Scalable solvers for the Helmholtz probem

Jinqiang Chen, Vandana Dwarka, Cornelis Vuik*

Technische Universiteit Delft

Aim and Impact

(1) Contribute to broad research on parallel scalable iterative solvers for time-harmonic wave problems
(1) This presentation: matrix-free parallelization
> Complex shift Laplace Preconditioner (CSLP)
> Deflation methods
> Parallel performance

Introduction - the Helmholtz Problem

E The Helmholtz equation (describing time-harmonic waves) + BCs

$$
-\Delta u(\mathbf{x})-k(\mathbf{x})^{2} u(\mathbf{x})=g(\mathbf{x}), \text { on } \Omega \subseteq \mathbb{R}^{n}
$$

$>k(\mathbf{x})$ is the wavenumber, $k(\mathbf{x})=(2 \pi f) / c(\mathbf{x})$, where f is the frequency and c is the acoustic velocity of the media
> Applications in seismic exploration, medical imaging, antenna synthesis, etc.

国 Larisa, High-performance implementation of Helmholtz equation with absorbing boundary conditions.
http://www.math.chalmers.se/~larisa/www/MasterProjects/HelmholtzABSbc.pdf
国 M. Jakobsson, et al (2016). Mapping submarine glacial landforms using acoustic methods. Geological Society.

Introduction

(a) Zhurong rover

(b) The radar imaging profile

(c) Numerical model

(d) Observed data vs. simulation

国 Li, C., Zheng, Y., Wang, X. et al. (2022) Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar. Nature.

Introduction - Challenges

E Linear system from discretization

$$
A u=b
$$

> A is real, sparse, symmetric, normal, and indefinite; non-Hermitian with Sommerfeld BCs
? Direct solver or iterative solver
A Accuracy and pollution error $\left(k^{3} h^{2}<1\right)$: finer grid (3D) \Rightarrow larger linear system ${ }^{c}$ Memory-efficient methods; High-Performance Computing (HPC)
A Negative \& positive eigenvalues: larger wavenumber \Rightarrow more iterations
${ }^{\circ}$ Preconditioner: Complex Shifted Laplace Preconditioner (CSLP)
${ }^{c}$ (Higher-order) Deflation
A Parallelism

Aim

\& A wavenumber-independent convergent and parallel scalable solver

Introduction - Metrics

(1) Convergence metric:
> Krylov-based solvers, GMRES-type: the number of iterations (\#iter); IDR(s): the number of matrix-vector multiplications (\#Matvec)
(1) Scalability:
> Strong scaling: the number of processors is increased while the problem size remains constant
> Weak scaling: the problem size increases along with the number of tasks, so the computation per task remains constant
> Wall-clock time: t_{w}; number of processors: $n p$
>Speedup: $S_{p}=\frac{t_{w, r}}{t_{w, p}}, E_{P}=\frac{S_{p}}{n p / n p_{r}}=\frac{t_{w, r} \cdot n p_{r}}{t_{w, p} \cdot n p}$

Introduction - Numerical Models

(Model problems on a rectangular domain Ω with boundary $\Gamma=\partial \Omega$

$$
\begin{array}{r}
-\Delta u(\mathbf{x})-k(\mathbf{x})^{2} u(\mathbf{x})=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right), \text { on } \Omega \\
\frac{\partial u(\mathbf{x})}{\partial \vec{n}}-\mathrm{i} k(\mathbf{x}) u(\mathbf{x})=0, \text { on } \Gamma
\end{array}
$$

