Iterative solvers for heterogeneous Helmholtz problems

C. Vuik and C. Oosterlee

c.vuik@math.tudelft.nl

http://ta.twi.tudelft.nl/users/vuik/

Delft University of Technology

September 24, 2004

Financially supported by the Dutch Ministry of Economic Affairs: project BTS01044

Contents

- 1. Introduction
- 2. Multigrid
- 3. Krylov methods
- 4. Conclusions

1. Introduction

The Helmholtz problem is defined as follows

where:

- k = k(x, y, z) is the wavenumber
- for "solid" boundaries: Dirichlet/Neumann
- for "fictitious" boundaries: Sommerfeld $\frac{du}{dn} \mathrm{i}ku = 0$

The resulting system

Efficient solution of a linear system,

$$Ax = b$$
.

Properties: large, sparse, 3 dimensional heterogeneous Helmholtz problems

Solution methods:

- direct solution methods (Gaussian elimination)
- multigrid
- Preconditioned Krylov methods

Application: geophysical survey, hard Marmousi Model

Application: optical storage

Model for Blu-Ray disk

2. Multigrid (standard geometric version)

- Smoothing method reduces high frequency components of an error between numerical approximation and exact discrete solution
- Coarse grid correction handles the low frequency error components.
- Components are easily defined for elliptic equations, like $-u_{xx}-u_{yy}=f$
- Problematic for the Helmholtz equation $-u_{xx} u_{yy} k^2 u = f$:
- Depending on k^2 , gives rise to both smoothing and coarse grid correction difficulties.

Smoothing

- For $k^2 > \widetilde{\lambda}_h^{1,1}$, the smallest eigenvalue of the Laplace operator, the matrix has positive and negative eigenvalues.
- \Rightarrow Jacobi iteration with underrelaxation does not converge, but since its smoothing properties are satisfactory, the convergence will deteriorate gradually for k^2 increasing.

Smoothing

- For $k^2 > \widetilde{\lambda}_h^{1,1}$, the smallest eigenvalue of the Laplace operator, the matrix has positive and negative eigenvalues.
- \Rightarrow Jacobi iteration with underrelaxation does not converge, but since its smoothing properties are satisfactory, the convergence will deteriorate gradually for k^2 increasing.
 - By the time k^2 approaches 150, standard multigrid diverges. The Jacobi relaxation now diverges for smooth eigenfrequencies with $\widetilde{\lambda}_h^{\ell,m} < k^2$.
- ⇒ Consequently, multigrid will still converge as long as the coarsest level used is fine enough to represent these smooth eigenfrequencies.

Smoothing

- For $k^2 > \widetilde{\lambda}_h^{1,1}$, the smallest eigenvalue of the Laplace operator, the matrix has positive and negative eigenvalues.
- \Rightarrow Jacobi iteration with underrelaxation does not converge, but since its smoothing properties are satisfactory, the convergence will deteriorate gradually for k^2 increasing.
 - By the time k^2 approaches 150, standard multigrid diverges. The Jacobi relaxation now diverges for smooth eigenfrequencies with $\widetilde{\lambda}_h^{\ell,m} < k^2$.
- ⇒ Consequently, multigrid will still converge as long as the coarsest level used is fine enough to represent these smooth eigenfrequencies.
 - The coarsest level limits the convergence: When k^2 gets larger more variables need to be represented on the coarsest level for standard multigrid convergence.

Coarse grid correction

- Discrete eigenvalues close to the origin on a fine grid may undergo a sign change after discretization on a coarser grid.
- ⇒ Then, the coarse grid correction does not give a convergence acceleration, but a severe convergence degradation (or even divergence) instead.

Coarse grid correction

- Discrete eigenvalues close to the origin on a fine grid may undergo a sign change after discretization on a coarser grid.
- ⇒ Then, the coarse grid correction does not give a convergence acceleration, but a severe convergence degradation (or even divergence) instead.
 - In Elman et al. (2001) multigrid is combined with Krylov subspace iteration methods. GMRES is proposed as a smoother and as a cure for the problematic coarse grid correction. This method is, however, not trivial to implement.
 - Standard multigrid will also fail for k^2 -values very close to eigenvalues. In that case subspace correction techniques should be employed.

