Scalable solvers for the Helmholtz probem

Jinqiang Chen, Vandana Dwarka, Cornelis Vuik*

Technische Universiteit Delft

Aim and Impact

- Contribute to broad research on parallel scalable iterative solvers for time-harmonic wave problems
- This presentation: matrix-free parallelization
 - > Complex shift Laplace Preconditioner (CSLP)
 - > Deflation methods
 - > Parallel performance

Introduction - the Helmholtz Problem

The Helmholtz equation (describing time-harmonic waves) + BCs

$$-\Delta u\left(\mathbf{x}\right) - k\left(\mathbf{x}\right)^{2} u\left(\mathbf{x}\right) = g\left(\mathbf{x}\right), \text{ on } \Omega \subseteq \mathbb{R}^{n}$$

- > $k(\mathbf{x})$ is the wavenumber, $k(\mathbf{x}) = (2\pi f)/c(\mathbf{x})$, where f is the frequency and c is the acoustic velocity of the media
- > Applications in seismic exploration, medical imaging, antenna synthesis, etc.

Larisa, High-performance implementation of Helmholtz equation with absorbing boundary conditions.
 http://www.math.chalmers.se/~larisa/www/MasterProjects/HelmholtzABSbc.pdf
 M. Jakobsson, et al (2016). Mapping submarine glacial landforms using acoustic methods. Geological Society.

Kees Vuik (TU Delft)

Introduction

➡ Li, C., Zheng, Y., Wang, X. et al. (2022) Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar. Nature.

Introduction - Challenges

Linear system from discretization

Au = b

> A is real, sparse, symmetric, normal, and indefinite; non-Hermitian with Sommerfeld BCs

- **?** Direct solver or iterative solver
- **A** Accuracy and pollution error $(k^3h^2 < 1)$: finer grid (3D) \Rightarrow larger linear system
 - Memory-efficient methods; High-Performance Computing (HPC)
- **A** Negative & positive eigenvalues: larger wavenumber \Rightarrow more iterations
 - Preconditioner: Complex Shifted Laplace Preconditioner (CSLP)
 - 差 (Higher-order) Deflation

🛕 Parallelism

Aim

A wavenumber-independent convergent and parallel scalable solver

Introduction - Metrics

Onvergence metric:

- > Krylov-based solvers, GMRES-type: the number of iterations (#iter); IDR(s): the number of matrix-vector multiplications (#Matvec)
- Scalability:
- Strong scaling: the number of processors is increased while the problem size remains constant
- > Weak scaling: the problem size increases along with the number of tasks, so the computation per task remains constant
- > Wall-clock time: t_w ; number of processors: np

> Speedup:
$$S_p = \frac{t_{w,r}}{t_{w,p}}$$
, $E_P = \frac{S_p}{np/np_r} = \frac{t_{w,r} \cdot np_r}{t_{w,p} \cdot np}$

Introduction - Numerical Models

• Model problems on a rectangular domain Ω with boundary $\Gamma = \partial \Omega$ $-\Delta u(\mathbf{x}) - k(\mathbf{x})^2 u(\mathbf{x}) = \delta(\mathbf{x} - \mathbf{x}_0), \text{ on } \Omega$ $\frac{\partial u(\mathbf{x})}{\partial \vec{n}} - ik(\mathbf{x})u(\mathbf{x}) = 0, \text{ on } \Gamma$

- > Constant wavenumber: $k(\mathbf{x}) = k$
- > Non-constant wavenumber: Wedge, Marmousi problem, 3D SEG/EAGE Salt Model, etc.
- \triangleright Finite-difference discretization on a uniform grid with grid size h. (2D example)

> Laplace operator:
$$-\Delta_h \mathbf{u} \approx \frac{-u_{i,j-1} - u_{i-1,j} + 4u_{i,j} - u_{i+1,j} - u_{i,j+1}}{h^2}$$

