DELFT UNIVERSITY OF TECHNOLOGY
faculty of Electrical Engineering, Mathematics and Computer Science

Examiner responsible: C. Vuik
Examination reviewer: D. den Ouden-van der Horst

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (CTB2400)

Tuesday July 18 2023, 13:30-16:30
Number of questions: This is an exam with 11 open questions, subdivided in 3 main questions.
Answers All answers require arguments and/or shown calculation steps. Answers without arguments or calculation steps will not give points.
Tools Only a non-graphical, non-programmable calculator is permitted. All other electronic tools are not permitted.
Assessment In total 20 points can be earned. The final not-rounded grade is given by $P / 2$, where P is the number of points earned.

1. For the initial value problem $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$, we use the following integration method:

$$
\left\{\begin{array}{l}
k_{1}=f\left(t_{n}, w_{n}\right) \tag{1}\\
k_{2}=f\left(t_{n+1}, w_{n}+\Delta t k_{1}\right) \\
w_{n+1}=w_{n}+\frac{\Delta t}{2}\left(k_{1}+k_{2}\right)
\end{array}\right.
$$

Here Δt denotes the time step and w_{n} represents the numerical approximation at time t_{n}.
(a) Show that the local truncation error of the integration method is of the order $\mathcal{O}\left(\Delta t^{2}\right)$. (You are not allowed to use the test equation here.)
(b) Consider the following initial value problem

$$
\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}
-2 & 1 \tag{2}\\
0 & -4
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\cos \pi t} \text { and }\binom{x_{1}(0)}{x_{2}(0)}=\binom{1}{2}
$$

(c) Calculate one step with integration method (1), in which $\Delta t=0.5$ and $t_{0}=0$, applied to (2) and use the given initial conditions.
(d) Show that the amplification factor for this integration method is given by: $Q(\lambda \Delta t)=$ $1+\lambda \Delta t+\frac{(\lambda \Delta t)^{2}}{2}$
(e) Examine for which step sizes Δt, the integration method (1), applied to the initial value problem (2), is stable.
(f) This problem can also be solved in a decoupled way, that means one can use the method to solve first $x_{2}^{\prime}=-4 x_{2}+\cos \pi t$ and after that to solve $x_{1}^{\prime}=-2 x_{1}+x_{2}$ What is the advantage of this approach (+motivation)?
2. In this exercise an estimate is determined for the acceleration of a vehicle. The measured distances of the vehicle from the starting line are given in the table below.

$t(\mathrm{~s})$	0	10	20
$d(t)(\mathrm{m})$	0	40	100

(a) We look for a difference formula of the second derivative of d in $2 h$ of the form:

$$
d^{\prime \prime}(2 h) \approx Q(h)=\frac{\alpha_{0}}{h^{2}} d(0)+\frac{\alpha_{1}}{h^{2}} d(h)+\frac{\alpha_{2}}{h^{2}} d(2 h) .
$$

In the remainder of this exercise we use this formula. Show that the coefficients α_{0}, α_{1} and α_{2} should satisfy the next system:

$$
\begin{align*}
\frac{\alpha_{0}}{h^{2}}+\frac{\alpha_{1}}{h^{2}}+\frac{\alpha_{2}}{h^{2}} & =0, \tag{2pt.}\\
-2 \frac{\alpha_{0}}{h} & =0, \\
2 \alpha_{0}+\frac{\alpha_{1}}{h} \alpha_{1} & =1 .
\end{align*}
$$

(b) The solution of this system is given by $\alpha_{0}=1, \alpha_{1}=-2$ and $\alpha_{2}=1$. Determine for these values an expression for the truncation error $d^{\prime \prime}(2 h)-Q(h)$.
(c) Give an estimate of the acceleration at $t=20$.
3. We want to find a root of the function $f(x)=-x^{3}+6 x-\frac{23}{8}$.
(a) We choose to use the fixed point iteration $p_{n+1}=g\left(p_{n}\right)$, with $g(x)=\frac{x^{3}}{6}+\frac{23}{48}$ to find a root. Show that a fixed point of $g(x)$ is also a root of $f(x)$.
(b) We start the fixed point iteration at $p_{0}=1$. Calculate p_{1}, p_{2} and p_{3} to four decimals and sketch the fixed point iteration in a figure.
(c) Show that the chosen fixed point iteration converges for all $p_{0} \in[0,1]$.