Coarse grid correction

- Discrete eigenvalues close to the origin on a fine grid may undergo a sign change after discretization on a coarser grid.
- ⇒ Then, the coarse grid correction does not give a convergence acceleration, but a severe convergence degradation (or even divergence) instead.
 - In Elman et al. (2001) multigrid is combined with Krylov subspace iteration methods. GMRES is proposed as a smoother and as a cure for the problematic coarse grid correction. This method is, however, not trivial to implement.
 - Standard multigrid will also fail for k^2 -values very close to eigenvalues. In that case subspace correction techniques should be employed.
 - For the reasons mentioned above we develop a preconditioner that is not based on a regular splitting of the Helmholtz operator.

3. Krylov methods

Conjugate Gradient Method

A is Symmetric Positive Definite (SPD)

- \bullet $A = A^T$,
- $x^T Ax > 0$, for $x \neq 0$.

The A-inner product is defined by

$$(y,z)_A = y^T A z,$$

and the A-norm by

$$||y||_A = \sqrt{(y,y)_A} = \sqrt{y^T A y}.$$

Krylov subspace: $K^{k}(A; r_{0}) = span\{r_{0}, Ar_{0}, ..., A^{k-1}r_{0}\}$

The Conjugate Gradient Method computes a solution such that

$$||x - x_k||_A = \min_{y \in K^k(A; r_0)} ||x - y||_A$$

Conjugate Gradient Method Convergence

The x_k obtained from CG satisfy the following inequality:

$$||x - x_k||_A \le 2\left(\frac{\sqrt{K_2(A)} - 1}{\sqrt{K_2(A)} + 1}\right)^k ||x - x_0||_A.$$

Superlinear Convergence Examples

eigenvalues 1, 2, ..., 100

Superlinear Convergence Examples

eigenvalues 1, 10, ..., 100

Superlinear Convergence Examples

eigenvalues 1, ..., 10, 100

Krylov methods for general matrices

Properties of the CG method:

- based on the Krylov subspace: $K^k(A; r_0)$
- the error is minimal in some norm (optimality)
- short recurrences

For general matrices, there is no method with all these properties!

CGNR

Apply CG to the normal equations: $A^TAx = A^Tb$

Drawbacks:

slow convergence, bad behavior with respect to rounding errors

BiCG methods

No optimality

BiCG

 $r_0,...,r_{k-1}$ is a basis for $K^k(A;r_0)$ and $s_0,...,s_{k-1}$ is a basis for $K^k(A;s_0)$. The sequences $\{r_i\}$ and $\{s_i\}$ are bi-orthogonal.

Drawbacks:

breakdown possible, ${\cal A}^T$ is used, weak behavior with respect to rounding errors

BiCG methods (faster variants)

No optimality

CGS

Two times as fast, A^T is not used.

Bi-CGSTAB

More stable than CGS

Drawbacks:

breakdown possible, weak behavior with respect to rounding errors

GMRES type methods (GCR)

Long recurrences, several variants available.

Suppose that A is diagonalizable so that $A = XDX^{-1}$ and let

$$\varepsilon^{(k)} = \min_{\substack{p \in P_k \\ p(0)=1}} \max_{\lambda_i \in \sigma} |p(\lambda_i)|$$

Then the residual norm of the k-th iterate satisfies:

$$||r_k||_2 \le K(X)\varepsilon^{(k)}||r_0||_2$$

where $K(X) = \|X\|_2 \|X^{-1}\|_2$. If furthermore all eigenvalues are enclosed in a circle centered at $C \in \mathbb{R}$ with C > 0 and having radius R with C > R, then

$$\varepsilon^{(k)} \le \left(\frac{R}{C}\right)^k$$
.

Illustration of the theorem

Illustration of the theorem

Illustration of the theorem

Convergence of GMRES

GMRES has also superlinear convergence.

But eigenvalue information can be useless for nonnormal matrices.

- a set of eigenvalues
- a non-increasing sequence

Claim: there exists a matrix A and a right-hand-side vector b such that A has the specified eigenvalues and if GMRES is applied to the corresponding system the norm of the residuals are equal to the non-increasing sequence.

Convergence of GMRES for a real spectrum

Convergence of GMRES for a real spectrum

Convergence of GMRES for a real spectrum

Convergence of GMRES for a complex spectrum

Convergence of GMRES for a complex spectrum

Convergence of GMRES for a complex spectrum

4. Conclusions

- Direct solution methods are not feasible for 3D problems
- The standard geometric Multigrid methods is not applicable
- The spectrum of the preconditioned matrix is important for the convergence of Krylov methods
- Negative and positive eigenvalues lead to slow convergence
- Eigenvalues clustered around 1 lead to fast convergence