> Sommerfeld BCs: a ghost point

 $\frac{\partial u}{\partial \vec{n}}(0,y_j) - \mathrm{i}k(0,y_j)u(0,y_j) \approx \frac{u_{0,j} - u_{2,j}}{2h} - \mathrm{i}k_{1,j}u_{1,j} = 0 \Rightarrow u_{0,j} = u_{2,j} + 2h\mathrm{i}k_{1,j}u_{1,j}$

- **•** Preconditioned Krylov subspace solver: Flexible GMRES for complex system
- Preconditioner: Geometric multigrid/multilevel methods

Introduction - Numerical Models

i Stencil notation

> Laplace operator:

$$[-\Delta_h] = \frac{1}{h^2} \begin{bmatrix} 0 & -1 & 0\\ -1 & 4 & -1\\ 0 & -1 & 0 \end{bmatrix}$$

> "Wavenumber operator":

$$\begin{bmatrix} \mathcal{I}_h \mathbf{k}^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & k_{i,j}^2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \stackrel{const}{=} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} k^2$$

$$[A_h] = [-\Delta_h] - [\mathcal{I}_h \mathbf{k}^2]$$

 $A\mathbf{u} = \mathbf{b}$:

Framework - Matrix-free operations

Perform computations with a matrix without explicitly forming or storing the matrix
 Reduce memory requirements

Matrix-vector multiplication

If a matrix can be represented by a so-called stencil notation

$$[A] = \begin{bmatrix} a_{-1,1} & a_{0,1} & a_{1,1} \\ a_{-1,0} & a_{0,0} & a_{1,0} \\ a_{-1,-1} & a_{0,-1} & a_{1,-1} \end{bmatrix},$$

Then $\mathbf{v} = A\mathbf{u}$ can be computed by

$$v_{i,j} = \sum_{p=-1}^{1} \sum_{q=-1}^{1} a_{p,q} u_{i+p,j+q}$$

with the help of a ghost point on the physical boundary and one overlapping grid point.

Framework - Distributed data structure

- > Vector $\mathbf{u} \leftarrow 2D$ array: $u(1:Nx,1:Ny) \leftarrow each sub-domain: u(1-LAP:nx+LAP,1-LAP:ny+LAP)$
- > Operations (e.g. matvec, dot-product, vector update) perform on each u(1:nx,1:ny) simultaneously

CSLP

Speed up convergence of Krylov subspace methods by Preconditioning
 Solve M⁻¹Au = M⁻¹b

Complex Shifted Laplace Preconditioner (CSLP)

 $M_h = -\Delta_h - (\beta_1 - \beta_2 \mathbf{i}) \, \mathcal{I}_h \mathbf{k}^2, \ (\beta_1, \beta_2) \in [0, 1] \,, \quad e.g. \ \beta_1 = 1, \beta_2 = 0.5$ $\textcircled{\mathbf{S}} \text{ Stencil notation}$

 \triangleright Solve Mx = u by multigrid method (V-cycle) $\Rightarrow x \approx M^{-1}u$

- > Vertex-centered coarsening based on the global grid
- > Damped Jacobi smoother (easy to parallelize)
- > Full-weight restriction I_h^{2h} & linear interpolation I_{2h}^h

$$[I_h^{2h}] = \frac{1}{16} \left[\begin{array}{rrrr} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right]_h^{2h}, \ [I_{2h}^h] = \frac{1}{4} \left] \begin{array}{rrr} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right]_{h}^{h}$$

> Coarse-grid operator obtained by re-discretization

 \mathbf{S} Stencil notation: $[M_{2h}]$ similar to $[M_h]$

Parallel CLSP-preconditioned Krylov solver

3D SEG/EAGE Salt Model

- > Real large-size domain $12\,800\,\mathrm{m} \times 12\,800\,\mathrm{m} \times 3840\,\mathrm{m}$
- > High heterogeneity: the velocity varies from $1500\,{\rm m\,s^{-1}}$ to $4482\,{\rm m\,s^{-1}}$
- > Grid size $641\times 641\times 193$

