Scalable Iterative Helmholtz Solvers Multilevel Methods Delft University of Technology

Vandana Dwarka, Kees Vuik* June 21, 2022

Kees Vuik (TU Delft)

ICMS Solvers for Waves Workshop 2022

June 21, 2022 1 / 34

Aim and Impact

- Joint-work with PhD candidate Vandana Dwarka
- Contribute to broad research on Helmholtz solvers
- Understand inscalability (convergence)
- This presentation: improve convergence properties
 - Two-level methods
 - Multilevel methods (multigrid and deflation)

Introduction - The Helmholtz Equation

Inhomogeneous Helmholtz equation + BC's

$$(-
abla^2 - k^2) u(\mathbf{x}) = f(\mathbf{x}), \mathbf{x} \in \Omega \subseteq \mathbb{R}^n$$

- k is the wave number: $k = \frac{2\pi}{\lambda}$
- Practical applications in seismic/medical imaging and plasma fusion

Introduction - Numerical Model

• Start with analytical 1D model problem

$$-\frac{d^2u}{dx^2} - k^2 u = \delta(x - \frac{1}{2}),$$

$$u(0) = 0, u(1) = 0,$$

$$x \in \Omega = [0, 1] \subseteq \mathbb{R},$$

- Discretization using second-order FD with at least 10 gpw
- We obtain a linear system $A\hat{u} = f$

$$A = rac{1}{h^2}$$
tridiag $[-1 \ 2 - (kh)^2 \ -1],$

- A is real, symmetric, normal, indefinite and sparse
- Using Sommerfeld BC's A becomes non-Hermitian ⇒ non-selfadjoint

Introduction - Challenges

- Negative & positive eigenvalues \Rightarrow limits Krylov based solvers
- Fast near-origin moving eigenvalues \Rightarrow slows convergence
 - CSLP (Helmholtz operator with complex shift)
 - Deflation + CSLP
 - Despite improvements problem remains
- Problems exacerbate in 2D & 3D and as k gets larger
- Additional requirements to meet pollution criteria

Preconditioning - CSLP

- Preconditioning to speed up convergence of Krylov subspace methods
- Solve $M^{-1}Au = M^{-1}f$, *M* is CSLP-preconditioner.

$$\begin{split} M &= L - (\beta_1 - \beta_2 i) k^2 I, \\ (\beta_1, \beta_2) \in [0, 1] \end{split}$$

 Increasing k ⇒ eigenvalues move fast towards origin ⇒ inscalable CSLP-solver Figure: $\sigma(M^{-1}A)$ for k = 50 (top) and k = 150 bottom.

Preconditioning - CSLP

Table: GMRES iterations using tol = 10^{-6} with (β_1, β_2) for 1D problem. CSL inversion using one V-cycle iteration.

k	(1, 1)	(1,0.5)
50	25	20
100	41	30
500	138	87
1 000	254	156
5 000	1 153	693

- Direct solve of CSLP expensive
- Approximate solve of CSLP needs more iterations
- Iterations grow with k ⇒ more near-zero eigenvalues
- Project unwanted eigenvalues onto zero = Deflation

Preconditioning - Deflation

• Projection principle: solve PAu = Pf

$$\tilde{P} = AQ$$
 where $Q = ZE^{-1}Z^T$ and $E = Z^T AZ$,
 $P = I - \tilde{P}, Z \in \mathbb{R}^{m \times n}, m < n$

- Columns of Z span deflation subspace
- Ideally Z contains eigenvectors
- In practice approximations: inter-grid vectors from multigrid
- Use DEF + CSLP combined \Rightarrow spectral improvement

$$M^{-1}PAu = M^{-1}Pf$$

• Monitor eigenvalues using RFA (Dirichlet)

Preconditioning - Deflation

Investigate near-null eigenvalue of <u>all</u> operators involved

Figure: $\lambda_j(PA), \beta^j, \lambda_j(P^T M^{-1}A)$ for k = 500

- Eigenvalues of *PA* and $P^T M^{-1}A$ behave like $\hat{\beta} = \frac{\lambda'(A)}{\lambda'(A_{21})}$
- If near-kernel of A and A_{2h} misaligned ⇒ near-null eigenvalues reappear!
- Equivalent to $j_{\min}^h \neq j_{\min}^{2h}$

Preconditioning - Deflation

Figure: Restricted & interpolated eigenvectors (left kh = 0.625, right $k^3h^2 = 0.625$

- Recall: deflation space spanned by linear approximation basis vectors
- Transfer coarse-fine grid ⇒ interpolation error
- Measure effect by projection error E $E(kh) = \|(I - P)\phi_{j_{\min},h}\|^2,$ $P = Z(Z^T Z)^{-1} Z^T$

