**Iterative Helmholtz Solvers** Multigrid for Helmholtz: Towards Convergence **Delft University of Technology** 

Vandana Dwarka March 31, 2021



Vandana Dwarka (TU Delft)

Copper Mountain Multigrid Conference 2021

March 31, 2021 1 / 21

### Aim and Impact

- Joint-work with Professor Kees Vuik
- Contribute to broad research on Helmholtz solvers
- Understand convergence/divergence behavior
- Improve convergence properties

### Introduction - The Helmholtz Equation

• Inhomogeneous Helmholtz equation + BC's

$$(-
abla^2 - k^2) u(\mathbf{x}) = f(\mathbf{x}), \mathbf{x} \in \Omega \subseteq \mathbb{R}^n$$

- k is the wave number:  $k = \frac{2\pi}{\lambda}$
- Practical applications in seismic and medical imaging





### Introduction - Numerical Model

• Start with analytical 1D model problem

$$-\frac{d^2u}{dx^2} - k^2 u = \delta(x - \frac{1}{2}),$$
  
$$u(0) = 0, u(1) = 0,$$
  
$$x \in \Omega = [0, 1] \subseteq \mathbb{R},$$

- Discretization using second-order FD with at least 10 gpw
- We obtain a linear system  $A\hat{u} = f$

$$A = \frac{1}{h^2} \operatorname{tridiag}[-1 \ 2 - (kh)^2 \ -1],$$

- A is real, symmetric, normal, indefinite and sparse
- Using Radiation BC's A becomes non-Hermitian

# Multigrid - Challenges

- Oscillations cause ineffective coarse grid (phase-lead)
- Low-frequency error not eliminated
- Near-zero eigenvalues
- Some remedies so far:

Wave-ray multigrid

Dispersion correction

GMRES smoothing

Complex stretched grids

- constant *k*
- constant k + coarse resolution restriction
- level-dep. + 'manually' optimized param.

- level-dep.

- Our approach: h.o. intergrid transfer operators
- Background from work on deflation

#### **Background - Two-Level Deflation**

• Projection principle: solve *PAu* = *Pf* 

$$\begin{split} & ilde{P} = AQ ext{ where } Q = ZE^{-1}Z^T ext{ and } E = Z^TAZ, \ &P = I - ilde{P}, \ &Z \in \mathbb{R}^{m imes n}, \ m < n \end{split}$$

- Columns of Z span deflation subspace
- Inter-grid vectors from multigrid as deflation vectors
- Apply *P* as a preconditioner: solve  $PA\hat{u} = Pf$

### **Background - Two-Level Deflation**

Figure: Restricted & interpolated eigenvectors (left kh = 0.625, right  $k^3h^2 = 0.625$ 

- Deflation space spanned by linear approximation basis vectors
- Transfer coarse-fine grid ⇒ interpolation error
- Measure effect by projection error E  $E(kh) = ||(I - P)\phi_{j_{\min},h}||^2$ ,  $P = Z(Z^T Z)^{-1} Z^T$



| k               | E(0.625)  | E(0.3125) |
|-----------------|-----------|-----------|
| 10 <sup>2</sup> | 0.8818    | 0.1006    |
| 10 <sup>3</sup> | 9.2941    | 1.0062    |
| $10^{4}$        | 92.5772   | 10.0113   |
| 10 <sup>5</sup> | 926.135   | 100.1382  |
| 10 <sup>6</sup> | 9261.7129 | 1001.3818 |

# Background - Our Approach

- Higher-order deflation vectors
- Rational quadratic Bezier curve  $\Rightarrow$  one control-point
- This scheme results in close to wave number independent convergence
- But what about multigrid?

- Constant wave number using Dirichlet BC
- Construct two-level V(1,1)-cycle + weighted Jacobi smoothing

| k    | Quadrat    | tic Bezier  | Linear     |             |  |  |
|------|------------|-------------|------------|-------------|--|--|
|      | kh = 0.625 | kh = 0.3125 | kh = 0.625 | kh = 0.3125 |  |  |
| 50   | 0.2436     | 0.2852      | 1.290      | 0.9217      |  |  |
| 100  | 0.2441     | 0.2076      | 3.325      | 1.0225      |  |  |
| 250  | 0.2443     | 0.1538      | 5.4108     | 21.5327     |  |  |
| 500  | 0.2443     | 0.1354      | 15.5047    | 21.5327     |  |  |
| 1000 | 0.2443     | 0.1350      | 27.7478    | 21.5327     |  |  |

Table: Two-grid spectral radius

- As expected: original multigrid setup (linear) diverges
- H.o. scheme gives spectral radius *strictly* < 1
- Analogous to projection error *strictly* < 1 for deflation!