Figure: 3D SEG/EAGE Salt Model

Parallel CLSP-preconditioned Krylov solver

Parallel CSLP-preconditioned IDR(4) for 3D SEG/EAGE Salt Model with grid size $641 \times 641 \times 193$ at f = 5 Hz

$npx\timesnpy\timesnpz$	Nodes	#Matvec	t(s)	Sp	Ep
6×4×2	1	413	897.25		
$6 \times 8 \times 2$	2	423	510.56	1.76	0.88
6×8×4	4	423	298.86	3.00	0.75
$9 \times 8 \times 4$	6	404	203.31	4.41	0.74

Table: Performance on DelftBlue ¹

Table: Performance on Magic Cube²

npx imes npy imes npz	Nodes	#Matvec	t(s)	Sp	Ep
$4 \times 4 \times 2$	1	405	505.14		
$4 \times 4 \times 4$	2	418	287.60	1.76	0.88
$8 \times 8 \times 2$	4	390	155.64	3.25	0.81

Effective on different platforms

¹DHPC, DelftBlue Supercomputer (Phase 1) https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1 ²Supercomputer Magic Cube III: https://www.ssc.net.cn/en/resource-hardware.html

Kees Vuik (TU Delft)

Parallel CLSP-preconditioned Krylov solver

¹Supercomputer Fugaku: https://www.r-ccs.riken.jp/en/fugaku/. Riken International HPC Summer School 2022 is acknowledged

Kees Vuik (TU Delft)

CSLP - Cons

- \triangleright Increasing $k \Rightarrow$ eigenvalues move fast towards origin
- Too many iterations for high frequency
- **Project** unwanted eigenvalues to zero \Rightarrow Deflation

Figure: $\sigma\left(M_{(1,0,5)}^{-1}A\right)$ for k = 20 (left) and k = 80 (right)

Figure: #Iter increases with k

Deflation - introduction

- **Project** unwanted eigenvalues to zero \Rightarrow Deflation
- **)** Deflation preconditioning: solve $PA\hat{u} = Pb$

$$P = I - AQ$$
, where $Q = ZE^{-1}Z^T$, $E = Z^TAZ$
 $A \in \mathbb{R}^{n \times n}$ $Z \in \mathbb{R}^{m \times n}$

- \bigcirc Columns of Z span deflation subspace
- \bigcirc Ideally Z contains eigenvectors
- In practice approximations: inter-grid vectors from multigrid
- ♦ Adapted Deflation Variant 1 (A-DEF1): $P_{A-DEF1} = M_{(\beta_1,\beta_2)}^{-1}P + Q$
 - > Combined with the standard preconditioner CSLP
- Solution Use CSLP-preconditioned GMRES to solve the coarse grid problem (obtain E^{-1}) approximately
- > Linear approximation basis deflation vectors → higher-order deflation vectors (Adapted Preconditioned DEF, APD)
 - > wavenumber-independent convergence

Two-level deflation - overall algorithm

\triangleright Flexible GMRES-type methods \rightarrow allow for variable preconditioner

Algorithm Two-level deflation FGMRES

```
1: Choose u_0 and dimension k of the Krylov subspace.
 2: Define (k+1) \times k\bar{H}_k and initialize to zero
 3: Compute r_0 = b - Au_0, \beta = ||r_0||, v_1 = r_0/\beta;
 4: for j = 1, 2, ..., k or until convergence do
        \hat{v}_i = Z^T v_i
                                                                                                            ▷ Precondition starts
 5:
        \tilde{v} \approx E^{-1} \hat{v}
                                            \triangleright Solved by GMRES approximately, preconditioned by CSLP, tol=10^{-1}
 6.
       t = Z\tilde{v}
 7:
 8:
        s = At
        \tilde{r} = v_i - s
9:
        r \approx \dot{M}^{-1} \tilde{r}
                                                                                  ▷ Approximated by one multigrid V-cycle
10.
       x_i = r + t
                                                                                                             ▷ Precondition ends
11:
        w = Ax_i
12:
        for i := 1, 2, ..., j do
13:
            h_{i,i} = (w, v_i)
14:
15:
             w := w - h_{i,i} v_i
        end for
16:
        h_{i+1,j} := ||w||_2, v_{j+1} = w/h_{j+1,j}; X_k = [x_1, ..., x_k]; \bar{H}_k = \{h_{i,j}\}_{1 \le i \le j+1, 1 \le j \le m}
17:
18 end for
19: u_k = u_0 + X_k y_k where y_k = \arg \min_u ||\beta e_1 - \overline{H}_k y||
```

