DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST SCIENTIFIC COMPUTING (wi4201) Wednesday January 24 2024, 13:30-16:30

This document contains short answers, which indicate how the exercises can be answered. In most of the cases more details are needed to give a sufficiently clear answer.

1. (a) True. Since Q is an orthogonal matrix we know that $Q Q^{T}=Q^{T} Q=I$. Furthermore $\|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}$. This implies:

$$
\left\|Q^{T} A\right\|_{2}=\sqrt{\lambda_{\max }\left(A^{T} Q Q^{T} A\right)}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}=\|A\|_{2}
$$

which proves the equality.
(b) True. For the proof we use the definition of the spectral radius: $\rho(A)$ is the in absolute value largest eigenvalue of A. We know that $|\lambda|\|\mathbf{u}\|=\|A \mathbf{u}\|$ for any eigenpair λ, \mathbf{u}. From the definition of a multiplicative norm $\|\cdot\|$ it follows that $|\lambda|\|\mathbf{u}\|=\|A \mathbf{u}\| \leq\|A\|\|\mathbf{u}\|$. Division by $\|\mathbf{u}\|$ shows that $|\lambda| \leq\|A\|$ for any eigenvalue λ of A. So it also holds for the in absolute value largest eigenvalue of A which proves the result.
(c) False. From $\mathbf{r}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}$ it follows that $A^{k} \mathbf{r}=\lambda_{1}^{k} \mathbf{r}$. So all powers of A multiplied with \mathbf{r} are element of the span of \mathbf{r}. This implies that the dimension of $K^{5}(A, \mathbf{r})$ is equal to 1 .
(d) True. The symmetry of A_{k} easily follows from the symmetry of A. Since matrix A is SPD we know that $\mathbf{v}^{T} A \mathbf{v}>0$ for all $\mathbf{v} \neq \mathbf{0}$. Take $\mathbf{w} \in \mathbb{R}^{k}$ an arbitrary vector such that $\mathbf{w} \neq \mathbf{0}$. Define $\mathbf{v} \in \mathbb{R}^{n}$ such that $\mathbf{v}(1)=\mathbf{w}(1), \ldots, \mathbf{v}(k)=\mathbf{w}(k)$ and $\mathbf{v}(k+1)=\ldots=\mathbf{v}(n)=0$. It now follows that $\mathbf{w}^{T} A_{k} \mathbf{w}=\mathbf{v}^{T} A \mathbf{v}>0$ which shows that the statement is true.
(e) True. The condition number is defined as follows: $K_{p}(A)=\|A\|_{p}\left\|A^{-1}\right\|_{p}$. The inverse of I is equal to I. From the definition of the p-norm it follows that

$$
\|I\|_{p}=\max _{\|\mathbf{u}\|_{p}=1}\|I \mathbf{u}\|_{p}=1
$$

Combination of these expressions shows that $K_{p}(I)=1$.
2. (a) The finite difference stencil is given by

$$
\frac{1}{h^{2}}\left[-12-10 h^{2}-1\right]
$$

In order to show that the method is second order accurate, a Taylor expansion in the points x_{i-1} and x_{i+1} should be given around the point x_{i} where the remainder term is $O\left(h^{4}\right)$. It then follows that

$$
-u_{i}^{\prime \prime}=\frac{-u_{i-1}+2 u_{i}-u_{i+1}}{h^{2}}+O\left(h^{2}\right)
$$

This leads to the stencil as given above.
(b) Use the goniometric formula's to show that

$$
\lambda_{k}=-10+\frac{2}{h^{2}}[1-\cos (\pi h k)]=-10+\frac{4}{h^{2}} \sin ^{2}\left(\frac{\pi h k}{2}\right)
$$

(c) Since the boundary conditions are eliminated, the matrix is symmetric. Note that Gerschgorin's theorem does not imply that all eigenvalues are positive. Using the expression given in (b) with $N=10$ and $k=1$ shows that $\lambda_{1}=$ -0.1314 . So eigenvalue λ_{1} is negative with implies that for eigenvector \mathbf{v}_{1} we have:

$$
\mathbf{v}_{1}^{T} A \mathbf{v}_{1}=\lambda_{1}\left\|\mathbf{v}_{1}\right\|_{2}^{2}<0
$$

