
Extra exercises

Section 6.2

1. If D={(t, y)|0 ≤ t ≤ 1,−2 ≤ y ≤ 5} and f(t, y) = (t + 1)|y|. Is f(t, y) Lipschitz-continuous
in the variable y?

2. (a) Let D={(t, y)|0 ≤ t ≤ 2,−∞ < y <∞}. Is f(t, y) = y − t2 + 1 Lipschitz continuous in
the variable y?

(b) Is the initial value problem

dy

dt
= y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 1

well posed?

Section 6.3

1. (a) What’s the general formula for Euler Forwards, with equidistant stepsize h?

(b) Compose the formula for equidistant Euler Forwards approximation for the initial value
problem: y′ = y − t2 + 1, 0 6 t 6 2, y(0) = 2. Use n = 10.

(c) Calculate 3 steps and then compare with the exact solution, y(t) = (t+ 1)2 + et.

2. (a) What’s the general formula for Euler Backwards, with equidistant stepsize h?

(b) Compose the formula for equidistant Euler Backwards approximation for the initial
value problem: y′ = y − t2 + 1, 0 6 t 6 2, y(0) = 2. Use N=10

(c) Calculate 3 steps and then compare with the exact solution, y(t) = (t+ 1)2 + et.

3. (a) What’s the general formula for Trapezoidal rule, with equidistant stepsize h?

(b) Compose the formula for equidistant Trapezoidal rule approximation for the initial
value problem: y′ = y − t2 + 1, 0 6 t 6 2, y(0) = 2. Use n = 10.

(c) Calculate 3 steps and then compare with the exact solution, y(t) = (t+ 1)2 + et.

(d) Compare the error of the Trapezoidal rule with those of the Euler methods.

4. (a) What’s the general formula for Modified Euler, with equidistant stepsize h?

(b) Compose the formula for equidistant Modified Euler approximation for the initial value
problem: y′ = y − t2 + 1, 0 6 t 6 2, y(0) = 2. Use n = 10.

(c) Calculate 3 steps and then compare with the exact solution, y(t) = (t+ 1)2 + et.

Section 6.4

1. (a) Apply Euler Forwards to the test equation.

(b) What is the amplification factor?

2. (a) Apply Euler Backwards to the test equation.

(b) What is the amplification factor?

3. (a) Apply the Trapezium-rule to the test equation.

1



(b) What is the amplification factor?

4. (a) Apply Modified Euler to the test equation.

(b) What is the amplification factor?

5. (a) Given: y′ = −5y2 + 4, y(0) = 0.
Compute λ in the point (t̂, ŷ), when ŷ > 0 (Hint: use the theory mentioned in the
stability of a general initial-value problem)

(b) Is the previously given initial value problem stable?

(c) When is Euler Forward stable?

6. (a) Given: y′ = −20y2 + 4, y(0) = 3.
Compute λ in the point (t̂, ŷ), when ŷ > 0 (Hint: use the theory mentioned in the
stability of a general initial-value problem)

(b) Is the previously given initial value problem stable?

(c) When is Euler Backward stable?

7. What is the exact solution for the test equation?

8. What is the order of τj+1 for Euler Forward?

9. What is the order of τj+1 for Euler Backward?

Section 6.5

1. (a) What is the general formula for Runge Kutta 4?

(b) Given the initial value problem y′ = y−t2+1, 0 ≤ t ≤ 2, y(0) = 2. Do 3 steps with RK4
with h = 0.2 and compare the solution of step 3 with the exact solution y = (t+1)2+et.

2. (a) Given the initial value problem y′ = −4y2 + 5, y(0) = 5
Compute λ as function of y.

(b) Is the initial value problem stable for ŷ > 0?

(c) When is Runge Kutta 4 stable?

Section 6.6

1. (a) Given the initial value problem y′ = −4y2 + 5, y(0) = 2.
Do one step with Euler Forwards with stepsize h = 0.1.

(b) Do two steps with Euler Forwards with stepsize h = 0.05.