Higher-order deflation vectors

 \diamond 2D: the higher-order interpolation & restriction has 5×5 stencil

> Two overlapping grid points are needed

Figure: The allocation map of interpolation operator

Matrix-free two-level deflation

$$P = I - AQ$$
, where $Q = ZE^{-1}Z^T$, $E = Z^TAZ$

> With matrix constructed, $E = Z^T A Z$, so-called Galerkin Coarsening

Matrix-free coarse grid operation y = Ex?

Straightforward Galerkin Coarsening operator;

$$x_1 = Zx, \ x_2 = A_h x_1, \ y = Z^T x_2 \Rightarrow y = Ex$$

> unacceptable computational cost for consideration of multilevel method

Re-discretization:

- **\mathbf{\widehat{V}} ReD**- $\mathcal{O}\mathbf{2}$: The same as the fine grid
- **ReD**-*O***4**: Fourth-order re-discretization of the Laplace operator

$$[E] = \frac{1}{12 \cdot (2h)^2} \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -16 & 0 & 0 \\ 1 & -16 & 60 & -16 & 1 \\ 0 & 0 & -16 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} - \mathcal{I}_{2h} \mathbf{k}_{2h}^2$$

Matrix-free two-level deflation

ReD-Glk: Re-discretized scheme (stencil) from the result of Galerkin coarsening

$$[-\Delta_{2h}] = \frac{1}{(2h)^2} \cdot \frac{1}{256} \begin{bmatrix} -3 & -44 & -98 & -44 & -3\\ -44 & -112 & 56 & -112 & -44\\ -98 & 56 & 980 & 56 & -98\\ -44 & -112 & 56 & -112 & -44\\ -3 & -44 & -98 & -44 & -3 \end{bmatrix}$$

$$\Rightarrow -\Delta_{2h}u_{2h} = -4\frac{\partial^2 u}{\partial x^2} - 4\frac{\partial^2 u}{\partial y^2} - (\frac{13}{48}\frac{\partial^4 u}{\partial x^4} + \frac{1}{2}\frac{\partial^4 u}{\partial x^2 \partial y^2} + \frac{13}{48}\frac{\partial^4 u}{\partial y^4})(\mathbf{2h})^2 + \mathcal{O}(h^4)$$
$$[\mathcal{I}_{2h}\mathbf{k}_{2h}^2] = \frac{1}{64^2} \begin{bmatrix} 1 & 28 & 70 & 28 & 1\\ 28 & 784 & 1960 & 784 & 28\\ 70 & 1960 & 4900 & 1960 & 70\\ 28 & 784 & 1960 & 784 & 28\\ 1 & 28 & 70 & 28 & 1 \end{bmatrix} \mathbf{k}_{2h}^2$$

 $\Rightarrow [E] = [-\Delta_{2h}] - [\mathcal{I}_{2h}\mathbf{k}_{2h}^2]$

? Boundary conditions - ReD-O2 on the boundary grid points

Convergence - Constant wavenumber

Grid size	k	kh	ReD-O2	ReD-O4	ReD-Glk
65×65	40	0.625	20	17	9
129 imes129	80	0.625	30	18	9
257×257	160	0.625	87	19	9
513 imes 513	320	0.625	>100	23	10
129 imes 129	40	0.3125	18	18	7
257×257	80	0.3125	19	18	7
513 imes 513	160	0.3125	21	18	7
1025×1025	320	0.3125	28	20	6
2049×2049	640	0.3125	53	23	6

Table: The number of iterations required by using APD-GMRES.