> Constant wavenumber: $k(\mathbf{x})=k$
> Non-constant wavenumber: Wedge, Marmousi problem, 3D SEG/EAGE Salt Model, etc.
(1) Finite-difference discretization on a uniform grid with grid size h. (2D example)
>Laplace operator: $-\Delta_{h} \mathbf{u} \approx \frac{-u_{i, j-1}-u_{i-1, j}+4 u_{i, j}-u_{i+1, j}-u_{i, j+1}}{h^{2}}$
> Sommerfeld BC s: a ghost point

$$
\frac{\partial u}{\partial \vec{n}}\left(0, y_{j}\right)-\mathrm{i} k\left(0, y_{j}\right) u\left(0, y_{j}\right) \approx \frac{u_{0, j}-u_{2, j}}{2 h}-\mathrm{i} k_{1, j} u_{1, j}=0 \Rightarrow u_{0, j}=u_{2, j}+2 h \mathrm{i} k_{1, j} u_{1, j}
$$

(1) Preconditioned Krylov subspace solver: Flexible GMRES for complex system
() Preconditioner: Geometric multigrid/multilevel methods

Introduction - Numerical Models

i Stencil notation

> Laplace operator:

$$
\left[-\Delta_{h}\right]=\frac{1}{h^{2}}\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{array}\right]
$$

> "Wavenumber operator":

$$
\left[\mathcal{I}_{h} \mathbf{k}^{2}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & k_{i, j}^{2} & 0 \\
0 & 0 & 0
\end{array}\right] \stackrel{\text { const }}{=}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] k^{2}
$$

> $A \mathbf{u}=\mathbf{b}$:

$$
\left[A_{h}\right]=\left[-\Delta_{h}\right]-\left[\mathcal{I}_{h} \mathbf{k}^{2}\right]
$$

Framework - Matrix-free operations

(1) Perform computations with a matrix without explicitly forming or storing the matrix \Rightarrow Reduce memory requirements

Matrix-vector multiplication

If a matrix can be represented by a so-called stencil notation

$$
[A]=\left[\begin{array}{ccc}
a_{-1,1} & a_{0,1} & a_{1,1} \\
a_{-1,0} & a_{0,0} & a_{1,0} \\
a_{-1,-1} & a_{0,-1} & a_{1,-1}
\end{array}\right],
$$

Then $\mathbf{v}=A \mathbf{u}$ can be computed by

$$
v_{i, j}=\sum_{p=-1}^{1} \sum_{q=-1}^{1} a_{p, q} u_{i+p, j+q}
$$

with the help of a ghost point on the physical boundary and one overlapping grid point.

Framework - Distributed data structure

$>$ Vector $\mathbf{u} \Leftarrow 2 \mathrm{D}$ array: $\mathrm{u}(1: \mathrm{Nx}, 1: \mathrm{Ny}) \Leftarrow$ each sub-domain: $u(1-L A P: n x+L A P, 1-L A P: n y+L A P)$
> Operations (e.g. matvec, dot-product, vector update) perform on each u(1:nx,1:ny) simultaneously

CSLP

(2) Speed up convergence of Krylov subspace methods by Preconditioning
(7) Solve $M^{-1} A u=M^{-1} b$
(1) Complex Shifted Laplace Preconditioner (CSLP)

$$
M_{h}=-\Delta_{h}-\left(\beta_{1}-\beta_{2} \mathbf{i}\right) \mathcal{I}_{h} \mathbf{k}^{2},\left(\beta_{1}, \beta_{2}\right) \in[0,1], \quad \text { e.g. } \beta_{1}=1, \beta_{2}=0.5
$$

© Stencil notation
(1) Solve $M x=u$ by multigrid method (V-cycle) $\Rightarrow x \approx M^{-1} u$
> Vertex-centered coarsening based on the global grid
> Damped Jacobi smoother (easy to parallelize)
> Full-weight restriction $I_{h}^{2 h}$ \& linear interpolation $I_{2 h}^{h}$

$$
\left.\left[I_{h}^{2 h}\right]=\frac{1}{16}\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]_{h}^{2 h},\left[I_{2 h}^{h}\right]=\frac{1}{4}\right] \begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array} \underbrace{h}_{2 h}
$$

> Coarse-grid operator obtained by re-discretization
© Stencil notation: $\left[M_{2 h}\right]$ similar to $\left[M_{h}\right]$

