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Summary

Computation of ows using unstructured staggered
grids

Thanks to the tremendous increase in computer resources and many advances in

the �eld of numerical techniques, computational uid dynamics (CFD) is nowadays

capable of computing ows in complex domains. One of the consequences is that

grid generation has become a major bottleneck for utilization of codes based on the

structured multiblock approach. Experience namely has shown that it is impossible

to gain a satisfactory reduction of human labor involved in generation of structured

grids. Another disadvantage of structured grids consists of inherent diÆculties as-

sociated with local grid re�nement and grid adaptation. These diÆculties have led

to the emergence of unstructured grids in CFD. Generation of unstructured grids

can be automated to a much larger extent than generation of structured grids, and

local and adaptive grid re�nement are much easier to realize on unstructured grids.

Another well-known issue in CFD is the design of Mach-uniform methods, i.e. meth-

ods that are capable of computing ows with accuracy and eÆciency uniform in the

Mach number M , from incompressible ows (M = 0) to supersonic ows (M > 1).

In order to avoid spurious pressure oscillations in incompressible or weakly com-

pressible ows, a staggered grid, in which the normal momentum components are

located at the cell faces and the scalar variables are positioned in the cell centroids,

can be employed. In this thesis, a novel Mach-uniform method to compute ows

using unstructured staggered grids is described.

In Chapter 2, the Navier-Stokes equations, governing the motion of uid ows, are

introduced. In addition, some important approximations of these equations, namely

the Euler equations (viscous and di�usive e�ects are omitted) and the incompressible

ow equations (the density of each material particle remains constant) are addressed.

The issue of structured versus unstructured grids is discussed. A literature survey

of compressible and incompressible ow solvers on unstructured grids is given, and

it is concluded that the method introduced in this thesis is novel with respect to:

(i) the spatial discretization, and (ii) the Mach-uniform solution procedure.

Three solution procedures are discussed in Chapter 3. The well-known pressure-

correction approach (PC) is used to compute incompressible ows. For simplicity,

a straightforward sequential update procedure for fully compressible ows (FC) is

introduced to test the spatial discretization. The need for Mach-uniform methods

is motivated and we address the diÆculties associated with the incompressible limit

encountered by the standard compressible ow solvers. The Mach-uniform approach

(MU) employed in this thesis is a generalization of the PC approach and incorporates

all compressibility e�ects. Hence, the MU scheme is pressure-based, is valid even
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for M > 1, and updates the variables sequentially. The MU approach reverts back

to the standard PC scheme for M = 0. Time integration is done by means of the

�-method, and the resulting linear systems (two for the PC approach, and three for

the FC and MU approaches if � > 0) are solved by means of preconditioned Krylov

subspace methods.

The spatial discretization of the governing equations on unstructured staggered grids

forms the subject of Chapter 4. Due to the staggered grid arrangement, it is impos-

sible to de�ne `left' and `right' states as for standard colocated methods for com-

pressible ows. This is why schemes based on approximate Riemann solvers cannot

be applied. On the other hand, discretization by a simple �nite di�erence or �nite

volume scheme for each primary variable separately (a segregated approach) is nat-

ural on a staggered grid, and this is the strategy that we pursue. We have adopted a

�nite volume approach, thereby ensuring satisfaction of the Rankine-Hugoniot shock

conditions, see also Appendix D. The momentum equation is integrated over the two

triangles adjacent to the considered face, while integration over two half triangles

turns out to yield an inconsistent scheme, see also Appendix B. For computation

of the convecting velocity at the control volume faces, a central and an upwind bi-

ased approximation are devised. The convected momentum term itself is evaluated

by means of a �rst order upwind or a central scheme. Four di�erent pressure gra-

dient methods are designed: the path integral (PI) method, the contour integral

(CI) method, the auxiliary point (AP) method and the four quadrant (FQ) method.

Discretization of the viscous term is discussed. The continuity equation, the energy

equation (in the FC approach) and the Mach-uniform pressure-correction equation

(in the MU approach) are integrated over each triangle, and the convection term is

evaluated by means of a �rst order upwind or a central scheme. Computation of the

pressure (in the FC approach) or the enthalpy (in the MU approach) by means of the

equation of state for a perfect gas is described. The proposed central discretization

of the convection operator of the scalar equations preserves the underlying symmetry

of the considered operator, while for the inertia term this is only the case on regular

grids, see Appendix C.

Numerical results for viscous incompressible ows (Poiseuille ow, the backward

facing step and the lid-driven cavity) are discussed in Chapter 5. On grids that

are made non-smooth deliberately, the PI method performs best. The CI method

can lead to spurious pressure modes. The PI method results in a nonsymmetric

pressure-correction matrix that is not an M-matrix; nevertheless the eigenvalues of

this matrix have, as they should, a very small imaginary part as compared to the

(positive) real part. Solving the resulting pressure-correction equation is done by

means of Bi-CGSTAB together with a so-called lumped ILU preconditioner. So-

lutions for the ow over the backward facing step and the lid-driven cavity are

compared with other, both experimental and numerical, results.
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In Chapter 6, numerical results for inviscid compressible ows are given. The Burg-

ers equation is suitable to test the discretization of the inertia term. It is found

that the �rst order upwind scheme introduces a small overshoot, which does not

grow in time. The convecting velocity should, in order to avoid excessive arti�al

di�usion, be approximated in a central manner. The issue of monotonicity is ad-

dressed in Appendix A. When applied to Riemann problems, our scheme is found

to converge, without giving rise to spurious modes, to the entropy solution. The

accuracy is similar to that of the well-accepted Roe and AUSM schemes. The PI

method is found to perform slightly better than the other pressure gradient schemes.

Central discretization of the inertia term leads to a matrix that almost preserves the

symmetry of the underlying operator: the eigenvalues have, compared to the imag-

inary part, a relatively small real part. A grid re�nement study for subsonic ow

in a channel with 10% sinusoidal bump demonstrates that our scheme performs al-

most as well on general unstructured grids as on Courant grids, and that the order

of the spatial accuracy of the �rst order upwind scheme is one. Using a struc-

tured staggered scheme with the same number of nodes on the boundary leads to

slightly less di�usive results. Supersonic ow in a channel with 4% circular bump

shows the capability to deal with supersonic ow: a good agreement with previ-

ously published results is obtained. Flows with di�erent freestream Mach numbers

(M1 = 0; 10�3; 10�2; 10�1; 0:63; 0:8; 1:2) around the NACA 0012 airfoil are used to

study the accuracy and eÆciency of our schemes for incompressible and compress-

ible ows. It is found that the MU formulation is over the whole studied range of

Mach numbers much more eÆcient than the FC approach. This is due to the fact

that in the MU approach the pressure is taken implicitly, which enables the use of

much larger time steps, which results on its turn in fewer time steps before conver-

gence is reached. In the MU formulation, quick convergence is obtained for Courant

numbers typically in the order of a few hundred, whereas the FC becomes unstable

for Courant numbers larger than about 2 or 3. In the FC approach, most CPU

time is spent in computation of the matrix elements and right-hand side, whereas

the MU approach spends most of its CPU time in the linear solver. As is common

for density-based methods, the FC becomes less accurate in the low Mach number

regime; this is not the case for the pressure-based MU approach. An example in

which both incompressible and compressible regions occupy a large part of the ow

domain is that of ow in a converging-diverging nozzle. Solutions demonstrate good

agreements with structured grid and theoretical results. Mach-uniform eÆciency is

obtained, since the CPU time per time step only depends on the magnitude of the

time step size and not on the contraction ratio of the nozzle.

Ivo Wenneker





Samenvatting

Berekening van stromingen met behulp van ongestruc-
tureerde, `staggered' roosters

Dankzij de enorme toename in computerkracht en de vooruitgang op het gebied van

numerieke technieken, is de numerieke stromingsleer (CFD) tegenwoordig in staat om

stromingen in complexe domeinen te berekenen. Een van de gevolgen is dat rooster

generatie een belangrijk knelpunt voor het toepassen van codes gebaseerd op de

gestructureerde multi-blok aanpak is geworden. Ervaring heeft namelijk uitgewezen

dat het onmogelijk is tot een aanvaardbare reductie van het aantal manuren dat

benodigd is voor generatie van gestructureerde roosters te komen. Een ander nadeel

van gestructureerde roosters is gerelateerd aan de niet of nauwelijks te overkomen

moeilijkheden met betrekking tot lokale en adaptieve rooster ver�jning. Deze moei-

lijkheden hebben geleid tot de opkomst van ongestructureerde roosters in CFD. Het

genereren van ongestructureerde roosters kan veel verder geautomatiseerd worden

dan dat van gestructureerde roosters, en lokale en adaptieve rooster ver�jning zijn

op ongestructureerde roosters veel eenvoudiger te realiseren. Een ander bekend

onderwerp binnen de CFD is de ontwikkeling van Mach-uniforme methoden. Dit

zijn methoden die in staat zijn stromingen te berekenen met een nauwkeurigheid

en eÆci�entie die uniform is in het Mach getal M , van incompressibele stromingen

(M = 0) tot en met supersone stromingen (M > 1). Om niet-fysische druk oscil-

laties in incompressibele of zwak compressibele stromingen te voorkomen, kan een

`staggered' (lett. verschoven) rooster, waarin de normale impuls componenten op de

celzijden en de scalaire grootheden in de celcentra zijn gepositioneerd, gebruikt wor-

den. In dit proefschrift wordt een nieuwe Mach-uniforme methode om stromingen

met behulp van ongestructureerde `staggered' roosters beschreven.

In Hoofdstuk 2 worden de Navier-Stokes vergelijkingen, die de beweging van uida

beschrijven, ge��ntroduceerd. Verder worden enige belangrijke vereenvoudigingen

hiervan, namelijk de Euler vergelijkingen (verwaarlozing van visceuze en di�usie

e�ecten) en de incompressibele stromingsvergelijkingen (de dichtheid van ieder ma-

terieel deeltje blijft constant), behandeld. De kwestie van gestructureerde versus

ongestructureerde roosters wordt aangeroerd. Een literatuuroverzicht van compres-

sibele en incompressibele ow solvers op ongestructureerde roosters wordt gegeven,

en men kan concluderen dat de aanpak die in dit proefschrift beschreven wordt met

betrekking tot de volgende aspecten nieuw is: (i) de ruimtelijke discretisatie, en (ii)

de Mach-uniforme oplosstrategie.

Drie oplosstrategie�en worden bediscussieerd in Hoofdstuk 3. De bekende druk-

correctie aanpak (PC) wordt gebruikt om incompressibele stromingen te berekenen.

Een voor de hand liggende sequenti�ele update procedure voor volledig compressibele
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stromingen (FC) is bedacht om de ruimtelijke discretisatie te testen. We motiveren

de behoefte aan Mach-uniforme methoden en we behandelen de moeilijkheden die

standaard ow solvers hebben met de incompressibele limiet. De Mach-uniforme

oplosstrategie (MU), die in dit proefschrift gebruikt wordt, is een generalisatie van

de PC aanpak en bevat alle compressibiliteitse�ecten. Dat betekent dat de MU aan-

pak de druk als primaire variabele heeft, zelfs geldig is voorM > 1 en de grootheden

op een sequenti�ele wijze uitrekent. De MU aanpak reduceert tot de standaard PC

aanpak voor M = 0. Tijdsintegratie wordt gedaan middels de �-methode, en de

resulterende lineaire systemen (twee voor de PC aanpak, en drie voor de FC en MU

strategie�en, tenminste wanneer � > 0) worden opgelost middels gepreconditioneerde

Krylov methoden.

De ruimtelijke discretisatie van de stromingsvergelijkingen op ongestructureerde

roosters vormt het onderwerp van Hoofdstuk 4. Wegens het gebruik van een `stag-

gered' rooster is de de�nitie van `linker' en `rechter' toestanden zoals in standaard

gecoloceerde methoden voor compressibele stromingen onmogelijk. Dit verklaart

waarom schema's gebaseerd op `approximate Riemann solvers' niet gebruikt kunnen

worden. Echter, discretisatie middels een eindige di�erentie of eindige volume aan-

pak voor iedere primaire variabele apart (een gesegregeerde aanpak) ligt voor de hand

bij een `staggered' rooster, en dit is de strategie die wij volgen. We maken gebruik

van een eindige volume formulering, zodat we aan de Rankine-Hugoniot schokrelaties

voldoen, zie ook Appendix D. De impuls vergelijking wordt ge��ntegreerd over de

twee driehoeken die grenzen aan de beschouwde driehoekszijde. Integratie over twee

halve driehoeken blijkt een inconsistent schema op te leveren, zie ook Appendix B.

Voor de berekening van de convecterende snelheid op de controle volume zijden

hebben we een centrale en upwind benadering ontworpen. De geconvecteerde im-

puls term zelf wordt bepaald middels een eerste orde upwind schema of een centraal

schema. Vier verschillende druk gradi�ent methoden zijn getest: de pad integraal (PI)

methode, de contour integraal (CI) methode, de hulpspunt (AP) methode en de vier

quadranten (FQ) methode. De discretisatie van de visceuze term wordt behandeld.

De continu��teitsvergelijking, de energie vergelijking (in de FC aanpak) en Mach-

uniforme druk-correctie vergelijking (in de MU aanpak) worden over iedere driehoek

ge��ntegreerd, en de convectie term wordt benaderd met behulp van een eerste orde

upwind of een centraal schema. We behandelen de berekening van de druk (in de FC

aanpak) of de enthalpie (in de MU aanpak) door middel van de toestandsvergelij-

king. De voorgestelde centrale discretisatie van de convectie operator van de scalaire

vergelijkingen behoudt de onderliggende symmetrie van de beschouwde operator,

terwijl voor de traagheidsterm dit alleen het geval is op regelmatige roosters, zie

Appendix C.

Numerieke resultaten voor visceuze incompressibele stromingen (Poiseuille stromin-

gen, de `backward facing step' en de `lid-driven cavity') worden bediscussieerd in
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Hoofdstuk 5. Het blijkt dat de PI methode de beste resultaten levert op roosters die

opzettelijk onregelmatig gemaakt zijn. De CI methode kan tot ongewenste oscillaties

in de druk leiden. De PI methode resulteert in een niet-symmetrische druk-correctie

matrix die geen M-matrix is; desondanks bezitten de eigenwaarden van deze matrix,

zoals gewenst, slechts een zeer klein imaginair deel in verhouding tot het (positieve)

re�ele deel. Oplossen van de bijbehorende druk-correctie vergelijking wordt gedaan

middels Bi-CGSTAB en een zogenaamde `lumped' ILU-preconditionering. Oplossin-

gen voor de stroming over de `backward facing step' en de `lid-driven cavity' worden

vergeleken met zowel experimentele als numerieke resultaten.

In Hoofdstuk 6 worden numerieke resultaten voor niet-visceuze compressibele stro-

mingen behandeld. De Burgers vergelijking is geschikt om de discretisatie van de

traagheidsterm te testen. We vinden dat het eerste orde upwind schema tot een

iets te grote waarde leidt vlak voor de schok die niet in de tijd groeit. De con-

vecterende snelheid dient, om overmatige numerieke di�usie te vermijden, op een

centrale manier berekend te worden. Het punt van monotoniciteit wordt behan-

deld in Appendix A. Ons schema blijkt, wanneer het wordt gebruikt om Riemann

problemen te berekenen, naar de entropie oplossing te convergeren zonder daarbij

ongewenste modes te genereren. De nauwkeurigheid is vergelijkbaar met die van

de algemeen geaccepteerde Roe en AUSM schema's. De PI methode blijkt iets

nauwkeuriger te zijn dan de andere druk gradi�ent schema's. Centrale discretisatie

van de traagheidsterm leidt tot een matrix die vrijwel de symmetrie van de ope-

rator behoudt: de eigenwaarden hebben, vergeleken met het imaginaire deel, een

klein re�eel deel. Een roosterver�jningstudie voor subsone stroming in een kanaal

met een 10% sinusvormige vernauwing toont aan dat ons schema vrijwel even goede

resultaten levert op willekeurige ongestructureerde roosters als op Courant roosters,

en dat de orde van de ruimtelijke discretisatie van het eerste orde upwind schema

�e�en is. Het gebruik van een `staggered' gestructureerd schema levert, met hetzelfde

aantal knooppunten op de rand, tot iets minder di�usieve resultaten. Supersone

stroming in een kanaal met een 4% cirkelvormige vernauwing toont het vermogen

om supersone stromingen te berekenen: er wordt een goede overeenkomst met an-

dere gepubliseerde resulaten behaald. Stromingen met verschillende waarden voor

het aanstroom Mach getal (M1 = 0; 10�3; 10�2; 10�1; 0:63; 0:8; 1:2) om een NACA

0012 pro�el worden benut om de nauwkeurigheid en eÆci�entie van ons schema voor

incompressibele en compressibele stromingen te bestuderen. De MU formulering

blijkt, over het beschouwde bereik van Mach getallen, veel eÆci�enter te zijn dan de

FC aanpak. Dit komt omdat de druk in de MU aanpak impliciet genomen wordt,

wat het gebruik van veel grotere tijdstappen toelaat, hetgeen op zijn beurt weer

resulteert in een kleiner aantal tijdstappen om convergentie te bereiken. Binnen

de MU formulering wordt een snelle convergentie bereikt voor Courant getallen in

de orde van enkele honderden, terwijl de FC aanpak instabiel wordt voor Courant

getallen groter dan 2 �a 3. Binnen de FC aanpak wordt het grootste deel van de CPU
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tijd gebruikt om de matrix elementen te berekenen, terwijl binnen de MU aanpak

de meeste CPU tijd in de lineaire solver zit. Zoals gebruikelijk voor methoden die

de dichtheid als primaire variabele hebben, wordt de FC aanpak minder nauwkeurig

wanneer het Mach getal laag is; dit is niet het geval voor de MU aanpak die de druk

als primaire variabele heeft. Een voorbeeld van een stroming waarbinnen zowel in-

compressibele als compressibele gebieden een groot deel van het domein omvatten

is dat van een stroming in een convergerende-divergerende tuit. Berekeningen resul-

teren in een goede overeenkomst met gestructureerde rooster resultaten en theorie.

