ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS
 (CTB2400)
 Tuesday July 18 2023, 13:30-16:30

1. (a) The local truncation error is given by

$$
\begin{equation*}
\tau_{n+1}(\Delta t)=\frac{y_{n+1}-z_{n+1}}{\Delta t} \tag{1}
\end{equation*}
$$

where z_{n+1} is obtained by one step of the method starting in t_{n} and y_{n}. We determine y_{n+1} by the use of Taylor expansions around t_{n} :

$$
\begin{equation*}
y_{n+1}=y_{n}+\Delta t y^{\prime}\left(t_{n}\right)+\frac{\Delta t^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+\mathcal{O}\left(\Delta t^{3}\right) \tag{2}
\end{equation*}
$$

We bear in mind that

$$
\begin{aligned}
y^{\prime}\left(t_{n}\right) & =f\left(t_{n}, y_{n}\right) \\
y^{\prime \prime}\left(t_{n}\right) & =\frac{d f\left(t_{n}, y_{n}\right)}{d t}=\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} y^{\prime}\left(t_{n}\right) \\
& =\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} f\left(t_{n}, y_{n}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
y_{n+1}=y_{n}+\Delta t y^{\prime}\left(t_{n}\right)+\frac{\Delta t^{2}}{2}\left(\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} f\left(t_{n}, y_{n}\right)\right)+\mathcal{O}\left(\Delta t^{3}\right) \tag{3}
\end{equation*}
$$

After substitution of $k_{1}=f\left(t_{n}, y_{n}\right)$ and $k_{2}=f\left(t_{n+1}, y_{n}+\Delta t k_{1}\right)$ into $w_{n+1}=y_{n}+$ $\frac{\Delta t}{2}\left(k_{1}+k_{2}\right)$, and after using a Taylor expansion around $\left(t_{n}, y_{n}\right)$, we obtain for z_{n+1} :

$$
\begin{aligned}
z_{n+1} & =y_{n}+\frac{\Delta t}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n}+\Delta t, y_{n}+\Delta t f\left(t_{n}, y_{n}\right)\right)\right) \\
& =y_{n}+\frac{\Delta t}{2}\left(2 f\left(t_{n}, y_{n}\right)+\Delta t\left(\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+f\left(t_{n}, y_{n}\right) \frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y}\right)+\mathcal{O}\left(\Delta t^{2}\right)\right) .
\end{aligned}
$$

Herewith, one obtains

$$
\begin{equation*}
y_{n+1}-z_{n+1}=\mathcal{O}\left(\Delta t^{3}\right), \text { and hence } \tau_{n+1}(\Delta t)=\frac{\mathcal{O}\left(\Delta t^{3}\right)}{\Delta t}=\mathcal{O}\left(\Delta t^{2}\right) \tag{4}
\end{equation*}
$$

(b) Note: Every miscalculation in the calculation of \underline{k}_{1} and \underline{k}_{2} gives a subtraction of $1 / 4$ point, with at most $1 / 2$ point being subtracted.
Note: The calculation of \underline{w}_{1} must be consistent with the value for \underline{k}_{1} and \underline{k}_{2}. If not, 1 point is subtracted.

Note: Every miscalculation in the calculation of \underline{w}_{1} gives a subtraction of $1 / 4$ point, with at most 1 point being subtracted.
Application of the integration method to the system $\underline{x}^{\prime}=A \underline{x}+\underline{f}$, gives

$$
\begin{align*}
& \underline{k}_{1}=A \underline{w}_{0}+\underline{f}_{0} \\
& \underline{k}_{2}=A\left(\underline{w}_{0}+\Delta t \underline{k}_{1}\right)+\underline{f}_{1} \tag{5}\\
& \underline{w}_{1}=\underline{w}_{0}+\frac{\Delta t}{2}\left(\underline{k}_{1}+\underline{k}_{2}\right) .
\end{align*}
$$