">" indicates it does not converge to the specified residual tolerance (10^{-6}) within a certain number of iterations.

$$\bigcirc Ex = Z^T A_h Zx$$
: #iter=7 for $kh = 0.625$, 5 for $kh = 0.3125$

 \bigcirc ReD-O4 better than ReD-O2

⊘ ReD-Glk: close to wavenumber independence

Convergence - 2D Wedge

Figure: Wedge problem

Convergence - 2D Wedge

Grid size	f	kh	$ReD-\mathcal{O}2$	ReD- <i>O</i> 4	ReD-Glk
73× 121	10	0.35	22	22	9
145 imes~241	20	0.35	28	27	9
289 imes 481	40	0.35	31	29	9
577 imes 961	80	0.35	37	30	9
1153 imes 1921	160	0.35	>50	34	8

Table: The number of iterations required by using APD-GMRES.

">" indicates it does not converge to the specified residual tolerance (10^{-6}) within a certain number of iterations.

 $\bigcirc Ex = Z^T A_h Zx$: #iter=6

- \bigcirc ReD-O4 better than ReD-O2
- ReD-Glk: wavenumber independence although it is derived from constant wavenumber

Figure: Waves pattern at 80 Hz

Convergence - Marmousi

(a) Marmousi problem

(b) Wave pattern at $f = 40 \, \text{Hz}$

Table: The number of iterations required by using APD-GMRES.

Grid size	f	kh	ReD-O2	ReD-O4	ReD-Glk
737×241	10	0.5236	38	30	11
1473 imes 481	20	0.5236	71	34	11
$2945 \times \ 961$	40	0.5236	>50	50 (>2500)	12

 $\bigcirc Ex = Z^T A_h Zx$: #iter=7

Similar convergence properties for highly heterogeneous media

✓ ReD-Glk: close to wavenumber independence

Parallel performance - Weak scaling

- > Preconditioned GCR
- > APD using ReD-Glk
- > DelftBlue, GNU Fortran 8.5.0, Open MPI 4.1.1

Table: Weak scaling for model problems with non-constant wavenumber.

np	#iter	CPU time (s)				
Wedge, $f = 40 \text{ Hz}$						
6	10 (46)	4.86				
24	10 (43)	5.75				
rmou	isi, $f = 10$	Hz				
3	11 (63)	10.55				
12	10 (58)	12.08				
48	10 (58)	17.72				
	np fedge 6 24 rmou 3 12 48	$\begin{array}{rrr} np & \#iter\\ redge, \ f = 40 \text{H}\\ 6 & 10 \ (46)\\ 24 & 10 \ (43)\\ rmousi, \ f = 10\\ 3 & 11 \ (63)\\ 12 & 10 \ (58)\\ 48 & 10 \ (58)\\ \end{array}$				

✓ Close to weak scalability

Figure: Weak scaling for constant-wavenumber problem with k = 100 and a grid size of 160×160 per processes.

Parallel performance - Strong scaling

(a) Constant-wavenumber problem with k = 200

(b) Wedge problem with f = 40 Hz and f = 100 Hz

Figure: Strong scaling

✓ Good strong scalability for large problems (larger computation/communication ratio)

Kees Vuik (TU Delft)

Multilevel Deflation

- Apply two-level method recursively
- Re-discretization scheme derived from Galerkin coarsening for both E and M
- > The size of the stencil remains 7×7 for level >3
- > Need three overlapping grid points
- > Truncate on the near-boundary grid points, not need extra boundary schemes
- V-cycle: Only one FGMRES iteration per coarse level except for the coarsest level, *i.e.* m = 1 in line 4
- > CSLP: Krylov iterations instead of multigrid
 - Max $\mathcal{O}(N^{0.25})$ iterations or tol= 10^{-1}
 - Small complex shift: $1/k_{max}$
- > Coarsening remains on indefinite levels
- > Coarsest level: solved by CSLP-GMRES, tol= 10^{-1}