Een Mach-uniforme eÆci�entie wordt behaald, omdat de CPU tijd per tijdstap slechts

afhangt van de grootte van de tijdstap en niet van de mate van contractie van de

tuit.

Ivo Wenneker
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Chapter 1

Introduction

Problems involving ows are encountered in many branches of engineering science.

Examples are ows in turbomachinery, arteries, seas and rivers, and around aircraft

and ships. The mathematical formulation of the laws that govern the motion of

a uid is known already for well over a century. This formulation consists of some

thermodynamical relations and a set of coupled partial di�erential equations, the so-

called Navier-Stokes equations, that describe conservation of mass, momentum and

energy for a uid. Appropriately de�ned boundary conditions and initial conditions

complete the problem de�nition. In general, the resulting mathematical problem is

far too diÆcult to be solved by analytical means. Therefore, in the past one had

to rely heavily on experiments or greatly simpli�ed mathematical models for the

majority of ow problems . However, experiments are often too expensive, diÆcult,

dangerous or even impossible to perform. On the other hand, the use of methods

that solve the governing equations by numerical means is an obvious alternative.

Thanks to the tremendous increase in computational power in the last decades, this

approach has gained substantial signi�cance. The new scienti�c discipline that has

evolved is called computational uid dynamics (CFD). Nowadays, CFD has, besides

the more traditional experimental and analytical approaches, become an indispens-

able tool for the uid dynamicist. The existence of many commercial, freeware and

in-house computer codes suited for doing CFD attest to this fact.

In the majority of cases, one basically divides the ow domain into small cells (grid

generation), in which the primary unknowns are sought, and one replaces di�er-

entials by di�erences (discretization). The core of a CFD code is formed by the

discretization, i.e. the way in which the ow equations are formulated mathemati-

cally and are approximated. The numerics involved in this process have to ensure

that the computed solution approximates the exact solution of the mathematical

model as well as possible. Of course, aspects like robustness, eÆciency and ease of

implementation also play a prominent role in devising good numerical algorithms.
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Problem definition

Flow computation

Preprocessing

Postprocessing

Figure 1.1: Flow diagram describing the processes involved in using CFD.

1.1 The processes involved in using CFD

1.1.1 General outline

The CFD-user needs a clear de�nition of the problem, including values for several

ow parameters, speci�cation of the geometry of the ow domain and formulation

of the governing equations to be solved. After the problem has been de�ned, pre-

processing can start, see Figure 1.1. Preprocessing is the process of entering the

problem speci�cation and the geometry de�nition into the computer in such a way

that the actual ow computation can start. In general, one needs to to generate a

grid and write some input�les that indicate the numerical schemes to be used.

After preprocessing is �nished, ow computation takes place. The aim is to �nd nu-

merical values for the solution of the ow equations in all grid cells. Of the processes

distinguished in Figure 1.1, this is usually the most computing intensive part. The

ow computation leads to huge amounts of data, that have to be transformed (post-

processed) such that interpretation of the results becomes feasible. One important

feature in postprocessing is visualization, without which a good understanding of

the computed solution is impossible. Also the evaluation of derived quantities like

the Mach number, shear stress, lift, drag, and so on, forms an indispensable part of

postprocessing.

After interpretation of the results, the user has to decide whether he or she is satis-

�ed with the results, or perhaps wants to redo the computation. The latter might

be the case if, for example, the grid or the employed physical model are considered

`not good enough'. This is indicated by the dashed lines in Figure 1.1.
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1.1.2 Bottleneck: grid generation

All processes briey touched upon above are major disciplines in themselves. We

now make a few remarks about grid generation, because this has become a major

bottleneck. Grid generation is the division of the domain of interest into small cells,

in which the unknowns are sought. Thanks to the advances in computer technology

and numerical algorithms, the problems that CFD can handle have become more and

more complex. Just to mention one example, computation of transonic ow around

a complete 3D aircraft, for the �rst time done in 1986 [54], has now become daily

routine in aerospace industry. Of course, such a leap forward in technology has its

repercussions on the processes distinguished in Figure 1.1. Inevitably, automation

of these processes is one of them. Experience has shown that it is impossible to gain

a satisfactory reduction of human labor involved in generation of structured grids.

As a consequence, it is not uncommon that most of the CFD turn-around time is

devoted to generation of structured grids.

Another disadvantage of structured grids consist of diÆculties associated with local

or adaptive grid re�nement. Often, the important ow features occur in a relatively

small part of the considered domain. This demands locally a �ne grid. Without

losing accuracy, much computing time can be saved by keeping the grid coarse in

the other parts of the domain. However, this is hard to realize on structured grids.

Closely related is the issue of local grid adaptation: can we, during the computa-

tion and without user-interference, adapt the grid locally in order to increase the

accuracy signi�cantly (i.e. capture all relevant ow details) while not increasing the

computation time drastically? Again, this is diÆcult to realize on structured grids.

These diÆculties have led in many areas of CFD to the emergence of unstructured

grids, which will be de�ned later. Generation of unstructured grids can be auto-

mated to a larger extent than generation of structured grids. In addition, local grid

re�nement and grid adaptation are much easier to realize on unstructured grids.

It must be noted that discretization of the ow equations on unstructured grids is

considered to be more diÆcult than on structured grids. Furthermore, the data

structures needed when dealing with unstructured grids are more complicated to

program, and as a result of the required indirect addressing computational costs are

higher. The computational costs are also increased by the absence of a bandstruc-

ture in the matrices (relevant when implicit methods are used to discretize in time),

which prevents the use of certain eÆcient iterative methods.

Of course, the accumulated experience in using structured grids is of great help

for designing discretization schemes for unstructured grids. Consequently, many

schemes, originally developed for structured grids, have been modi�ed for use on

unstructured grids.
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1.1.3 Mach-uniform methods

It is well-known that the eÆciency and accuracy of methods designed to compute

compressible ows (Mach number M > 0:2) deteriorate drastically when M de-

creases below 0.2. On the other hand, when the Mach number remains uniformly

small (say, below 0.2), an accurate and useful approximation is to consider the ow

as incompressible. This observation has led to the development of computational

methods exclusively suited for incompressible ows. However, neither class of meth-

ods is capable of computing ows in domains in which incompressible ow subregions

as well as compressible ow subregions occur simultaneously. Two strategies to deal

with such ows can be distinguished: extension of compressible ow methods to in-

compressible ows, or extension of incompressible ow schemes to the compressible

case.

In this discussion a related issue is of importance. In (almost) all compressible ow

methods, the variables are located in the same nodes in the grid cells. This is called

a colocated grid. Such a distribution of the variables is also not uncommon in in-

compressible ow CFD, but in this �eld several arguments tend to favor another

option, namely that the velocity and scalar variables should be located at di�erent

grid locations. When this is the case, we say that the grid is staggered.

1.2 Objectives of this thesis

The use of a staggered positioning of the variables on structured grids has led to accu-

rate algorithms to compute incompressible ows. Take for example the MAC scheme

on Cartesian grids [44], which is also successfully applied for DNS (direct numerical

simulation) of turbulence, see [68, 122, 123], and LES (large eddy simulation) [1].

Computation of incompressible ow is also feasible on staggered curvilinear grids, as

demonstrated for instance in [130, 131] and references quoted therein. The inclusion

of turbulence models on staggered grids is described in [133]. In addition, staggered

schemes have been found capable of computing compressible ows in a fashion that

is uniformly accurate and eÆcient in the Mach number, see [8, 9, 111, 132], and even

arbitrary equations of state can be dealt with [110].

In this thesis, a new method to compute ows using unstructured staggered grids is

described. The method is capable of computing ows with an eÆciency and accu-

racy that is uniform in the Mach number, from M = 0 to M > 1. The remainder of

this thesis is subdivided as follows:

� In Chapter 2, the ow equations are introduced, and a literature survey of

compressible and incompressible ow solvers on unstructured grids is given.

� In Chapter 3, three di�erent time-marching solution procedures are discussed:

the pressure-correction approach for incompressible ows, a sequential update
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procedure for compressible ows and a Mach-uniform sequential update pro-

cedure for both compressible and incompressible ows.

� The spatial discretization of the ow equations on unstructured staggered grids

forms the subject of Chapter 4.

� Numerical results for viscous incompressible ows (Poiseuille ow, the back-

ward facing step and the lid-driven cavity) are discussed in Chapter 5.

� In Chapter 6, numerical results for inviscid compressible ows are given. Var-

ious test cases (Burgers equation, Riemann problems, ow in a channel with

bump, ows around the NACA 0012 airfoil, supersonic ow over a circular

blunt body and ow in a converging-diverging nozzle) are considered.

� Several appendices are included. In Appendix A, considerations with respect

to monotonicity of the scheme are given. Numerical tests of the consistency of

the discretized inertia term are described in Appendix B. The issue whether

certain underlying symmetries of the di�erential operators carry over to the

discretization is addressed in Appendix C, and in Appendix D it is shown that

the discretization conserves mass, energy and momentum.





Chapter 2

Computation of ows using

unstructured grids

In this chapter a survey of the literature on the various unstructured grid methods

is given. In Section 2.1 the ow equations that will be used throughout this thesis

are summarized. An overview of the various grid types, including some remarks on

the generation of unstructured grids, is given in Section 2.2. The methodology used

in compressible ow solvers on unstructured grids is briey discussed in Section 2.3.

Some incompressible ow solvers on unstructured grids are treated in Section 2.4,

including a more extensive overview of the staggered schemes among them.

2.1 Equations of motion

The equations that describe the motion of uids (liquids and gases) are, together

with some thermodynamical relations, mathematical formulations of the conserva-

tion laws for mass, momentum and energy. A derivation of these equations can be

found in many textbooks, for instance the one by Batchelor [7]. We will introduce

these equations in Section 2.1.1. One important simpli�ed model is that of inviscid

compressible ow. Such type of ow is governed by the Euler equations, and these

form the subject of Section 2.1.2. Another important simpli�ed model is that of

incompressible ow. In such a ow, the density of each material particle in the uid

remains constant during motion. The incompressible ow equations are addressed

in Section 2.1.3. In many occasions, a ow can be considered as incompressible when

the Mach number in the whole ow domain is smaller than, say, 0.2. When the Mach

number is larger than 0.2, the compressible ow equations must be employed. This

division has become rather rigid in the �eld of CFD, which is due to the inherently

di�erent nature that the ow equations possess in both cases. We will come back to

this in Section 3.4.
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2.1.1 Basic equations of uid dynamics

The basic equations of uid dynamics are the ones that govern the motion of uids,

and they are given by:

@�

@t
+ (u��);� = 0; (2.1)

@m�

@t
+ (u�m�);� = �

��

;�
+ �f�; (2.2)

@(�E)

@t
+ (u��E);� = (u����);� + (kT;�);� + �u�f� + �q: (2.3)

Cartesian tensor notation and the summation convention are applied, meaning that

we have p;� = @p=@x� for each Cartesian coordinate x�, v�
;�

for the divergence of

vector v� (hence, v�
;�
= r�v) and v�w� for the inner product v�w. Equation (2.1)

is the mathematical formulation for conservation of mass and is often called the

continuity equation. The density is indicated by �, the velocity vector by u� and t

refers to time. Equation (2.2) is the second law of Newton, describing conservation

of momentumm� = �u� in a uid. Here the stress tensor is given by the constitutive

relation for a Newtonian uid:

��� = �p Æ�� + 2�(e�� � 1

3
�Æ��); (2.4)

where Æ�� denotes the Kronecker delta and � the dynamic viscosity coeÆcient. The

rate of strain tensor is de�ned by

e�� =
1

2
(u�

;�
+ u�

;�
); (2.5)

and

� = e�� = u�
;�
: (2.6)

Body forces, e.g. gravity, are put in the term f�. We will neglect body forces in

this thesis. Conservation of energy is expressed by (2.3), in which E denotes the

total energy per unit mass, T the temperature, k the thermal conductivity and q the

added heat per unit of mass per unit time. In this thesis, we will restrict ourselves

to the case in which q = 0.

2.1.2 Euler equations

With respect to compressible ows, we will restrict ourselves in this thesis to the

motion of ideal uids, i.e. ows in which friction and heat conduction are neglected:

� = 0, k = 0. The Euler equations that govern this type ows can easily be derived
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from (2.1){(2.3), and are given by:

@�

@t
+ (u��);� = 0; (2.7)

@m�

@t
+ (u�m�);� = �p;�; (2.8)

@(�E)

@t
+ (u��H);� = 0: (2.9)

The Euler equations are often abbreviated as follows:

@U

@t
+r�F = 0; (2.10)

where F = F (U) is called the ux vector function and U the vector of conserved

variables. The following thermodynamic relations, restricting ourselves to calorically

perfect gases, will be used frequently:

H = h+
1

2
u2; (2.11)

E = e+
1

2
u2; (2.12)

h = e; (2.13)

�H = �E + p; (2.14)

where h is the enthalpy, e the internal energy and u2 = u�u�. For the speci�c heat

ratio the value  = 7=5 will be used throughout. The system of equations is closed

by the equation of state:

p = ( � 1)�e: (2.15)

For future purposes, we de�ne the Mach number as

M = u=a; (2.16)

where u is the local ow velocity, and

a =
p
( � 1)h (2.17)

is the local speed of sound.

2.1.3 Incompressible ow equations

The incompressible ow equations govern the motion of a uid under the assumption

of negligible density variations in each uid particle. This approximation holds to a

fairly good extent as long asM < 0:2, heat addition is limited and acoustics is absent.

In contrast with the compressible ow case, we do not neglect the viscous forces in
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the incompressible ow equations. The incompressible Navier-Stokes equations are

given by, assuming constant viscosity �:

@m�

@t
+ (u�m�);� = �p;� + �u�

;��
; (2.18)

u�
;�

= 0: (2.19)

Equation (2.18) is the momentum equation, and the kinematic constraint (2.19) is

the continuity equation.

2.2 Types of grids

Because of the geometric complexity of the domains in which many ows take place,

grid generation is a major issue in CFD. By grid generation we mean the subdivision

of the domain into small cells. The resulting set of cells is called the (computational)

grid. Two primary types of grids, namely structured and unstructured, are discussed

subsequently.

2.2.1 Structured grids

A grid is called structured if all interior cell vertices belong to the same number of

cells and if the grid can be mapped onto a rectangle (in 2D) or a block (in 3D). As

a consequence, each cell can be labelled by a set of integers (i; j) in 2D or (i; j; k) in

3D, with i = 1; : : : ; I, j = 1; : : : ; J and k = 1; : : : ;K. When the grid cells conform to

the domain boundaries, the grid is called boundary-�tted. In Cartesian grids, with

cells being rectangles or blocks, the domain boundary usually does not coincide with

the cell faces, making accurate implementation of the boundary conditions diÆcult.

Discretization of the ow equations in the interior, on the other hand, is much easier

on Cartesian grids than on boundary-�tted grids. Grid topologies in use include

single-block and multiblock with matching or overlapping block interfaces, the lat-

ter approach being called the chimera or overset approach. A single-block grid can

be mapped onto a Cartesian grid. In a multiblock grid, the element connectivity

is inherently structured within each block, but between blocks the connectivity is

unstructured. The multiblock approach allows structured grids to be used for com-

plex geometries. A structured grid approach o�ers advantages in solution algorithm

eÆciency and ease of datastructure-handling. A drawback of a multiblock struc-

tured grid approach is the signi�cant human time required to generate a complete

grid in complicated domains. Another drawback of structured grids consists of the

diÆculties associated with local or adaptive grid re�nement. Beforehand, generally

one does not know exactly where the grid should be �ne in order to capture all rele-

vant ow details, nor how �ne it should be. It might happen that, after completing

a ow computation, one arrives at the conclusion that the grid was too coarse in

one or more regions of the ow domain. This leads to the necessity to adapt the
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Figure 2.1: Multiblock structured grid (left) and an unstructured grid for a multi-

element airfoil con�guration. Picture is taken from [114].

grid and to restart the computation, thereby increasing signi�cantly the amount of

labor and CPU time. A related disadvantage of the structured grid approach is that

local re�nements are `transported' to the far �eld region where re�nement is not

needed, leading to more grid points than are strictly necessary. This is illustrated

in Figure 2.1.

2.2.2 Unstructured grids

Unstructured grids subdivide the domain into simple, usually triangular (in 2D)

or tetrahedral (in 3D), elements with no implied connectivity. In comparison to

multiblock structured grids, an unstructured grid o�ers considerably more geomet-

ric exibility and, because its generation can be automated to a much larger extent,

a substantial reduction of the human labor time required to generate a grid. In

addition, local and adaptive grid re�nement (and de-re�nement, if necessary) can

be realized with much more ease. Though used already for a long time in �nite

element methods, only fairly recently the CFD community, traditionally more bi-

ased towards �nite volume methods, has embraced unstructured grid technology.

Nice surveys on unstructured mesh generation technology can be found on the in-

ternet [85] or in the paper by Mavriplis [75]. In view of the arguments given above,

the problem of unstructured mesh generation is largely one of designing algorithms

that are automatic, robust, and yield suitable element shapes and distributions for

the ow solver. Most unstructured grid generation techniques, both for 2D and 3D

applications, �t into one of the three main categories to be addressed below.

Delaunay triangulation methods

Very popular among the triangle and tetrahedral meshing techniques are those uti-

lizing the Delaunay criterion. The Delaunay criterion, which is sometimes called the

`empty sphere' property, states that no circumsphere of a tetrahedron in the grid can



12 Section 2.2. Types of grids

(a) (b)

Figure 2.2: Example of the Delaunay criterion: (a) satis�es the criterion while (b)

does not.

contain a grid point other than its four constitutive vertices. Figure 2.2 illustrates

the criterion in two dimensions. Note that the Delaunay criterion in itself is not an

algorithm for generating a mesh; it merely provides a criterion for connecting a set

of existing points in space. A frequently used point-insertion algorithm is the one

developed by Bowyer and Watson [10, 126]. The main disadvantage of Delaunay tri-

angulation techniques relate to their inability to guarantee boundary integrity. Edge

and face-edge swapping, in two and three dimensions, respectively, have been devel-

oped for locally modifying Delaunay meshes to conform to boundaries. In boundary

layers, stretched obtuse triangles that contain one large angle and two small angles

are, for accuracy reasons, to be avoided, while stretched right-angle triangles are

to be preferred for eÆciency reasons. Delaunay triangulations, which maximize the

minimum angles of any triangulation (the so-called maxmin property), tend to pro-

duce equiangular triangulations and are thus ill suited for the construction of highly

stretched triangular elements. Hence, minmax triangulations, which minimize the

maximum angle of the triangulation, are to be preferred, but such triangulations

are usually not of Delaunay type. Connecting the circumcenters of the Delaunay

triangulation results, as illustrated in Figure 2.3, in a Voronoi polygon. The collec-

tion of Voronoi polygons forms a Voronoi tessellation. The edges of either mesh are

perpendicular to the faces of the other. This so-called dual property is explicitly

used in the covolume technique and the discretization as proposed by Perot, both

to be discussed in Section 2.4.3.