This implies that the matrix is not SPD.
(d) We have the following ordering:

495
738
162
This leads to the following non-zero pattern:

```
* 0 0 0 O * * 0 0
0* 0 0 0 * 0 * 0
0 0 * 0 0 * * * *
0 0 0 * 0 0 * 0 *
0 0 0 0 * 0 0 * *
* * * 0 0 * 0 0 0
* 0 * * 0 0 * 0 0
0 * * 0 * 0 0 * 0
0 0*** 0 0 0 *
```

3. (a) Let $A \mathbf{u}=\mathbf{f}$, and $A=M-N$ where M is non singular. Derive a formula for \mathbf{u}^{k} and \mathbf{r}^{k}.
i.

$$
\begin{align*}
\mathbf{u}^{k+1} & =M^{-1} N \mathbf{u}^{k}+M^{-1} \mathbf{f} \\
& =M^{-1}(M-A) \mathbf{u}^{k}+M^{-1} \mathbf{f} \tag{1}\\
& =\mathbf{u}^{k}+M^{-1}\left(\mathbf{f}-A \mathbf{u}^{k}\right) \\
& =\mathbf{u}^{k}+M^{-1} \mathbf{r}^{k}
\end{align*}
$$

ii.

$$
\begin{align*}
\mathbf{r}^{k+1} & =\mathbf{f}-A \mathbf{u}^{k+1} \\
& =\mathbf{f}-A\left(\mathbf{u}^{k}+M^{-1} \mathbf{r}^{k}\right) \\
& =\mathbf{f}-A \mathbf{u}^{k}-A M^{-1} \mathbf{r}^{k} \tag{2}\\
& =\mathbf{r}^{k}-A M^{-1} \mathbf{r}^{k} \\
& =\left(I-A M^{-1}\right) \mathbf{r}^{k}
\end{align*}
$$

(b) Give the iteration matrix and a sufficient condition for convergence
i. The iteration matrix is given by $B=I-M^{-1} A$.
ii. There are three possible answers
A. $\rho(B)<1$
B. $\|B\|<1$
C. $\lim _{k \rightarrow \infty}\left\|B^{k}\right\|_{2}=0$
(c) Assume A is upper triangular, show Jacobi converges.

Now we have $M=D$, where D is the matrix containing only the diagonal elements of A.
Then $B=I-D^{-1} A=I-(I+U)=U$ where U is an upper triangular matrix with zeros on the diagonal. So B is an upper triangular matrix with only zeros on the diagonal.
It then follows that $B^{n-1}=0_{\text {matrix }}$ so the Jacobi method converges.
(d) Assume A is upper triangular, which Gauss Seidel variant is optimal for this matrix?
Solution: There are two Gauss Seidel variants: M is equal to the lower triangular part of A or M is equal to the upper triangular part of A. For this matrix the final choice is optimal. The motivation is as follows. Note that in this case $M=A$ and therefore

$$
\begin{equation*}
B=I-M^{-1} A=I-A^{-1} A=0_{\text {matrix }} \tag{3}
\end{equation*}
$$

Then, $\|B\|<1$ and therefore this variant of GS converges. Furthermore $e^{1}=$ $B e^{0}=0_{\text {vector }}$, so the method converges after 1 iteration.
(e) Below 3 different stopping criteria and their properties are given.
i. $\left\|r^{k}\right\| \leq \epsilon$, this criterion is not scaling invariant.
ii. $\frac{\left\|r^{k}\right\|}{\left\|r^{0}\right\|} \leq \epsilon$, depends on the quality of the initial guess.
iii. $\frac{\left\|r^{k}\right\|}{\|f\|} \leq \epsilon$, this is a good stopping criterion.
4. (a) We take $\mathbf{u}^{1}=\alpha \mathbf{r}^{0}$ where α is a constant which has to be chosen such that $\left\|\mathbf{u}-\mathbf{u}^{1}\right\|_{2}$ is minimal. This leads to