Parallel CLSP-preconditioned Krylov solver

3D SEG/EAGE Salt Model

>Real large-size domain $12800 \mathrm{~m} \times 12800 \mathrm{~m} \times 3840 \mathrm{~m}$
$>$ High heterogeneity: the velocity varies from $1500 \mathrm{~m} \mathrm{~s}^{-1}$ to $4482 \mathrm{~m} \mathrm{~s}^{-1}$
> Grid size $641 \times 641 \times 193$

(a) Velocity distribution

(b) Pattern of wave field at $f=5 \mathrm{~Hz}$

Figure: 3D SEG/EAGE Salt Model

Parallel CLSP-preconditioned Krylov solver

(1) Parallel CSLP-preconditioned IDR(4) for 3D SEG/EAGE Salt Model with grid size $641 \times 641 \times 193$ at $f=5 \mathrm{~Hz}$

Table: Performance on DelftBlue ${ }^{1}$

$\mathrm{npx} \times \mathrm{npy} \times \mathrm{npz}$	Nodes	\#Matvec	$\mathrm{t}(\mathrm{s})$	Sp	Ep
$6 \times 4 \times 2$	1	413	897.25		
$6 \times 8 \times 2$	2	423	510.56	1.76	0.88
$6 \times 8 \times 4$	4	423	298.86	3.00	0.75
$9 \times 8 \times 4$	6	404	203.31	4.41	0.74

Table: Performance on Magic Cube ${ }^{2}$

$\mathrm{npx} \times \mathrm{npy} \times \mathrm{npz}$	Nodes	\#Matvec	$\mathrm{t}(\mathrm{s})$	Sp	Ep
$4 \times 4 \times 2$	1	405	505.14		
$4 \times 4 \times 4$	2	418	287.60	1.76	0.88
$8 \times 8 \times 2$	4	390	155.64	3.25	0.81

Good parallel performance

() Effective on different platforms
${ }^{1}$ DHPC, DelftBlue Supercomputer (Phase 1) https://www.tudelft.nl/dhpc/ark: /44463/DelftBluePhase1
${ }^{2}$ Supercomputer Magic Cube III: https://www.ssc.net.cn/en/resource-hardware.html

Parallel CLSP-preconditioned Krylov solver

(a) Single compute node

(b) Multiple compute nodes

Figure: Strong scaling ${ }^{1}$. 3D model problem with ~ 100 million unknowns, \#Matvec $\simeq 850$

[^0]
CSLP - Cons

(7) Increasing $k \Rightarrow$ eigenvalues move fast towards origin
() Too many iterations for high frequency
(1) Project unwanted eigenvalues to zero \Rightarrow Deflation

Figure: $\sigma\left(M_{(1,0.5)}^{-1} A\right)$ for $k=20$ (left) and $k=80$ (right)

Figure: \#Iter increases with k

Deflation - introduction

(2) Project unwanted eigenvalues to zero \Rightarrow Deflation
(1) Deflation preconditioning: solve $P A \hat{u}=P b$

$$
\begin{array}{r}
P=I-A Q, \quad \text { where } Q=Z E^{-1} Z^{T}, \quad E=Z^{T} A Z \\
A \in \mathbb{R}^{n \times n}, Z \in \mathbb{R}^{m \times n}
\end{array}
$$

() Columns of Z span deflation subspace
() Ideally Z contains eigenvectors
(7) In practice approximations: inter-grid vectors from multigrid
(1) Adapted Deflation Variant 1 (A-DEF1): $P_{A-D E F 1}=M_{\left(\beta_{1}, \beta_{2}\right)}^{-1} P+Q$
> Combined with the standard preconditioner CSLP
(1) Use CSLP-preconditioned GMRES to solve the coarse grid problem (obtain E^{-1}) approximately
(0) Linear approximation basis deflation vectors \rightarrow higher-order deflation vectors (Adapted Preconditioned DEF, APD)
> wavenumber-independent convergence

