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1. (a) The local truncation error is given by

τn+1(∆t) =
yn+1 − zn+1

∆t
, (1)

where zn+1 is obtained by one step of the method starting in tn and yn. We determine
yn+1 by the use of Taylor expansions around tn:

yn+1 = yn + ∆ty′(tn) +
∆t2

2
y′′(tn) +O(∆t3). (2)

We bear in mind that

y′(tn) = f(tn, yn)

y′′(tn) =
df(tn, yn)

dt
=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
y′(tn)

=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn).

Hence

yn+1 = yn + ∆ty′(tn) +
∆t2

2

(
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn)

)
+O(∆t3). (3)

After substitution of k1 = f(tn, yn) and k2 = f(tn+1, yn + ∆tk1) into wn+1 = yn +
∆t
2

(k1 + k2), and after using a Taylor expansion around (tn, yn), we obtain for zn+1:

zn+1 = yn +
∆t

2
(f(tn, yn) + f(tn + ∆t, yn + ∆tf(tn, yn)))

= yn +
∆t

2

(
2f(tn, yn) + ∆t

(
∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, yn)

∂y

)
+O(∆t2)

)
.

Herewith, one obtains

yn+1 − zn+1 = O(∆t3), and hence τn+1(∆t) =
O(∆t3)

∆t
= O(∆t2). (4)

(b) Note: Every miscalculation in the calculation of k1 and k2 gives a subtraction of 1/4

point, with at most 1/2 point being subtracted.

Note: The calculation of w1 must be consistent with the value for k1 and k2. If not,
1 point is subtracted.
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Note: Every miscalculation in the calculation of w1 gives a subtraction of 1/4 point,
with at most 1 point being subtracted.

Application of the integration method to the system x′ = Ax+ f , gives

k1 = Aw0 + f
0
,

k2 = A(w0 + ∆tk1) + f
1

w1 = w0 + ∆t
2

(k1 + k2) .

(5)

With the initial condition w0 =

(
1
2

)
and ∆t = 0.5, this gives the following result

k1 =

(
−2 1
0 −4

)(
1
2

)
+

(
0
1

)
=

(
0
−7

)
. (6)

k2 =

(
−2 1
0 −4

)((
1
2

)
+ 0.5 ∗

(
0
−7

))
+

(
0
0

)
=

(
−3.5

6

)
. (7)

The final result is calculated as follows

w1 =

(
1
2

)
+ 0.25 (k1 + k2)

=

(
0.125
1.75

)
(c) Consider the test equation y′ = λy, then one gets

k1 = λwn,

k2 = λ(wn + ∆tλwn),

wn+1 = wn +
∆t

2
(k1 + k2)

=

(
1 + ∆tλ+

(∆tλ)2

2

)
wn.

Hence the amplification factor is given by

Q(λ∆t) = 1 + λ∆t+
(λ∆t)2

2
. (8)

(d) Note: Every miscalculation in the calculation of |Q(λ1∆t)|2 gives a subtraction of
1/4 point, with at most 1/2 point being subtracted.

Note: The calculation of |Q(λ1∆t)|2 must be consistent with the eigenvalues found.
If not, 1/2 point is subtracted.

First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues
are substituted into the amplification factor.

The eigenvalues of the matrix A are given by λ1 = −4 and λ2 = −2.

Since λ1 = −4 is the smallest eigenvalue it is sufficient to check if |Q(λ1∆t)| ≤ 1.
Since Q(λ1∆t) = 1 +λ1∆t+ 1

2
(λ1∆t)2 we have to check that |1− 4∆t+ 8(∆t)2| ≤ 1.

This leads to
−1 ≤ 1− 4∆t+ 8(∆t)2 ≤ 1.
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We start with the left inequality:

−1 ≤ 1− 4∆t+ 8(∆t)2

This can be written as
0 ≤ 2− 4∆t+ 8(∆t)2

This is a second order polynomial. Since the discriminant (−4)2−4×2×8 is negative
there are no real roots. The inequality holds for ∆t = 0 so it holds for all ∆t-values.
For the right inequality we have:

1− 4∆t+ 8(∆t)2 ≤ 1.

This is equivalent to
−4∆t+ 8(∆t)2 ≤ 0.

Dividing
8(∆t)2 ≤ 4∆t

by 8∆t leads to

∆t ≤ 1

2
.

So the method is stable for all ∆t ≤ 1
2
.

(e) The largest advantage is that the stability condition for equation x′1 = −2x1 + x2 is
∆t ≤ 1. So for this equation the time step can be chosen two times a large than for
the complete system. This means that less work is needed for this approach.
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2. (a) Taylor polynomials are:

d(0) = d(2h)− 2hd
′
(2h) + 2h2d

′′
(2h)− (2h)3

6
d

′′′
(ξ0) ,

d(h) = d(2h)− hd′
(2h) +

h2

2
d

′′
(2h)− h3

6
d

′′′
(ξ1) ,

d(2h) = d(2h).

We know that Q(h) = α0

h2
d(0) + α1

h2
d(h) + α2

h2
d(2h), which should be equal to d′′(2h)

+ remainder term. This leads to the following conditions:

α0

h2
+ α1

h2
+ α2

h2
= 0 ,

−2α0

h
− α1

h
= 0 ,

2α0 + 1
2
α1 = 1 .

(b) The truncation error follows from the Taylor polynomials:

d′′(2h)−Q(h) = d′′(2h)−d(0)− 2d(h) + d(2h)

h2
=

8h3

6
d

′′′
(ξ0)− 2(h

3

6
d

′′′
(ξ1))

h2
= hd′′′(ξ).

(c) Using the formula with h = 10 we obtain the estimate:

d(0)− 2d(10) + d(20)

100
=

0− 2× 40 + 100

100
= 0.2 (m/s2).
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3. (a) A fixed point p satisfies the equation p = g(p). Substitution gives: p = p3

6
+ 23

48
.

Rewriting this expression gives:

−p3

6
+ p− 23

48
= 0

⇒ −p3 + 6p− 23
8

= 0

⇒ f(p) = 0,

which shows that a fixed point of g(x) also a root of f(x) is.

(b) Starting with p0 = 1 we obtain:

p1 = ≈ 0.6458,

p2 = ≈ 0.5241,

p3 = ≈ 0.5032.

A sketch of this fixed-point iteration is given by
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(c) For the convergence three conditions should be satisfied:

• g ∈ C[0, 1].

• g(p) ∈ [0, 1] for all p ∈ [0, 1].

• |g′(p)| ≤ k < 1 for all p ∈ [0, 1].

Since g(p) = p3

6
+ 23

48
it follows that g is continuous everywhere, so the first condition

holds.

Furthermore, g′(x) = x2

2
. Note that g′(p) ≥ 0 for all p ∈ [0, 1]. This implies that

g(x) is increasing on [0, 1]. A lower bound for g(x) is given by

g(x) ≥ g(0) =
23

48
≥ 0,
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and an upper bound is given by

g(x) ≤ g(1) =
31

48
≤ 1.

So 0 ≤ g(x) ≤ 1 and the second conditions holds.

For the third condition we note that |g′(x)| = x2

2
≤ 1

2
= k < 1 for all x ∈ [0, 1], so

the third condition is also satisfied.

As all conditions are satisfied, the fixed point iteration converges for all p0 ∈ [0, 1]
to the fixed point p ∈ [0, 1].
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