothing steps.

$(k_1, k_2) = (10, 50)$		$(k_1, k_2) = (10, 75)$		
γ	1	2	1	2
$\nu = 1$	28	12	31	12
$\nu = 2$	16	8	17	7
$\nu = 3$	12	7	12	6
$\nu = 4$	10	6	10	6
$\nu = 5$	9	6	9	6

Conclusion

- Deflation projects unwanted eigenmodes to zero
- Misalignment of near-zero eigenvalues affects convergence
- New deflation scheme: higher-order approximation
- Two-level method wavenumber independent convergence but memory constrained
- Use higher-order scheme in multilevel methods
 - 1 Multilevel deflation (with FGMRES)
 - 2 Multigrid (preconditioner or stand-alone solver)
- Upcoming work: research on interpolation schemes and large-scale applications

References

- Upcoming articles: multilevel deflation and multigrid methods. Reports available at: http://ta.twi.tudelft.nl/users/ vuik//pub_it_helmholtz.html
- Further reading

V. Dwarka, C. Vuik.

Scalable Convergence Using Two-Level Deflation Preconditioning for the Helmholtz Equation

SIAM Journal on Scientific Computing, 42(3):A901–A928, 2020.

V. Dwarka, R. Tielen, M. Moller and C. Vuik

Towards Accuracy and Scalability: Combining Isogeometric Analysis with Deflation to Obtain Scalable Convergence for the Helmholtz Equation *Computer Methods in Applied Mechanics and Engineering*, 377:113694, 2021.

V. Dwarka and C. Vuik

Pollution and Accuracy of solutions of the Helmholtz Equation: A Novel Perspective from the Eigenvalues

Journal of Computational and Applied Mathematics, 395:113549, 2021.