Two-level deflation - overall algorithm

(1) Flexible GMRES-type methods \rightarrow allow for variable preconditioner

```
Algorithm Two-level deflation FGMRES
    Choose \(u_{0}\) and dimension \(k\) of the Krylov subspace.
    Define \((k+1) \times k \bar{H}_{k}\) and initialize to zero
    Compute \(r_{0}=b-A u_{0}, \beta=\left\|r_{0}\right\|, v_{1}=r_{0} / \beta\);
    for \(j=1,2, \ldots, k\) or until convergence do
        \(\hat{v}_{j}=Z^{T} v_{j} \quad \triangleright\) Precondition starts
        \(\tilde{v} \approx E^{-1} \hat{v} \quad \triangleright\) Solved by GMRES approximately, preconditioned by CSLP, tol \(=10^{-1}\)
        \(t=Z \tilde{v}\)
        \(s=A t\)
        \(\tilde{r}=v_{j}-s\)
        \(r \approx M^{-1} \tilde{r} \quad \triangleright\) Approximated by one multigrid V-cycle
        \(x_{j}=r+t \quad \triangleright\) Precondition ends
        \(w=A x_{j}\)
        for \(i:=1,2, \ldots, j\) do
            \(h_{i, j}=\left(w, v_{i}\right)\)
            \(w:=w-h_{i, j} v_{i}\)
        end for
        \(h_{j+1, j}:=\|w\|_{2}, v_{j+1}=w / h_{j+1, j} ; X_{k}=\left[x_{1}, \ldots, x_{k}\right] ; \bar{H}_{k}=\left\{h_{i, j}\right\}_{1 \leq i \leq j+1,1 \leq j \leq m}\)
    end for
    \(u_{k}=u_{0}+X_{k} y_{k}\) where \(y_{k}=\arg \min _{y}\left\|\beta e_{1}-\bar{H}_{k} y\right\|\)
```


Higher-order deflation vectors

(1) 2D: the higher-order interpolation \& restriction has 5×5 stencil > Two overlapping grid points are needed

$$
[Z]=\frac{1}{64}\left[\begin{array}{ccccc}
1 & 4 & 6 & 4 & 1 \\
4 & 16 & 24 & 16 & 4 \\
6 & 24 & 36 & 24 & 6 \\
4 & 16 & 24 & 16 & 4 \\
1 & 4 & 6 & 4 & 1
\end{array} L_{2 h}^{h}, \quad\left[Z^{T}\right]=\frac{1}{64}\left[\begin{array}{ccccc}
1 & 4 & 6 & 4 & 1 \\
4 & 16 & 24 & 16 & 4 \\
6 & 24 & 36 & 24 & 6 \\
4 & 16 & 24 & 16 & 4 \\
1 & 4 & 6 & 4 & 1
\end{array}\right]_{h}^{2 h}\right.
$$

....: fine grid points $\in \Omega^{h}$

- : coarse grid points $\in \Omega^{2 h}$

Figure: The allocation map of interpolation operator

Matrix-free two-level deflation

$$
P=I-A Q, \quad \text { where } Q=Z E^{-1} Z^{T}, \quad E=Z^{T} A Z
$$

> With matrix constructed, $E=Z^{T} A Z$, so-called Galerkin Coarsening

Matrix-free coarse grid operation $y=E x$?