Advancing front techniques

Another very popular triangle and tetrahedral mesh generation algorithm is the ad-

vancing, or moving front method [71, 72, 73, 74]. In this method, the triangles or

tetrahedra are built progressively inward from the domain boundaries. As demon-
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Figure 2.3: Delaunay triangulation (continuous line) and the associated Voronoi

tessellation (dashed line). The vertices and the circumcenters are indicated by the

symbols � and Æ, respectively.

Figure 2.4: Example of the advancing front method, with two layers of triangles

already in place. The dashed line indicates the active front.

strated in Figure 2.4, an active front is maintained where new elements are formed.

As the algorithm progresses, the fronts will advance, in a judiciously chosen man-

ner, to �ll the remainder of the domain with elements. Advancing front methods

generally result in smooth, high-quality triangulations in most regions of the ow

domain. However, diÆculties may be encountered in regions where fronts must be

merged.

Octree technique

With the octree technique [97, 136], squares are recursively subdivided, as is illus-

trated in Figure 2.5, until the desired resolution is reached. Irregular cells are created

where cubes intersect the boundary. Triangles are generated from both the irregular

cells on the boundary and the internal regular cells.
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Figure 2.5: Quadtree (middle) and octree (right) decomposition of a a simple 2D

object.

2.2.3 Other grid types

In order to resolve thin boundary layers and wakes, stretched grids are indispens-

able in order to maintain eÆciency when computing high-Reynolds number ows. It

turns out to be diÆcult to obtain accurate ow solutions on highly stretched tetra-

hedral cells. This has lead to an interest in hybrid grids - with tetrahedral cells away

from the body surfaces, while using prismatic cells admitting high aspect ratios near

body surfaces. The layers in the region containing the prisms are distributed such

as to resolve the boundary layer, while the regular distribution near the surface may

result in a local cancellation of truncation errors. To give one particular example,

development of hybrid grid technology has been an essential part of the Brite/Euram

FASTFLO II project, which aims were stated as follows [109]:

The industrial objective of the FASTFLO II project is to develop a common, auto-

mated CFD system that satis�es two basic requirements for industrial application:

1. CFD-problem-turnaround-time of a day to a week (or less) for very complex

geometries (including automatic grid generation).

2. High accuracy of aerodynamic entities (forces, pressure, skin friction, etc.) on

Navier-Stokes level.

This demonstrates the level of maturity that hybrid grid technology and ow

solvers have reached nowadays.

Yet other approaches that have emerged recently are the so-called particle methods

and meshless methods. In particle methods [64, 65, 137], each particle is followed in

a Lagrangian manner which facilitates the analysis of moving boundaries and inter-

faces, since �xed grids are not necessary. Independently, meshless methods, utilizing

the idea of a polynomial interpolant which �ts a number of points minimizing the

distance between the interpolated function and the value of the unknown point, have

been developed [27]. A combination of these two methods is described in [26]. These

methods will not be considered further in this thesis.
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(a) (b)

Figure 2.6: Cell-centered (a) and vertex-centered (b) unstructured colocated grid,

with the symbol � indicating the location of the variables. The dotted and contin-

uous lines around the central vertex in (b) represent the centroid and median dual,

respectively.

2.3 Compressible ow solvers on unstructured grids

In this section a brief survey of the current state of the art in the �eld of compressible

ow solvers on unstructured grids is given. Good review articles are the ones written

by Venkatakrishnan [121] and Mavriplis [75]. In the present section, emphasis is

put on issues related to �nite volume discretization of the inviscid ow equations,

omitting subjects like �nite element discretization, turbulence modeling, multigrid,

parallelization, adaptive grids, and so on.

As far as we know, all compressible ow solvers on unstructured grids use a colocated

grid, which means that all variables reside in the same grid nodes. Two choices

prevail as to where to locate the variables. In the vertex-centered approach, the

variables are stored in the vertices of the grid, whereas in the cell-centered approach

they are stored in the centroids of the cells. In Figure 2.6 these approaches are

illustrated for a 2D unstructured grid. Most compressible ow solvers are based

on the �nite volume technique, which means that �rst the ow equations (2.10)

are integrated over a suitably chosen control volume (CV). Application of Gauss's

theorem transforms the uxterm into a summation of uxes over the CV boundaries:Z
CV

@U

@t
dx+

Z
CV

r�F dx =
d

dt

Z
CV

U dx+

I
@CV

F �n d� =

=
d

dt

Z
CV

U dx+
X
e(CV)

(Fe �ne)le = 0; (2.20)
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where ne is the outward normal at CV boundary e, which has length (area) le. The

discrete set of equations (2.20) satis�es the underlying conservation properties ex-

actly, and as a desirable consequence the jump conditions over discontinuities will

be satis�ed [66]. The grid cell forms the CV for the cell-centered approach, whereas

usually for the vertex-centered approach the CV is formed by the centroid dual or

median dual. The centroid dual is constructed by joining the centroids neighboring

the vertex under consideration, and for construction of the median dual the mid-

points of the adjacent faces are also taken into account, see Figure 2.6b. There seems

to be no clear-cut choice between cell-centered and vertex-centered schemes [121].

The uxes have to be evaluated at the CV boundaries, and depend on the state U at

both sides. The quest for accurate and eÆcient ux evaluation techniques has given

birth to a large variety of methods, most of which can be considered as a form of ux

vector splitting (FVS) or ux di�erence splitting (FDS). The FVS approach relies

on the homogeneity property F = AU of the Euler equations, and selects the up-

wind directions by considering the eigenvalues of the Jacobian A = A(U) = @F=@U .

Well-known examples of FVS schemes are the van Leer scheme [118] and AUSM

(advection upstream splitting method) [70]. The FDS methods originate from the

Godunov method [35], and aim at approximating the uxes by basing a local Rie-

mann problem on the ux di�erence at the CV boundary. The FDS methods most

frequently encountered are the Roe [92] and Osher [28, 83, 84] schemes. In order

to compute accurate solutions while avoiding excessively �ne grids, the spatial dis-

cretization needs to be of (at least) second order accuracy. However, second (or

higher) order accurate schemes result easily in the appearance of spurious wiggles

near steep gradients when dealing with convection-dominated ows. Van Leer [117]

devised the MUSCL (monotonic upstream-centered scheme for conservation laws)

concept to obtain monotonicity-preserving schemes for conservation laws. This con-

cept relies on a piecewise-polynomial reconstruction procedure, and monotonicity is

enforced by using nonlinear functions called limiters. This boils down to maintain-

ing second (or higher) order accuracy in regions where the solution is smooth, while

reverting back to a �rst order monotone scheme in the vicinity of discontinuities.

In this manner, unphysical oscillations can be avoided while keeping a high level

of accuracy. For a good introduction to ux evaluation and MUSCL techniques,

the book by Toro [104] is recommended. It was not until 1989 that the MUSCL

ideas were generalized successfully to unstructured grids. In that year Barth and

Jespersen [6] came up with a truly multidimensional limiter, ensuring that the re-

constructed distribution in the control volume is bounded everywhere by the values

of its neighbors and the considered point itself. Since then, various improvements

have been proposed, and in view of recent publications [5, 51, 55, 82, 86, 120], a

generally accepted approach has not yet emerged.

Another promising approach is the discontinuous Galerkin �nite element method

(DGFEM) [16, 17, 18, 112], which is a mixture of a �nite volume and �nite element
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method. In the DGFEM, the ow �eld in each element is locally approximated by

a polynomial, which is discontinuous over the element faces. No interpolation is

necessary to determine the ow state at the element faces in the ux calculation,

since information about the ow state can be directly obtained from this polyno-

mial expansion. An approximate Riemann solver is used to compute the ux at the

element faces. The only additional information from neighboring elements that is

needed is the mean ow state, to be used in the slope limiter. In this way an almost

completely local scheme is obtained, which is advantageous for mesh adaptation and

parallelization.

Yet other interesting alternatives are the essentially non-oscillatory (ENO) schemes [46]

and the weighted ENO (WENO) schemes [32, 50]. Both ENO and WENO schemes

use the idea of adaptive stencils in the reconstruction procedure that are based on

the local smoothness of the numerical solution to automatically achieve a high order

(at least third order) of accuracy and non-oscillatory results near discontinuities.

ENO schemes use one (optimal in some sense) out of many candidate stencils when

doing the reconstruction, while WENO schemes take a convex combination of all

the candidate stencils, each being assigned a nonlinear weight which depends on the

local smoothness of the numerical solution based on that stencil. WENO schemes

improve upon ENO schemes in robustness, smoothness of uxes, steady state con-

vergence and eÆciency. For a comparison between WENO schemes and DGFEM

methods, we refer to [98].

2.4 Incompressible ow solvers on unstructured grids

In this section, a brief survey of incompressible ow solvers on unstructured grids

is given. We will restrict ourselves to �nite volume methods. Two possible ways

of locating the variables in the grid can be distinguished, leading to the so-called

staggered and colocated grids, see Section 2.4.1. Some ow solvers using colocated

grids are discussed in Section 2.4.2, and a more detailed description of ow solvers

on staggered grids is given in Section 2.4.3. Integration of the ow equations (2.18){

(2.19) over a control volume (CV) results in:

X
e(CV)

(u�n)ele = 0; (2.21)


CV

dmCV

dt
+
X
e(CV)

(u�n)emele = �
X
e(CV)

penele +
X
e(CV)

�(ru�n)ele: (2.22)

The summation over e(CV) is over the CV faces, 
CV stands for the area of the CV,

ne is the outward unit normal at face e and le is its length. With ru�n we mean

u�
;�
n� .
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Figure 2.7: Colocated positioning of the variables (a) and resulting odd-even decou-

pling of the pressure (b).

2.4.1 Staggered and colocated grids

A straightforward discretization of the incompressible ow equations with a colo-

cated positioning of the variables leads to an unphysical odd-even decoupling of the

pressure in the numerical solution, as will be discussed in Section 2.4.2. This prob-

lem can be alleviated by adding a small arti�cial di�usion term in the discretized

continuity equation. The most common way to do this is the pressure-weighted inter-

polation method, which was originally developed by Rhie and Chow [90]. However,

the appearance of pressure oscillations can also be circumvented without introduc-

tion of arti�cial terms, namely by a suitably chosen staggering of the variables in

the grid. In a staggered grid, the pressure and the velocity are stored at di�erent

grid nodes. The most commonly used structured staggered grid is the one in which

the pressures reside in the cell centers and the normal components of the velocity

are positioned at the cell faces. A staggered Cartesian grid approach to compute

solutions to the incompressible Navier-Stokes equations was �rst proposed by Har-

low and Welch [44] in 1965, and for a thorough review of possible ways to extend

the method to boundary-�tted grids containing quadrilateral cells, we refer to Chap-

ter 13 of [129]. The reason that nowadays colocated schemes are more prominent

in use than staggered schemes is generally attributed to diÆculties associated with

discretization on non-orthogonal curvilinear grids.

2.4.2 Colocated schemes

Before we give a survey of the literature related to incompressible ow solvers using

unstructured colocated grids, we demonstrate that also on unstructured grids with

triangular cells the problem of odd-even decoupling of the pressure is likely to crop

up. Consider a cell-centered colocated grid, see Figure 2.7a. The discretized pressure
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gradient in cell 1 follows from, see also equation (2.22):

(rp)1 = 1


1

X
e(1)

pelene; (2.23)

where the summation runs over the three faces of cell 1, le is the length of face e,


1 is the cell area and pe is the pressure at face e, to be approximated yet. In a grid

that is equilateral an accurate way of approximating the pressure at a face is by a

simple averaging of the two neighboring cells. This leads to:

(rp)1 =
1


1

X
e(1)

pelene =
1


1

h
1

2
(p1 + p2)lini +

1

2
(p1 + p3)ljnj +

1

2
(p1 + p4)lknk

i
=

=
1

2
1

[p1(lini + ljnj + lknk) + p2lini + p3ljnj + p4lknk] =

=
1

2
1

[p2lini + p3ljnj + p4lknk] ; (2.24)

where we made use of the identity

lini + ljnj + lknk = 0 (2.25)

in the last step. We observe that p1 itself does not contribute to the pressure gradient

in cell 1. This leads to the unacceptable situation that an odd-even distribution

of the pressure as depicted in Figure 2.7b yields a zero pressure gradient, in the

discrete sense, in all cells. A similar reasoning leading to the same conclusion holds

when a colocated vertex-centered grid is considered. Now we will discuss several

incompressible colocated ow solvers on unstructured grids, including the measures

that are taken to get rid of spurious pressure modes.

Chan and Anastasiou (1999)

In the work of Chan and Anastasiou [13] a cell-centered �nite volume formulation

with Roe's ux function is presented, that uses the concept of pseudocompressibility

in order to compute unsteady ows with or without free surfaces. The idea behind

pseudocompressibility is the introduction of a time derivative of the pressure in the

continuity equation according to:

@p

@t
+ �2r�u = 0; (2.26)

where � is the coeÆcient of pseudocompressibility, representing an arti�cial speed

of sound (density is put to 1). Typical values for � are between 10 and 100. The

advantage is that pressure and velocity are coupled such as to produce, in the invis-

cid case, a hyperbolic system of equations consisting of (2.18) and (2.26), for which

ux di�erence and ux splitting techniques originally developed for compressible

ow solvers can be employed. The original continuity equation (2.19) is recovered
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when steady state is reached. An implicit pseudotime stepping technique is used to

deal with unsteady ows. In the paper by Pan et al. [87], a method similar to the

one developed by Chan et al. is described. The main di�erence between these two

papers is that Pan includes, using the Boussinesq approximation, the temperature

equation and the source terms representing thermal buoyancy.

Davidson (1996)

Davidson [20] describes a cell-centered �nite volume method in which SIMPLEC [115]

is used to solve for the pressure and velocity. Central di�erencing in conjunction with

fourth-order numerical dissipation is used for the inertia terms, while the pressure-

weighted interpolation method [90] is employed to avoid decoupling between pressure

and velocity. Similar to the method developed by Davidson is the one developed by

Jiang and Pzrekwas [56].

Foy and Dawes (2000)

A 3D vertex-centered method based on the pressure-correction approach is proposed

by Foy and Dawes in [21]. The paper focuses on a consistent discretization of the

Laplacian operator for the Poisson equation for the pressure. The forward Euler

integration scheme and a �nite volume scheme based on central di�erences are used

to do the time and spatial discretization. A fourth-order arti�cial dissipation term

is added both to eliminate velocity-pressure decoupling and to preserve stability.

Williams (1993)

A vertex-centered scheme for the computation of 2D turbulent incompressible steady

ows is developed by Williams [134]. However, instead of the usual Poisson pressure

equation, a Helmholtz pressure method is used to enforce continuity. A fourth-order

pressure dissipation term similar to that of Rhie and Chow [90] is employed to avoid

decoupling between velocities and pressures.

Lien (2000)

Lien [69] formulated an algorithm that employs the SIMPLE pressure-correction

scheme [88] and which is suitable for both incompressible and compressible ows.

The scheme uses a cell-centered storage arrangement and checkerboard oscillations

are eliminated by using a pressure-weighted interpolation method similar to that of

Rhie and Chow [90].

Watterson (1994)

A pressure-based ow solver for the 3D Navier-Stokes equations on unstructured

and adaptive meshes is introduced by Watterson [127]. The method is capable of

computing incompressible and compressible ows, and uses a vertex-centered stor-

age. Arti�cial dissipation is used to get rid of the velocity-pressure decoupling and

to improve shock capturing properties.
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Figure 2.8: Staggered grid and control volumes (a) in the method of Hwang. Part

of the CV for the momentum equation (b).

2.4.3 Staggered schemes

Because the scheme forming the main part of this thesis uses a staggered position-

ing of the variables, a detailed discussion of staggered unstructured schemes that

appeared in the literature is useful.

Despotis and Tsangaris (1995, 1997)

In [24, 25], Despotis and Tsangaris introduce an implicit Chorin type fractional step

method [14, 15] to compute 2D time-dependent laminar ows. The velocity vector

is stored at the vertices of the triangular cells and the pressure in the cell centers.

However, they restrict themselves, in the discretization as well in the grids used in

their test examples, to grids in which six cells meet at each interior node. There-

fore, their method cannot be considered as an unstructured scheme, and we will not

discuss it further.

Hwang (1995)

In [52], Hwang proposes a staggered grid in which the pressure is stored at the

centroids and the velocity vector at the cell faces, as depicted in Figure 2.8a, to-

gether with a scheme devised to �nd steady solutions. Integration of the continuity

equation over a triangular cell leads to (2.21). Because the velocity is located at

the triangles' faces, no interpolation is required. For the evaluation of the terms in

(2.22), consider the CV-face cd between vertex c and centroid d, see Figure 2.8b.
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The convecting velocity at this face is computed from:

ucd =
1

2
(ua + ub): (2.27)

The convected momentum, with � standing for a Cartesian momentum component,

follows from a Peclet number dependent blend between upwind approximation �u

and central approximation �c:

�u
cd
=

1

2

�
(�a + �b) + (�a � �b)

ucd

jucdj
�
; �c

cd
=

1

2
(�a + �b); (2.28)

where ucd = (u �n)cd. The pressure pe is put equal to the pressure in the cell in

which CV-face e is located, hence pcd = pd. To approximate the viscous ux, a

local non-orthogonal coordinate system is set up, where the position vector from

point a to b is de�ned to be the �-direction and the one from point c to d to be

the �-direction. The term (n�r�)cd can then be written, with help of a coordinate

transformation, in terms of the transformed (�; �)-frame:

(n�r�)cd = [(��y� � ��y�)nx + (���x� + ��x�)ny] =J; (2.29)

where �� = @�=@�, y� = @y=@�, and so on, and for brevity we wrote ncd = (nx; ny).