(c) What is the order of Euler Forwards?
So what is the value of p?

(d) Make an approximation of the error made.

2. (a) Given the initial value problem y′ = y − t2 + 1, y(0) = 2.
Do one step with Modified Euler with stepwidth h = 0.1.

(b) Do two steps with Modified Euler with h = 0.05.

(c) What is the order of Modified Euler?

(d) Make an approximation of the error made.
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Section 6.7

1. (a) Give, in vectorform, the general formula for Euler Forwards.

(b) Do a step with Euler Forwards, with stepwidth h = 0.1 for the system:
u′1 = −4u1 − 2u2 + cos(t) + 4 sin(t)
u′2 = 3u1 + u2 − 3 sin(t)

with initial values u1(0) = 0 and u2(0) = −1.

(c) Compare the answer with the exact solution
u1(t) = 2e−t − 2e−2t + sin(t)
u2(t) = −3e−t + 2e−2t.

2. (a) Write the equation y′′ − 2y′ + y = tet − t, with initial values y(0) = 1 and y′(0) = 2 as
a system of first order differential equations.

(b) Do one step with Euler Forwards with stepwidth h = 0.1

(c) Compute the error wiht the exact solution y(t) = 3et − 2− t+ 1
6 t

3et.
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Answers of the extra exercises

Section 6.2

1. 0 ≤ t ≤ 1,−2 ≤ y ≤ 5
By definition, we know that f(t, y) is Lipschitz continuous in y if there exists L > 0 such
that: |f(t, y1)− f(t, y2)| ≤ L|y1 − y2|
|f(t, y1)− f(t, y2)| = |(t+ 1)|y1| − (t+ 1)|y2||

= |t+ 1|||y1| − |y2|| ≤ 2|y1 − y2|
So f(t, y) is Lipschitz continuous with L = 2.

2. (a) If f(t, y) is Lipschitz continuous, we must have |∂f∂y (t, y)| ≤ L for all (t, y) ∈ D.∣∣∣∂(y−t2+1)
∂y

∣∣∣ = |1| = 1

So the function is Lipschitz-continuous with L = 1.

(b) (Theorem 6.2.21) f(t, y) = y − t2 + 1 is continuous on D and Lipschitz-continuous in
y, so the problem is well posed.

Section 6.3

1. (a) wn+1 = wn + hf(tn, wn)

(b) h = 2−0
10 = 0.2, tn = 0.2n, w0 = 2

wn+1 = wn + hf(tn, wn)
= wn + 0.2(wn − t2n + 1)
= wn + 0.2(wn − 0.04n2 + 1)
= 1.2wn − 0.008n2 + 0.2

(c) We use the formula from 1b
w1 ≈ u(t1) = 1.2 · w0 − 0.008 · 02 + 0.2

= 1.2 · 2 + 0.2
= 2.6

w2 ≈ u(t2) = 1.2 · w1 − 0.008 · 12 + 0.2
= 1.2 · 2.6− 0.008 + 0.2
= 3.312

w3 ≈ u(t3) = 1.2 · w2 − 0.008 · 22 + 0.2
= 1.2 · 3.312− 0.032 + 0.2
= 4.1424

3 steps ⇒ t3 = 0.2 · 3 = 0.6
y(0.6) = (0.6 + 1)2 + e0.6 = 2.56 + e0.6 = 4.3821188
The absolute error is equal to: |y(0.6)− w3| = |4.3821188− 4.1424| = 0.2397188

2. (a) wn+1 = wn + hf(tn+1, wn+1)

(b) h = 2−0
10 = 0.2, tn = 0.2n, w0 = 2

wn+1 = wn + 0.2(wn+1 − t2n+1 + 1)
= wn + 0.2(wn+1 − 0.04(n+ 1)2 + 1)
= wn + 0.2(wn+1 − 0.04(n2 + 2n+ 1) + 1)
= wn + 0.2wn+1 − 0.008n2 − 0.016n− 0.008 + 2
= wn − 0.2wn+1 − 0.008n2 − 0.016n+ 0.192