() Straightforward Galerkin Coarsening operator;

$$
x_{1}=Z x, x_{2}=A_{h} x_{1}, y=Z^{T} x_{2} \Rightarrow y=E x
$$

> unacceptable computational cost for consideration of multilevel method
(1) Re-discretization:

8 ReD-O2: The same as the fine grid
\& ReD-O4: Fourth-order re-discretization of the Laplace operator

$$
[E]=\frac{1}{12 \cdot(2 h)^{2}}\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & -16 & 0 & 0 \\
1 & -16 & 60 & -16 & 1 \\
0 & 0 & -16 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]-\mathcal{I}_{2 h} \mathbf{k}_{2 h}^{2}
$$

Matrix-free two-level deflation

\& ReD-GIk: Re-discretized scheme (stencil) from the result of Galerkin coarsening

$$
\begin{gathered}
{\left[-\Delta_{2 h}\right]=\frac{1}{(2 h)^{2}} \cdot \frac{1}{256}\left[\begin{array}{ccccc}
-3 & -44 & -98 & -44 & -3 \\
-44 & -112 & 56 & -112 & -44 \\
-98 & 56 & 980 & 56 & -98 \\
-44 & -112 & 56 & -112 & -44 \\
-3 & -44 & -98 & -44 & -3
\end{array}\right]} \\
\Rightarrow-\Delta_{2 h} u_{2 h}=-4 \frac{\partial^{2} u}{\partial x^{2}}-4 \frac{\partial^{2} u}{\partial y^{2}}-\left(\frac{13}{48} \frac{\partial^{4} u}{\partial x^{4}}+\frac{1}{2} \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{13}{48} \frac{\partial^{4} u}{\partial y^{4}}\right)(\mathbf{2 h})^{2}+\mathcal{O}\left(h^{4}\right) \\
{\left[\mathcal{I}_{2 h} \mathbf{k}_{2 h}^{2}\right]=\frac{1}{64^{2}}\left[\begin{array}{ccccc}
1 & 28 & 70 & 28 & 1 \\
28 & 784 & 1960 & 784 & 28 \\
70 & 1960 & 4900 & 1960 & 70 \\
28 & 784 & 1960 & 784 & 28 \\
1 & 28 & 70 & 28 & 1
\end{array}\right] \mathbf{k}_{2 h}^{2}} \\
\Rightarrow[E]=\left[-\Delta_{2 h}\right]-\left[\mathcal{I}_{2 h} \mathbf{k}_{2 h}^{2}\right]
\end{gathered}
$$

? Boundary conditions - ReD-O2 on the boundary grid points

Convergence - Constant wavenumber

Table: The number of iterations required by using APD-GMRES.

Grid size	k	$k h$	ReD-O2	ReD-O4	ReD-Glk
65×65	40	0.625	$\mathbf{2 0}$	$\mathbf{1 7}$	9
129×129	80	0.625	$\mathbf{3 0}$	$\mathbf{1 8}$	9
257×257	160	0.625	$\mathbf{8 7}$	$\mathbf{1 9}$	9
513×513	320	0.625	$>\mathbf{1 0 0}$	$\mathbf{2 3}$	$\mathbf{1 0}$
129×129	40	0.3125	$\mathbf{1 8}$	$\mathbf{1 8}$	7
257×257	80	0.3125	$\mathbf{1 9}$	$\mathbf{1 8}$	7
513×513	160	0.3125	$\mathbf{2 1}$	$\mathbf{1 8}$	7
1025×1025	320	0.3125	$\mathbf{2 8}$	$\mathbf{2 0}$	6
2049×2049	640	0.3125	$\mathbf{5 3}$	$\mathbf{2 3}$	6

" $>$ " indicates it does not converge to the specified residual tolerance $\left(10^{-6}\right)$ within a certain number of iterations.
() $E x=Z^{T} A_{h} Z x: \#$ iter $=7$ for $k h=0.625,5$ for $k h=0.3125$
(-) ReD-O4 better than ReD-O2
() ReD-Glk: close to wavenumber independence

(b) $k h=0.625$

Convergence - 2D Wedge

Figure: Wedge problem

Convergence - 2D Wedge

Table: The number of iterations required by using APD-GMRES.