The Jacobian of the transformation is given by J = x�y� � x�y�. The discretized

expressions for the geometric quantities are

x� = xb � xa; y� = yb � ya; x� = xd � xc; y� = yd � yc: (2.30)

The momentum derivatives are approximated as follows:

�� = (�b � �a)=lab; �� = (�d � �c)=lcd; (2.31)

where lab and lcd stand for distance between a and b, and c and d, respectively.

Quantities at c and d, which are not velocity nodes, are approximated by interpo-

lation from neighboring nodes. Pressure-velocity coupling is done by means of the

standard SIMPLE algorithm [88]. Numerical experiments, including a lid-driven

cavity, sudden expansion ow and ow over a backward-facing step, performed with

this method are described in a subsequent article [53]. Niceno and Nobile [4] state

that in some occasions diÆculties crop up with this method when the velocity lies

parallel to one of the triangle sides. In this situation, the velocity becomes practi-

cally `invisible' to the pressure corrections, and this is assumed to cause erroneous

results.

Kobayashi, Nobe and Oka (1999)

A conservative second order �nite volume method on hybrid grids consisting of

triangles and quadrilaterals to compute steady 2D incompressible viscous ows is

presented by Kobayashi et al. in [60]. The momentum vector is stored in the cell
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Figure 2.9: Staggered grid (a) in the method of Kobayashi. Nomenclature for viscous

discretization (b).

centers and the pressure in the vertices, as depicted in Figure 2.9a. The CV for the

discretized momentum equation, see (2.22), is the grid cell. For discretization of the

inertia term, the so-called upwind least squares scheme (ULSS) is used. The ULSS

is based on a pointwise reconstruction of a Cartesian momentum component � by a

piecewise polynomial R(x) which, similarly to the essentially non-oscillatory (ENO)

scheme [46], is required to be:

� consistent, in the sense that

1


1

Z
T1

R(x) dx =
1


1

Z
T1

�(x) dx = ��1; (2.32)

where 
1 represents the area of cell 1, and to be of

� high order of accuracy:

R(x) = �(x) +O(hr); (2.33)

where h is a grid parameter and r is the order of the method, which is 2 in the

work of Kobayashi.

For triangular cell 1, see Figure 2.9a, we write

R1(x) = ��1 + ax+ by; (2.34)
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where x and y are the local Cartesian coordinates with respect to the centroid of

cell 1. The coeÆcients a, b follow from minimization of the functional:

�(a; b) =
X
i

[R1(xi; yi)� ��i]
2; (2.35)

where the sum runs over the set of adjacent cells, i.e. cells 2, 3 and 4. When the

considered CV is a quadrilateral, in (2.34) a a term cxy is added. This procedure

is done for all cells, and the upwinded momentum at e, the midpoint of the face

between cells 1 and 3, follows from:

�e =

(
R1(xe) if ue > 0;

R3(xe) if ue < 0,
(2.36)

where ue > 0 means a ow from cell 1 to 3. The velocity ue = (u �n)e follows

from averaging the velocity �eld at the two centroids that de�ne face e. The normal

derivative at face e follows from:

(n�r�)e = (�r � �l)=lrl; (2.37)

where �r and �l are linearly interpolated values of � at the points r and l, which are

indicated in Figure 2.9b, and lrl represents the distance between these points. The

pressure gradient in cell 1 is computed from:

(rp)1 = 1


1

X
e(1)

pelene; (2.38)

with summation over the faces of cell 1, pe is the mean value of the values of p at the

vertices associated with face e, le is the length of e and ne the outward unit normal.

The discrete divergence in vertex v, see Figure 2.9a, is de�ned as:

(r�u)v = 1


v

X
e(v)

uele; (2.39)

where 
v is the area of the dual volume around vertex v and the sum runs over

the faces of this volume. The velocity ue = (u�n)e follows from the mean value of

the velocity �eld at the two associated centroids. The pressure-velocity coupling is

taken care of by means of the Chorin fractional step method [14, 15].

Perot (2000)

The conservation properties of several unstructured staggered schemes, proposed

by Perot, are investigated in [89]. The mesh has to be of Delaunay type, see Sec-

tion 2.2.2. The normal velocity components and pressures are stored at the face

midpoints and cell circumcenters, respectively. The CV for the normal momentum

component at face i, indicated by the shaded box in Figure 2.10, has dimensions li
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Figure 2.10: Notation for the staggered grid arrangement as used by Perot.

times hi, where li is the length of face i and hi the distance between the circumcen-

ters of cells 1 and 2. Perot proposes the following discretization for (2.18):

lihi
mn+1

i
�mn

i

�t
+ni�(hi1c1 + hi2c2)li = �lihi p2 � p1

hi
+ni�(hi1d1 + hi2d2): (2.40)

Here mi = (m �n)i represents the normal momentum at face i, �t stands for the

time step, and superscripts n and n + 1 refer to the time level. The normal ni at

face i points from cell 1 to 2, and is part of the line connecting circumcenters 1 and

2 (this is a consequence of the de�nition of circumcenter). The distance between the

midpoint of face i and circumcenters 1 and 2 is indicated by hi1 and hi2 respectively,

hence hi = hi1 + hi2. The inertia term in cell 1 is de�ned as follows, reverting back

to Cartesian tensor notation for a moment:

c�1 =
1


1

Z
T1

(m�u�);� dx =
1


1

I
@T1

m�u�n� d� � 1


1

X
e(1)

m�

e
uele; (2.41)

where 
1 refers to the area of cell 1, the summation runs over the three faces of

cell 1, and ue is the outward normal velocity at face e. With the momentum vector

in the two neighboring cells available (how this is achieved will be discussed later),

the momentum vector me at face e follows from a simple averaging. For the viscous

term a completely similar reasoning as for the inertia term applies, resulting in

d1 =
1


1

X
e(1)

�

�
@u

@n

�
e

le: (2.42)

The normal velocity gradient at face j, see Figure 2.10, is approximated by:�
@u

@n

�
j

=
u3 � u1

hj
; (2.43)
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Figure 2.11: CV for the side-centered scheme and the vertex-centered scheme of Rida

et al. (a), details of discretization and related nomenclature (b) and macro-element

involved in the evaluation of the pressure gradient (c).

with u1 and u3 the velocity vector in cells 1 and 3. For the computation of the

velocity vector in cell 1, the following �rst-order approximation is used:

u1 =
1


1

X
e(1)

he1leuene; (2.44)

with summation over the faces of cell 1 and he1 the distance between the circumcenter

of cell 1 and the midpoint of face e. The derivation of this expression will be given

in Section 4.6. Perot proves that the discretization as given above conserves kinetic

energy (in the inviscid limit of zero viscosity) and momentum locally and globally.

In addition, he proposes a discretization of the rotational form (also known as the

Lamb-Gromeka form) of the momentum equation for incompressible ow:

@u

@t
+ (! � u) = �1

�
rpd �r� (�!); (2.45)

where ! = r� u is the vorticity and pd = p+ 1

2
u�u the speci�c dynamic pressure,

that conserves circulation and kinetic energy locally and globally. The discretization

of (2.45) will not be discussed here, and we refer the interested reader to the original

article [89].

Rida, McKenty, Meng and Reggio (1997)

In the paper by Rida et al. [91], two similar staggered schemes are introduced. In

both schemes the pressure is stored at the centroids, whereas the momentum vector

is stored either at the faces of the elements, resulting in the side-centered scheme, or

at the vertices, leading to the vertex-centered scheme. This is shown in Figure 2.11a.

Integration of the momentum equation leads to summation over the CV-faces, see
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Figure 2.12: Positioning of the variables and CV for the momentum equation in the

scheme of Thomadakis and Leschziner.

equation (2.22). The convecting velocity (u�n)e and the gradient (r��n)e at CV-
face e, with � a Cartesian momentum component, are computed by assuming linear

variation over each triangle. For the evaluation of the convected momentum the

skewed mass-weighted upwind function of Schneider and Raw [94] is employed:

�1 =

(
f1�3 + (1� f1)�i; f1 = min [max (u3=u1; 0) ; 1] ; if u1 > 0;

f1�2 + (1� f1)�j ; f1 = min [max (u2=u1; 0) ; 1] ; if u1 < 0,
(2.46)

where Figure 2.11b displays the related nomenclature for the side-centered and

vertex-centered scheme. Combination of the expression for �1 with similar ex-

pressions at the remaining two CV-faces inside the considered triangle leads to a

3 � 3-system from which (�1; �2; �3) can be solved. Several methods to obtain the

pressure gradient have been described in [91], and the best method for the side-

centered scheme is the one in which a linear variation over the macro-element 123 is

assumed, see Figure 2.11c. The SIMPLER-algorithm is utilized to couple velocity

and pressure. Numerical experiments showed that both schemes yield results with

comparable accuracy, but it turned out that the side-centered scheme converges more

rapidly and that in this scheme Neumann-type boundary conditions on solid walls

are easier to implement.

Thomadakis and Leschziner (1996)

Thomadakis and Leschziner [103] come up with a method for the computation of

incompressible steady viscous ows. A staggered positioning as indicated in Fig-

ure 2.12, with the pressure in the centroids and the velocity vector in the vertices, is

employed. The CV for the momentum equation is formed by the centroid dual. The

convecting velocity, cf. equation (2.22), at the CV-face e joining centroids 1 and 2
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follows from:

ue = ue �ne = 1

2
(u1 + u2)�ne; (2.47)

where the velocities at the cell centers 1 and 2 are obtained by a distance-weighted

interpolation from surrounding cell-vertex values. First order upwind interpolation

of the form

ue�e = max(0; ue)�v1 +max(0;�ue)�v2 (2.48)

is used to enhance stability, with � a Cartesian component of the momentum in its

corresponding vertex. The velocity derivatives on CV-edge e are considered to be

constant in the auxiliary volume formed by vertices v1 and v2 and centroids 1 and

2, and are approximated by

@ui

@xj
=

(�1)j+1
2Ve

4X
k=1

ui
k
(x

j+1
k+1 � x

j+1
k�1): (2.49)

In this expression, Ve is the area of this auxiliary volume, i = 1, 2 (cyclic), j = 1, 2

(cyclic), k = 1,: : :,4 (cyclic), u1 = ux, u2 = uy, x1 = x and x2 = y. The pressure at

CV-face e in equation (2.22) is approximated by means of the trapezoidal rule

pe =
1

2
(p1 + p2); (2.50)

with the pressure located in the associated centroid. The SIMPLE procedure [88]

is used to ensure pressure-velocity coupling in the solution procedure. In [103] it

is stated that, although the staggered formulation provides adequate damping of

pressure-velocity oscillations in most applications, it is occasionally necessary to

introduce a small measure of additional dissipation. This is done using the PWI

method of Rhie and Chow [90]. The cause of pressure-velocity oscillations was

already discussed in Section 2.4.2, and, as the reader may easily verify, the arguments

given there hold also for the present staggered formulation. In [135] an extension of

the work by Thomadakis and Leschziner is proposed.

Covolume method

The covolume method, developed by Nicolaides, Hall and others [12, 38, 39, 40,

41, 79, 80, 81], is designed to compute incompressible laminar ows. An essential

feature of the covolume method is the use of two sets of control volumes, with the

property that the edges of each set are perpendicular to the faces of the other set.

This naturally leads to the use of a Delaunay type of grid, which was discussed in

Section 2.2.2. The Delaunay triangulation forms the so-called primal grid, whereas

the associated Voronoi tessellation is called the dual grid. The velocity components

normal to the faces of the primal grid are stored, whereas the pressure and other

scalars are located at the grid points of the dual grid, i.e. the circumcenters of the

triangles. This is illustrated in Figure 2.13. The continuity equation is integrated

over each triangle T , resulting in (2.21), where we note that the required normal
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Figure 2.13: The primal and dual grid are indicated by the continuous and dashed

line, respectively. Numbers indicate the pressure points, letters refer to the velocity

points, and A and B are vertices of the primal grid.

velocity components are located at the triangle's faces. Projection of the momentum

equation at the normal vector Ni at face i yields:

@mi

@t
+r�[u(m�Ni)] = � @p

@Ni

+ �
@!

@ti
; (2.51)

where mi =mi �Ni, the scalar vorticity ! is the z-component of ! = r� u, and ti
is the tangential vector at face i, obtained by rotating Ni over 90

o in the clockwise

direction. To obtain the expression for the viscous term as given in (2.51), the

viscosity � is assumed to be constant and the identity

r2
u = r(r�u)�r� (r� u) (2.52)

is used, together with the incompressibility constraint (2.19). Because the nodes

of the dual grid are located at the line passing through the midpoint of face i, the

pressure gradient can be evaluated consistently by means of

@p

@Ni

=
p2 � p1

l12
: (2.53)

Here l12 = (x2 � x1) �Ni stands for the distance between the two pressure points,

in the direction of Ni. Note that the Delaunay triangulation does not prevent the

situation in which l12 < 0 or l12 = 0, with the former probably resulting in inaccurate
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results and the latter in numerical breakdown of the computation. The viscous term

at face i follows from
@!

@ti
=
!B � !A

li
; (2.54)

where li refers to the length of face i, which is also the distance between vertices A

and B. With help of Stokes's theorem, the vorticity at node A is approximated as

follows:

!A =
1


A

I
@
A

(u�� ) d� =
1


A

X
e(A)

(u�� )ele: (2.55)

In this expression, 
A represents the area of the Voronoi cell surrounding node A,

and the summation is over the edges e 2 fi; o; q; r; s; jg, having length le, connected
to node A. Since the vector � is tangent to the boundary of the Voronoi cell and

traverses it in counterclockwise direction, we have � e = �Ne, with Ne the normal

vector at face e, and consequently (u�� )e = �ue.

Apparently it turned out to be a hard task to treat the inertia term accurately, since

various formulations have been proposed in the articles devoted to the covolume

method. In [38] the following central di�erence approximation for the inertia term

at face i is introduced:

r�[u(m�Ni)]i =

1


1 +
2

r�[u(m�Ni)]T1 +

2


1 +
2

r�[u(m�Ni)]T2; (2.56)

where 
1 and 
2 refer to the areas of cells T1 and T2. The inertia term in cell 1 is

obtained from

r�[u(m�Ni)]T1 =
1


1

Z
T1

r�[u(m�Ni)] dx =
1


1

I
T1

(u�n)(m�Ni) d� �

� 1


1

X
e(1)

uele(me �Ni); (2.57)

where ue = (u�n)e and the summation is over the three faces e 2 fi; j; kg of cell 1. For
the evaluation of me, more than �ve di�erent schemes are proposed in the various

references describing the covolume method, and we advise the interested reader to

consult these. In [41], a �rst order scheme and a central di�erence scheme, with the

latter di�erent from the one described in (2.56){(2.57), are introduced. However,

these schemes are fairly complicated, and we will omit a discussion of them here.

Application of the chain rule and the incompressible continuity equation result in

the expression

r�[u(m�Ni)] = u�r(m�Ni) = jujd(m�Ni)

ds
; (2.58)

with s = u=juj the unit vector in the direction of u. The expression above, see [40],

serves as a starting point for the �rst order upwind discretization given by

juijd(mi �Ni)

ds
� juij (mi �Ni)� (mi0 �Ni)

lii0
: (2.59)
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Figure 2.14: Possible �rst order upwind scheme for the covolume scheme (a). A pair

of non-convex triangles (b).

If both triangles adjacent to face i are convex, then mi0 , with i
0 the intersection of

the line xi � �ui, � 2 IR+ with the parallelogram jkoq as depicted in Figure 2.14a,

follows from

mi0 = (li0jmo + li0omj)=ljo: (2.60)

In these expressions, lii0 represents the distance between points i and i
0, and similarly

for li0j0 , lo0o0 and ljo. However, the discretization becomes very complicated in the

situation in which non-convex triangles, as shown in Figure 2.14b, occur.

The covolume method can be extended to three dimensions [12], but it is recognized

that this is complicated [81]. For the coupling of velocity and pressure, the so-called

dual variable method is employed. This method originates from network theory, and

makes extensive use of the dual grid properties discussed above. This will not be

discussed further in this thesis.

2.4.4 Closing remarks

In the previous sections several colocated and staggered schemes on unstructured

grids have been described. With respect to the spatial discretization, none of the

schemes that have appeared in literature so far use the same staggered positioning

as we do. Most of the schemes store the complete velocity vector, either in the

cell centers (Kobayashi et al.), in the cell vertices (Rida et al. and Thomadakis

et al.), or at the cell faces (Hwang and Rida et al.). The �rst two choices can

give rise to odd-even decoupling of the pressure, while the third choice can lead to
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undesired results as well, see [4]. The spatial discretizations as proposed by Perot

and in the covolume method use a positioning of the variables in which the normal

velocities are stored at the cell faces and the pressures in the cell circumcenters.

Such a staggered grid arrangement prevents spurious pressure oscillations, but both

approaches require Delaunay grids, and generating them has some disadvantages as

pointed out in Section 2.2.2. Also, there is the possibility of numerical breakdown,

see the discussion following (2.53). Furthermore, it seems to us that having the

pressure in the circumcenter rather than in the centroids might hamper accuracy,

especially when some of the circumcenters are located relatively far from the center of

gravity, or even located outside the triangle to which they belong. Our scheme stores

the normal velocities at the cell faces, but stores the pressure, unlike in the work of

Perot or in the covolume method, in the cell centroids. With such a positioning of

the variables, odd-even decoupling of the pressure is avoided, while there is no need

to restrict ourselves to Delaunay triangulations.

All methods, except for the colocated scheme by Lien, are designed exclusively for

either compressible or incompressible ows. Our scheme, to be introduced in the

next chapters of this thesis, is cast into a Mach-uniform formulation, which means

that both incompressible and compressible ows can be computed accurately and

eÆciently.

