HELM2D User Manual

Yogi A. Erlangga*
May 19, 2006

1 Introduction

The software HELM2D solves sparse, large linear systems arising from finite
difference discretizations of the 2D Helmholtz equation

—o5 A Ky =g, (1)

in a rectangular domain Q = [0, L,] x [0, L,]. ¢ usually represents the pressure
(acoustic) wave, and k = k(x,y) is the reduced frequency, which can be written
as

w  2nf
clz,y)  clz,y)’

k(z,y) = (2)
with f and w respectively the frequency and the angular frequency, and ¢ the
local speed of sound. f is defined as the frequency which is generated by the
source g. In the case that L, = L, = 1, k is then called the wavenumber. The
source function g is usually given in the form of Dirac § function, where

5(1‘73/) _ {év (Ivy) = (I57y5>a (3)

elsewhere,

where (zs,ys) the position of the source in a coordinate system.

To solve the Helmholtz, non-reflecting conditions are applied at the bound-
aries I' = 0N). The boundary conditions can be formulated in many ways. Some
of them are used in HELM2D, included those Engquist & Majda [], absorption
boundary layer /sponge layer widely used in geophysics and perfectly match layer
(PML).

*TU Delft, Delft Institute of Applied Mathematics (DIAM), Mekelweg 4, 2628 CD Delft,
The Netherlands,
Currently at TU Berlin, Institut fiir Mathematik, Strasse des 17. Juni 136, D-10623 Berlin,
Germany
Email: erlangga@math.tu-berlin.de



Finite difference discretization of (1) on a rectangular, equidistant grid leads
to a linear system

Az =b, AeC™™  zbeCm (4)

A is complex-valued due to the inclusion of the boundary conditions. To
solve (4), an iterative method based on Krylov subspace methods is used.

To accelerate the convergence a preconditioner M is used, which is obtained
from discretizations of the following operator

9?¢ 9%

_W—W—(Ql_a2%)k2(xay)¢:g7 (5)

with a1, as > 0 a parameter tuned in order to get fast convergence, and i=+—1
the complex identity. By preconditioning we solve the equivalent linear system

AM~ 1z =0, 2= Mz, M e Ccnxn (6)

for . In this way, multigrid is used to approximately compute M ~1.

To summarize, in solving (1) HELM2D uses an inner-outer iteration tech-
nique with a Krylov subspace method and multigrid acting as the outer and
inner iteration, respectively.

In the present manual, some technicalities (for example, on multigrid) will
be skip. These will be added later.

2 How to use

HELM2D was written in FORTRAN F77 language and is compatible to stan-
dard FORTRAN F77 compilers, like G77. It has been compiled on Intel FOR-
TRAN 95. We, however, found some incompatibilities which require some adap-
tations. Thus, we recommend to use F77 compiler, e.g. G77 of GNU (see
WWW . gnu. org).
HELM2D is packed in h2d.tgz. Put this file in a working directory and
unpack the precompiled codes by using the command
tar xvfz h2d.tgz
To create an executable file, compile the Makefile file using the command
make
This will result in an executable helm2d. By using the command

helm2d

the software is executed.



3 Input file

The way HELM2D is executed and the way the problem is defined are stored
in an input file input.dat, which is located on the same working directory. It
is a simple ASCII file with some ordering which is read by the main program
helm2d.f.

The input file can be divided into several parts which are related to problem
definition (size of the domain, source location, boundary conditions and so on),
outer iteration, inner iteration and output data.

3.1 Domain data

Domain data requires four data and this can be arbitrary depending on the
problem that is wanted to be solved.

e x1 = L, and y1l = L, define the size of the domain in = and y direc-
tion, respectively, which forms a rectangular domain. x1 and y1 must be
positive.

e re(wave) is the frequency (in Hz) and is any positive number. In case x1
=yl = 1, re(wave) represents the wavenumber.

e im(wave) is the so-called impedance (or damping) in the case where some
uniform damping is needed. This damping term is expressed in terms
of ratio with respect of the frequency or damping layer. Usually, 0 <
re(wave) < 0.1 is used.

3.2 Source position

Source position is given in xs and ys, which define a point (xs,ys). In the
program, this point is transfered into the nearest grid point to (zs, ys).

3.3 Grid parameters

Once the computational domain is determined, a rectangular, equidistant grid
is constructed as shown in Figure 1. For a domain shown in Figure 1, we define
ngx and ngy as the number of grid points without counting the grid points on
the boundaries. Thus, in our example, ngx = 3 and ngy = 2. Thus,

_ L, _ L,
ngy +1°

= 7

ngx + 1’ Y 9
For accuracy reason, we require that h, = h,. In case of absorption layer or
PML added, the width of this layer (wpml) is defined as the fraction of the L,
and L,. We usually set 0.2 < wpml < 0.3.



