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Introduction

I Fundamental Relations r′, r ∈ R3:

A(r) = 〈A(r′), δ(r − r′)〉 =
∫

Ω,r∈Ω

A(r′)δ(r − r′)dr′

〈1, δ(r − r′)〉 =
∫

Ω,r∈Ω

δ(r − r′)dr′ = 1
(1)

I Set of Kernel Functions {W (r − r′, h)} ∈ C 0(Ω):

lim
h→0

W {W (r − r′, h)} = weakly = δ(r − r′)∫
Ω,r∈Ω

W (r − r′, h)dr′ = 1
(2)
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Introduction

I Basic Equalities:

A(r) = lim
h→0

∫
Ω,r∈Ω

A(r′)W (r − r′, h)dr′

A(r) =
∫

Ω,r∈Ω

A(r′)W (r − r′, h)dr′ + O(h2) =

=
∑

J∈Ωr,h

A(rJ)W (r − rJ , h)VJ + O(h2),∀h ∈ Ωh

(3)
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Introduction

Kernel Function

W (z , h) =
Ξ

hD


1− 3

2z
2 + 3

4z
3, 0 ≤ z ≤ 1

1
4 (2− z)3, 1 ≤ z ≤ 2
0, z > 2

(4)

where: z = ‖r − r′‖2 /h
Ξ = 3

2 ,
10
7π ,

1
π in 1D, 2D and 3D respectively.

Figure: Neighboring particles of a Kernel
support.
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Generalized Laplace Operator For

Anisotropic Heterogeneous Media

I Generalized Laplace Operator:

Lu = −∇ (M (r)∇u (r))− g (r) , r ∈ Ω ⊂ R3 (5)

I Anisotropic Heterogeneous Media: Mxx (r) Mxy (r) Mxz (r)
Mxy (r) Myy (r) Myz (r)
Mxz (r) Myz (r) Mzz (r)

 (6)
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Meshless Discretization For Anisotropic

Heterogeneous Media

I Mobility Decomposition:

M (r) = MS (r) + MD (r) ,
MS (r) = 1

3
tr [M] · I, tr

[
MD
]

= 0
(7)

I Velocity Decomposition:

V (r) = VS (r) + VD (r)
VS (r) = −MS (r)∇p(r),
VD (r) = −MD (r)∇p(r)

(8)

I Divergence Decomposition:

∇V (r) = ∇VS (r) +∇VD (r) (9)
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Meshless Finite Difference Method

Seibold (2006)

I Construct neighbors (choose
more neighbors than
constraints)

I Select unique stencil satisfying
additional requirements

I Solve optimization problem

I Compute monotone stencil

I Not a flexible way given
pre-existing geology

Special Case

Lp = −∇2p (r)− g (r)∑
s

TM
SI (rS − rI ) = 0

∑
s

TM
SI (rS − rI ) (rS − rI ) = I

General Case

2∇ (φ(r)∇p(r)) = ∇2 (φ(r)p(r))+φ(r)∇2p(r)−p(r)∇2φ(r)
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SPH Discretization

I Brookshaw (1985):

〈∇ (m (r)∇F (r))〉 =∑
Ωr,h

VrJ
[F (rJ)− F (rI )]

(rJ − rI ) · (mJ + mI )∇W (rJ − rI , h)

‖r′ − r‖2
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SPH Discretization
I Schwaiger (2008):

(
Γ−1

kk

n

)−1

〈∇ (m (rI )∇F (rI ))〉 =∑
Ωr,h

VrJ
[F (rJ)− F (rI )]

(rJ − rI ) · (mJ + mI )∇W (rJ − rI , h)

‖r′ − r‖2

−{[〈m (rI ) F (rI )〉α − F (rI ) 〈m (rI )〉α + m (rI ) 〈F (rI )〉α] Nα}

〈F (rI )〉α =
∑
Ωr,h

VrJ
[F (rJ)− F (rI )]∇αW (rI − rJ)

A =

∑
Ωr,h

VrJ
[rJ − rI ]∇αW (rI − rJ)

−1

, ∇∗αW = Aαβ∇βW
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Modified SPH Discretization∗

I Spherical Part:

−
(

Γ−1
kk

n

)−1

〈∇vS (r)〉 =∑
Ωr,h

VrJ
·Meff · [F (rJ)− F (rI )]

(rαJ − rαI ) · ∇αW (rJ − rI , h)

‖r′ − r‖2 −

−

∑
Ωr,h

VrJ
·MS

eff · [F (rJ)− F (rI )]∇αW (rJ − rI , h)

 Ñα

MS
eff =

(
MS (rJ) ·MS (rI )

MS (rJ) + MS (rI )

)

∗Lukyanov, Vuik, JCP, To be submitted.
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Modified SPH Discretization†

I Deviatoric Part:

Lukyanov(2010), Lukyanov (2012)

〈vD
γ (rI )〉 = −MD

γα〈p (rI )〉,α

〈p (rI )〉 =
∑
Ωr,h

VrJ
[〈p (rJ)〉 − 〈p (rI )〉]∇W (rJ − rI , h)

〈∇vD
γ (r)〉,γ =

∑
Ωr,h

VrJ

[
〈vD
γ (rJ)〉 − 〈vD

γ (rI )〉
]
∇γW (rJ − rI , h)

†Lukyanov, Vuik, JCP, To be submitted.
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Results

I For Deviatoric Scheme:
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Results

I For Full Scheme:

Tensor Particle Distribution Cp αp Cu αu

D Uniform 0.348 1.991 0.325 1.891

D Weakly Distorted 0.231 1.923 0.247 1.873

D Highly Distorted 0.257 1.732 0.257 1.638

N Uniform 0.391 1.990 0.301 1.872

N Weakly Distorted 0.272 1.919 0.216 1.803

N Highly Distorted 0.293 1.727 0.225 1.612

Table: Convergence rates for the relatively simple
Dirichlet problem ‖p − ph‖ ≤ Cph

αp and
‖u − uh‖ ≤ Cuh

αu .
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Monotonicity Issue

Figure: Monotonicity Issue (H. Hajibeygi, 2014).
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Monotonicity Issue: Bouchon (2006)
Theorem
Let A = [aij ] and Ã = [ãij ] be two real square matrices
of dimension n, with the following properties:

I A = [aij ] is an irreducibly diagonal dominant
M-matrix

I Ã · I
If
∥∥∥Ã
∥∥∥
∞
< Cm (A) with C =

1

(η)M ·M · e
then the

matrix A + Ã is monotone. Moreover
(

A + Ã
)−1

>> 0

Where
‖A‖∞ = sup

x 6=0

‖Ax‖
‖x‖ = max

i=1,...,n

(∑
j |aij |

)
m (A) = min

i=1,...,n
(|aii |) , η (A) = max

i ,j=1,...,n

(
|aii |
|aij |

)
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I It is required to have further numerical analysis of
the method.

I Due to the meshfree particle nature of the method,
it is not always straightforward to directly apply the
techniques that were developed for mesh-based
Eulerian or Lagrangian methods.

I The issues related to the stability, accuracy and
convergence are understood for uniformly
distributed particles and some times for only
one-dimensional cases.

I It is not yet very well clear how the particle
irregularity affects the accuracy of the solution.

I Monotonicity issue has to be investigated.


