Solving Large Integrated Electricity Networks The Power of Numerical Analysis

C. Vuik

Numerical Analysis, Delft Institute of Applied Mathematics,

6th International Conference on Mathematics: An Istanbul Meeting for World Mathematicians

Outline

1. Introduction

- Background
- Power Flow Computations

2. Electricity Networks

- Transmission Networks
- Distribution Networks
- Integrated networks
- 3. Results
 - Transmission Networks
 - Distribution Networks
 - Integrated Networks

4. Current Developments

C. Vuik

Introduction

Background

Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Numerical Analysis for Electricity Networks

- Computational simulations of the power system network
- Secure and efficient transmission and distribution of electrical power
- Focus on the steady-state power flow problem
 - Safe operation and planning of the system
 - Contingency analysis to simulate equipment outages
 - Analysis of stochastic behaviour due to solar and wind power generation
- Large and interconnected character of the power systems require fast and robust solution techniques

C. Vuik

Introduction

Background

Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Our electricity system

Traditionally:

- Transmission: power is transported from large, centralized generators to several **substations**
- Distribution: power is transported from the substations to end-consumers

Figure 1: Traditional grid¹

 $^{^1\}rm Yu,$ Xinghuo and Cecati, Carlo and Dillon, Tharam and Simoes, Marcelo. (2011). The New Frontier of Smart Grids. Industrial Electronics Magazine, IEEE. 5. 49 - 63. 10.1109/MIE.2011.942176.

C. Vuik

Introduction

Background

Power Flow Computations

Electricity Networks

- Transmission Networks
- Distribution Networks

Results

- Transmission Networks
- Distribution Networks
- Integrated Networks

Current Developments

Our electricity system

Currently:

- More and more decentralized power generation (solar and wind power)
- Directly connected to distribution networks
- Interconnected power systems
- ⇒ Larger power system simulations

 $^{^2 \}rm MBizon, \ CC \ BY \ 3.0 \ https://creativecommons.org/licenses/by/3.0, via Wikimedia Commons$

C. Vuik

Introduction

Background

Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

The power flow problem:

Given the generation and consumption, calculate the associated voltages to determine the flow of electrical power.

- Based on physical laws:
 - Kirchoff's Current and Voltage Laws:

$$\sum_{k} I_k = 0 \quad \text{and} \quad \sum_{i} V_i = 0$$

• Ohm's Law: I = YV

Non-linear problem

We need **voltage** V, **power** S and **impedance** Y. V, S, and Y are complex:

$$V = |V|e^{\iota\delta_V}, \quad S = P + \iota Q, \text{ and } Y = \frac{1}{R + \iota X}$$

The power flow equation:

$$S = V\overline{I} = V(\overline{YV})$$

C. Vuik

Introduction

Background

Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments The large scale of power flow problems make traditional solvers obsolete. We need research into new solution techniques.

Timeline of numerical analysis projects on this topic

2008 - 2012	
2016 - 2020	
2016 - 2021	

2018 - ongoing

- 2020 2021
- 2021 ongoing

- PhD Transmission Networks
 - PhD Distribution Networks
 - PhD Multi-Carrier Energy Networks
 - PhD Integrated Networks
- Master project the Dutch Grid
 - PhD HPC for Multi-Carrier Networks

Overview

C. Vuik

Introduction

Background

Power Flow Computations

Electricity Networks

- Transmission Networks
- Distribution Networks

Results

- Transmission Networks
- Distribution Networks
- Integrated Networks

Current Developments

- R. Idema: Newton-Krylov Methods in Power Flow and Contingency Analysis, 2012
- B. Sereeter: Mathematical formulations and algorithms for fast and robust power system simulations, 2020
- S.A. Markensteijn: Mathematical models for simulation and optimization of multi-carrier energy systems, 2021

Overview

PhD Theses

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

- Transmission Networks
- Distribution Networks

Results

- Transmission Networks
- Distribution Networks
- Integrated Networks
- Current Developments

Power flow computations on transmission networks R. Idema, 2012

Transmission network properties:

- High-Voltage Alternating Current (AC)
- Meshed network
- Balanced network \Rightarrow single-phase computations

Figure 3: Single-phase voltage representation of AC power flow

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Power flow computations on transmission networks

R. Idema, 2012

Traditional solvers for the steady-state power flow problem

- Newton-Raphson (NR)
 - + Quadratic convergence properties
 - Calculation of Jacobian matrix every iteration
- Fast-Decoupled Load-Flow (FDLF)
 - + Calculation of coefficient matrices only at start
 - + Reduced memory and computational cost
 - Sometimes fails to converge

In general, NR is preferred over FDLF because of improved robustness.

General agreement to use NR for large, complex power flow problems of the future.