$$
\left\|\mathbf{u}-\mathbf{u}^{1}\right\|_{2}^{2}=\left(\mathbf{u}-\alpha \mathbf{r}^{0}\right)^{T}\left(\mathbf{u}-\alpha \mathbf{r}^{0}\right)=\mathbf{u}^{T} \mathbf{u}-2 \alpha\left(\mathbf{r}^{0}\right)^{T} \mathbf{u}+\alpha^{2}\left(\mathbf{r}^{0}\right)^{T} \mathbf{r}^{0} .
$$

The norm given above is minimized if $\alpha=\frac{\left(\mathbf{r}^{0}\right)^{T} \mathbf{u}}{\left(\mathbf{r}^{0}\right)^{T} \mathbf{r}^{0}}$.
(b) Note that \mathbf{u} is needed in the definition of α as given in part (a). If one uses the A-norm, the following expression should be minimal: $\left\|\mathbf{u}-\mathbf{u}^{1}\right\|_{A}$. Using the same steps as in part (a) it appears that now α is given by:

$$
\alpha=\frac{\left(\mathbf{r}^{0}\right)^{T} A \mathbf{u}}{\left(\mathbf{r}^{0}\right)^{T} A \mathbf{r}^{0}}=\frac{\left(\mathbf{r}^{0}\right)^{T} \mathbf{f}}{\left(\mathbf{r}^{0}\right)^{T} A \mathbf{r}^{0}}
$$

which is easy to compute.
(c) The optimality property of CG implies that the approximation \mathbf{u}^{k} coming from CG satisfies:

$$
\left\|\mathbf{u}-\mathbf{u}^{k}\right\|_{A}=\min _{\mathbf{y} \in K^{k}\left(A ; \mathbf{r}^{0}\right)}\|\mathbf{u}-\mathbf{y}\|_{A}
$$

If the method terminates before we reach $k=n$ we know that we have a 'lucky' breakdown so $\mathbf{u}^{k}=\mathbf{u}$. If not we know that the dimension of K^{n} is equal to n, thus $K^{n}=\mathbb{R}^{n}$ and thus $\mathbf{u}^{n}=\mathbf{u}$.
(d) The convergence of CG depends on the condition number. For SPD matrices the condition number is defined as

$$
K_{2}(A)=\frac{\lambda_{n}}{\lambda_{1}}
$$

For a smaller condition number the convergence of CG is faster. Since $K_{2}\left(A_{1}\right)=$ 10 and $K_{2}\left(A_{2}\right)=200$, it is clear that we expect that the convergence for A_{1} is much faster than for A_{2}.
(e) The three properties are:
i. The matrix M should be SPD.
ii. the eigenvalues of $M^{-1} A$ should be clustered around 1 , or the condition number of $M^{-1} A$ is (much) smaller than the condition number of A.
iii. it should be possible to obtain $M^{-1} \mathbf{y}$ at low cost.
5. (a) If we do the multiplication:

$$
\left(I-\alpha^{(k)} \mathbf{e}_{k}^{T}\right)\left(I+\alpha^{(k)} \mathbf{e}_{k}^{T}\right)
$$

we obtain the following:

$$
\begin{gathered}
I-\alpha^{(k)} \mathbf{e}_{k}^{T}+\alpha^{(k)} \mathbf{e}_{k}^{T}+\alpha^{(k)} \mathbf{e}_{k}^{T} \alpha^{(k)} \mathbf{e}_{k}^{T}= \\
I+\alpha^{(k)} \mathbf{e}_{k}^{T} \alpha^{(k)} \mathbf{e}_{k}^{T}
\end{gathered}
$$