Table: Projection error DEF-scheme

k	E(0.625)	E(0.3125)
10 ²	0.88	0.10
10 ³	9.29	1.00
10^{4}	92.57	10.01
10 ⁵	926.13	100.13
10^{6}	9 261.71	1 001.38

Higher-order Deflation

- Higher-order deflation vectors
- Rational quadratic Bezier curve ⇒ one control-point
- Weight-parameter *w* to adjust control-point

• w determined such that projection error minimized

Projection Error

k	w = 0.1250	w = 0.0575	w = 0.01875	w = 0.00125
	kh = 1	kh = 0.825	kh = 0.625	kh = 0.3125
10 ²	0.0127	0.0075	0.0031	0.0006
10 ³	0.0233	0.0095	0.0036	0.0007
10 ⁴	0.0246	0.0095	0.0038	0.0007
10 ⁵	0.0246	0.0095	0.0038	0.0007
10 ⁶	0.0246	0.0095	0.0038	0.0007

Table: Projection error E(kh) for various w for 1D

- Weight-parameter w chosen to minimize projection error
- In all cases projection error *strictly* < 1
- RFA confirms favourable spectrum

Spectral Analysis

Figure: Spectrum of old (red) and new (blue) method for $k = 10^6$ for 1D

Two-Level Deflation - 2D

Table: GMRES-iterations with tol = 10^{-6} using Sommerfeld BC's and MG-approximation of CSLP(1,1). AD contains <u>no CSLP</u>.

k	APD(0.1250)	APD(0.0575)	AD(0)
	kh = 0.625	kh = 0.3125	kh = 0.3125
100	4	4	3
250	5	4	4
500	5	5	5
750	7	5	5
1000	8	8	7

- DEF + CSLP needs 471 iterations for k = 250
- Close to *k*-independence
- Weight-parameter w and CSLP less important as kh decreases

Two-Level Deflation - 2D Marmousi

Table: Solve time (s) and GMRES-iterations for 2D Marmousi

	DEF-TL	APD-TL	DEF-TL	APD-TL			
	10 gpw						
f	Solve t	ime (s)	Iterat	tions			
1	1.72	4.08	3	4			
10	7.20	3.94	16	6			
20	77.34	19.85	31	6			
40	1 175.99	111.78	77	6			
		20 gpv	v				
1	9.56	3.83	3	5			
10	19.64	15.45	7	5			
20	155.70	122.85	10	5			
40	1 500.09	1 201.45	15	5			

Two-Level Deflation - 3D

Table: GMRES-iterations with tol = 10^{-6} using Sommerfeld BC's and MG-approximation of CSLP(1,1). AD contains <u>no CSLP</u>.

k	APD(0.125)	AD(0)
	Iterations	Iterations
10	4	4
25	4	5
50	4	5
75	4	5

- DEF + CSLP takes 66 iterations for k = 40
- *k*-independent convergence
- Two-level method memory ⇒ multilevel methods

Multilevel methods

Multilevel Deflation

Pros

Close to linear complexity

Memory efficient

Recursive structure

Use as preconditioner with FGMREs

Cons

Needs more inner cycles

Convergence depends weakly on k

Multigrid

- Pros
 - Linear complexity

Memory efficient

Recursive structure

- Use as stand-alone or preconditioner
- Cons

Diverges for Helmholtz Slow convergence for small *k*

New research on convergent multigrid solver!

Multilevel Deflation

- Apply two-level method recursively
- Only 1 FGMRES it. per level

- Krylov 'smoother' vs Multigrid
- 10 iterations on indefinite levels
- 1 Jacobi iteration on all others
- Reduce time and memory

Algorithm 3.1 Two-level Deflation FGMRES

Initialization: Choose u_0 and dimension k of the Krylov subspaces. Define $(k + 1) \times k \overline{H}_k$ and initialize to zero. **Arnoldi process:** $r_0 = f - Au_0, \beta = ||r_0||_2, v_1 = r_0/\beta.$ for i = 1, 2, ..., k do $\hat{v} = Z^T v_i$ $\tilde{v} = E^{-1}\tilde{v}$ $t = Z\tilde{v}$ s = At $\tilde{r} = v_i - s$ $r = \dot{M}^{-1}\tilde{r}$ $x_i = r + t$ $w = Ax_i$ for i = 1, 2, ..., i do $h_{i,j} = (w, v_j) w = w - h_{i,j}v_i$ end Compute $h_{i+1,i} = ||w||_2$ and $v_{i+1} = w/h_{i+1,i}$. Define $X_k = [x_1, x_2, ..., x_k]$ $\bar{H}_k = \{h_{i,i}\}_{1 \le i \le i+1, 1 \le i \le k}$ end Form approximate solution: Compute $u_k = u_0 + X_k y_k$ where $y_k = \arg \min_{y_k} \|\beta e_1 - \overline{H}_k y\|_2$. Restart:

If satisfied stop, else set $u_0 \leftarrow u_k$ and repeat Arnoldi process.