Grid size	f	$k h$	ReD-O2	ReD-O4	ReD-Glk
73×121	10	0.35	$\mathbf{2 2}$	$\mathbf{2 2}$	9
145×241	20	0.35	$\mathbf{2 8}$	$\mathbf{2 7}$	9
289×481	40	0.35	$\mathbf{3 1}$	$\mathbf{2 9}$	9
577×961	80	0.35	$\mathbf{3 7}$	$\mathbf{3 0}$	9
1153×1921	160	0.35	$>\mathbf{5 0}$	$\mathbf{3 4}$	$\mathbf{8}$

" $>$ " indicates it does not converge to the specified residual tolerance $\left(10^{-6}\right)$ within a certain number of iterations.
() $E x=Z^{T} A_{h} Z x: \#$ iter $=6$
(-) ReD-O4 better than ReD-O2
() ReD-GIk: wavenumber independence although it is derived from constant wavenumber

Figure: Waves pattern at 80 Hz

Convergence - Marmousi

(a) Marmousi problem

(b) Wave pattern at $f=40 \mathrm{~Hz}$

Table: The number of iterations required by using APD-GMRES.

Grid size	f	$k h$	ReD-O2	ReD-O4	ReD-Glk
737×241	10	0.5236	$\mathbf{3 8}$	$\mathbf{3 0}$	11
1473×481	20	0.5236	$\mathbf{7 1}$	$\mathbf{3 4}$	11
2945×961	40	0.5236	$>\mathbf{5 0}$	$\mathbf{5 0}(>2500)$	12

() $E x=Z^{T} A_{h} Z x: \#$ iter $=7$
() Similar convergence properties for highly heterogeneous media
() ReD-Glk: close to wavenumber independence

Parallel performance - Weak scaling

> Preconditioned GCR
> APD using ReD-Glk
> DelftBlue, GNU Fortran 8.5.0, Open MPI 4.1.1

Figure: Weak scaling for constant-wavenumber problem with $k=100$ and a grid size of 160×160 per processes.

Table: Weak scaling for model problems with non-constant wavenumber.

grid size	np	\#iter	CPU time (s)	
Wedge, $f=40 \mathrm{~Hz}$				
577×961	6	$10(46)$	4.86	
1153×1921	24	$10(43)$	5.75	
Marmousi, $f=10 \mathrm{~Hz}$				
737×241	3	$11(63)$	10.55	
1473×481	12	$10(58)$	12.08	
2945×961	48	$10(58)$	17.72	

© Close to weak scalability

Parallel performance - Strong scaling

(a) Constant-wavenumber problem with $k=200$

(b) Wedge problem with $f=40 \mathrm{~Hz}$ and $f=100 \mathrm{~Hz}$

Figure: Strong scaling
© Good strong scalability for large problems (larger computation/communication ratio)

Multilevel Deflation

() Apply two-level method recursively
() Re-discretization scheme derived from Galerkin coarsening for both E and M
> The size of the stencil remains 7×7 for level >3
> Need three overlapping grid points
> Truncate on the near-boundary grid points, not need extra boundary schemes
(1) V-cycle: Only one FGMRES iteration per coarse level except for the coarsest level, i.e. $m=1$ in line 4
> CSLP: Krylov iterations instead of multigrid