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Power flow computations on transmission networks R. Idema, 2012

- Traditional Newton power flow solvers use a direct solver for the linear systems
- Iterative linear (Newton-Krylov) solvers are generally more efficient than direct solvers
 - They scale much better in problem size
 - They are well suitable for contingency analysis

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Power flow computations on transmission networks R. Idema, 2012

Our contributions:

- Development of robust Newton-Krylov methods
- Comparison of different preconditioners icw Krylov methods
- Large-scale simulations, networks with millions of buses
- Contingency analysis
- Uncertainty analysis

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmissior Networks

Distribution Networks

Integrated Networks

Current Developments

Power flow computations on distribution networks

B. Sereeter, 2021

Distribution network properties:

- Medium/Low-Voltage Alternating Current
- Radial network
- High R/X ratio on cables
- Unbalanced network \Rightarrow three-phase computations

Figure 4: Three-phase voltage representation of unbalanced AC power flow

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Power flow computations on distribution networks

B. Sereeter, 2021

Adapted Newton-Raphson solvers for the steady-state power flow problem on distribution networks

- Newton-Raphson using current instead of power mismatches
- More attention to the modeling of three-phase elements such as transformers, loads, and shunts

C. Vuik

Introduction

Background Power Flow

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Power flow computations on distribution networks

B. Sereeter, 2021

Our contributions:

- Comparison of six formulations to solve the power flow problem on distribution networks
- Optimal power flow computations
- Case-study on the large Dutch power grid icw DNO Alliander
 - Analysis of admittance matrix: SPD properties
 - Application of several NA techniques, such as reordering

Figure 6.2: Sparsity of matrix G₂₂ and reordered G₂₂ using RCM.

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Power flow computations on integrated networks M.E. Kootte, now

The changing electricity landscape not only require more efficient solvers, but also an integrated approach.

- Simulation of the power flow problem on integrated transmission-distribution networks
- Evaluation of effect of amount of distributed generation and unbalance on transmission network

Current Developments

Figure 5: Different locations of Voltage problems on the MV/LV Distribution network. Left: Integrated network. Right: Separate network Source: B. Sereeter et. al

C. Vuik

Introduction

- Background
- Computation

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

- Transmission Networks
- Distribution Networks
- Integrated Networks
- Current Developments

Transmission Network

• Completely balanced

Distribution Network

• Completely unbalanced

Single-phase model

$$\begin{split} V_i &= \begin{bmatrix} V_a \end{bmatrix}_i, \\ S_i &= \begin{bmatrix} S_a \end{bmatrix}_i, \\ Y_{ij} &= \begin{bmatrix} Y_{ii}^a & Y_{ij}^a \\ ^{1\times 1} & ^{1\times 1} \\ Y_{ii}^a & Y_{ii}^a \end{bmatrix} \end{split}$$

- = Three-phase model

C. Vuik

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Power flow computations on integrated networks M.E. Kootte, now

Our contributions:

Comparison of four different methods to integrate networks

- Unified methods
 - Homogeneous three-phase network model
 - Hybrid single-phase/three-phase network model
- Splitting methods
 - Homogeneous three-phase network model
 - Hybrid single-phase/three-phase network model

C. Vuik

Introduction

- Background
- Power Flow Computations

Electricity Networks

- Transmission Networks
- Distribution Networks

Integrated networks

Results

- Transmission Networks
- Distribution Networks
- Integrated Networks

Current Developments

Advantages and Disadvantages

Homogeneous networks

- + Intuitive physical approach
- Large system

Hybrid networks

- + Respects the simplifications of the Transmission Network
 - Complicated

Unified methods

- + One system
 - Should solve the entire system with the same NR-method (NR-P or NR-TCIM).

Splitting methods

- + No need to share network information between System Operators
 - Extra iterative scheme

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

- Transmission Networks
- Distribution Networks

Integrated networks

Results

- Transmission Networks
- Distribution Networks
- Integrated Networks
- Current Developments

Multi-Carrier Energy Systems A. Markensteijn, 2021

- Multi-carrier energy systems (MES) consist of several energy carriers
- Gas, power (electricity), heat, cooling, biogas, transport, etc.
- Coupled through CHP's, gas-fired generators, boilers, etc.
- Steady-state load flow simulations required for design and operation.