0.8wn+1 = wn − 0.008n2 − 0.016n+ 0.192
wn+1 = 1.25wn − 0.01n2 − 0.02n+ 0.24
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(c) We use the formula from 2b
w0 = 2
w1 = 1.25 · w0 − 0.01 · 02 − 0.02 · 0 + 0.24

= 1.25 · 2 + 0.24
= 2.74

w2 = 1.25 · w1 − 0.01 · 12 − 0.02 · 1 + 0.24
= 1.25 · 2.74− 0.01− 0.02 + 0.24
= 3.635

w3 = 1.25 · w2 − 0.01 · 22 − 0.02 · 2 + 0.24
= 1.25 · 3.635− 0.04− 0.04 + 0.24
= 4.70375

3 steps ⇒ t3 = 0.2 · 3 = 0.6
y(0.6) = (0.6 + 1)2 + e0.6 = 2.56 + e0.6 = 4.3821188
The absolute error is equal to: |y(0.6)− w3| = |4.3821188− 4.70375| = 0.3216312

3. (a) wn+1 = wn + h
2 [f(tn, wn) + f(tn+1, wn+1)]

(b) h = 2−0
10 = 0.2, tn = 0.2n, w0 = 2

wn+1 = wn + h
2 [(wn − t2n + 1) + (wn+1 − t2n+1 + 1)]

= wn + 0.2
2 (wn − 0.04n2 + 1 + wn+1 − 0.04(n+ 1)2 + 1)

= wn + 0.1wn − 0.004n2 + 0.1 + 0.1(wn+1 − 0.004(n2 + 2n+ 1) + 0.1
= wn + 0.1wn − 0.004n2 + 0.1 + 0.1wn+1 − 0.004n2 − 0.008n− 0.004 + 0.1
= 1.1wn + 0.1wn+1 − 0.008n2 − 0.008n+ 0.196

0.9wn+1 = 1.1wn − 0.008n2 − 0.008n+ 0.196
wn+1 = 1.1

0.9wn −
0.008
0.9 n2 − 0.008

0.9 n+ 0.196
0.9

(c) We use the formula from 3b
w0 = 2
w1 = 1.1

0.9 · w0 − 0.008
0.9 · 0

2 − 0.008
0.9 · 0 + 0.196

0.9
= 1.1

0.9 · 2 + 0.196
0.9

= 2.662222
w2 = 3.453827
w3 = 4.385789

The absolute error is equal to: |y(0.6)− w3| = |4.3821188− 4.385789| = 0.00366995

(d) When we compare the errors of the three previous methods, we see the Trapezoidal
rule method has the smallest error.

4. (a) w̄n+1 = wn + hf(tn, wn)
wn+1 = wn + h

2 [f(tn, wn) + f(tn+1, w̄n+1)]

(b) h = 2−0
10 = 0.2, tn = 0.2n, w0 = 2

w̄n+1 = wn + hf(tn, wn)
= 1.2wn − 0.008n2 + 0.2 see question about Euler Forwards

wn+1 = wn + h
2 [wn − t2n + 1 + w̄n+1 − t2n+1 + 1]

= wn + 0.1(wn − 0.04n2 + 1 + 1.2wn − 0.008n2 + 0.2− 0.04(n+ 1)2 + 1)
= wn + 0.1wn − 0.004n2 + 0.1 + 0.12wn − 0.0008n2 + 0.02− 0.004n2

−0.008n− 0.004 + 0.1
= 1.22wn − 0.0088n2 − 0.008n+ 0.216

(c) We use the formula from 4b
w0 = 2
w1 = 1.22 · 2 + 0.216

= 2.656
w2 = 3.43952
w3 = 4.3610144

The absolute error is equal to: |y(0.6)− w3| = |4.3821188− 4.3610144| = 0.021104
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Section 6.4

1. (a) y′ = λy, y(0) = y0
wn+1 = wn + hf(tn, wn)

