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1. (a) The local truncation error is given by

n — Zn
T (A) = S M

where 2, is obtained by one step of the method starting in ¢,, and y,,. We determine
Yns1 by the use of Taylor expansions around t,:

2

/ At 1
Yni1 = Un + ALY (t,) + Y (tn) + O(AE). (2)

We bear in mind that

df (tn, Yn) _ Of (tn; Yn) + Of (tn, yn)y/

Vi) == = oy V()
_ Of(tn,yn) | Of(tn, Yn)

Hence

Yn+1 = Yn + Aty/(tn) +

(2Ll ) RECIN NG

After substitution of ky = f(t,,y,) and ky = f(tni1,yn + Atky) into wy1 = yn +
&t (ki + k), and after using a Taylor expansion around (ty, y,), we obtain for z,1:

A
A )+ F(t + Aty + AL F(E, 1))

Zptl = Yn T 9
_ At Of (tn, yn) Of (tn, yn) 2
=t 5 (2rttnn) 8 (2 g, ) 2L 4 oa )
Herewith, one obtains
3
Ynt1 — Znp1 = O(At?), and hence 7,41 (At) = O(AA; ) = O(A#?). (4)

(b) Note: Every miscalculation in the calculation of k, and k, gives a subtraction of 1/4
point, with at most 1/2 point being subtracted.

Note: The calculation of w, must be consistent with the value for ky and k. If not,
1 point is subtracted.



Note: Every miscalculation in the calculation of w, gives a subtraction of 1/4 point,
with at most 1 point being subtracted.

Application of the integration method to the system 1’ = Az + f, gives

ky = Awy + [,
ko = Alwy + Atky) + f, (5)
wy :QO+%<E1+E2)'

With the initial condition w, = (;) and At = 0.5, this gives the following result
-2 1 1 0 0
b= ) 6) () -(5) ©
-2 1 1 0 0 —-3.5
b= (0 L) ()0 (5) - 0)- (7). @

The final result is calculated as follows

wy = (;) +0.25 (El +E2)
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Consider the test equation 3’ = Ay, then one gets

kl = /\wnu
ks = Mw, + Atdw,),

At
Wp1 = Wy + 7([@ + ]{32)

2
— <1 + AL+ (AZA) ) W,

Hence the amplification factor is given by

2

QAAL) =1+ NAt + @ (8)
Note: FEwvery miscalculation in the calculation of |Q(MAL)|* gives a subtraction of
/4 point, with at most /2 point being subtracted.
Note: The calculation of |Q(NAt)|*> must be consistent with the eigenvalues found.
If not, /2 point is subtracted.
First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues
are substituted into the amplification factor.
The eigenvalues of the matrix A are given by Ay = —4 and Ay = —2.
Since A\; = —4 is the smallest eigenvalue it is sufficient to check if |Q(\A?)] < 1.
Since Q(MAL) = 1+ X\ At + (A At)? we have to check that |1 —4A¢+8(At)?| < 1.
This leads to

—1<1—4At+8(At)* < 1.



We start with the left inequality:

—1 < 1—4At +8(At)?
This can be written as

0 <2 —4At + 8(At)?

This is a second order polynomial. Since the discriminant (—4)?—4 x 2 x 8 is negative
there are no real roots. The inequality holds for At = 0 so it holds for all At-values.
For the right inequality we have:

1 —4At +8(At)? < 1.
This is equivalent to
—4At + 8(At)* < 0.
Dividing
8(At)? < 4At
by 8At leads to
At <

DO | —

So the method is stable for all At < %

The largest advantage is that the stability condition for equation 2| = —2x; + x5 is
At < 1. So for this equation the time step can be chosen two times a large than for
the complete system. This means that less work is needed for this approach.
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(a) Taylor polynomials are:

(2h)3 111

d(0) = d(2h) — 2hd (2h) + 2h2d (2h) — =" (&)
d(h) = d(2h) — hd (2h) + h;d"(Qh) — %gd”' (&),

d(2h) = d(2h).

We know that Q(h) = $8d(0) + $3d(h) + $3d(2h), which should be equal to d”(2h)

+ remainder term. This leads to the following conditions:

e e 6]
Moo o= 0,
9% _ Qa1 —
25 o = 0,
2ao+§a1 = 1.

(b) The truncation error follows from the Taylor polynomials:

d"(2h)—@(h> _ d”(2h)—d(0> — Zd}(f;) + d(2h) _ Td (&) _hZQ(Fd (&1)) _ hd”/<f>.

(c¢) Using the formula with A = 10 we obtain the estimate:

d(0) — 2d(10) +d(20)  0—2x40+100
100 N 100 N

0.2 (m/s?).



(a) A fixed point p satisfies the equation p = g(p). Substitution gives: p = %3 + =

Rewriting this expression gives:

= 0,

which shows that a fixed point of g(z) also a root of f(z) is.

(b) Starting with py = 1 we obtain:

p o= ~ 0.6458,
e = ~ 0.5241,
ps = ~ 0.5032.

A sketch of this fixed-point iteration is given by
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(¢) For the convergence three conditions should be satisfied:

e g€ (C0,1].
e g(p) €[0,1] for all p € [0, 1].
e |J'(p)| <k <1forall pel0,1].

1.2

Since g(p) = %3 + % it follows that ¢ is continuous everywhere, so the first condition

holds.

2

Furthermore, ¢'(z) = %. Note that ¢g'(p) > 0 for all p € [0,1]. This implies that
g(x) is increasing on [0,1]. A lower bound for g(x) is given by

o) 2 9(0) = 22

>0,



and an upper bound is given by

31
o) < g(1) = <1
So 0 < g(z) <1 and the second conditions holds.
For the third condition we note that |¢'(z)| = % <f=k<1foralzel01]s0
the third condition is also satisfied.
As all conditions are satisfied, the fixed point iteration converges for all py € [0, 1]
to the fixed point p € [0, 1].