Algorithm Recursive two-level deflated FGMRES: TLADP-FGMRES(A, b)

1: Determine the current level l and dimension m of the Krylov subspace 2: Initialize u_0 , compute $r_0 = b - Au_0$, $\beta = ||r_0||$, $v_1 = r_0/\beta$; 3: Define $\bar{H}_m \in \mathbb{C}^{(m+1) \times m}$ and initialize to zero 4: for j = 1, 2, ..., m or until convergence do $\hat{v}_i = Z^T v_i$ Restriction 5: if $l+1 == l_{max}$ then \triangleright Predefined coarsest level l_{max} 6: $\tilde{v} \approx E^{-1}\hat{v}$ Approximated by CSLP-FGMRES 7. 8. else $l \leftarrow l+1$ Q٠ 10: $\tilde{v} \leftarrow \text{TLADP-FGMRES(E, \hat{v})} \triangleright \text{Apply two-level deflation recursively}$ 11: end if 12: $t = Z\tilde{v}$ ▷ Interpolation s = At13. 14. $\tilde{r} = v_i - s$ $r \approx \dot{M}^{-1}\tilde{r}$ CSLP. by multigrid method or Krylov iterations 15 16: $x_i = r + t$ 17: $w = Ax_i$ for i := 1, 2, ..., i do 18: 19: $h_{i,i} = (w, v_i)$ 20: $w \leftarrow w - h_{i,i}v_i$ end for 21. $h_{i+1,i} := ||w||_2, v_{i+1} = w/h_{i+1,i}$ 22: $X_m = [x_1, ..., \bar{x}_m], \ \bar{H}_m = \{h_{i,j}\}_{1 \le i \le j+1, 1 \le j \le m}$ 23: 24 end for 25: $u_m = u_0 + X_m y_m$ where $y_m = \arg \min_u ||\beta e_1 - \bar{H}_m y||$ 26: Return u_m

Multilevel deflation - 'incomplete' V-cycle

Table: The number of outer iterations required to solve the Wedge problems by using **V-cycle** multilevel APD-FGMRES. For kh = 0.17, the coarse-grid systems become negative definite starting from the 5th level.

Grid size	f (Hz)	3 levels	4 levels	5 levels
289 imes 481	20	5	7	7
577 imes 961	40	6	7	8
1153 imes~1921	80	6	7	10
2305 imes 3841	160	7	8	12

Coarsening remains on indefinite levels:

- ⊘ close to wavenumber independence

Figure: Strong scaling for Wedge problem with f = 40 Hz and a grid size of 4609×7681 .

C What about coarsening to **negative definite** levels?

Multilevel deflation - a robust and efficient variant

For the scenario of coarsening to negative definite levels:

- > A tolerance for the second level (L2) (instead of one FGMRES iteration)
 - > L2 tol=1 \times 10⁻¹ \rightarrow close to constant outer iterations
 - > L2 tol= $3 \times 10^{-1} \rightarrow$ extra outer iterations but reduced computation time \checkmark

One FGMRES iteration for **the other coarse levels** including the coarsest level

Solution CSLP: the first and second levels: multigrid method (one V-cycle); the other coarse levels: Krylov iterations (GMRES), tol= 1×10^{-1}

Table: Number of outer FGMRES-iterations and sequential CPU time required to solve the Marmousi problem. For kh = 0.54, the coarse-grid systems become negative definite starting from the 3rd level. In parentheses are the number of iterations to solve the second-level grid system.