= wn + h(λwn)
= (1 + hλ)wn

(b) 1 + hλ

2. (a) y′ = λy, y(0) = y0
wn+1 = wn + hf(tn+1, wn+1)

= wn + hλwn+1

wn+1 − hλwn+1 = wn
(1− hλ)wn+1 = wn

wn+1 = 1
1−hλwn

(b) 1
1−hλ

3. (a) y′ = λy, y(0) = y0
wn+1 = wn + h

2 [f(tn, wn) + f(tn+1, wn+1)
= wn + h

2 [λwn + λwn+1]
= (1 + h

2λ)wn + hλ
2 wn+1

(1− hλ
2 )wn+1 = (1 + hλ

2 )wn

wn+1 =
1+hλ

2

1−hλ2
wn

(b)
1+hλ

2

1−hλ2

4. (a) y′ = λy, y(0) = y0
w̄n+1 = wn + hf(tn, wn)

= wn + hλwn
= (1 + hλ)wn

wn+1 = wn + h
2 [f(tn, wn) + f(tn+1, barwn+1)

= wn + h
2 [λwn + λ(1 + hλ)wn]

= wn + h
2λwn + h

2 (λ+ hλ2)wn
= (1 + h

2λ+ h
2λ+ h2

2 λ
2)wn

= (1 + hλ+ 1
2h

2λ2)wn

(b) 1 + hλ+ 1
2h

2λ2

5. (a) We have f(t, y) = −5y2 + 4. Linearization gives:

y′ = f(t̂, ŷ) + (y − ŷ)
∂f

∂y
(t̂, ŷ) + (t− t̂)∂f

∂t
(t̂, ŷ)

So we have λ = ∂f
∂y (t̂, ŷ) = −10ŷ

(b) The initial value problem is stable when λ ≤ 0.
λ = −10ŷ ≤ 0 for ŷ ≥ 0 and that was given, so the problem is stable.

(c) Euler Forwards is stable when |Q(hλ)| = |1 + hλ| ≤ 1.

So

|1− 10ŷh| ≤ 1
−1 ≤ 1− 10ŷh ≤ 1
−2 ≤ −10ŷh ≤ 0
1
5ŷ ≥ h ≥ 0

So stable for h ≤ 1
5ŷ

6. (a) f(t, y) = −20y2 + 4
λ = ∂f

∂y (t̂, ŷ) = −40ŷ
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(b) We have ŷ ≥ 0, so λ ≤ 0. So the initial value problem is stable.

(c) Euler Backward is stable when |Q(hλ)| = | 1
1−hλ | ≤ 1.

Because 40ŷh ≥ 0, we have 1 + 40ŷh ≥ 1 and so we have 0 < 1
1+40ŷh ≤ 1. And Euler

Backwards is stable for all h.

7. The exact solution is given by yj+1 = ehλyj .

8. We can write ehλ as it Taylor-expansion:
ehλ = 1 + hλ+ 1

2h
2λ2 + 1

6h
3λ3 +O(h4).

Now we get τj+1 = ehλ−Q(hλ)
h = 1+hλ+O(h2)−(1+hλ)

h = O(h).

9. τj+1 = ehλ−Q(hλ)
h =

1+hλ+ 1
2h

2λ2+O(h3)−( 1
1−hλ )

h =
1+hλ+ 1

2h
2λ2+O(h3)−(1+hλ+h2λ2+O(h3))

h =
− 1

2h
2λ2+O(h3)

h = O(h2)
h = O(h).

Section 6.5

1. (a) wn+1 = wn + 1
6 [k1 + 2k2 + 2k3 + k4]

with k1 = hf(tn, wn)
k2 = hf(tn + 1

2h,wn + 1
2k1)

k3 = hf(tn + 1
2h,wn + 1

2k2)
k4 = hf(tn + h,wn + k3)

(b) h = 0.2, tn = 0.2n
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w0 = 2
k1 = 0.2(w0 − t20 + 1)