Multilevel Deflation - Spectral Analysis

Spectrum of the coarse linear systems for k = 100 for 1D. $m \le 3$ denotes the levels with m = 0 the original fine grid matrix $E_0 = A$.

Multilevel Deflation - Spectral Analysis

Spectrum of the deflation + CSLP preconditioned system (20 gpw) for 1D.

Figure: Linear interp. (Dirich.)

Figure: Quadr. (Dirich.)

Figure: Linear interp. (Somm)

Figure: Quadr. (Somm.)

Multilevel Deflation - 3D

Table: Number of outer FGMRES-iterations for kh = 0.625. Column 1 quadratic, column 2 linear deflation vectors.

k	APD	DEF
	Iterations	Iterations
10	9	11
20	9	12
40	11	17
80	14	45

- Both methods benefit from multilevel implementation
- Reduced time and memory
- Convergence APD slightly depends on k
- What about heterogeneous models?

Multilevel Deflation - 2D Wedge

Table: Outer FGMRES-iterations and CPU time for kh = 0.625.

$k = \frac{2\pi f 1\ 000}{c(x,y)}$	$c(x,y) \in [500, 3\ 000] \text{ m/s}$			$c(x,y) \in$	1 000,6 0	00] m/s
f (Hz)	Iterations	CPU(s)	п	Iterations	CPU(s)	п
10	12	4.10	41 209	9	0.58	10 201
20	18	37.14	162 409	12	3.97	41 209
30	22	118.22	366 025	16	18.99	91 809
40	29	370.91	648 025	19	34.29	162 409
60	35	1 097.31	1 456 849	22	174.03	366 025

Multilevel Deflation - 3D Sine

Table: Outer FGMRES-iterations and CPU time for kh = 0.625

8π						
$k = 2\pi f$		$\gamma = 1$		$\gamma = 2$		
f(Hz)	п	Iterations	CPU(s)	Iterations	CPU(s)	
4	68 921	8	3.04	6	4.02	
8	531 441	26	133.68	15	123.21	
12	1 771 561	49	1 259.18	28	1 359.92	

Multilevel Deflation - 3D Elastic Wave

- Coupled vector equations for time-harmonic
- Wedge domain
- 20 gpw (grid points per wavelength)

Table: Outer FGMRES-iterations and CPU time.

$k = 2\pi f$	п	$\gamma = 1$		$\gamma =$	= 2
f(Hz)		Iterations	CPU(s)	Iterations	CPU(s)
1	19 968	8	2.87	8	3.59
2	147 033	11	87.21	9	77.97
4	1 127 463	15	1 665.68	13	1 735.29

Multigrid

- Standard multigrid diverges for small k
- But, convergence if:

Higher-order prolongation/restriction Coarsening on CSLP instead of original Helmholtz operator

- Small number of smoothing steps using ω -Jacobi
- No restriction on coarsest grid
- No level-dependent parameters
- Works for both V- and W-cycles
- Let's start with a two-grid cycle!

Multigrid - Two-Grid V(1,1)

- Constant k using Dirichlet BC
- Weighted Jacobi smoothing

Table: Two-grid spectral radius using h.o. scheme

k	Quadratic Bezier		Linear	
	kh = 0.625	kh = 0.3125	kh = 0.625	kh = 0.3125
50	0.2436	0.2852	1.290	0.9217
100	0.2441	0.2076	3.325	1.0225
250	0.2443	0.1538	5.4108	21.5327
500	0.2443	0.1354	15.5047	21.5327
1000	0.2443	0.1350	27.7478	21.5327

- H.o. scheme gives spectral radius *strictly* < 1
- Analogous to projection error *strictly* < 1 for deflation!

- Constant k using Sommerfeld BC
- Construct two-grid V(1,1)-cycle

k	$\omega - J$	lacobi	Gaus	-Seidel
	kh = 0.625	kh = 0.3125	kh = 0.625	kh = 0.3125
50	14	14	6	5
100	14	14	6	5
250	14	14	6	5
500	14	14	6	5

- Both cases *k*-independence
- Still exact solve on second-level \Rightarrow memory constraints
- Can we create a deeper V-cycle?