		Two-level, L2 tol $=$ 1 $ imes$ 10 $^{-1}$		Five-level, L2	Five-level, L2 tol= 1×10^{-1}		Five-level, L2 tol= 3×10^{-1}	
f (Hz) Grid size	Crid size	Outer #iter	CPU	Outer #iter	CPU	Outer #iter	CPU	
	Grid Size	(L2 #iter)	time (s)	(L2 #iter)	time (s)	(L2 #iter)	time (s)	
10	737×241	11 (64)	23.15	11 (13)	18.57	13 (7)	12.67	
20	$1473 { imes}481$	11 (141)	224.21	11 (24)	108.03	15 (15)	84.06	
40	$2945{ imes}961$	12 (381)	4354.83	13 (50)	1084.42	18 (29)	816.38	

Multilevel deflation - complexity analysis

Figure: Complexity analysis of the multilevel APD preconditioned Krylov subspace method. Evolution of the **sequential** computational time versus problem size. Wedge model problem.

Table: The number of outer iterations required to solve the Wedge problems with kh = 0.17 by using the multilevel APD-FGMRES.

Six-level deflation, L2 tol= 3×10^{-1}						
Grid size	f (Hz)	Outer #iter (L2 #iter)				
289 imes 481	20	11 (3)				
577 imes 961	40	12 (4)				
1153 imes 1921	80	12 (7)				
2305 imes 3841	160	13 (13)				
4609 imes 7681	320	14 (27)				
$9217{\times}\ 15361$	640	17 (47)				

- The number of iterations weakly depends on the frequency
- $\ensuremath{\textcircled{O}}$ The computational time behaves asymptotically as $N^{1.4}$

Kees Vuik (TU Delft)

Multilevel deflation - parallel performance

Table: The number of iterations required and computation time, along with the resulting speedup (Sp) and parallel efficiency (Ep), to solve the Wedge problem with a grid size 4609×7681 and f = 320 Hz by using the parallel multilevel (six-level) APD-FGMRES on one compute node of DelftBlue.

Grid points			DelftBlue Phase 1*			Delftblue I	Delftblue Phase 2**		
np	per processor	#iter	CPU time (s)	Sp	Ep	CPU time (s)	Sp	Ep	
1	35401729	14	5996.43	-	-	4064.63	-	-	
2	17700865	14	3034.40	1.98	0.99	2029.36	2.00	1.00	
6	5900288	14	1097.27	5.46	0.91	686.19	5.92	0.99	
12	2950144	14	574.84	10.43	0.87	343.05	11.85	0.99	
24	1475072	14	319.71	18.76	0.78	186.67	21.77	0.91	
48	737536	14	203.49	29.47	0.61	120.29	33.79	0.70	
64	553152	14	-	-	-	100.19	40.57	0.63	

* Phase 1 (June 2022): 2x Intel XEON E5-6248R **24**C 3.0GHz, 192GB ** Phase 2 (Jan. 2024): 2x Intel XEON E5-6448Y **32**C 2.1GHz, 256 GB

Figure: Strong scaling for Wedge problem

Good strong scalability for massively parallel computing

Conclusions and Perspectives

- Parallel two-level deflation preconditioned Krylov solvers (2D)
- Matrix-free implementation with wavenumber-independent convergence
- Parallel framework with fairly good weak and strong scaling
- Robust parallel multilevel deflation for high-frequency heterogeneous problems
- C Generalize to large-scale 3D applications

Further reading:

- Dwarka, V., Vuik, C.: Scalable convergence using two-level deflation preconditioning for the Helmholtz equation, SIAM Journal on Scientific Computing, 42(2020), A901-A928.
- Dwarka, V., Vuik, C.: Scalable multi-level deflation preconditioning for highly indefinite time-harmonic waves, Journal of Computational Physics, 469(2022), 111327.
- Chen, J., Dwarka, V., Vuik, C.: A matrix-free parallel solution method for the three-dimensional heterogeneous Helmholtz equation, Electronic Transactions on Numerical Analysis, 59 (2023), 270–294.
- Chen, J., Dwarka, V., Vuik, C.: A matrix-free parallel two-level deflation preconditioner for the two-dimensional Helmholtz problems, https://doi.org/10.48550/arXiv.2308.06152.

Thanks!