2 ¢ ° ° ® ®
hy
ny=1 ° ® ® ®
y [ L 4 L ®
nx=1 2 3
X hx

Figure 1: Grid definition

3.4 Problems

The parameter icase is used to build the data for the spatial variation of
speed of sound in the domain. The function to build this data can be found in
subroutine wdata.f. At this moment, we have 9 (nine) options for icase, i.e.:

irhs = 0.
irhs = 1.
irhs = 2.
irhs = 3.
irhs = 4.
m/s.

irhs = 5.
irhs = 6.

Constant wavenumber in case of L, = L, = 1.
Two-layer problem in case of L, = L, =1
Three-layer problem in case of L, = L, = 1.
Wedge problem in case of L, = L, = 1.

Constant wave number for L;, L, # 1. In this case, ¢ = 1500

Three-layer problem for L, L, # 1.
Wedge problem in case of L, L, # 1.

For c is given as an external data, modification has to be made. This will
be incorporated later.

In case of absorption layer, spatial variation of damping in that layer is
determined by a quadratic function

a=Cx |xal - zbound|27 (8)

where C' := coeffdl is a positive constant. It is usually set equal to 0.3.



3.5 Boundary conditions

Refering to Figure 1, boundary conditions must be set on the west (W), east
(E), north (N) and south (8). For temporarily, the only option is 2, which means
radiation condistions.

4 QOuter iteration

4.1 Krylov subspace

There are several outer iterations can be used to solve linear system (6). Among
them are Bi-CGSTAB, GMRES, COCG and multigrid (as a solver). In this ver-
sion, only Bi-CGSTARB is available. The rest is removed and will be incorporated
again later. In this case,

e itsol = 1. Bi-CGSTAB.

In case of preconditioning, the second parameter iprec is important and hs
two options

e iprec = 0. No preconditioner.
e iprec = 2. Preconditioned by shifted Laplace operator (5).

The parameters ipsol, insol, inprec are not relevant at this moment, and
are left as it is.

4.2 Preconditioning iprec = 2

Refering to (5) we require two parameters to define the preconditioner for (1).
Thus a7 and ae must be given, and in the input2d.dat file, they are defined
as coeffl and coeff2. It is found that the “best” option for these parameter
is coeffl = 1.0 and coeff2 = 0.5.

To build the preconditioning matrix M, the same boundary conditions must
be applied to (5). Thus, W, E, N, S must be set equal to 2.

4.3 Convergence criteria

To terminate Krylov iteration process, two parameters are required: the maxi-
mum number of iterations itmax € N and the relative residual at convergence.
The latter is defined such that the relative residual is below some tolerance,
namely

7%

lI7oll2

< tolerance := 10**°L. (9)

itol is a negative integer, and is usually from -5 to -7.
The other two parameters, Itstart and Ittrunc have no relevance what-
soever as ipsol,insol,inprec are not in use.



5 Inner iteration; Multigrid

Inner iteration is used to approximately compute M ~'. This is done by per-
forming a few number of multigrid iterations. We skip some technical details
about multigrid in this section.

Leave npx and npy as they are. In multigrid one uses a hierarchy of grids to
efficiently reduce the residuals. This hierarchy of grids is usually identified by
level. Each level corresponds to a subset of gridpoints after coarsening the finer
grid level. Thus, in multigrid several levels of grid are used. This is indicated by
m in the input file. In our method, the choice of m is rather arbitrary and does
not follow the 2™ rule in standard multigrid. This allows us to use a sequence
of grid points rather than e.g. 1, 2, 4, 16, 32, 64, 128, 256, - - -.

For multigrid, some important components are

e niter. Positive integer, indicates the number of multigrid iteration. Our
observation hints that niter = 1 is sufficient.

e npre, positive integer, indicates the number of pre-smoothing. npre = 1
is sufficient.

e npost, positive integer, indicates the number of post-smoothing. npost
= 1 is sufficient.

e cycle which indicates type of multigrid cycle. cycle = 0 means V-cycle.
cycle = 1 is used for F-cycle. The best option is cycle = 1.

e ids which is used to choose the interpolation method for prolongation P.
ids = 0is bilinear interpolation. ids = 1 is prolongator of Dendy. ids =
2 is that of de Zeeuw. The latter ids = 2 is found to be the most robust
one.

In our case, coarse grid matrix is not built by using Galerkin method.
Instead, a Petrov-Galerkin method is used. Thus

My = RALP, where R # P*, (10)

if My the coarse grid matrix and M}, the fine grid one. In this case, R is
explicitly the full-weighting.

e iswp is used to choose the smoother. Point-Jacobi with relaxation iswp
= 2 is the best choice.

e relax is used in the smoother as the relaxation parameter w. In general,
w can be a complex constant. For iswp = 2 it is found that relax(1)
= R(w) = 0.5 and relax(2) = F(w) = 0.0 are the best option.

6 Output parameter

There are two parameters:



e iprt. To save the solution, iprt = 1. If iprt = 0 no solution is saved
in a file. The solution is written in solution.out.

e iprtres. To save the residual data. If iprt = 0 no residual is saved in a
file. iprt = 1, residuals are saved. The data is written in residual.out.

Along side with this a matlab-script is included, which can be used to
visualize the data.