In conclusion, it can be said that our scheme is novel in two respects: (i) the spatial

discretization, and (ii) the Mach-uniform solution procedure.
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Solution strategy

De�nition of `left' and `right' state vectors at a control volume face forms the start-

ing point for the familiar ux di�erence and ux splitting schemes for the Euler

equations. In this type of solution methods, the elements of the state vector in a

grid point are usually updated collectively. However, de�nition and collective up-

dates of such state vectors are not naturally given on a staggered grid. On the

other hand, discretization by a simple �nite di�erence or �nite volume scheme for

each primary variable separately is natural on a staggered grid. It is also natural to

update the primary variables sequentially in a time-stepping or iterative procedure.

For the primary variables we take the momentum vector and two thermodynamic

variables. All other variables then follow from algebraic relations, e.g. the equation

of state. Upwind or central interpolation for the convection term in each of the

governing equations results in a very simple scheme. Such a staggered and segre-

gated approach is common in incompressible ow CFD and the �eld of shallow-water

equations, see for example [11, 102], but is not often encountered in compressible

ow CFD. The spatial discretization is the subject of the next chapter; in this chap-

ter we focus on the various sequential update procedures that we have investigated.

The time-integration method that we have adopted is discussed in Section 3.1. The

well-known pressure-correction approach for incompressible ows is repeated in Sec-

tion 3.2. The sequential update procedure introduced in Section 3.3 is designed for

fully compressible ows. This procedure is kept as simple as possible, since its aim

is to test our novel spatial discretization scheme in the realm of compressible ows.

Some remarks on the diÆculties associated with the computation of low subsonic

ows using standard compressible ow solvers are given in Section 3.4. The topic

of Section 3.5 is the introduction of a Mach-uniform sequential update procedure,

which is a way to compute ows that is uniformly accurate and eÆcient in the Mach

number. How the linear systems that result from the spatial discretization are solved

is discussed in Section 3.6.
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3.1 Time integration

For computation of both stationary ows and time-accurate solutions of nonsta-

tionary ows, time stepping is used. For steady ows, time integration can be

viewed as an iterative procedure to arrive at the steady state solution. With

wn = (wn

1 ; : : : ; w
n

N
) the solution vector of primary variable w at time-level n, where

N equals the number of unknowns, a stationary problem is said to have converged

suÆciently to steady state if the termination criterion

jjwn+1 � wnjj2 � �
1� �

�
jjwn+1jj2; (3.1)

with a user-speci�ed relative accuracy �, is satis�ed for all primary variables. The

rate of convergence � is de�ned by:

� =
jjwn+1 � wnjj2
jjwn � wn�1jj2 ; (3.2)

and jj�jj2 is the standard L2-norm. This stopping criterion is based on the assumption
of linear convergence behavior. Replacing the L2-norm by the L1-norm (max-norm)

makes little di�erence, since numerical experiments show that the behavior of both

jjwnjj and jjwn+1 �wnjj as function of n is similar in both norms. Time integration

is performed by means of the �-method, discussed below.

The �-method

Assume we have the following di�erential equation for the solution vector w:

dw

dt
= Lhw + f; (3.3)

where f represents a given source term and Lh a linear operator, for example stem-

ming from spatial discretization. Application of the �-method, a one-step time-

integration method, to this di�erential equation yields:

wn+1 � wn

�t
= (1� �)(Lhw

n + fn) + � (Lhw
n+1 + fn+1); 0 � � � 1; (3.4)

with superscripts n and n + 1 indicating the time level, and the time step is given

by �t = tn+1 � tn. Parameter � should satisfy: 0 � � � 1. Note that � =

0; 1; 1=2 correspond to the Euler explicit, Euler implicit and Crank-Nicolson method,

respectively. For 1=2 � � � 1, the �-method is stable for all �t, and for � = 1=2

the method is second-order accurate in time while being �rst-order accurate for all

other �-values. An eÆcient way to implement (3.4), for 0 < � � 1, is the following:

1. Solve equation (3.3) by means of the implicit Euler method for a time step

equal to ��t:

wn+� � wn

��t
= (Lhw

n+� + fn+�); fn+� = fn + �(fn+1 � fn): (3.5)
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2. Quantity w at time-level n+ 1 follows from extrapolation:

wn+1 =
1

�
wn+� + (1� 1

�
)wn: (3.6)

The advantage of this approach with respect to implementation of (3.4) is that the

term Lhw
n needs not be computed. We put � equal to 1 (implicit Euler) in this

thesis. Since our aim is the testing of a novel spatial discretization scheme, we did

not strive for eÆciency in the solver and we kept the time step constant throughout

the time-marching procedure.

3.2 Pressure-correction approach for incompress-

ible ows

The Navier-Stokes equations for incompressible ow (2.18){(2.19) do not contain

the time derivative of the pressure, or, in other words, there seems to be no equation

governing the evolution of the pressure �eld. Furthermore, the velocity �eld should

satisfy the kinematic constraint (2.19). These two diÆculties can be resolved at once

by considering the pressure as a Lagrangian parameter that allows the velocity to be

divergence free. The pressure-correction approach is based on this concept. We ap-

ply the so-called discrete pressure-correction method, in which �rst the temporal and

spatial discretization are formulated and afterwards the pressure-correction equation

is derived. By doing this one avoids the necessity to de�ne boundary conditions for

the pressure equation, which would be required if the pressure-correction equation

were derived from the continuous equations. Note that the pressure-correction ap-

proach is time accurate; it should therefore not be confused with for example the

SIMPLE approach.

Discretization in space and time of (2.18){(2.19), assuming for simplicity that � = 1,

is written symbolically as:

Dun+1 = 0; (3.7)

Rm

un+1 � un

�t
+ C(un+1)un+1 = �RmGp

n+1 + V un+1; (3.8)

where u and p stand for the velocity and pressure solution vectors at discrete time

levels indicated by n and n+1. The implicit Euler scheme is used for time integration.

The matrix D corresponds to the discrete divergence operator, Rm is a diagonal

matrix containing the area of the control volumes of the discretized momentum

equations, and C, G and V refer to the discrete convection, gradient and viscous

operator, respectively. Derivation of expressions for these operators is postponed to

the next chapter.

The �rst step in the pressure-correction algorithm is to compute u�, the predictor
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of the new velocity, from:

Rm

u� � un

�t
+ C(un)u� = �RmGp

n + V u�: (3.9)

Note that the pressure is taken at the previous time level and that the nonlinear

inertia term is Picard linearized:

C(un+1)un+1 � C(un)u�: (3.10)

In general, the velocity prediction is not divergence free: Du� 6= 0. Subtracting (3.9)

from (3.8) yields:

Rm

un+1 � u�

�t
+ C(un+1)un+1 � C(un)u� = �RmG(p

n+1 � pn) + V (un+1 � u�):

(3.11)

According to Van Kan [116], neglecting the term

C(un+1)un+1 � C(un)u� � V (un+1 � u�) (3.12)

does not a�ect the temporal accuracy for �rst and second order accurate time inte-

gration methods. De�ning the pressure correction as Æp = pn+1 � pn, we arrive at

the following relation between un+1, u� and Æp:

un+1 = u� ��tGÆp: (3.13)

Application of (3.7) to (3.13) yields the pressure-correction equation:

�tDGÆp = Du�: (3.14)

After having solved this equation for Æp, the new velocity un+1 follows easily from

(3.13). The use of the implicit Euler scheme in (3.9) strongly weakens the stabil-

ity requirements, since stability of (3.9) is considered suÆcient for stability of the

pressure-correction approach.

Summarizing, the pressure-correction algorithm for incompressible ows consists of

three steps:

1. Compute the velocity prediction u� from (3.9).

2. Compute the pressure-correction Æp from (3.14).

3. The new velocity un+1 follows from (3.13).

Solution of the linear systems in steps (1) and (2) is done by means of Krylov sub-

space methods, see Section 3.6. Discretization of the momentum equation yielding

the velocity prediction is the topic of Section 4.2, and discretization of the pressure-

correction equation and the correction to the velocity is discussed in Section 4.5.
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3.3 Sequential update procedure for fully compress-

ible ows

For the novel spatial discretization, to be introduced in the next chapter, a sequen-

tial update procedure has to be designed. Because, to the best of our knowledge,

nobody else has yet entered the �eld of compressible CFD using a staggered scheme

on unstructured grids, the proposed sequential update procedure is made on pur-

pose very straightforward in order to avoid complications as much as possible. In

other words, since our aim is testing of a novel spatial discretization scheme, we

did (initially) not strive for eÆciency in the solver. The primary variables are the

momentum vector, the density and an energy variable, which we will indicate by

	. Selection of a suitable energy variable 	 from the set f�H; �E;H; hg will be

based on numerical experiments, see Section 6.2.1. Using notation de�ned in the

previous section, the following sequential update procedure for the Euler equations

(2.7){(2.9) is proposed:

1. Compute the new momentum mn+1 from:

Rm

mn+1 �mn

�t
+ C(un)mn+1 = �RmGp

n; (3.15)

where we use Picard linearization (3.10) for the inertia term.

2. Compute the new density �n+1 from:

R�

�n+1 � �n

�t
+D(�n+1u) = 0 (3.16)

where R� is a diagonal matrix containing the areas of the control volumes, and

the velocity u follows from mn+1 and �n.

3. Compute the new energy variable 	n+1 from:

R	

(�E)n+1 � (�E)n

�t
+D(u�H)n+1 = 0; (3.17)

where R	 is a diagonal matrix containing the areas of the control volumes, and

	 is related to �E and �H by means of standard thermodynamic relations.

4. The new pressure pn+1 follows from the equation of state (2.15).

This procedure performs, as we will see, satisfactorily for fully compressible ows,

but turns out to su�er from loss of accuracy and eÆciency when the Mach number

becomes small. This explains why we call this the `fully compressible ow approach'

or, more briey, the FC approach. The linear systems, appearing in the �rst three

stages of the update procedure, are solved by means of Krylov subspace methods,

see Section 3.6. Discretization of the momentum, continuity, energy equation and

the equation of state is discussed in Sections 4.2, 4.3, 4.4 and 4.6.2, respectively.
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3.4 The need for uni�ed methods

The equations of motion for compressible ows as discussed in Section 2.1.1 are

uniformly valid for Mach numbers M ranging from zero to supersonic (until real

gas e�ects or other deviations from the given assumptions set in). However, the

standard methods that have been developed for the computation of compressible

ows su�er from eÆciency and accuracy problems when M . 0:2. If the Mach

number in the ow remains bounded below 0.2 and heat addition is zero or negligibly

small, then the incompressible ow equations given in Section 2.1.3 accurately model

the ow, and incompressible ow solvers do a good job. This leaves us with the

question of how to deal with ows in which both compressible and incompressible

ow regions are present. Typical examples for which a Mach-uniform method seems

indispensable are the ow around an aircraft in landing or take-o� con�guration

(M � 0:2) or the ow in turbomachinery nozzles, in which both compressible and

virtually incompressible ow zones are present. Also for the computation of ows

in which the overall Mach number is very small but in which substantial density

variations are present, for example in ows with cavitation or combustion, a uni�ed

method seems handy. Even in hypersonic ight situations, thick boundary layers and

separation zones occur in which the Mach number can be smaller than 0.2. From

this we conclude that it would be ideal if a method could be found that is eÆcient

and accurate uniformly in the whole Mach number range. A method meeting these

requirements will be called a Mach-uniform or a uni�ed method. In Section 3.4.1,

the diÆculties encountered by standard ow solvers in the zero Mach number limit

are addressed, and in Section 3.4.2 some of the proposed remedies are discussed. In

Section 3.5 a Mach-uniform method will be introduced.

3.4.1 DiÆculties with the zero Mach number limit

EÆciency problem

When using an explicit time-integration scheme, as is often done in standard com-

pressible ow solvers, one needs to satisfy a stability restriction of the following

form:

�tc � Cc

�x

u+ a
; (3.18)

where Cc is a constant of the order unity, �x the meshwidth and (u+a) is the speed

of the acoustic modes, with u the velocity of the uid particles and a the speed of

sound. For incompressible ows, the stability restriction is less severe:

�ti � Ci

�x

u
; (3.19)

with Ci a constant of the order unity. Note that �ti, if acoustic e�ects are absent,

is in balance with the physical time scale. With Mach number M = u=a we �nd

�tc

�ti
= C

u

u+ a
= C

M

1 +M
; C = Cc=Ci; (3.20)



Chapter 3. Solution strategy 39

so that the numerical time step for compressible ow methods needs to be much

smaller than the physical time step if M � 1. If no special measures are taken,

this results in numerical ineÆciency caused by the need to resolve acoustic modes,

because (3.18) remains valid even if there are no acoustic modes. For low Mach

number ow we have u � (u + a), so that a uid particle travels only over a

small distance in the grid cell during the time step dictated by (3.18). Hence, a

huge number of time steps is required before phenomena, the evolution of which is

characterized by the physical time scale, can be resolved. If, instead of time marching

to steady state, an iterative steady state ow solver is used, a similar convergence

problem appears. For such methods the convergence rate is proportional to the

condition number of the Jacobian. The eigenvalues of the Jacobian A = @F=@U ,

see equation (2.10), are given by u, u� a. The condition number is the ratio of the

largest and smallest eigenvalue, and is for u� (u+ a) given by:

� =
�max

�min
=
u+ a

u
= 1 +

1

M
: (3.21)

Hence, the condition number tends to in�nity as M approaches zero, resulting in

slow convergence.

Accuracy problem associated with proper choice of units

Another indication of numerical trouble related to the low Mach number limit reveals

itself when the momentum equation is made dimensionless. Nondimensionalization

of the ow equations is done by choosing appropriate reference values for four inde-

pendent quantities. By means of identities and thermodynamic relations, all other

reference values are readily obtained. The following four reference values, to be indi-

cated by subscript r, are usually chosen in compressible uid dynamics: density �r,

velocity ur, temperature Tr and length Lr. Dimensionless quantities, labeled with

tildes, are de�ned by ~� = �=�r, ~p = p=pr, ~t = t=tr, with tr = Lr=ur, and so on. The

dimensionless form of the inviscid momentum equation reads, upon deleting tildes

for brevity:
@m�

@t
+ (u�m�);� = � pr

�ru2r
p;�: (3.22)

The reference pressure follows from the equation of state (2.15):

pr = ( � 1)�rer; er = cvTr; (3.23)

with cv the speci�c heat at constant volume of the uid. An estimate for the mag-

nitude of the speed of sound is

ar =
p
( � 1)er; (3.24)

which follows from (2.13) and (2.17). Hence, with Mr = ur=ar being representative

for the Mach number in the ow, the dimensionless momentum equation becomes:

@m�

@t
+ (u�m�);� = � 1

M2
r

p;�: (3.25)
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We see that this equation becomes singular as Mr # 0, which spells numerical trou-

bles, for instance round-o� error diÆculties, for low subsonic ows with methods

developed for compressible ows only.

Accuracy problem related to asymptotic expansion of the continuous and

discrete equations

As we saw above, the ow equations become singular as the Mach number tends

to zero if these equations are made dimensionless in the way that is customary for

compressible ows. It is therefore interesting to study the way in which solutions

of the compressible ow equations converge to solutions satisfying the equations for

incompressible ows. To this aim, we postulate an asymptotic expansion of the

following form

p(x; t; �) = p0(x; t; �) + �p1(x; t; �) + �2p2(x; t; �) +O(�3); � =
p
Mr; (3.26)

where t and � represent the ow and acoustic time scale, respectively, and � =

t=�. After introduction of similar expansions for the other dependent variables, the

low Mach number limit can be studied, as described for example in [58, 59] or in

Section 2.4 of[8], by inserting these expansions in the Euler equations and equating

terms with equal powers of �. We get the following results for the continuous ow

equations:

� If there is no global expansion or compression, p0(x; t; �) = p0 is constant

in space and time. Here p0 can be considered as the global thermodynamic

pressure part, which is basically the constant background pressure level.

� Since p1(x; t; �) is governed by a wave equation with waves moving at speed

a, the term p1(x; t; �) is identi�ed as the acoustic part of the pressure. If

acoustic e�ects are omitted, then the term p1 as well as the acoustic time scale

� disappear from (3.26).

� Under the assumption of absent acoustic modes, the expansion leads for terms

of the order �2 to:

@m�

0

@t
+ (u

�

0m
�

0 );� = �(p2);�; m�

0 = �0u
�

0 : (3.27)

Since p2(x; t) ensures compliance with the divergence constraint on the veloc-

ity, the term �2p2(x; t) in (3.26) is called the incompressible ow part of the

pressure.

� In contrast to what is sometimes believed, it is the energy equation (and not

the continuity equation) from which the kinematic constraint

r�u0 = 0 (3.28)

in the limit of Mr # 0 is derived.
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These results will be used when designing a Mach-uniform formulation, see Sec-

tion 3.5. In [36] it is shown that solutions obtained by means of ux di�erence

schemes contain pressure uctuations of the order Mr, while, as we saw above, the

continuous pressure scales with M2
r
(no acoustics involved). This loss of accuracy

explains why ux di�erence methods actually fail to compute weakly compressible

ow. As the Mach number decreases, the results obtained by means of these methods

become worse and the solutions do not converge to a reasonable approximation of the

incompressible ow solution. As pointed out in [36, 124], the computed Mr = 10�1

solution of the ow around a NACA 0012 airfoil is closer to the incompressible ow

one than is the computed Mr = 10�3 solution.

Weak pressure-density coupling

When computing low subsonic ow, the weak pressure-density coupling has conse-

quences for the choice of primary variables. In incompressible ows, the density

is constant along particle lines, but the pressure is not. Therefore, for low Mach

number ow it is not a good idea to use density as a primary variable and compute

the pressure from the equation of state. In that case we would, in the limit Mr # 0,
compute the zeroth order pressure in (3.26) which is not the pressure component we

need. The other way around, i.e. computation of the pressure and afterwards eval-

uation of the density through the equation of state or the continuity equation, does

not degrade performance for decreasing Mach numbers, and can without problem

even be applied for incompressible ows. But standard compressible ow meth-

ods are density-based, and consequently su�er from weak pressure-density coupling

when the Mach number is small. The fully compressible ow approach introduced

in Section 3.3 is an example of a density-based method.