- Constant wave number using Dirichlet BC
- weighted Jacobi smoothing

| k               | Two-leve   | l Deflation | Two-grid V(1,1)-cycle |             |  |
|-----------------|------------|-------------|-----------------------|-------------|--|
|                 | kh = 0.625 | kh = 0.3125 | kh = 0.625            | kh = 0.3125 |  |
| 10 <sup>2</sup> | 9          | 9           | 10                    | 8           |  |
| 10 <sup>3</sup> | 9          | 9           | 10                    | 8           |  |
| $10^{4}$        | 9          | 9           | 10                    | 9           |  |
| 10 <sup>5</sup> | 9          | 9           | 11                    | 12          |  |

#### Table: Number of iterations

• Both schemes close to wave number independent convergence

- Constant wave number using Sommerfeld BC
- Construct two-level V(1,1)-cycle

| k   | $\omega - J$ | lacobi      | Gaus-Seidel |             |  |
|-----|--------------|-------------|-------------|-------------|--|
|     | kh = 0.625   | kh = 0.3125 | kh = 0.625  | kh = 0.3125 |  |
| 50  | 14           | 14          | 6           | 5           |  |
| 100 | 14           | 14          | 6           | 5           |  |
| 250 | 14           | 14          | 6           | 5           |  |
| 500 | 14           | 14          | 6           | 5           |  |

- Both cases wave number independence
- Still exact solve on second-level ⇒ memory constraints
- Can we create a deeper V-cycle?

- Constant wave number using Sommerfeld BC
- Three-grid cycle with  $kh_{coarsest} = 2.5 \approx \frac{2\pi}{2.5}$

Figure: V-cycle

Figure: F-cycle



- Convergence no longer wave number independent
- Deeper cycle diverges
- Remedy: use coarsening on CSL (S. Cools)

Constant wave number using Sommerfeld BC

Table: Number of V- ( $\gamma = 1$ ) and W-cycles ( $\gamma = 2$ ) for constant k using a stopping tolerance of 10<sup>-5</sup> and  $\nu$  denotes the number of  $\omega$ -Jacobi smoothing steps.

|           | k = 50    |    | k =            | 100   | k = 150   |     | k = 200    |     | k = 250    |     |
|-----------|-----------|----|----------------|-------|-----------|-----|------------|-----|------------|-----|
|           | N = 6724  |    | N =            | 26244 | N = 57600 |     | N = 102400 |     | N = 160000 |     |
|           | $N_D = 8$ |    | N <sub>D</sub> | = 8   | $N_D = 4$ |     | $N_D = 8$  |     | $N_D = 4$  |     |
| $\gamma$  | 1         | 2  | 1              | 2     | 1         | 2   | 1          | 2   | 1          | 2   |
| $\nu = 4$ | 58        | 58 | 104            | 108   | 155       | 159 | 209        | 213 | 267        | 271 |
| $\nu = 5$ | 58        | 58 | 104            | 104   | 150       | 166 | 194        | 229 | 238        | 287 |
| $\nu = 6$ | 55        | 58 | 99             | 102   | 139       | 167 | 183        | 222 | 226        | 283 |
| $\nu = 7$ | 53        | 60 | 97             | 101   | 136       | 163 | 179        | 219 | 221        | 280 |
| $\nu = 8$ | 53        | 60 | 95             | 104   | 131       | 161 | 178        | 212 | 218        | 277 |

- Coarsening + w-Jacobi smoothing on CSL (shift = 0.7)
- No level-dependent parameters!
- Linear interpolation diverges ( $k = 50, \gamma = 1$ )
- What about heterogeneous problems?



Table: Number of V- ( $\gamma = 1$ ) and W-cycles ( $\gamma = 2$ ) with tol 10<sup>-5</sup>.  $\nu$  denotes the number of  $\omega$ -Jacobi smoothing steps.

|           | $(k_1,$ | $k_2) = (10, 50)$ | $(k_1, k_2)$ | ) = (10,75) |
|-----------|---------|-------------------|--------------|-------------|
| $\gamma$  | 1       | 2                 | 1            | 2           |
| $\nu = 4$ | 69      | 66                | 98           | 90          |
| $\nu = 5$ | 66      | 66                | 90           | 90          |
| $\nu = 6$ | 68      | 66                | 124          | 96          |
| $\nu = 7$ | 71      | 67                | 145          | 95          |
| $\nu = 8$ | 74      | 69                | 159          | 96          |



#### Figure: u(x, y)



Table: Number of V- ( $\gamma = 1$ ) and W-cycles ( $\gamma = 2$ ) with tol 10<sup>-5</sup>.  $\nu$  denotes the number of  $\omega$ -Jacobi smoothing steps.

|           | $(k_1, k_2)$ | ) = (10, 50) | $(k_1, k_2)$ | ) = (10,75) |
|-----------|--------------|--------------|--------------|-------------|
| $\gamma$  | 1            | 2            | 1            | 2           |
| $\nu = 4$ | 123          | 108          | 139          | 128         |
| $\nu = 5$ | 112          | 110          | 129          | 128         |
| $\nu = 6$ | 112          | 114          | 128          | 130         |
| $\nu = 7$ | 116          | 116          | 131          | 133         |
| $\nu = 8$ | 123          | 123          | 135          | 137         |