Figure: V-cycle

- Constant k using Sommerfeld BC
- Three-grid cycle with $kh_{coarsest} = 2.5 \approx \frac{2\pi}{2.5}$

Deeper cycle diverges despite h.o. scheme ⇒ coarsen on CSLP

Figure: F-cycle

• Constant k using Sommerfeld BC

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$), tol. 10⁻⁵. ν is the number of ω -Jacobi smoothing steps.

	k	= 50	k =	= 100	k =	150	<i>k</i> =	= 200	k =	= 250
	N =	6 724	N =	26 244	N =	57 600	N =	102400	N = 1	160 000
	N _L	o = 8	N _D	= 8	N _D	= 4	N _D	= 8	N _C	0 = 4
γ	1	2	1	2	1	2	1	2	1	2
$\nu = 4$	58	58	104	108	155	159	209	213	267	271
$\nu = 5$	58	58	104	104	150	166	194	229	238	287
$\nu = 6$	55	58	99	102	139	167	183	222	226	283
$\nu = 7$	53	60	97	101	136	163	179	219	221	280
$\nu = 8$	53	60	95	104	131	161	178	212	218	277

- Coarsening on CSLP (shift = 0.7)
- Linear interpolation still diverges ($k = 50, \gamma = 1$)
- What about GMRES(3) smoothing?

• Constant k using Sommerfeld BC

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$), tol. 10⁻⁵. ν is the number of GMRES(3) smoothing steps.

	k =	= 50	<i>k</i> =	= 100	k =	= 150	<i>k</i> = 200		<i>k</i> = 250	
	N =	6 724	N =	26 244	N =	57 600	N = 102 400		$N = 160\ 000$	
	N _D	8 = 8	N	o = 8	N _L	₀ = 4	$N_D = 8$		$N_D = 4$	
γ	1	2	1	2	1	2	1	2	1	2
u = 1	14	7	24	10	39	19	51	24	64	29
$\nu = 2$	8	5	13	7	22	10	28	13	34	16
$\nu = 3$	6	5	10	6	16	9	20	10	24	12
$\nu = 4$	6	5	8	5	12	7	15	9	18	10
$\nu = 5$	5	5	7	5	11	7	13	8	15	9

- Coarsening + on CSLP (shift = k^{-1})
- Iteration count with $\gamma = 2$ close to k-independent
- Linear interpolation 199 iterations ($k = 50, \gamma = 1$)
- What about heterogeneous problems?

Multigrid - 2D random k (high-contrast)Figure: k(x, y)Figure: u(x, y)

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$) with tol 10⁻⁵. ν denotes the number of ω -Jacobi smoothing steps.

	(k_1, k_2)	(10.50) = (10.50)	(k1. k2) = (10, 75)
	(11, 12	.) (20,00)	(11,12) (20,10)
γ	1	2	1	2
$\nu = 4$	102	96	111	107
$\nu = 5$	97	95	103	105
$\nu = 6$	95	95	101	104
$\nu = 7$	94	94	102	104
	04	04	100	104

Multigrid - 2D random k (high-contrast)Figure: k(x, y)Figure: u(x, y)

Table: Number of V- ($\gamma = 1$) and W-cycles ($\gamma = 2$) with tol 10⁻⁵. ν denotes the number of GMRES(3) smoothing steps.

	(k_1, l)	$(k_2) = (10, 50)$	(k_1, k_2)	$(k_2) = (10, 75)$
γ	1	2	1	2
u = 1	28	12	31	12
$\nu = 2$	16	8	17	7
$\nu = 3$	12	7	12	6
$\nu = 4$	10	6	10	6
11 — F	0	6	0	6

Conclusion

- Deflation projects unwanted eigenmodes to zero
- Misalignment of near-zero eigenvalues affects convergence
- New deflation scheme: higher-order approximation
- Two-level method *k*-independent convergence but memory constrained
- Use higher-order scheme in multilevel methods
 - 1 Multilevel deflation (with FGMRES)
 - 2 Multigrid (preconditioner or stand-alone solver)
- Upcoming work: research on interpolation schemes and large-scale applications using parallel computing

References

- Upcoming articles: multilevel deflation and multigrid methods. Reports available at: http://ta.twi.tudelft.nl/users/ vuik//pub_it_helmholtz.html
- Further reading
 - V. Dwarka, C. Vuik.

 $\label{eq:scalable} \begin{array}{l} \mbox{Scalable Convergence Using Two-Level Deflation Preconditioning for the} \\ \mbox{Helmholtz Equation} \end{array}$

SIAM Journal on Scientific Computing, 42(3):A901A928, 2020.

V. Dwarka, R. Tielen, M. Moller and C. Vuik

Towards Accuracy and Scalability: Combining Isogeometric Analysis with Deflation to Obtain Scalable Convergence for the Helmholtz Equation

Computer Methods in Applied Mechanics and Engineering, 377:113694, 2021.

V. Dwarka and C. Vuik

Pollution and Accuracy of solutions of the Helmholtz Equation: A Novel Perspective from the Eigenvalues

Journal of Computational and Applied Mathematics, 395:113549, 2021.