3.4.2 Proposed remedies

Various strategies have been proposed to relieve or get rid of the diÆculties touched

upon in the previous section, and we will briey describe the two most prevalent

approaches.

Preconditioning

The sti�ness problem that occurs when Mr # 0 can be alleviated by modifying the

equations (2.10) arti�cially by multiplication of the time derivative by a matrix P�1:

P�1
@U

@t
+r�F = 0: (3.29)

This procedure is called preconditioning, and the preconditioning matrix P = P (U)

should be chosen such that the modi�ed system is less sti� than the original system.

In other words, the eigenvalues of PA should lie closer together than the eigenvalues

of the Jacobian A = @F=@U . The design of P is diÆcult and remains subject of

much research, see for example [19, 61, 63, 105, 106, 107, 128]. Since multiplication
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by P arti�cially diminishes acoustic speeds, time accuracy is lost. This does not af-

fect stationary solutions. However, restoring time accuracy is awkward. This can be

done by employing a dual time-stepping procedure, which involves an inner iteration

loop in pseudotime that is wrapped in an outer loop stepping through physical time.

Thus, the ow �eld at each physical time level is treated as a steady state problem in

pseudo time. In this way, the physical time-step size is not a�ected by the sti�ness

of the system. Nevertheless, because of the presence of an inner iteration loop, dual

time stepping is computationally expensive [128]. A major practical advantage of

the preconditioning approach is that existing codes for computation of compressible

ows can easily be extended to improve their performance in the low subsonic ow

region. Another advantage is, as shown in [36], that correct preconditioning of the

numerical dissipation tensor recovers a correct scaling of the pressure, i.e. the pres-

sure scales with M2
r
, for Mr small.

Pressure-based methods

Instead of improving accuracy and eÆciency of compressible ow codes by means of

preconditioning, one can take the other way around and incorporate compressibility

in incompressible ow methods. Because of the lack of pressure-density coupling

in incompressible ows, in these methods pressure serves as a primary variable.

Consequently, Mach-uniform formulations based on incompressible ow methods

are pressure-based. Some examples of uni�ed methods using colocated grids are

described in [22, 49, 69, 77], and some uni�ed methods on staggered grids are in-

troduced in [9, 42, 43, 99, 110, 111]. Essential features in all pressure-based meth-

ods are the presence of (i) the pressure or pressure-correction equation, which is a

Poisson-like equation yielding the new pressure, and (ii) corrections to the velocity

(or momentum) in order to ensure compliance with the continuity equation.

3.5 Mach-uniform solution algorithm

We discuss in this section the pressure-based conservative Mach-uniform solution

algorithm that recently is introduced in [111]. The advantage of this algorithm

over its precursor introduced in [8, 9] is that the latter uses a nonconservative dis-

cretization of the energy equation, which leads to discrepancies in satisfaction of the

Rankine-Hugoniot conditions, as shown in [111]. With the Mach-uniform scheme

one can compute ows with a Mach number ranging from the incompressible ow

limit M # 0 up to supersonic ow M > 1, with nearly uniform eÆciency and ac-

curacy. This uniformity in the Mach number will be demonstrated in Chapter 6.

In the incompressible ow limit, the Mach-uniform scheme reduces to the standard

pressure-correction scheme discussed in Section 3.2. The dimensionless formulation

of the Navier-Stokes equations is derived in Section 3.5.1, and the solution procedure

is given in Section 3.5.2.
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3.5.1 Dimensionless formulation

De�nition of dimensionless pressure

With four independent reference values (for example, temperature Tr, length Lr,

velocity ur and density �r) given, the Navier-Stokes equations (2.1){(2.3) and the

equation of state (2.15) can be made dimensionless. With �r a reference value,

quantity � and its dimensionless equivalent ~� are related through ~� = �=�r. This

holds for all quantities except the pressure, which is nondimensionalized in our Mach-

uniform formulation as follows:

~p =
p� pr

�ru2r
; (3.30)

with pr the background thermodynamic pressure given in (3.23). This particular

de�nition of the dimensionless pressure is an essential feature of the Mach-uniform

formulation. The same pressure scaling is also used in [9, 110, 111]. The physical

signi�cance of (3.30) can be found when we return to (3.26), which reduces to

p(x; t) = p0 + M2
r
p2(x; t) +O(M4

r
) (3.31)

if acoustic e�ects are ignored. This shows that with the obvious alternative ~ps = p=p0
the variation of ~ps is O(M2

r
), so there is a risk of loss of signi�cant digits for Mr

small. However, substitution of (3.31) in (3.30) gives (choosing pr = p0):

~p =
p2

pr
+O(M2

r
); (3.32)

where we have used (3.23) and (3.24). This shows that ~p has the nice property of

being O(1) as Mr # 0. Of course, this is already obvious from (3.30), if one thinks

of Bernoulli's theorem. Furthermore, with (3.31) the singular factor 1=M2
r
present

in the dimensionless momentum equation (3.25) disappears. The relation between

the dimensionless pressure ~p, equation (3.30), and the obvious alternative ~ps = p=p0
can easily be derived. It is trivial that:

~p =
p� pr

�ru2r
=

pr

�ru2r

p� pr

pr
=

pr

�ru2r
(~ps � 1); (3.33)

and we get:

~ps = 1 + M2
r
~p (3.34)

with pr=�ru
2
r
= 1=M2

r
.

Dimensionless equations

Nondimensionalization as described above leaves the continuity equation invariant

(deleting tildes for brevity):
@�

@t
+ (�u�);� = 0: (3.35)

The dimensionless momentum equation is given by, omitting body forces f�:

@m�

@t
+ (u�m�);� = �p;� + 1

Re

h
�
�
u�
;�
+ u�

;�

�� 2

3
u
;
Æ��
i
;�

(3.36)
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where the Reynolds number is de�ned in the usual manner:

Re =
�rurLr

�r
: (3.37)

The thermodynamic relations gathered in Section 2.1.2 are used in order to arrive

at the dimensionless equation of state:

h =
1

�
(1 + M2

r
p): (3.38)

When written in the form

� =
1

h
(1 + M2

r
p); (3.39)

it is immediately clear that, as required, the density becomes indepent of the pressure

in the limit Mr # 0. This is another desirable consequence of (3.30)

The dimensionless energy equation (2.3) can be written, omitting the source terms

f� and q, in the following form:

M2
r

�
@

@t

h
p+

1

2
( � 1)�uu

i
+
h
u�
�
p+

1

2
( � 1)�uu

�i
;�

�
+ u

�

;�
=

=
1

Re

h
2u��

�
e�� � 1

3
�Æ��

�i
;�

+
1

PrRe
(kT;�);�; (3.40)

where the Prandtl number is de�ned as

Pr =
cp�r

kr
; (3.41)

and cp stands for the speci�c heat at constant pressure. Apart from rather unlikely

circumstances, see Section 3.6 of [7], the right-hand side of (3.40) can be neglected

for Mr � 1. A closer look at (3.40) reveals, as was already stated in Section 3.4.1,

that it is the energy equation (and not the continuity equation) from which the

kinematic constraint (r�u) = 0 is derived in the limitMr # 0. Equation (3.40) forms
the basis for the Mach-uniform pressure-correction equation, to be discussed in the

next section.

3.5.2 Mach-uniform sequential update procedure

With respect to the Mach-uniform approach we restrict ourselves to inviscid ows,

although this is not a prerequisite. The following Mach-uniform (MU) solution

algorithm is proposed, where we use notation as in Sections 3.2 and 3.3:

1. Compute the new density �n+1 from:

R�

�n+1 � �n

�t
+D(un�n+1) = 0: (3.42)
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2. Compute the momentum prediction m� from:

Rm

m� �mn

�t
+ C(un)m� = �RmGp

n: (3.43)

3. The new pressure follows from the pressure-correction equation.

4. A correction is added to the predictor of the momentum to obtain the new

momentum.

5. The new enthalpy follows from (3.38).

The second step is identical to the �rst step in the update procedure for fully com-

pressible ows, but in the MU approach the computed quantity is interpreted as the

predictor of the momentum rather than the momentum at the new time level. Note

that steps 1 and 2 can be interchanged without a�ecting the algorithm. For (nearly)

incompressible ows, the density variations should remain (nearly) zero, which is

ensured by inserting the (nearly) divergence-free un in the continuity equation. We

found out that, especially for low subsonic ow, computing times for steady ows

can be reduced drastically by starting with divergence-free initial conditions (usu-

ally free ow) and to use, in step 1 in the �rst time step, these initial conditions as

boundary conditions at the surface of the obstacles in the ow rather than the given

boundary conditions there. The reason is that, if the given boundary conditions

are used, the density is changed dramatically after the �rst time step (because of

Du0 6= 0 caused by impermeable boundaries), and it takes long before this tran-

sient behavior is convected out of the domain. Starting with zero velocity is not

a good option, since this requires time-dependent inow conditions, and this again

will be felt in the density for a long time. When applied to incompressible ows

with constant density, steps 1 and 5 in the Mach-uniform solution algorithm are not

of interest, and the pressure-correction approach for incompressible ows, see Sec-

tion 3.2, is recovered. Derivation of the Mach-uniform pressure-correction equation

forms the remainder of this section, and discretization of the governing equations is

discussed in Sections 4.3 (step 1 of the algorithm), 4.2 (step 2), 4.5 (steps 3 and 4)

and 4.6.1 (step 5). Krylov subspace methods, see Section 3.6, are used to solve the

linear systems appearing in steps 1 to 3.

Mach-uniform pressure-correction equation

The following relation between the momentum at time-level n+1 and the predictor

of the momentum is postulated, cf. (3.13):

m
n+1 =m

� ��trÆp; (3.44)

where the pressure correction is de�ned as

Æp = pn+1 � pn: (3.45)
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(a)

u

(b)

Figure 3.1: Pressure-correction stencil in incompressible ow computations (a). En-

larged pressure-correction stencil (b).

Inserting

m
� = �n+1u�; (3.46)

where u� is the predictor of the velocity, and�
�u2

�n+1
=
�
m

2=�
�n+1

= (m� ��trÆp)2=�n+1 (3.47)

into the energy equation (3.40) and discretizing in time with Euler implicit yields a

nonlinear equation for Æp:

M2
r

�
Æp

�t
+

1

2
( � 1)

(m� ��trÆp)2=�n+1 � (mn)2=�n

�t
+

+ r�
��
u
� � �t

�n+1
rÆp

��
(pn + Æp) +

1

2
( � 1)(m� ��trÆp)2=�n+1

���
+

+ r�
�
u
� � �t

�n+1
rÆp

�
= 0: (3.48)

The right-hand side is put equal to zero since we restrict ourselves, although this is

not a prerequisite, to the Euler equations. For brevity, we have used the notation

m
2 =m�m. The stencil that results from discretization of the Laplacian term r�rÆp

is depicted in Figure 3.1a, where the shaded cell is the cell under consideration. We

would like to stick to this stencil in the spatial discretization of (3.48). In the second

line of (3.48), a term representing the convected kinetic energy at time-level n + 1

is present. The convected kinetic energy has, as we will see, to be evaluated in

each cell, after which an upwind or central approximation is applied to arrive at

an appropriate value at the cell face. How the kinetic energy in a cell is obtained
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will be discussed in Section 4.6.2. It suÆces here to state, because the convected

term rÆp is part of the kinetic energy, that the pressure gradient at its cell faces

needs to be evaluated. Suppose a �rst order upwind interpolation is used, and

the velocity is directed as indicated in Figure 3.1b. This means that, in order to

obtain the pressure-correction equation for the shaded cell, the kinetic energy has

to be evaluated in the cells indicated by �. In order to obtain the kinetic energy

in these cells, the pressure gradient has to be evaluated at the faces indicated by Æ.
As a consequence, the stencil for the pressure-correction equation is enlarged, see

Figure 3.1b, and this is what we do not want to happen. Hence, we need to take the

kinetic energy in the convection term at the ? level instead of the new time level.

This means that we approximate the kinetic energy in the second line of (3.48) by:�
�u2

�n+1
=
�
m

2=�
�n+1 � (m�)2=�n+1: (3.49)

This will not a�ect the scheme in the limitMr # 0, and the standard 10 point stencil
is maintained, because the convected term containing rÆp has disappeared. It is

clear that the (r�u)-term in the last line of (3.48) has to be discretized implicitly

in order to have the scheme reduce to the standard incompressible ow pressure-

correction scheme (Mr = 0). In the derivation to arrive at (3.40), one �nds that this

term stems from the convection velocity of the pressure, which means that we also

have to evaluate the convection velocity in the second line of (3.48) at the new time

level. These remarks all add up to:

M2
r

�
Æp

�t
+

1

2
( � 1)

(m� ��trÆp)2=�n+1 � (mn)2=�n

�t
+

+ r�
��
u
� � �t

�n+1
rÆp

��
(pn + Æp) +

1

2
( � 1)(m�)2=�n+1

���
+

+ r�
�
u
� � �t

�n+1
rÆp

�
= 0: (3.50)

We could decide to omit the term��trÆp in the time derivative of (3.50). Numerical
experiments, see Section 6.4.5, show that linearization rather than omission of this

term enhances stability signi�cantly. Linearization, i.e. keeping terms linear in Æp

and omitting the higher order terms, and some rearranging results in:

M2
r

(
Æp

�t
+

1

2
( � 1)

�
(m�)2 � 2�tm� �rÆp� =�n+1 � (mn)2=�n

�t

)
+

+ r�
h
u
�

�
1 + M2

r
(pn + Æp) +

1

2
( � 1)M2

r
(m�)2=�n+1

�i
� (3.51)

� �tr�
nh�

1 + M2
r
pn +

1

2
( � 1)M2

r
(m�)2=�n+1

�
=�n+1

i
rÆp

o
= 0:

After some manipulations one can prove that H = constant is, as it should, a

steady state solution of (3.51). For Mr # 0, the pressure-correction equation for

incompressible ows is recovered. Discretization of (3.44) and (3.51) forms the topic

of Section 4.5.
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(a) (b)

Figure 3.2: Nonzero structure of the momentum (a) and pressure-correction matrix

(b) for the ow around an airfoil.

3.6 Linear solver

In the various sequential update procedures discussed in Sections 3.2, 3.3 and 3.5,

linear systems have to be solved for the primary variables. These systems will be

denoted as

Ax = b; (3.52)

where A is an N � N matrix, b is the right-hand side, and x the solution vector.

The number of unknowns N is equal to the number of cells for the scalar equations

and the number of cell faces for the momentum equation. Information on the linear

solver and the preconditioner that we use is given in the following sections.

3.6.1 Krylov subspace methods

Matrix A in (3.52) is in general large and sparse, and the nonzero entries are, because

of the grids being unstructured, not in a structured (e.g. block diagonal) form. An

example of the nonzero structure of the momentum and pressure-correction matrix

is illustrated in Figure 3.2. Therefore it is attractive, because of eÆciency and

simplicity reasons, to use A only to multiply with. This consideration leads for

solution of (3.52) to the use of Krylov subspace methods, which are iterative methods

that look for optimal approximations to x � x(0), with x(0) a given start vector, in

the Krylov subspace. The Krylov subspace is the m-dimensional (m � N) space

spanned by the residuals r(i) = b�Ax(i) of the iterates x(i), i = 0; : : : ;m� 1.

For symmetric positive de�nite matrices A, the conjugate gradient (CG) method is

the method of choice, since it satis�es an optimality property (the error, measured

in some norm, is minimal) while only information of the previous iterate is needed.
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The latter property, implying the use of short recurrences, is desirable, because

it prevents increasing amounts of work per iteration and memory as the iteration

process progresses. For general matrices, it is impossible to construct a Krylov

subspace method that has both the optimality property and the pleasant property

of short recurrences. In this situation, two avenues can be taken:

1. Methods based on short recurrences.

Examples of these methods are Bi-CG (bi-conjugate gradient), CGS (conjugate

gradient squared) and Bi-CGSTAB (bi-conjugate gradient stabilized). Because

these methods do not satisfy the optimality property, convergence is not guar-

anteed and breakdown may occur. Bi-CGSTAB, proposed in [113], is probably

the most favored among the methods that are based on short recurrences, since

no multiplication by AT is required (as it is for Bi-CG) and its convergence

behavior is smoother than that of CGS and Bi-CG, reducing the undesirable

e�ects of round-o� errors (`truncation'). Per iteration, Bi-CGSTAB requires

two matrix-vector multiplications and only a few vector updates and inner

products.

2. Methods based on the optimality property.

This type of methods satis�es the optimality property, and consequently is

robust, but uses long recurrences. As a consequence, storage requirements

and the amount of work per iteration increase as the number of iterations

increases. In order to prevent this from becoming too time and memory con-

suming, these methods need to be restarted or truncated if the number of

iterations has grown too large. Restart after r iterations means restart of

the algorithm with x(0) := x(r�1) as new start vector. An alternative is

to allow only t search directions, and to overwrite old search directions by

new ones once the number of iterations exceeds t; this is called truncation.

Of course, the optimality property gets lost when restart or truncation takes

place. Examples of this kind of methods are GMRES (generalized minimum

residual), GCR (generalized conjugate residual) and GMRESR (GMRES re-

cursive). GMRES [93], having identical convergence properties as GCR while

being cheaper, is the most popular among these methods. Per iteration, GM-

RES requires one matrix-vector multiplication, while the amount of work in the

Gram-Schmidt procedure grows quadratically with the number of iterations.

The equations for the momentum, density and energy are solved with help of GM-

RES, whereas the pressure-correction equation is solved by Bi-CGSTAB; see also

the discussion in Section 5.1.3. The solution vector obtained at the previous time

level is used as start vector. Restart of GMRES for the density and energy equation

is done after 40 iterations, and after 20 iterations for the momentum equation. If

the norm of the residual r(k) = b�Ax(k), with x(k) the approximate solution after k
iterations, is less than �jjr(0)jj, the iterative process is assumed to be converged. For
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the momentum and pressure-correction equation we use � = 10�6, and for the other

equations we use � = 10�4; these turn out to be good stopping criteria, see [125].