# Multigrid - Status-quo

- Current setup works for non-constant wavenumbers
- No level-dependent parameters
- Convergence using standard w—Jacobi smoothing
- Full coarsening until size coarse system  $< 10 \times 10$
- Iteration number grows with wavenumber
- Can we reduce number of iterations using GMRES smoothing? (H. Elman, S. Cools)

Constant wave number using Sommerfeld BC

Table: Number of V- ( $\gamma = 1$ ) and W-cycles ( $\gamma = 2$ ) for constant k using tol.  $10^{-5}$ .  $\nu$  denotes the number of GMRES(3) smoothing steps.

|           | k = 50    |    | <i>k</i> =     | = 100             | k = 150          |           | k = 200    |           | k = 250    |     |
|-----------|-----------|----|----------------|-------------------|------------------|-----------|------------|-----------|------------|-----|
|           | N = 6724  |    | N = 26244      |                   | <i>N</i> = 57600 |           | N = 102400 |           | N = 160000 |     |
|           | $N_D = 8$ |    | N <sub>L</sub> | $D = 8$ $N_D = 4$ |                  | $N_D = 8$ |            | $N_D = 4$ |            |     |
| $\gamma$  | 1         | 2  | 1              | 2                 | 1                | 2         | 1          | 2         | 1          | 2   |
| u = 1     | 37        | 36 | 68             | 67                | 99               | 98        | 132        | 131       | 162        | 161 |
| $\nu = 2$ | 29        | 29 | 53             | 53                | 78               | 78        | 104        | 104       | 128        | 128 |
| $\nu = 3$ | 24        | 24 | 45             | 45                | 67               | 67        | 89         | 89        | 112        | 112 |
| $\nu = 4$ | 22        | 22 | 40             | 40                | 59               | 59        | 78         | 78        | 98         | 98  |
| $\nu = 5$ | 20        | 20 | 36             | 36                | 53               | 53        | 71         | 71        | 88         | 88  |

- Coarsening + GMRES(3) smoothing on CSL (shift = 0.7)
- Number of iterations scale linearly with k
- Linear interpolation 199 iterations ( $k = 50, \gamma = 1$ )

Constant wave number using Sommerfeld BC

Table: Number of V- ( $\gamma = 1$ ) and W-cycles ( $\gamma = 2$ ) for constant k using tol.  $10^{-5}$ .  $\nu$  denotes the number of GMRES(3) smoothing steps.

|           | k = 50    |   | <i>k</i> =        | = 100 | k = 150          |           | k = 200    |           | <i>k</i> = 250 |    |
|-----------|-----------|---|-------------------|-------|------------------|-----------|------------|-----------|----------------|----|
|           | N = 6724  |   | N = 26244         |       | <i>N</i> = 57600 |           | N = 102400 |           | N = 160000     |    |
|           | $N_D = 8$ |   | $N_D = 8$ $N_D =$ |       | o = 4            | $N_D = 8$ |            | $N_D = 4$ |                |    |
| $\gamma$  | 1         | 2 | 1                 | 2     | 1                | 2         | 1          | 2         | 1              | 2  |
| u = 1     | 14        | 7 | 24                | 10    | 39               | 19        | 51         | 24        | 64             | 29 |
| $\nu = 2$ | 8         | 5 | 13                | 7     | 22               | 10        | 28         | 13        | 34             | 16 |
| $\nu = 3$ | 6         | 5 | 10                | 6     | 16               | 9         | 20         | 10        | 24             | 12 |
| $\nu = 4$ | 6         | 5 | 8                 | 5     | 12               | 7         | 15         | 9         | 18             | 10 |
| $\nu = 5$ | 5         | 5 | 7                 | 5     | 11               | 7         | 13         | 8         | 15             | 9  |

- Coarsening + GMRES(3) smoothing on CSL (shift =  $k^{-1}$ )
- Iteration count with  $\gamma = 2$  close to k-independent
- Linear interpolation 248 iterations ( $k = 50, \gamma = 1$ )

### Conclusion

- H.o. intergrid vectors for deflation
- Apply similar approach to multigrid
- Converges until coarse system negative definite
- Fix using CSL for coarsening and smoothing
- Result: level-independent convergent V-cycle
- No restrictions to coarse grid resolution
- Some challenges remain:
  - What about fully Dirichlet BC's?
  - For better iteration numbers  $\Rightarrow$  GMRES smoothing

#### What's next?

- Future work on h.o. intergrid operators
- Assess quality of different smoothers
- Provide analysis and theory
- Investigate more heterogeneous and 3D models
- Investigate performance as a preconditioner

### References

- Upcoming articles: multilevel deflation and convergent multigrid methods for the Helmholtz equation.
- Further reading

#### V. Dwarka, C. Vuik.

Scalable Convergence Using Two-Level Deflation Preconditioning for the Helmholtz Equation

SIAM Journal on Scientific Computing, 42(3):A901–A928, 2020.

V. Dwarka, R. Tielen, M. Moller and C. Vuik

Towards Accuracy and Scalability: Combining Isogeometric Analysis with Deflation to Obtain Scalable Convergence for the Helmholtz Equation

*Computer Methods in Applied Mechanics and Engineering*, 377:113694, 2021.