With the initial condition $\underline{w}_{0}=\binom{1}{2}$ and $\Delta t=0.5$, this gives the following result

$$
\begin{gather*}
\underline{k}_{1}=\left(\begin{array}{cc}
-2 & 1 \\
0 & -4
\end{array}\right)\binom{1}{2}+\binom{0}{1}=\binom{0}{-7} . \tag{6}\\
\underline{k}_{2}=\left(\begin{array}{cc}
-2 & 1 \\
0 & -4
\end{array}\right)\left(\binom{1}{2}+0.5 *\binom{0}{-7}\right)+\binom{0}{0}=\binom{-3.5}{6} . \tag{7}
\end{gather*}
$$

The final result is calculated as follows

$$
\begin{aligned}
\underline{w}_{1} & =\binom{1}{2}+0.25\left(\underline{k}_{1}+\underline{k}_{2}\right) \\
& =\binom{0.125}{1.75}
\end{aligned}
$$

(c) Consider the test equation $y^{\prime}=\lambda y$, then one gets

$$
\begin{aligned}
k_{1} & =\lambda w_{n} \\
k_{2} & =\lambda\left(w_{n}+\Delta t \lambda w_{n}\right), \\
w_{n+1} & =w_{n}+\frac{\Delta t}{2}\left(k_{1}+k_{2}\right) \\
& =\left(1+\Delta t \lambda+\frac{(\Delta t \lambda)^{2}}{2}\right) w_{n} .
\end{aligned}
$$

Hence the amplification factor is given by

$$
\begin{equation*}
Q(\lambda \Delta t)=1+\lambda \Delta t+\frac{(\lambda \Delta t)^{2}}{2} \tag{8}
\end{equation*}
$$

(d) Note: Every miscalculation in the calculation of $\left|Q\left(\lambda_{1} \Delta t\right)\right|^{2}$ gives a subtraction of $1 / 4$ point, with at most $1 / 2$ point being subtracted.
Note: The calculation of $\left|Q\left(\lambda_{1} \Delta t\right)\right|^{2}$ must be consistent with the eigenvalues found. If not, $1 / 2$ point is subtracted.
First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues are substituted into the amplification factor.
The eigenvalues of the matrix A are given by $\lambda_{1}=-4$ and $\lambda_{2}=-2$.
Since $\lambda_{1}=-4$ is the smallest eigenvalue it is sufficient to check if $\left|Q\left(\lambda_{1} \Delta t\right)\right| \leq 1$. Since $Q\left(\lambda_{1} \Delta t\right)=1+\lambda_{1} \Delta t+\frac{1}{2}\left(\lambda_{1} \Delta t\right)^{2}$ we have to check that $\left|1-4 \Delta t+8(\Delta t)^{2}\right| \leq 1$. This leads to

$$
-1 \leq 1-4 \Delta t+8(\Delta t)^{2} \leq 1
$$

We start with the left inequality:

$$
-1 \leq 1-4 \Delta t+8(\Delta t)^{2}
$$

This can be written as

$$
0 \leq 2-4 \Delta t+8(\Delta t)^{2}
$$

This is a second order polynomial. Since the discriminant $(-4)^{2}-4 \times 2 \times 8$ is negative there are no real roots. The inequality holds for $\Delta t=0$ so it holds for all Δt-values. For the right inequality we have:

$$
1-4 \Delta t+8(\Delta t)^{2} \leq 1
$$

This is equivalent to

$$
-4 \Delta t+8(\Delta t)^{2} \leq 0
$$

Dividing

$$
8(\Delta t)^{2} \leq 4 \Delta t
$$

by $8 \Delta t$ leads to

$$
\Delta t \leq \frac{1}{2}
$$

So the method is stable for all $\Delta t \leq \frac{1}{2}$.
(e) The largest advantage is that the stability condition for equation $x_{1}^{\prime}=-2 x_{1}+x_{2}$ is $\Delta t \leq 1$. So for this equation the time step can be chosen two times a large than for the complete system. This means that less work is needed for this approach.
2. (a) Taylor polynomials are:

$$
\begin{aligned}
d(0) & =d(2 h)-2 h d^{\prime}(2 h)+2 h^{2} d^{\prime \prime}(2 h)-\frac{(2 h)^{3}}{6} d^{\prime \prime \prime}\left(\xi_{0}\right), \\
d(h) & =d(2 h)-h d^{\prime}(2 h)+\frac{h^{2}}{2} d^{\prime \prime}(2 h)-\frac{h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{1}\right) \\
d(2 h) & =d(2 h) .
\end{aligned}
$$

