Finite-difference wave-equation migration

René-Edouard Plessix, Wim Mulder Shell Exploration & Production Rijswijk, The Netherlands

Outline

- Introduction
 - Imaging/migration
 - Ray-based approach and its limitations
- Finite difference wave equation migration
 - complexity
 - "one-way" wave equation migration
 - "full" (two-way) wave equation migration in 2D
 - examples
- Conclusions

Outline

- Introduction
 - Imaging/migration
 - Ray-based approach and its limitations
- Finite difference wave equation migration
 - complexity
 - "one-way" wave equation migration
 - "full" (two-way) wave equation migration in 2D
 - examples
- Conclusions

Introduction: imaging problem

Goal of the migration: given the propagation model of the earth, retrieve the locations and the amplitudes of the reflectors

Introduction: physics

Wave equation

$$-\frac{\omega^2}{v^2}u - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial z^2} = f$$

u is the pressure, f is the source

General form of the wave equation: A(x,v) $u(x,x_s,v) = f(x,x_s)$

Data: $c(x_s, x_r) = R(x, x_s, x_r) u(x, x_s)$

Introduction: mathematics

Find v* such as:

$$J(v^*) = \min J(v) = \frac{1}{2} \sum_{x_s, x_r} ||c(x_s, x_r, v) - d(x_s, x_r)||^2$$

Migration-gradient:

$$\begin{cases} A(x,v)u(x,x_{s},v) = f(x,x_{s}); \\ c(x_{s},x_{r},v) = R(x_{s},x_{r},x)u(x,x_{s},v) \\ A^{*}(x,v)\lambda(x,x_{s},v) = \sum_{x_{r}} R^{*}(x_{s},x_{r},x)(c(x_{s},x_{r},v) - d(x_{r},x_{s})) \\ m(x) = -K(x)\nabla_{v}J(v) = \sum_{x_{s}} w(x,x_{s})\lambda^{*}(x,x_{s},v)u(x,x_{s},v) \end{cases}$$

Introduction: migration

For all the shot gathers:

- 1. Compute the incident field from the source
- 2. Compute the backpropagated field of the shot gather
- 3. Cross-corrolate the two fields to obtain the shot migrated image

Stack over all the shots the migrated images

Need to solve efficiently the wave equation for a large number of shot-receiver positions and a large enough domain

High frequency solution: ray method

$$c(x_s, x_r) = \sum_{x} \sum_{l} A_l(x, x_s, x_r) e^{i\omega \tau_l(x, x_s, x_r)}$$

 τ obeys the Eikonal equation: $|\nabla \tau|^2 = \frac{1}{v^2}$

A obeys the transport equation: $2\nabla A \cdot \nabla \tau + A\Delta \tau = 0$

- Efficiently solved with a wavefront construction algorithm
- The approximation reaches its limits with complex earth structure (multipathing, irregular boundaries, ...)
- Need to go back to the finite-difference solution

Outline

- Introduction
 - Imaging/migration
 - Ray-based approach and its limitations
- Finite difference wave equation migration
 - complexity
 - "one-way" wave equation migration
 - "full" (two-way) wave equation migration in 2D
 - examples
- Conclusions

Forward modeling

Time domain

$$\frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial z^2} = f$$

Complexity:

2D: $n_tO(n^2)$

3D: $n_tO(n^3)$

Frequency domain

$$-\frac{\omega^2}{v^2}u - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial z^2} = f$$

Complexity (direct solver)

2D: $n_{\omega}O(n^3) + n_{\omega}O(n^2\log(n))$

2D: $n_{\omega}O(n^6) + n_{\omega}O(n^4log(n))$

Time domain is more appropriate for the modeling of one shot and it is achievable in 3D because it is parallelizable

migration

Time domain

$$\frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial z^2} = f$$

Complexity:

2D: $n_s n_t O(n^2)$

3D: $n_{s}n_{t}O(n^{3})$

 $n_t = O(n)$ but $n_w = O(1)$

Frequency domain

$$-\frac{\omega^2}{v^2}u - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial z^2} = f$$

Complexity (direct solver)

2D: $n_{\omega}O(n^3) + n_s n_{\omega}O(n^2 \log(n))$

2D: $n_{\omega}O(n^6) + n_s n_{\omega}O(n^4 \log(n))$

In 2D: the frequency domain is preferable when n_s is large

In 3D: not yet achievable in time domain; impossible in frequency domain with direct solver

"one-way" finite-difference migration

- Paraxial approximation of the wave equation
 - Choice of a preferred direction, z-direction
 - Assume not too large lateral variation
 - Assume not too wide angle propagation from the preferred direction
- Marching approach: $i \frac{\partial}{\partial z} = \sqrt{k^2 + \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}}$
- Complexity in 2D: n_sn_ωO(n²)
- Complexity in 3D: n_sn_ωO(n³)
- Feasible even in 3D

Synthetic example no. 1 dipped interface

- Interface dip: 40°, 60°, and 80°
- Synthetic data, marine type acquisition, cable length 2 km
- Frequencies from 8 to 20 Hz
- One-way migration scheme with 70° Padé approximation

dip angle models

40° dip angle

60° dip angle

80° dip angle

Synthetic example no. 2: SEG/EAGE salt model

Data reshot in 2D with a time domain method

velocity

SEG/EAGE salt model

SEG/EAGE salt model

two-way wave-equation (high-pass filtered)

Golf of Mexico data set

Near offset traces

1055 shots of 320 traces, largest offset: ~8 km

For the processing, the data have been divided in 5 sets

For each subset, the model contained 1829 by 881 points with a spancing of 10 m (this leads to a sparse matrix of 1.6 106 by 1.6 106).

Velocity model

One-way, 70°

Two-way

Conclusions

- One-way wave-equation migration is less accurate at steep dips and amplitudes.
- In 2D, the two-way wave-equation migration is not much more expensive than one-way migration. In 3D, this is not true.
- In 3D, the one-way wave-equation migration is the only affordable solution with finite-difference type of migration

Conclusions

- The 3D time domain "two-way" wave equation migration requires a peta flop computer
- The challenge:
 - A 3D iterative Helmholtz solver faster than $n_sO(n^4)$
 - Can we process simultaneous 100's of right hand sides?
 - What is the memory requirement when n=1000?
 - How efficient would the parallelization be ?