= 0.2(2− 0.04 · 02 + 1)
= 0.6

k2 = 0.2(w0 + 0.5 · 0.6− (t0 + 0.5 · 0.2)2 + 1)
= 0.2(2 + 0.3− 0.01 + 1)
= 0.658

k3 = 0.2(w0 + 0.5 · 0.658− (t0 + 0.5 · 0.2)2 + 1)
= 0.2(2 + 0.329− 0.001 + 1)
= 0.6638

k4 = 0.2(w0 + 0.6638− (t0 + 0.2)2 + 1)
= 0.2(2 + 0.6638− 0.04 + 1)
= 0.72476

w1 = 2 + 1
6 [0.6 + 2 · 0.658 + 2 · 0.6638 + 0.72476

= 2.661393

k1 = 0.2(2.661393− 0.04 + 1)
= 0.7243

k2 = 0.2(2.661393 + 0.5 · 0.7243− (0.2 + 0.1)2 + 1)
= 0.7867

k3 = 0.2(2.661393 + 0.5 · 0.7867− (0.2 + 0.1)2 + 1)
= 0.7929

k4 = 0.2(2.661393 + 0.7929− (0.2 + 0.2)2 + 1)
= 0.8589

w2 = 2.661393 + 1
6 [0.7243 + 2 · 0.7867 + 2 · 0.7929 + 0.8589]

= 3.451793

k1 = 0.2(3.451793− 0.16 + 1)
= 0.85836

k2 = 0.2(3.451793 + 0.5 · 0.85836− (0.4 + 0.1)2 + 1)
= 0.92619

k3 = 0.2(3.451793 + 0.5 · 0.92619− (0.4 + 0.1)2 + 1)
= 0.93298

k4 = 0.2(3.451793 + 0.93298− (0.4 + 0.2)2 + 1)
= 1.00495

w3 = 3.451793 + 1
6 [0.85836 + 2 · 0.92619 + 2 · 0.93298 + 1.00495]

= 4.38207

3 steps ⇒ t = 0.2 · 3 = 0.6, y(0.6) = (0.6 + 1)2 + e0.6 = 4.3821188
|y(0.6)− w3| = |4.3821188− 4.38207| = 5.0467 · 10−5

2. (a) f(t, y) = −4y2 + 5
λ = ∂f

∂y (t̂, ŷ) = −8ŷ

(b) For every ŷ > 0 we have λ = −8ŷ < 0, so the problem is stable.

(c) RK4 is stable if |Q(hλ)| = |1 + hλ+ 1
2 (hλ)2 + 1

6 (hλ)3 + 1
24 (hλ)4| ≤ 1

−1 ≤ 1 + hλ+ 1
2 (hλ)2 + 1

6 (hλ)3 + 1
24 (hλ)4 ≤ 1

According the book, the left-hand side is true for every hλ, so also for every −8hŷ. The
righthand-side is true when h < 2.8

|λ| = 2.8
−8ŷ = 2.8

8ŷ

Section 6.6

1. (a) h = 0.1, tn = 0.1n,w0 = 2
w1 = w0 + hf(t0, w0) = 2 + 0.1(−4w2

0 + 5)
= 2 + 0.1(−4 · 4 + 5) = 0.9
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(b) h = 0.05, w0 = 2
w1 = w0 + hf(t0, w0) = 2 + 0.05(−4w2

0 + 5)
= 2 + 0.05(−4 · 4 + 5) = 1.45

w2 = w1 + hf(t1, w1) = 1.45 + 0.05(−4w2
1 + 5)

= 1.45 + 0.05(−4 · 1.452 + 5) = 1.2795

(c) O(h), so p = 1.