C. Vuik

Introduction

Background

Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Multi-Carrier Energy Systems A. Markensteijn, 2021

	Node	Link	Terminal link			
Gas	pressure p	flow q	flow q			
Electricity	voltaro V	current /	current <i>I</i>			
Liectricity	voltage v		power S			
	pressure <i>p</i>		flow <i>m</i>			
Heat	supply temp. T _s	flow <i>m</i>	outflow temp. T_o			
	return temp. T_r		heat power ϕ			

Table 1: Network parameters

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Multi-Carrier Energy Systems A. Markensteijn, 2021

Network equations

	Kirchhoff's first law	Kirchhoff's second law	Resistance Iaw	
Electricity	Kirchhoff's current law	Kirchhoff's voltage law	Ohm's law	Complex power equation
Gas	Conservation of mass	Loop pressure equation	Steady-state flow equation	
Heat (hydraulic)	Conservation of mass	Loop pressure equation	Pressure drop equation	
Heat (thermal)	Temperature mixing rule		Temperature drop equation	Heat power equation

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Scalability of Multi-Carrier Networks B. Nguyen, now

- Modelling and simulating integrated energy networks
- Graph-based model for integrated energy networks based on Anne Markensteijn's PhD thesis (reference to thesis)
- Research on **solvability** and **scalability** of this graph-based model

Automating AC power flow computations on the Dutch grid S. Chipli, 2021, Tennet

Solving Large Electricity Networks

C. Vuik

Introduction

Background

Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

TUDelft

C. Vuil

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Transmission networks

Results

C. Vuik

Introduction

Background Power Flow

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Current

Developments

Figure 9.8: Power flow with J_0 based preconditioning

Numerical experiments with several iterative (inexact Newton-Krylov) power flow solver compared to direct method, solving the full nonlinear power flow problem.

TUDelft

Results

C. Vuik

Introduction

Background

Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

initial solution	flat start								
preconditioning	dir	rect	OWD	J_0	base J_0				
	count	iter	count	iter	count	iter			
converged	6665	7/7	6665	6/15	6666	6/20			
diverged	24	12/12	24	12/73	23	12/88			
	count	time	count	time	count	time			
PCSetUp	46948	191	6690	57.6	2	0.02			
PCApply	46948	16.2	142263	48.9	176899	62.0			
KSPSolve	46948	208	40287	135	40360	99.8			
CalcJac	53638	98.9	46977	86.2	47050	86.2			
CA	1	320	1	238	1	198			

initial solution	base case solution							
preconditioning	direct		OWI	$_1 J_0$	base J^*			
	count	iter	count	iter	count	iter		
converged	6666	2.2/2.2	6666	2.3/3.3	6665	2.4/6.3		
diverged	23	12/12	23	12/73	24	12/88		
	count	time	count	time	count	time		
PCSetUp	14975	85.0	6686	57.8	2	0.02		
PCApply	14975	5.18	38335	13.2	60661	21.3		
KSPSolve	14975	90.3	15472	77.6	16418	33.5		
CalcJac	21665	43.0	22162	42.1	23108	43.7		
CA	1	140	1	132	1	84.4		

Table 9.9: Contingency analysis using Eisenstat and Walker forcing terms

Results of numerical experiments with the Newton-Krylov power flow solver, applied to the contingency analysis problem. The UCTE winter 2008 study model is used as base case. The contingency cases consist of the base case with a single pair of buses (that were connected in the base case) disconnected, simulating branch outages.

sults

Results

Solving Large Electricity Networks

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

- Transmission Networks
- Distribution Networks
- Integrated networks

Results

- Transmission Networks
- Distribution Networks
- Integrated Networks
- Current Developments

Case study of large Dutch power grid, supported by DNO Alliander

- Simulation of the MV/LV grid
- Focus on voltage problems
- Goal of the model: support large-scale investment policy decisions, such as:
 - How many transformers will be overloaded the next 30 years?
 - In which are of the country should more engineers be recruited for cable replacement?
- Test-case: network of Alliander
 - 1/3 of total Dutch power grid
 - 80,000 km cables and three million customers
 - 24 million buses

Results

Solving Large Electricity Networks

C. Vuik

Introduction

Background

Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Integrated networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments Table 6.4: Comparison between numerous NA techniques on the LLPF problem with complex components (5.16).

Algorithms	Time & Iter	$rac{ V_2^i - V_2^d _2}{ V_2^d _2}$	NNZ
Eq. (6.4)	42.6 sec	0	111,470,118
Eq. (5.16): $Y_{22} \setminus b$	$17.23 \sec$	3.03×10^{-11}	27 867 547
+ RCM	15.58 sec	1.90×10^{-11}	21,001,041
LU + RCM	7.41 sec	5.84×10^{-11}	32, 284, 123
GMRES(ilu(0)) + RCM	177.86 sec & 20 it	0.3427	27 867 547
BiCGSTAB(ilu(0)) + RCM	56.21 sec & 20 it	0.2503	21,001,041
$GMRES(ilu(10^{-8})) + RCM$	18.75 sec & 2 it	7.23×10^{-08}	31,629,906
$GMRES(ilu(10^{-11})) + RCM$	13.78 sec & 1 it	9.82×10^{-08}	32,031,268
$GMRES(ilu(10^{-14})) + RCM$	14.27 sec & 1 it	9.60×10^{-11}	32,244,575
$BiCGSTAB(ilu(10^{-10})) + RCM$	10.57 sec & 0.5 it	1.12×10^{-06}	31,920,611
$BiCGSTAB(ilu(10^{-12})) + RCM$	10.77 sec & 0.5 it	8.73×10^{-09}	32, 119, 629
$BiCGSTAB(ilu(10^{-14})) + RCM$	10.92 sec & 0.5 it	9.61×10^{-11}	32,244,575

Results of several NA techniques applied to the Dutch MV/LV grid.