We know that $Q(h)=\frac{\alpha_{0}}{h^{2}} d(0)+\frac{\alpha_{1}}{h^{2}} d(h)+\frac{\alpha_{2}}{h^{2}} d(2 h)$, which should be equal to $d^{\prime \prime}(2 h)$ + remainder term. This leads to the following conditions:

$$
\begin{aligned}
\frac{\alpha_{0}}{h^{2}}+\frac{\alpha_{1}}{h^{2}}+\frac{\alpha_{2}}{h^{2}} & =0, \\
-2 \frac{\alpha_{0}}{h} & =0, \\
2 \alpha_{0}+\frac{\alpha_{1}}{h} \alpha_{1} & =1 .
\end{aligned}
$$

(b) The truncation error follows from the Taylor polynomials:

$$
d^{\prime \prime}(2 h)-Q(h)=d^{\prime \prime}(2 h)-\frac{d(0)-2 d(h)+d(2 h)}{h^{2}}=\frac{\frac{8 h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{0}\right)-2\left(\frac{h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{1}\right)\right)}{h^{2}}=h d^{\prime \prime \prime}(\xi) .
$$

(c) Using the formula with $h=10$ we obtain the estimate:

$$
\frac{d(0)-2 d(10)+d(20)}{100}=\frac{0-2 \times 40+100}{100}=0.2\left(\mathrm{~m} / \mathrm{s}^{2}\right) .
$$

3. (a) A fixed point p satisfies the equation $p=g(p)$. Substitution gives: $p=\frac{p^{3}}{6}+\frac{23}{48}$. Rewriting this expression gives:

$$
\begin{aligned}
& -\frac{p^{3}}{6}+p-\frac{23}{48} & =0 \\
\Rightarrow & -p^{3}+6 p-\frac{23}{8} & =0 \\
\Rightarrow \quad & f(p) & =0
\end{aligned}
$$

which shows that a fixed point of $g(x)$ also a root of $f(x)$ is.
(b) Starting with $p_{0}=1$ we obtain:

$$
\begin{aligned}
& p_{1}=\approx 0.6458, \\
& p_{2}=\approx 0.5241, \\
& p_{3}=\approx 0.5032 .
\end{aligned}
$$

A sketch of this fixed-point iteration is given by

(c) For the convergence three conditions should be satisfied:

- $g \in C[0,1]$.
- $g(p) \in[0,1]$ for all $p \in[0,1]$.
- $\left|g^{\prime}(p)\right| \leq k<1$ for all $p \in[0,1]$.

Since $g(p)=\frac{p^{3}}{6}+\frac{23}{48}$ it follows that g is continuous everywhere, so the first condition holds.
Furthermore, $g^{\prime}(x)=\frac{x^{2}}{2}$. Note that $g^{\prime}(p) \geq 0$ for all $p \in[0,1]$. This implies that $g(x)$ is increasing on $[0,1]$. A lower bound for $g(x)$ is given by

$$
g(x) \geq g(0)=\frac{23}{48} \geq 0
$$

and an upper bound is given by

$$
g(x) \leq g(1)=\frac{31}{48} \leq 1
$$

So $0 \leq g(x) \leq 1$ and the second conditions holds.
For the third condition we note that $\left|g^{\prime}(x)\right|=\frac{x^{2}}{2} \leq \frac{1}{2}=k<1$ for all $x \in[0,1]$, so the third condition is also satisfied.
As all conditions are satisfied, the fixed point iteration converges for all $p_{0} \in[0,1]$ to the fixed point $p \in[0,1]$.