- $\operatorname{Max} \mathcal{O}\left(N^{0.25}\right)$ iterations or tol $=10^{-1}$
- Small complex shift: $1 / k_{\max }$
> Coarsening remains on indefinite levels
> Coarsest level: solved by CSLP-GMRES, tol $=10^{-1}$

```
Algorithm Recursive two-level deflated FGMRES: TLADP-FGMRES(A, b)
    Determine the current level \(l\) and dimension \(m\) of the Krylov subspace
    Initialize \(u_{0}\), compute \(r_{0}=b-A u_{0}, \beta=\left\|r_{0}\right\|, v_{1}=r_{0} / \beta\);
    Define \(\bar{H}_{m} \in \mathbb{C}^{(m+1) \times m}\) and initialize to zero
    for \(j=1,2, \ldots, m\) or until convergence do
        \(\hat{v}_{j}=Z^{T} v_{j} \quad \triangleright\) Restriction
        if \(l+1==l_{\text {max }}\) then \(\quad \triangleright\) Predefined coarsest level \(l_{\text {max }}\)
            \(\tilde{v} \approx E^{-1} \hat{v} \quad \triangleright\) Approximated by CSLP-FGMRES
        else
            \(l \leftarrow l+1\)
            \(\tilde{v} \leftarrow\) TLADP-FGMRES (E, \(\hat{v}) ~ \triangleright\) Apply two-level deflation recursively
        end if
        \(t=Z \tilde{v} \quad \triangleright\) Interpolation
        \(s=A t\)
        \(\tilde{r}=v_{j}-s\)
        \(r \approx M^{-1} \tilde{r} \quad \triangleright\) CSLP, by multigrid method or Krylov iterations
        \(x_{j}=r+t\)
        \(w=A x_{j}\)
        for \(i:=1,2, \ldots, j\) do
            \(h_{i, j}=\left(w, v_{i}\right)\)
            \(w \leftarrow w-h_{i, j} v_{i}\)
        end for
        \(h_{j+1, j}:=\|w\|_{2}, v_{j+1}=w / h_{j+1, j}\)
        \(X_{m}=\left[x_{1}, \ldots, x_{m}\right], \bar{H}_{m}=\left\{h_{i, j}\right\}_{1 \leq i \leq j+1,1 \leq j \leq m}\)
    end for
    \(u_{m}=u_{0}+X_{m} y_{m}\) where \(y_{m}=\arg \min _{y}\left\|\beta e_{1}-\bar{H}_{m} y\right\|\)
    Return \(u_{m}\)
```


Multilevel deflation - 'incomplete' V-cycle

Table: The number of outer iterations required to solve the Wedge problems by using V-cycle multilevel APD-FGMRES. For $k h=0.17$, the coarse-grid systems become negative definite starting from the 5th level.

Grid size	$f(\mathrm{~Hz})$	3 levels	4 levels	5 levels
289×481	20	5	7	7
577×961	40	6	7	8
1153×1921	80	6	7	10
2305×3841	160	7	8	12

Coarsening remains on indefinite levels:
© close to wavenumber independence
Figure: Strong scaling for Wedge problem with $f=40 \mathrm{~Hz}$ and a grid size of 4609×7681.
() Good strong scalability

\mathcal{T} What about coarsening to negative definite levels?

Multilevel deflation - a robust and efficient variant

For the scenario of coarsening to negative definite levels:
(2) A tolerance for the second level (L2) (instead of one FGMRES iteration)
>L2 tol $=1 \times 10^{-1} \rightarrow$ close to constant outer iterations
> L2 tol $=3 \times 10^{-1} \rightarrow$ extra outer iterations but reduced computation time
() One FGMRES iteration for the other coarse levels including the coarsest level
(CSLP: the first and second levels: multigrid method (one V-cycle); the other coarse levels: Krylov iterations (GMRES), tol = 1×10^{-1}

Table: Number of outer FGMRES-iterations and sequential CPU time required to solve the Marmousi problem. For $k h=0.54$, the coarse-grid systems become negative definite starting from the 3rd level. In parentheses are the number of iterations to solve the second-level grid system.

$f(\mathrm{~Hz})$	Grid size	Two-level, L2 tol $=1 \times 10^{-1}$		Five-level, L2 tol $=1 \times 10^{-1}$		Five-level, L2 tol $=3 \times 10^{-1}$	
		Outer \#iter (L2 \#iter)	$\begin{gathered} \mathrm{CPU} \\ \text { time (s) } \end{gathered}$	Outer \#iter (L2 \#iter)	$\begin{gathered} \mathrm{CPU} \\ \text { time (s) } \end{gathered}$	Outer \#iter (L2 \#iter)	$\begin{gathered} \mathrm{CPU} \\ \text { time (s) } \end{gathered}$
10	737×241	11 (64)	23.15	11 (13)	18.57	13 (7)	12.67
20	1473×481	11 (141)	224.21	11 (24)	108.03	15 (15)	84.06
40	2945×961	12 (381)	4354.83	13 (50)	1084.42	18 (29)	816.38

Multilevel deflation - complexity analysis

Figure: Complexity analysis of the multilevel APD preconditioned Krylov subspace method. Evolution of the sequential computational time versus problem size. Wedge model problem.