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

Transmission Networks

Distribution Networks

Results

Transmission Networks

Distribution Networks

Integrated Networks

Current Developments

Results

Integrated networks

Results

Vuik							
Vuik			IC		MFS	hybri	id
		its	CPU	INTE	1-	In	CPU
ound				-101-3	.,	.0	
low ations	Test case	#	sec	#	#	#	sec
	T9-3D13 (7-9)	3	0.020	3	4	5	1.494
rks	D33-2D37 (30-31)	10	0.048	13	5	6	4.974
ssion s	T118-5D123 (108-112)	4	0.060	3	7	4	1.691
tion s	T3120-10D8500 (2700-2709)	5	3.015	3	6	4	12.51
ed networks			F3P		MFS	-hom	0
ssion		its	CPU	I _{MFS}	IT	I_D	CPU
ion s	Test case	#	sec	#	#	#	sec
ed Networks	T9-3D13 (7-9)	3	0.017	3	4	5	1.791
nt	D33-2D37 (30-31)	12	0.065	13	5	6	6.833
	T118-5D123 (108-112)	4	0.073	3	4	4	1.973
	T3120-10D8500 (2700-2709)	4	3.675	3	6	4	14.53

Comparison on number of iterations and CPU-time of the integration methods, applied to four integrated test-cases.

Inte

Solving Large Electricity

Networks

C. Vuik

Results

		Original						D	istr. C	Generat	ion				
			PV	IC	MFS-hybrid		PV	IC	MFS-hybrid						
		test case	buses	IU	I _{MFS}	IT	ID	buses	IU	I _{MFS}	IT	ID			
		T9-D13	0	3	3	4	4	4	3	5	4	5			
		D33-D37	1	5	8	4	5	5	5	9	4	5			
		T118-D123	0	4	3	7	5	5	4	6	7	5			
		T3120-D8500	0	4	3	6	5	5	4	3	6	4			
vorks				D	istr. G	Generati	on								
			PV	F3P	3P MFS-homo			MFS-homo			PV	F3P	MFS	5-hom	10
		test case	buses	I_U	I _{MFS}	I_T	I_D	buses	I_U	I _{MFS}	I_T	I_D			
		T9-D13	0	3	3	4	4	4	3	6	4	5			
works		D33-D37	1	5	8	4	5	5	5	9	4	5			
		T118-D123	0	4	3	4	5	5	4	6	4	5			
		T3120-D8500	0	4	3	6	5	5	4	3	6	4			

Comparison of the influence of the number of PV buses (Distributed Generation) on number of iterations. The left column contains the standard amount of PV buses and the right column contains additional number of PV buses.

Integrated Net

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

- Transmission Networks
- Distribution Networks
- Integrated networks

Results

- Transmission Networks
- Distribution Networks
- Integrated Networks

Current Developments

Conclusions and Current Developments

- Expertise in running fast and robust simulations of the power flow problem
- Application of NA techniques to very large problems have proven to speed-up the calculations
- The computations on the large Dutch MV/LV grid, showed that these techniques work well on a real network
- We hope to prove the same on the very large HV grid, in corporation with TSO Tennet
- We continue the research into very large integrated networks and multi-carrier energy networks

C. Vuik

Introduction

Background Power Flow Computations

Electricity Networks

- Transmission Networks
- Distribution Networks
- . .
- Transmission
- Distribution Networks
- Integrated Networks

Current Developments

Thank you

References:

- B. Sereeter, C. Vuik, and C. Witteveen (2017). "Newton power flow methods for unbalanced three-phase distribution networks". In: Energies 10.10, p. 1658. issn: 19961073.
- R. Idema and G. Papaefthymiou and D.J.P. Lahaye and C. Vuik and L. van der Sluis Towards Faster Solution of Large Power Flow Problems IEEE Transactions on Power Systems, 28, pp. 4918-4925, 2013
- M.E. Kootte and C. Vuik Steady-State Stand-Alone Power Flow Solvers for Integrated Transmission-Distribution Networks: A Comparison Study and Numerical Assessment Energies, 14(18), 5784, 2021
- A.S. Markensteijn and J.E. Romate and C. Vuik Optimal flow for general multi-carrier energy systems, including load flow equations Results in Control and Optimization, 5, 100050, 2021

References