(d) According to paragraph ”Global error and error proximation”we have e(t, h2 ) = y(t)−
y(t, h2 ) ≈ 1

2p−1 [y(t, h2 )− y(t, h)] = 1
2−1 [1.2795− 0.9] = 0.3795

2. (a) h = 0.1, tn = 0.1n,w0 = 2
w̄1 = w0 + hf(t0, w0)

= 2 + 0.1(w0 − t20 + 1)
= 2 + 0.1(2− 0 + 1)
= 2.3

w1 = w0 + h
2 [f(t0, w0) + f(t1, w̄1)]

= 2 + 0.05[w0 − t20 + 1 + w̄1 − t21 + 1]
= 2 + 0.05[2− 0 + 1 + 2.3− (0.1)2 + 1]
= 2.3145

(b) h = 0.05, tn = 0.05n,w0 = 2
w̄1 = w0 + hf(t0, w0)

= 2 + 0.05(w0 − t20 + 1)
= 2 + 0.05(2− 0 + 1)
= 2.15

w1 = w0 + h
2 [f(t0, w0) + f(t1, w̄1)]

= 2 + 0.025[w0 − t20 + 1 + w̄1 − t21 + 1]
= 2 + 0.025[2− 0 + 1 + 2.15− (0.05 · 1)2 + 1]
= 2.1538125

w̄2 = w1 + hf(t1, w1)
= 2.1538125 + 0.05(2.1538125− 0.052 + 1)
= 2.311378

w2 = w1 + h
2 [f(t1, w1) + f(t2, w̄2)]

= 2.1538125 + 0.025[2.1538125− 0.052 + 1 + 2.311378− 0.12 + 1]
= 2.315130

(c) Order 2

(d) p = 2
e(t, h) = y(t)− y(t, h2 ) ≈ 1

2p−1 [y(t, h2 )− y(t, h)] = 1
22−1 [2.315317− 2.3145] = 0.000272

Section 6.7

1. (a) w̄n+1 = w̄n + hf̄(tn, w̄n)

(b)

[
un+1
1

un+1
2

]
=

[
un1
un2

]
+ h

[
−4un1 − 2un2 + cos(0.1n) + 4 sin(0.1n)

3un1 + un2 − 3 sin(0.1n)

]
[
u01
u02

]
=

[
0
−1

]
[
u11
u12

]
=

[
0
−1

]
+ 0.1

[
−4 · 0− 2 · −1 + cos(0) + 4 sin(0)

3 · 0 + (−1)− 3 sin(0)

]
=

[
0
−1

]
+ 0.1

[
2 + 1
−1

]
=

[
0
−1

]
+ 0.1

[
0.3
−0.1

]
=

[
0.3
−1.1

]
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1 step, so t = 0.1 · 1 = 0.1
u1(0.1) = 2e−0.1 − 2e−0.2 + sin(0.1) = 0.27205
u2(0.1) = −3e−0.1 + 2e−0.2 = −1.07705

(c) |u1(t)− u11| = |0.27205− 0.3| = 0.02795
|u2(t)− u12| = | − 1.07705 + 1.1| = 0.02295

2. (a) x1 = y with x1(0) = 1
x2 = y′ with x2(0) = 2

So we get:
x′1 = x2
x′2 = 2x2 − x1 + tet − t

(b)

[
x01
x02

]
=

[
1
2

]
[
xn+1
1

xn+1
2

]
=

[
xn1
xn2

]
+ h

[
xn2

2xn2 − xn1 + 0.1ne0.1n − 0.1n

]
[
x11
x12

]
=

[
1
2

]
+ 0.1

[
2

2 · 2− 1 + 0.1 · 0 · e0.1·0 − 0.1 · 0

]
=

[
1
2

]
+ 0.1

[
0.2
0.3

]
=

[
1.2
2.3

]
⇒ y ≈ x1 = 1.2

(c) One step ⇒ t = 0.1 · 1 = 0.1
y(0.1) = 3e0.1 − 2− 0.1 + 1

6 · 0.1
3 · e0.1 = 1.21570

|y(0.1)− y| = |1.21570− 1.2| = 0.0157

3. (a) Jn =

(
∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

)
=

(
−4 − 2

3 1

)
(b) Jn =

(
0 1
−1 2

)
(c) In vectorial form, we can write this system as:

xn+1 =

[
xn+1
1

xn+1
2

]
=

[
xn1
xn2

]
+ h

[
xn2

− sinxn1

]
Then Jn =

(
0 1

− cosxn1 0

)
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