3.6.2 Preconditioning

Since the convergence behavior of Krylov subspace methods depends critically on

the spectrum of A, it is worthwile to cluster the eigenvalues. To achieve this, (3.52)

is replaced by the preconditioned system:

A0x = b0; A0 = P�1A; b0 = P�1b; (3.53)

where P is a preconditioner. This preconditioning should not be confused with the

preconditioning that one applies to arrive at uni�ed compressible/incompressible

ow methods, see Section 3.4.2. Several choices for P are possible, all striving for:

(i) the eigenvalues of P are close to those of A, and (ii) computation of P�1, the

inverse of P , is `cheap'. In our work, see also [125], ILU is used as preconditioner

for all equations apart from the momentum equation, for which ILUD is employed.

We will describe these preconditioners briey.

Incomplete LU factorization (ILU)

The ILU-preconditioner [76] is given by P = LU , with L and U a lower and upper

triangular matrix, respectively. The nonzero structure of the matrices L and U is

comparable to the corresponding parts in A, and L and U are determined by the

following requirements: (i) (LU)ij = aij for all matrix elements aij 6= 0, and (ii)

the diagonal elements of L are equal to 1.

ILUD

This preconditioner is given by P = LD�1U , where D, L and U are a diagonal, lower

and upper triangular matrix, respectively. These matrices follow from: (i) the main

diagonals of L, U and the diagonal matrix D are the same, (ii) the o�-diagonal parts

of L and U are equal to the corresponding parts in A, and (iii) the main diagonal

of P equals the main diagonal of A.



Chapter 4

Spatial discretization of the

ow equations on

unstructured staggered grids

A common feature of most established methods for compressible ows is the use of

colocated schemes. For incompressible ows, a straightforward discretization on a

colocated grid leads to odd-even oscillations of the pressure, see also Section 2.4.2.

To remedy this, arti�cial stabilizing measures have to be taken. The most pop-

ular method that has evolved is the pressure-weighted interpolation of Rhie and

Chow [90], by which arti�cial pressure di�usion is introduced in the mass conserva-

tion law. This problem of spurious pressure oscillations does not occur with staggered

schemes. The diÆculty also does not arise in the compressible ow case. Because

on non-orthogonal grids colocated discretization is more straightforward than stag-

gered discretization, colocated schemes are prevalent for fully compressible ows,

and have reached a certain degree of maturity. However, staggered schemes can

be devised that are accurate on highly non-orthogonal grids, see [129, 130, 131].

Furthermore, the classic incompressible staggered scheme of [44] can be applied to

compressible ows, as shown already in [42, 43]. For more recent work in this direc-

tion, see [9, 110, 111, 132] and references quoted there.

In this chapter, spatial discretization of the ow equations on unstructured stag-

gered grids is discussed. The staggered positioning of the variables on triangular

grids is introduced in Section 4.1. Due to the staggered grid arrangement, it is not

possible to de�ne the usual `left' and `right' states containing all primitive variables.

This explains why schemes based on Riemann solvers cannot be applied. On the

other hand, discretization by a simple �nite di�erence or �nite volume scheme for

each primary variable separately is natural on a staggered grid. It is also natural to

update the primary variables sequentially in a time-stepping or iterative procedure,
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as discussed in Chapter 3. Three di�erent segregated approaches were proposed:

the pressure-correction approach (PC) for incompressible ows (Section 3.2), a se-

quential update procedure for fully compressible (FC) ows (Section 3.3) and a

Mach-uniform (MU) solution algorithm (Section 3.5). We have adopted a �nite

volume approach, ensuring conservation of mass, momentum and energy in the nu-

merical scheme; see also Appendix D. Discretization of the momentum equation,

which is the same for all three solution procedures, forms the subject of Section 4.2.

In Section 4.3 the discretization of the continuity equation is discussed. Discretiza-

tion of the energy equation as encountered in the FC approach is the topic of Sec-

tion 4.4. Discretization of the energy equation in the MU approach, which is the

Mach-uniform pressure-correction equation, is given in Section 4.5. The incom-

pressible ow pressure-correction equation is a special form of the Mach-uniform

pressure-correction equation, and will not be discussed separately. Evaluation of

the equation of state is dealt with in Section 4.6, and some remarks concerning

postprocessing are gathered in Section 4.7.

4.1 Unstructured staggered grids

We will restrict ourselves, although this is not a prerequisite, to two dimensions, and

consider grids consisting solely of triangles. In Figure 4.1 the employed staggered

placement of variables in the grid is shown. Throughout this thesis, the words

`triangle' and `cell', and `edge' and `face' will refer to the same objects. At the

cell centroids the scalar variables, e.g. p, �, h and �H, are located. The normal

momentum components m are stored at the midpoints of the faces. This placement

of the variables is similar to the classic staggered scheme on structured grids with

quadrilateral cells as introduced by Harlow and Welch [44] and which is used by

our group on boundary-�tted grids in, for example, [9, 110, 111, 130, 131, 133].

Note that, in contrast with the covolume method or the method of Perot that are

discussed in Section 2.4.3, we do not put the scalar variables in the circumcenters

and that we do not require grids to be of Delaunay type.

At every face e there are two unit normal vectors ne, pointing in opposite directions.

By some unambiguous procedure we select at each face one of these to be the so-

called unique normal vector, indicated by Ne. Obviously,

Ne = (ne �Ne)ne; ne = (ne �Ne)Ne; (ne �Ne) = �1: (4.1)

Among the number of faces E, the number of vertices V and the number of cells C

there exists for 2D triangular grids with H holes a simple relation [29]:

C + V = E + 1�H: (4.2)
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: normal momentum

: scalars

Figure 4.1: Staggered positioning of the variables in an unstructured grid.

Another useful equality, derived in [29] as well, is

C =
1

3
(E + Ei); (4.3)

with Ei the number of internal faces. In the (common) situation that the number

of boundary faces is negligible compared to the total number of faces (E � Ei), the

approximations:

E � 3V; C � 2V; (4.4)

are useful.

4.2 Discretization of the momentum equation

At the midpoint of each face i, the normal component of the momentum vector

mi = mi �Ni is stored. The �rst step in deriving a discrete equation for mi is to

project the momentum equation (2.2) on the unique normal Ni at face i:

@mi

@t
+r�[u(m�Ni)] = �rp�Ni + � �Ni: (4.5)

We use a �nite volume approach, and consequently a control volume has to be

speci�ed. This is the topic of Section 4.2.1. Discretization of the time derivative

is the subject of Section 4.2.2. Central and �rst order upwind schemes for the

inertia term are introduced in Sections 4.2.3 and 4.2.4. Various possibilities to

approximate the pressure gradient are discussed in Section 4.2.5, and in Section 4.2.6

the discretization of the viscous term is given. In order to maintain completeness

while avoiding lengthy digressions from the main line of reasoning, some parts have

been moved to appendices. A discussion on monotonicity together with a suitable

de�nition of the Courant number is given in Appendix A. Consistency of various

schemes for the inertia term is checked numerically, see Appendix B for more details.

Whether the discretization preserves symmetry is discussed in Appendix C, and
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Figure 4.2: The two options that we studied for the CV for the normal momentum

equation at face i are shaded. Numbers denote cells, while faces are indicated by

letters.

in Appendix D it is demonstrated that the resulting �nite volume discretization

conserves momentum.

4.2.1 Choice of control volume

We integrate (4.5) over a suitably chosen control volume (CV). There are various

possibilities to select a CV for the momentum equation on unstructured staggered

grids. We have investigated two options.

Option 1. Integration over two triangles

We choose the union of the two triangles adjacent to face i, see Figure 4.2a, as CV

for the normal momentum component mi located at face i. For a boundary face,

the CV is the corresponding boundary cell.

Option 2. Integration over two half triangles

The shaded region in Figure 4.2b that is formed by uniting T1i and T2i forms the

CV. We construct T1i, the part of the CV for face i that lies in cell 1, in the following

manner: (i) face i is part of the boundary of T1i, (ii) T1i is inside cell 1, and (iii) the

area of T1i is half the area of cell 1. Of course, T2i is constructed in the same fashion.

The boundary of T1i is given by @T1i = �1i[e12, and is traversed in counterclockwise
direction. Here e12 represents face i, with the �rst index referring to the cell lying

left and �1i forms, as sketched in Figure 4.2b, the remainder of @T1i. Assuming that

Ni points from cell 1 to cell 2, the outward normal vector n12 at e12 is pointing in
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the same direction. Similarly, we have @T2i = �2i [ e21 and n21 = �Ni. The CV at

face i is formed by T1i [ T2i, and its boundary is given by �i = �1i [ �2i. Note that
we do not specify the precise shape of �1i and �2i.

Discussion

In Section 4.2.4 we give a motivation for proposing option 2 that is based on a

projection onto the one-dimensional staggered scheme. Numerical experiments, see

Appendix B, reveal that option 1 leads to a consistent scheme, and option 2 does

not. Hence, unless stated otherwise, the CV for the momentum equation consists of

the two triangles adjacent to the considered face.

4.2.2 Discretization of the time derivative

Integration over the CV of the time derivative in (4.5) is done in the usual manner:Z
CV

dmi

dt
dx � 
i

mn+1
i

�mn

i

�t
; (4.6)

where 
i is the area of the CV, �t = tn+1 � tn the time step, and the superscript

refers to the time level. In the incompressible ow and Mach-uniform pressure-

correction approach, mn+1
i

should be considered as the predictor m�

i
, since after-

wards a correction is carried out.

4.2.3 Discretization of the inertia term (two triangles)

Integration of the inertia term over two triangles results in:Z
CV

r�[u(m�Ni)] dx =

I
@CV

(u�n)(m�Ni) d� �
X
e(i)

(ue �Ne)(me �Ni)�le; (4.7)

where n is the outward unit normal at the boundary of the CV. In the last step we

used relation (4.1), and we de�ne

�le = le(ne �Ne): (4.8)

The summation is over the faces of the CV, i.e. summation over the faces in

e(i) 2 fk; l; o; jg, see Figure 4.2a. Before we specify how the convecting velocity

ue �Ne and convected projected momentum me �Ni are obtained, a procedure to

reconstruct vector quantities needs to be introduced.

Reconstruction procedure

Because solely the normal component of the momentum is stored at the cell faces,

some sort of interpolation needs to be performed in order to arrive at components

pointing in other directions. This can be done by what we will call the reconstruc-

tion procedure, which is introduced here for two dimensions. Extension to more
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dimensions is straightforward. Let the vectors Vi, Nj and Nk be given and let Nj

and Nk not be parallel to each other. Here, i, j and k indicate faces. Suppose

further that qj = qj �Nj and qk = qk �Nk are given. Here, q = q(x) represents

an unknown vector �eld and qj = q(xj), with xj the coordinates of the midpoint

of face j. Our aim is, using the speci�ed quantities, to �nd an approximation for

qi = qi �Vi. Because Nj and Nk are linearly independent, there exists a unique

solution to the reconstruction coeÆcients �i
j
and �i

k
, which are de�ned by means of

the expression:

Vi = �i
j
Nj + �i

k
Nk: (4.9)

Let tj and tk be tangential vectors at faces j and k, respectively, i.e. tj �Nj =

tk �Nk = 0, then

�i
j
= (Vi �tk)=(Nj �tk); �i

k
= (Vi �tj)=(Nk �tj): (4.10)

An approximation for qi follows from:

qi = qi �Vi = qi �(�ijNj + �i
k
Nk) = �i

j
(qi �Nj) + �i

k
(qi �Nk) �

� �i
j
(qj �Nj) + �i

k
(qk �Nk) = �i

j
qj + �i

k
qk; (4.11)

with equality for constant vector �elds q(x) = q0. In Section 4.3 we will prove that

the reconstruction procedure satis�es a nice property for incompressible ows and

for stationary compressible ows. Relation (4.11) forms, with the reconstruction

coeÆcients de�ned in expression (4.9), the basis of the reconstruction procedure.

Similar procedures are introduced in the covolume method, see also Section 2.4.3 for

suitable references.

Computation of the convecting velocity

We have devised two ways to compute the convecting velocity ue �Ne.

1. Central approximation

At face k, the normal velocity uk = uk �Nk follows from

uk =
mk

�k;av
; �k;av =


3


1 +
3

�1 +

1


1 +
3

�3: (4.12)

Here mk is the given normal momentum component and �k;av approximates the

density at face k by means of a weighted averaging. Here, 
1 and 
3 stand for

the areas of the adjacent cells, see Figure 4.2a. Note that in case the density is

constant, as is often the case for incompressible ows, then (4.12) is exact. This is

an advantage of using the CV consisting of two triangles.

2. Upwind approximation

Motivated by arguments related to monotonicity preservation, see Appendix A.2,

an upwind approximation for evaluation of the convecting velocity is developed. For
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the reconstruction coeÆcients � that are de�ned by, see Figure 4.2a for notation:

Nk = �iNi + �jNj ; Nk = �vNv + �wNw; (4.13)

a unique solution exists. Inspired by (4.11), we arrive at the following upwind

approximation for the convecting velocity at face k:

uk �Nk =mk �Nk=�k =

8<
:

(�imi + �jmj)=�1 if mk
�lk > 0;

(�vmv + �wmw)=�3 if mk
�lk < 0;

0 if mk = 0.
(4.14)

The ow is directed from cell 1 to 3 if mk
�lk > 0, and vice versa.

In Section 6.1 numerical results obtained by both methods for the Burgers equation

will be compared. It will turn out that the central approximation (4.12) is to be

preferred in most cases, since it gives crisper shock resolution while spurious oscil-

lations are almost absent.

First order upwind discretization of the inertia term

In order to compute the convected momentum terms me �Ni at the four CV faces,

we want to restrict ourselves to the momentum stencil consisting of the 13 faces

indicated in Figure 4.2a. This limits the computation of mk�Ni to the use of normal

momentum components at the faces i, j, k, v and w. Assume for the moment that

the ow is directed from cell 3 to 1. We decide to use mv and mw to approximate

mk �Ni. Since Nv and Nw cannot be parallel to each other, there always exists a

unique solution for the reconstruction coeÆcients � de�ned by:

Ni = �vNv + �wNw: (4.15)

Substitution gives, cf. (4.11):

mk �Ni = �vmv + �wmv; (4.16)

which is exact for constant momentum vector �elds. If the uid moves from cell 1

to 3, mk �Ni is approximated in terms of mi and mj . In the same way as before we

now arrive at

mk �Ni � mi: (4.17)

Summarizing, the �rst order upwind approximation for mk �Ni is:

mk �Ni =

(
�vmv + �wmv if uk�lk < 0;

mi if uk�lk > 0.
(4.18)

Note that when the ow is directed outwards of the CV, the main diagonal is in-

creased. Properties related to monotonicity preservation of the �rst order upwind

scheme are investigated in more detail in Appendix A.
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Figure 4.3: Stencil for the momentum equation in the neighborhood of boundaries.

Another upwind scheme that we have investigated is based on the notion that we

can decompose the momentum �eld at face k on a local coordinate system formed

by Nk and tk:

mk = mkNk + ~mktk; (4.19)

where tk is a tangential vector at face k. Here, the normal momentum component

mk needs not be interpolated (it is already located at the appropriate position), while

the tangential momentum component ~mk = mk �tk follows from the reconstruction

procedure. Let

tk = �iNi + �jNj ; tk = �vNv + �wNw (4.20)

de�ne the reconstruction coeÆcients �, then the following upwind scheme for ~mk is

proposed:

~mk =

(
�vmv + �wmv if uk�lk < 0;

�imi + �jmj if uk�lk > 0.
(4.21)

In Appendix B we will show that this leads to an inconsistent scheme.

Central discretization of the inertia term

The following central scheme at face k is proposed:

mk �Ni =
1

2
(�vmv + �wmv +mi): (4.22)

In Appendix C we show that this scheme preserves, on regularly shaped grids, the

symmetry properties of the underlying continuous operator.

Boundary conditions

Let face k be part of the boundary, see Figure 4.3. Consider the momentum equation

for face i. The momentum vector at face k is decomposed, cf. (4.19), on a normal
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and tangential component. The reason to do so is that we need to be able to cope

with situations in which the normal and/or tangential momentum component are

given. It is obvious that

mk �Ni = mk(Nk �Ni) + ~mk(tk �Ni): (4.23)

Dealing with the contributionmk(Nk�Ni)uk�lk is trivial. If the tangential momentum

component ~mk is given, then the term � ~mk(tk �Ni)uk�lk is added to the right-hand

side. If, on the other hand, ~mk is not given, the reconstruction procedure is applied

to approximate this momentum component:

Nk = �iNi + �jNj ; ~mk = �imi + �jmj : (4.24)

Next, we consider the momentum equation for boundary face k, and we omit from

the discussion the trivial case in which mk is given. Integration of the inertia term

over the CV, now consisting of boundary cell 1, leads to:Z
CV

r�[(m�Nk)u] dx �
X
e(k)

(me �Nk)ue�le; (4.25)

where the summation runs over the faces in e(k) 2 fi; j; kg. The contributions

stemming from faces j and k �t in the framework given above. With

(mk �Nk)uk�lk = mkuk�lk; (4.26)

the contribution from face k itself is approximated, resulting in an enlargement of

the main diagonal. Note that (4.26) is in correspondence with (4.23), and that

consequently conservation is ensured; see also Appendix D.2.