Table: The number of outer iterations required to solve the Wedge problems with $k h=0.17$ by using the multilevel APD-FGMRES.

Six-level deflation, L 2 tol $=3 \times 10^{-1}$		
Grid size	$f(\mathrm{~Hz})$	Outer \#iter $(\mathrm{L} 2$ \#iter $)$
289×481	20	$11(3)$
577×961	40	$12(4)$
1153×1921	80	$12(7)$
2305×3841	160	$13(13)$
4609×7681	320	$14(27)$
9217×15361	640	$17(47)$

() The number of iterations weakly depends on the frequency
() The computational time behaves asymptotically as $N^{1.4}$

Multilevel deflation - parallel performance

Table: The number of iterations required and computation time, along with the resulting speedup (Sp) and parallel efficiency (Ep), to solve the Wedge problem with a grid size 4609×7681 and $f=320 \mathrm{~Hz}$ by using the parallel multilevel (six-level) APD-FGMRES on one compute node of DelftBlue.

Grid points			DelftBlue Phase 1*			Delftblue Phase 2**		
np	per processor	\#iter	CPU time (s)	Sp	Ep	CPU time (s)	Sp	Ep
1	35401729	14	5996.43	-	-	4064.63	-	-
2	17700865	14	3034.40	1.98	0.99	2029.36	2.00	1.00
6	5900288	14	1097.27	5.46	0.91	686.19	5.92	0.99
12	2950144	14	574.84	10.43	0.87	343.05	11.85	0.99
24	1475072	14	319.71	18.76	0.78	186.67	21.77	0.91
48	737536	14	203.49	29.47	0.61	120.29	33.79	0.70
64	553152	14	-	-	-	100.19	40.57	0.63

* Phase 1 (June 2022): $2 x$ Intel XEON E5-6248R 24C 3.0GHz, 192GB
** Phase 2 (Jan. 2024): $2 x$ Intel XEON E5-6448Y 32C $2.1 \mathrm{GHz}, 256$ GB

Figure: Strong scaling for Wedge problem
© Good strong scalability for massively parallel computing

Conclusions and Perspectives

© Parallel CSLP preconditioned Krylov solvers（2D／3D）
（）Parallel two－level deflation preconditioned Krylov solvers（2D）
（）Matrix－free implementation with wavenumber－independent convergence
（）Parallel framework with fairly good weak and strong scaling
© Robust parallel multilevel deflation for high－frequency heterogeneous problems
C Generalize to large－scale 3D applications
Further reading：
国 Dwarka，V．，Vuik，C．：Scalable convergence using two－level deflation preconditioning for the Helmholtz equation，SIAM Journal on Scientific Computing，42（2020），A901－A928．
国 Dwarka，V．，Vuik，C．：Scalable multi－level deflation preconditioning for highly indefinite time－harmonic waves，Journal of Computational Physics，469（2022）， 111327.
国 Chen，J．，Dwarka，V．，Vuik，C．：A matrix－free parallel solution method for the three－dimensional heterogeneous Helmholtz equation，Electronic Transactions on Numerical Analysis， 59 （2023），270－294．
国 Chen，J．，Dwarka，V．，Vuik，C．：A matrix－free parallel two－level deflation preconditioner for the two－dimensional Helmholtz problems，https：／／doi．org／10．48550／arXiv．2308．06152．

Q\&A

Thanks!

[^0]: ${ }^{1}$ Supercomputer Fugaku: https://www.r-ccs.riken.jp/en/fugaku/. Riken International HPC Summer School 2022 is acknowledged

