DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Electrical Engineering, Mathematics and Computer Science

The final grade of the test: (total number of points) $/ 5$
Examiner responsible: C. Vuik
Examination reviewer: M.B. van Gijzen

TEST SCIENTIFIC COMPUTING (wi4201) Wednesday January 24 2024, 13:30-16:30

1. Below 5 statements are given. If the statement is true give a short proof. If the statement is wrong give a counter example or an explanation.
(a) $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix. For all $A \in \mathbb{R}^{n \times n}$ the equality $\|A\|_{2}=$ $\left\|Q^{T} A\right\|_{2}$ holds.
(b) $A \in \mathbb{R}^{n \times n} \rho(A) \leq\|A\|$ for any multiplicative norm $\|$.$\| .$
(c) $A \in \mathbb{R}^{n \times n}$ is SPD, and $\mathbf{v}_{1}, \mathbf{v}_{2}$ are eigenvectors of A, where $\lambda_{1}=\lambda_{2}$. Assume that $\mathbf{r}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2} . \Rightarrow$ The Krylov subspace $K^{5}(A, \mathbf{r})$ has dimension 3. (2 pt.)
(d) Suppose that $A \in \mathbb{R}^{n \times n}$ is a symmetric and positive definite matrix. \Rightarrow For all $k=1, \ldots, n$ the matrix A_{k} consisting of the first k rows and columns of A is also a symmetric and positive definite matrix.
(e) $I \in \mathbb{R}^{n \times n}$ is the identity matrix. $\Rightarrow K_{p}(I)=1$.
2. For a given function f we consider the following boundary value problem:

$$
\begin{equation*}
-\frac{d^{2} u(x)}{d x^{2}}-10 u(x)=f(x) \text { for } 0<x<1 \tag{1}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
u(0)=0 \text { and } u(1)=0 . \tag{2}
\end{equation*}
$$

A finite difference method is used on a uniform mesh with N intervals and mesh width $h=1 / N$.
(a) Give the finite difference stencil for internal grid points and show that it is $O\left(h^{2}\right)$.
(b) The eigenvectors \mathbf{v}^{k} of the resulting coefficient matrix A are given and have components:

$$
\begin{equation*}
v_{i}^{k}=\sin \left(k \pi x_{i}\right)=\sin (k \pi(i-1) h) \text { for } 1 \leq i \leq N+1 \tag{3}
\end{equation*}
$$

derive an expression for the corresponding eigenvalues λ_{k} as a function of the meshwidth h by computing the action of A^{h} on these eigenvectors. It suffices here to consider the matrix rows corresponding to internal grid nodes. (Hint: $\sin (\alpha+\beta)+\sin (\alpha-\beta)=2 \sin (\alpha) \cos (\beta))$.
(c) If the boundary conditions are eliminated, is the matrix A symmetric positive definite for $N=10$? (give a proof or a counter example)
(d) Solving this problem in 2 dimensions one can use a 5 point stencil. We take 4 intervals in x and y-direction $(h=0.25)$. Give the nonzero pattern of the matrix (after elimination of the boundary conditions) if a red-black ordering is used (hint: you can use graph paper).
(2.5 pt.)
3. (a) Given the linear system $A \mathbf{u}=\mathbf{f}$ with $A \in \mathbb{R}^{n \times n}$. Consider a splitting of the form $A=M-N$ where M is non-singular. Derive a recursion formula for the BIM (Basic Iterative Method) iterates \mathbf{u}^{k}. Derive a recursion formula for the residual vector \mathbf{r}^{k}.
(2 pt.)
(b) Give the iteration matrix B for this BIM and give a sufficient condition such that the BIM converges. (2 pt.)
(c) Suppose A is a non-singular upper triangular matrix. Show that the Jacobi method converges for such a matrix.
(2 pt.)
(d) Suppose A is a non-singular upper triangular matrix. Which Gauss Seidel variant is optimal for this matrix (motivate your answer with advantages and/or disadvantages)?
(2 pt.)
(e) Give three different stopping criteria and specify the good and bad properties of these stopping criteria.
(2 pt.)
4. In this exercise we solve a linear system $A \mathbf{u}=\mathbf{f}$, where A is an $n \times n$ SPD matrix.
(a) Take $\mathbf{u}^{1}=\alpha \mathbf{f}$. Derive an expression for α such that $\left\|\mathbf{u}-\mathbf{u}^{1}\right\|_{2}$ is minimal. (2 pt.)
(b) Show that the value of α as given in part (a) is not easy to calculate. Adapt the minimization property such that α can be computed easily (+ proof). (2 pt .)
(c) Give the optimality property of the CG method. Motivate why there is a $k \leq n$ such that $\mathbf{u}^{k}=\mathbf{u}$ (without rounding errors).
(2 pt.)
(d) We consider two different matrices. The extreme eigenvalues of A_{1} are given by $\lambda_{1}=1$ and $\lambda_{n}=10$. The extreme eigenvalues of A_{2} are given by $\lambda_{1}=0.1$ and $\lambda_{n}=20$. For which matrix can you expect the CG method to converge faster (+ motivation)?
(2 pt.)
(e) For the preconditioned CG method a preconditioner matrix M is needed. Give three properties that M should satisfy.
(2 pt.)
5. (a) Show that the inverse of the Gauss transformation $M_{k}=I-\alpha^{(k)} \mathbf{e}_{k}^{T}$ is the rankone modification $M_{k}^{-1}=I+\alpha^{(k)} \mathbf{e}_{k}^{T}$. The k-th Gauss-vector $\alpha^{(k)} \in \mathbb{R}^{n}$ is defined as

$$
\begin{equation*}
\alpha^{(k)}=(\underbrace{0, \ldots, 0}_{k}, \underbrace{\mathbf{b}_{k} / a_{k, k}^{(k-1)}}_{n-k})^{T} \tag{4}
\end{equation*}
$$

(b) Given the linear system $A \mathbf{u}=\mathbf{f}$ with $A \in \mathbb{R}^{n \times n}$ where A is a non-singular matrix and the perturbed system $A(\mathbf{u}+\Delta \mathbf{u})=\mathbf{f}+\Delta \mathbf{f}$. Derive an upperbound for $\frac{\|\Delta \mathbf{u}\|}{\|\mathbf{u}\|}$ where $\|$.$\| is an arbitrary vector norm, which has the multiplicative property.$ (2.5 pt.)
(c) Suppose we have a tri-diagonal matrix $A \in \mathbb{R}^{n \times n}$. We know that elements $a(i-1, i), a(i, i)$, and $a(i, i+1)$, are nonzero. Give the outline of the LUdecomposition method (without pivotting) to solve $A \mathbf{u}=\mathbf{f}$, where $A \in \mathbb{R}^{n \times n}$ is a non-singular tri-diagonal matrix and give the amount of flops.
(d) Do 1 step of the Gaussian elimination process on the following matrix:

$$
\left(\begin{array}{ccccc}
4 & -1 & 0 & 0 & -1 \\
-1 & 4 & -1 & 0 & 0 \\
0 & -1 & 4 & -1 & 0 \\
0 & 0 & -1 & 4 & -1 \\
-1 & 0 & 0 & -1 & 4
\end{array}\right)
$$

What is the size of the fill in?