Due to the zero structure of \mathbf{e}_{k} and $\alpha^{(k)}$ the product $\mathbf{e}_{k}^{T} \alpha^{(k)}$ is equal to zero, so the last term is equal to zero, so

$$
\left(I-\alpha^{(k)} \mathbf{e}_{k}^{T}\right)\left(I+\alpha^{(k)} \mathbf{e}_{k}^{T}\right)=I
$$

which proves the claim that $M_{k}^{-1}=I+\alpha^{(k)} \mathbf{e}_{k}^{T}$.
(b) The perturbed solution $\mathbf{u}+\Delta \mathbf{u}$ solves the system

$$
\begin{equation*}
A(\mathbf{u}+\Delta \mathbf{u})=\mathbf{f}+\Delta \mathbf{f} \tag{4}
\end{equation*}
$$

Due to linearity, the perturbation $\Delta \mathbf{u}$ then solves the system

$$
\begin{equation*}
A \Delta \mathbf{u}=\Delta \mathbf{f} \tag{5}
\end{equation*}
$$

from which $\Delta \mathbf{u}=A^{-1} \Delta \mathbf{f}$ and therefore $\|\Delta \mathbf{u}\| \leq\left\|A^{-1}\right\|\|\Delta \mathbf{f}\|$. It follows form the multiplicative property that $\|\mathbf{f}\| \leq\|A\|\|\mathbf{u}\|$ and therefore

$$
\begin{equation*}
\frac{1}{\|\mathbf{u}\|} \leq\|A\| \frac{1}{\|\mathbf{f}\|} \tag{6}
\end{equation*}
$$

Combining these inequalities we arrive at the following bound on the norm of the perturbed solution

$$
\begin{equation*}
\frac{\|\Delta \mathbf{u}\|}{\|\mathbf{u}\|} \leq\left\|A^{-1}\right\|\|A\| \frac{\|\Delta \mathbf{f}\|}{\|\mathbf{f}\|}=\kappa(A) \frac{\|\Delta \mathbf{f}\|}{\|\mathbf{f}\|} \leq \delta \kappa(A) \tag{7}
\end{equation*}
$$

where $\kappa(A)$ denotes the condition number of A measured in the norm $\|\cdot\|$.
(c) The LU decomposition determines an upper triangular matrix U and a lower triangular matrix L, with $l_{i i}=1$, where $A=L U$. The procedure to obtain this decomposition is using Gauss transformations, such that column k is transformed in a such a way that all element $k+1, \ldots, n$ of this column become equal to zero. Since the non-zero pattern of L and U is the same as that of A, the number of computations per row are: one division to compute the multiplier followed by a multiplication and addition/subtraction to compute the diagonal element of U. This leads to $3 n$ flops for the decomposition.

In order to find solution \mathbf{u} from $A \mathbf{u}=\mathbf{f}$, we substitute the decomposition into $A \mathbf{u}=\mathbf{f}$, so $L U \mathbf{u}=\mathbf{f}$. If we define $\mathbf{y}=U \mathbf{u}$ we can first solve $L \mathbf{y}=\mathbf{f}$ and then $U \mathbf{u}=\mathbf{y}$. Since these systems are both triangular this is easy to solve. The work for the first system is one multiplication and addition/subtraction to compute one component of \mathbf{y}, so in total $2 n$ flops for the first system. For the second system one needs a multiplication and addition/subtraction followed by a division to compute one component of \mathbf{u}, so in total $3 n$ flops for the second system. In total $8 n$ flops are needed to solve a system with a tri-diagonal matrix A.
(d) After 1 step of the Gaussian elimination process we obtain the following matrix:

$$
\left(\begin{array}{ccccc}
4 & -1 & 0 & 0 & -1 \\
0 & 3 \frac{3}{4} & -1 & 0 & -\frac{1}{4} \\
0 & -1 & 4 & -1 & 0 \\
0 & 0 & -1 & 4 & -1 \\
0 & -\frac{1}{4} & 0 & -1 & 3 \frac{3}{4}
\end{array}\right)
$$

Note that the fill in less than $\frac{1}{4}$ in absolute value.