4.2.4 Discretization of the inertia term (two half triangles)

Now we turn to discuss the discretization of the inertia term that results from choos-

ing two half triangles as control volume (i.e. option 2, see Section 4.2.1). Integration

of the inertia term over this CV, indicated by the shaded region in Figure 4.2b, re-

sults in:

Z
CV

r�[(m�Ni)u] dx =

I
�i

(m�Ni) (u�n) d� =

2
4 Z
�1i

+

Z
�2i

3
5 (m�Ni) (u�n) d� �

� (m1 �Ni)u1 �
Z
�1i

n d� + (m2 �Ni)u2 �
Z
�2i

n d�: (4.27)

Here n is the outward pointing normal, andm1,m2, u1 and u2 represent the momen-

tum and velocity vectors, which we approximate by a constant, in the corresponding
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cells. Since
H
n d� = 0 for every closed contour, we can write (assuming that Ni

points from cell 1 to cell 2):I
@T1i

n d� =

Z
�1i

n d� +

Z
e12

n d� =

Z
�1i

n d� + liNi = 0: (4.28)

Doing the same for @T21 results in the identities:Z
�1i

n d� = �liNi;

Z
�2i

n d� = liNi: (4.29)

Insertion of these relations in (4.27) leads to:Z
CV

r�[(m�Ni)u] dx � li [(m2 �Ni)(u2 �Ni)� (m1 �Ni)(u1 �Ni)] : (4.30)

Approximating u and m in the cell centers requires application of the reconstruc-

tion procedure. When the ow is directed from cell 1 to 2, the following upwind

approximation in cell 1 is made:

[m1 �Ni][u1 �Ni] = [m1 �(�jNj + �kNk)][u1 �(�jNj + �kNk)] �
� (�jmj + �kmk)(�juj + �kuk); (4.31)

which is exact for constant momentum. We use

[m1 �Ni][u1 �Ni] � uimi: (4.32)

for a ow in the opposite direction.

Boundary conditions

The following types of boundary conditions are encountered in the consistency tests

for the inertia term described in Appendix B: (i) at inow boundaries the momentum

vector is given, and (ii) at outow boundaries nothing is given. At faces located

at the inow boundaries, discretization of the momentum equation is trivial. A

remaining question is the incorporation of a given tangential momentum component

in the discretization. For this we propose the following. Let at boundary faces i

(Figure 4.4a), i1 and i2 (Figure 4.4b) the momentum vector be given. In Figure

4.4a, face j is part of boundary cell T1 which has one boundary face. At face j we

prescribe the normal momentum component, with mi the given momentum vector

at face i, using

mj =mi �Nj : (4.33)

In Figure 4.4b, the boundary cells connected to internal face j have two boundary

faces in total. In this situation, we prescribe the normal momentum component at

internal face j using

mj =
1

2
[(mi1 �Nj) + (mi2 �Nj)]: (4.34)
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Figure 4.4: Face j in the vicinity of boundaries.

A similar procedure is followed when an internal face is surrounded by three bound-

ary faces at which the momentum vector is given. SinceNj is not parallel toNi, Ni1

or Ni2, the prescribed tangential momentum is embedded in the numerical solution.

We will show in Appendix B that discretization on half triangles is inconsistent,

hence there is no need to improve upon the proposed discretization of the boundary

conditions. When at a boundary face i the normal momentum component is not

given, we integrate over half of the boundary triangle, resulting in:Z
T1i

r�[u(m�Ni)] dx � li[uimi � (m1 �N1)(u1 �N1)] (4.35)

where (m1 �N1)(u1 �N1) is evaluated as in (4.31).

Motivation for selecting two half triangles as control volume

First, consider the 1D grid shown in Figure 4.5. The cell centers are located half

way between the momentum grid points. Integration of the 1D momentum equation,

with the pressure and viscous terms left out, over a CV formed by [x~{�1; x~{] results

in

�xi
dmi

dt
+ (um)~{ � (um)~{�1 = 0; (4.36)

where

�xi = x~{ � x~{�1 =
1

2
(xi+1 � xi�1): (4.37)

It can be shown, see Appendix A.2, that upwind approximation of both the velocity

and momentum, i.e.

(um)~{ = uimi; u > 0; (4.38)

is a monotone discretization of the inertia term. The attractive property of monotone

conservative schemes is that they avoid spurious modes and that they converge to

weak solutions satisfying the entropy condition [47].
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Figure 4.5: A 1D staggered grid. Cell centers are, in contrast with cell faces, indi-

cated by tildes.
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Figure 4.6: A 2D unstructured grid consisting of one row of triangles.

Next, consider the grid illustrated in Figure 4.6. By studying a 1D ow in the

x-direction, which is realized by putting the normal momentum at all horizontal

faces equal to zero, we can study some properties of a 2D discretization of the

momentum equation by comparing it with the 1D discretization given above. We

will refer to this as the quasi 1D test case. The unit normal at face i is given by

Ni = (sin�;� cos�), and the length of face i equals li = �y= sin�, with �y the

height of the domain. The 1D velocity and momentum vector �elds are given by

u = (û; 0) and m = (m̂; 0), where the hat is used to indicate the x-component.

Our goal is to �nd a 2D discretization that, when applied to the quasi 1D test case,

reduces to (4.36). We choose the CV as small as possible, and such that the `left'

and `right' states in the inertia term are located in cells ~{ � 1 and ~{. In order to

keep the discretization dimensionally correct, the inertia term has to be multiplied

by a vector quantity with the dimension of length, for which we take liNi. These

considerations lead to:


i

d(mi �Ni)

dt
+ li[(m~{ �Ni)(u~{ �Ni)� (m~{�1 �Ni)(u~{�1 �Ni)] = 0; (4.39)

where 
i is the area of the CV (yet to be determined). With

mi =mi �Ni = m̂i sin�; m~{ �Ni = m̂~{ sin�; u~{ �Ni = û~{ sin�; (4.40)
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and similar relations for (m~{�1�Ni) and (u~{�1�Ni), expression (4.39) can be written

as


i

m̂n+1
i

� m̂n

i

�t
+ li sin�[(ûm̂)~{ � (ûm̂)~{�1] = 0: (4.41)

If we choose 
i equal to half of the area of the two adjacent triangles, then (4.41)

reduces to (4.36). This is easy to see, since


~{ = (xi+1 � xi)�y 
~{�1 = (xi � xi�1)�y; (4.42)

where xi refers to the x-coordinate of the midpoint of face i. Inserting


i =
1

2
(
~{�1 +
~{) =

1

2
(xi+1 � xi�1)li sin� = �xili sin� (4.43)

into (4.41) leads to the aforementioned result. This result suggests that the CV

for each face has to consist of the half of the two adjacent triangles. Application of

upwind scheme (4.31){(4.32) to (4.39) gives, after some manipulations and assuming

that û > 0:

�xi
dm̂i

dt
+ (ûm̂)i � (ûm̂)i�1 = 0; (4.44)

which is identical to 1D upwind method (4.38). Hence, for the quasi 1D test case dis-

cussed here, we have demonstrated that integration of the momentum equation over

half triangles results in the appropriate 1D discretization. However, in Appendix B

we will show that the resulting method is not consistent when applied to 2D ows.

4.2.5 Discretization of the pressure gradient

Integration of the projected pressure gradient term in (4.5) over a CV with area 
i

can be written as: Z
CV

rp�Ni dx = 
i(rp�N)i: (4.45)

The projected pressure gradient will be approximated as follows:

(rp�N)i =
X
j(i)

jpj ; (4.46)

where the summation runs over a set of cells surrounding face i, the so-called stencil

for the pressure gradient. The gradient coeÆcients j depend solely on the geometry

of the grid and hence can be computed and stored in advance. For constant pressure

�elds, (4.46) reduces to X
j(i)

j = 0; (4.47)

which is a necessary requirement for consistency. We will discuss four schemes to

compute the pressure gradient. First we formulate the path integral (PI) formula-

tion for unstructured staggered grids. The next method uses a contour integral (CI)
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formulation. Another method, based on the introduction of auxiliary points (AP),

results in a simple �nite di�erence equation. The three schemes above can yield a

value for the pressure gradient that possibly even has the wrong sign. This might

occur especially in the vicinity of steep gradients. We will formulate a requirement,

the so-called sign-criterion, that the gradient coeÆcients j must satisfy in order to

have the correct sign. The four quadrant (FQ) method is designed with this criterion

in mind. Computation of the pressure gradient at boundary faces is discussed.

Path integral formulation

The path integral (PI) formulation, introduced for the approximation of (rp�N)i on

curvilinear structured staggered grids in [108], can be used equally well on unstruc-

tured grids. In this method �rst an approximation of the pressure gradient vector

(rp)i is made, after which the inner product with Ni is taken. The path integral

formulation is based on the identity

pb � pa =

bZ
a

rp�dx; (4.48)

where a and b refer to points with coordinates xa and xb, and pa = p(xa) and

pb = p(xb). This expression is approximated by

pb � pa � (rp)ab �(xb � xa); (4.49)

where xab is a point in the vicinity of a and b. Application of (4.49) to a path from

cell-center 1 to cell-center 2, see Figure 4.2a for notation, gives

p2 � p1 � (rp)i �(x2 � x1); (4.50)

where we assume, as is usually the case, that the midpoint of face i is located in the

vicinity of the line connecting x1 and x2. To obtain (rp)i one additional relation is

required. Application of (4.49) to the path from cell-center 5 to 3 leads to

p3 � p5 � (rp)i �(x3 � x5); (4.51)

and, similarly, to the path from cell-center 6 to 4:

p4 � p6 � (rp)i �(x4 � x6): (4.52)

Averaging these expressions results in:

p3 � p6 + p4 � p5 � (rp)i �(x3 � x6 + x4 � x5): (4.53)

Equations (4.50) and (4.53) together determine (rp)i. As a consequence, the stencil
for the pressure gradient consists of the six centroids depicted in Figure 4.2a. Since

for linear pressure �elds p(x; y) = p0 + ax + by we have equality in (4.49), the
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approximation is exact for linear pressure �elds. Solution of the system (4.50){

(4.53) leads, with xj = (xj ; yj), Ni = (Nx; Ny) and auxiliary coeÆcients given by

a11 = x2 � x1; a12 = y2 � y1; (4.54a)

a21 = x3 � x6 + x4 � x5; a22 = y3 � y6 + y4 � y5; (4.54b)

to the following expressions for the gradient coeÆcients:

1 = �2 =
a21Ny � a22Nx

a11a22 � a12a21
; (4.55a)

3 = 4 = �5 = �6 =
a11Ny � a12Nx

a11a22 � a12a21
: (4.55b)

A special situation occurs when vector (x2 � x1) is parallel to Ni. The PI method

then reduces to the simple di�erence equation:

(rp�N)i =
p2 � p1

jx2 � x1j : (4.56)

When one or more centroids in the stencil are absent, as occurs in the vicinity of

boundaries, the paths in (4.53) are truncated such as to use only existing centroids.

Contour integral formulation

The contour integral (CI) formulation to compute the pressure gradient is based on

the identity: Z
CV

rp�Ni dx = Ni �
Z
CV

rp dx = Ni �
I

@CV

pn d�; (4.57)

where n is the outward unit normal on the boundary of the CV. Hence, the pressure

gradient at face i follows from (assuming that the CV consists of the two adjacent

triangles):

(rp�N)i =
1


i

Ni �
I

@CV

pn d� � 1


i

X
e(i)

pe�le(Ne �Ni): (4.58)

In this expression, the sum runs over the four CV faces, and �le = le(ne �Ne). The

pressure at face e follows from a weighted averaging of the two neighboring pressure

values. For example, the pressure at face k is computed from:

pk =

3


1 +
3

p1 +

1


1 +
3

p3; (4.59)

and consequently the stencil consists of the six cells drawn in Figure 4.2a. Note

that the CI formulation does not, unlike the PI formulation, reduce to (4.56) in

the case that (x2 � x1) is parallel to Ni. If all cell areas are the same, then one

can show that the CI method yields a pressure gradient that remains una�ected,

i.e. (rp �Ni) = (rp0 �Ni), when pressure �elds p and p0 are related as follows:
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Figure 4.7: Auxiliary point method. Line N represents the line parallel to Ni and

passing through the midpoint of face i. Points A and B are the intersections between

line N and lines connecting the centroids of the triangles.

p0
c
= pc + Æp for c 2 f1; 4; 5g and p0

c
= pc � Æp for c 2 f2; 3; 6g. This can lead, as

will be observed in Section 5.1.3, in incompressible ows to spurious pressure modes

similar to odd-even decoupling. At boundary faces, either the pressure is given or a

one-sided approximation is used.

Auxiliary point method

The auxiliary point (AP) method is a generalization of a method proposed in Sec-

tion 8.6 of [30] for structured colocated grids. It is also discussed in [78]. This

method is based on �nding a �nite di�erence approximation for the pressure gradi-

ent using the line normal to face i that passes through the midpoint of face i. In

two auxiliary points located at this line the pressure is obtained by means of linear

interpolation, after which simple di�erencing yields an approximation for the pres-

sure gradient. The line N , see Figure 4.7, is parallel to Ni and passes through xi,

the midpoint of face i. This line is parameterized by

lN = xi + �Ni; � 2 IR: (4.60)

Lines 1, 2, 3 and 4, indicated in the �gure, connect centroids and are parameterized

by

lp;q = xp + �(xq � xp); � 2 IR; (4.61)

where p and q refer to cell centroids. We have fp; qg = f1; 3g for line 1, fp; qg = f2; 4g
for line 2, fp; qg = f2; 5g for line 3 and fp; qg = f1; 6g for line 4. Intersections of line
N with the lines 1 to 4 are found by solving lN = lp;q, resulting in corresponding
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values �1; : : : ; �4 and �1; : : : ; �4. With the situation as depicted in Figure 4.7, we

will �nd that 0 < �1 < 1, 0 < �2 < 1, �3 < 0 and �4 < 0. The relevant intersections

are obviously the ones with lines 1 and 2. The coordinates of the auxiliary points A

and B, i.e. the intersections between line N and lines 1 and 2, follow from

xA = x1 + �1(x3 � x1); xB = x2 + �2(x4 � x2): (4.62)

The pressure in these points is approximated by means of linear interpolation:

pA = p1 + �1(p3 � p1); pB = p2 + �2(p4 � p2): (4.63)

The pressure gradient at face i is computed using the simple �nite di�erence equa-

tion:

(rp�N)i =
pB � pA

jxB � xAj : (4.64)

Implementation of this approach, taking only the intersections with � � 0 into

account, is done in a simple and robust manner:

pA = p1 +max(�1; 0)[p3 � p1] + max(�4; 0)[p6 � p1];

pB = p2 +max(�2; 0)[p4 � p2] + max(�3; 0)[p5 � p2];

xA = x1 +max(�1; 0)[x3 � x1] + max(�4; 0)[x6 � x1];

xB = x2 +max(�2; 0)[x4 � x2] + max(�3; 0)[x5 � x2]:

Note that, with extremely skewed triangles, the lines lN and lp;q may become (close

to) parallel, leading to inaccurate results or even breakdown of the algorithm. If

this is the case, one has to use another gradient scheme or generate a smoother grid.

Consider the situation in which cell 3 is not present, hence cell 1 is a boundary cell

with boundary face j, see Figure 4.8. The location of x3, positioned now at face j, is

chosen such that the line through this point and x1 is normal to face j. The pressure

p3 in point x3 is either given or put equal to p1. The latter is based on @p=@n = 0,

which is usually a good approximation when the wall has a small curvature, see for

example equation (19.2.26) in [48]. Other situations in the vicinity of boundaries

are treated similarly.

Four quadrant method

The three schemes for computing the pressure gradient described above may result,

as we will show in a moment, in results that sometimes even have an incorrect sign.

Let Ni point from cell 1 to 2, see Figure 4.2a. Suppose p4 is increased by an amount

Æp. Then one would like (rp�N)i not to decrease. According to (4.46), this requires

4 � 0. Similarly, we get the criteria 2 � 0, 5 � 0, and 1 � 0, 3 � 0 and 6 � 0.

More generally speaking, the gradient coeÆcient c of a centroid located at xc must

be larger than (or equal to) zero when (xc � xi)�Ni > 0, and smaller than (or equal

to) zero when (xc � xi)�Ni < 0, where xi indicates the location of the midpoint of

face i. This is what we call the sign-criterion. This criterion is not satis�ed by the
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Figure 4.8: Treatment of boundaries in the auxiliary point method.

PI formulation, see relation (4.55), except for the special case in which (x2 � x1) is

parallel to Ni, because then 3 = 4 = 5 = 6 = 0. The AP method meets the

mentioned requirement as long as the values for � are not larger than one. The CI

formulation satis�es this criterion as long as the angles in the triangles are smaller

than or equal to 90o.

Now we will introduce a method that uses a stencil consisting of four points that,

away from the boundaries, always meets the sign-criterion. At face i a local (Ni; ti)-

coordinate system is de�ned, see Figure 4.9, that divides the domain into four quad-

rants. With x the coordinates of a cell centroid relative to xi, its quadrant is deter-

mined as follows: it is located in the �rst quadrant when x �ti > 0 and x �Ni � 0;

in the second quadrant when x �ti � 0 and x �Ni < 0; in the third quadrant when

x�ti < 0 and x�Ni � 0, and it is located in the fourth quadrant when x�ti � 0 and

x �Ni > 0. In each of the quadrants the centroid being closest to xi is selected to

be part of the stencil. The next question is how to compute the pressure gradient

at face i, given a four-point stencil? We will show that the path integral formu-

lation and the contour integral formulation applied to a four-point stencil lead to

identical expressions for the gradient coeÆcients. In addition, it is shown that the

resulting scheme, which we will call the four quadrant (FQ) method, satis�es the

sign-criterion. Application of the path integral method to the four-point stencil, see

equation (4.49) and Figure 4.9, gives:

pc � pa = (rp)i �(xc � xa); pd � pb = (rp)i �(xd � xb): (4.65)

Solution of this system leads, with help of the identity

(xc � xa)� (xd � xb) = 2
; (4.66)
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Figure 4.9: Four quadrant method. Points a, b, c and d are in the �rst, second, third

and fourth quadrant, respectively.

where 
 represents the area of the shaded region in Figure 4.9, to

(rp)i = 1

2


�
(yd � yb)(pc � pa)� (yc � ya)(pd � pb)

�(xd � xb)(pc � pa) + (xc � xa)(pd � pb)

�
: (4.67)

Now we consider the contour integral formulation for a four-point stencil. Let sjo,

with jo 2 fab; bc; cd; dag, be the outward normal at line jo, which is obtained by

rotating vector (xo � xj) over 90
o in the clockwise direction. Hence, with (xo �

xj) = (xo � xj ; yo � yj) = (xjo; yjo) we get sjo = (yjo;�xjo). Note that sjo is not

normalized. It is trivial to prove that sjo + soq = sjq and sjo = �soj . The pressure
gradient follows from integration over the shaded region in Figure 4.9:

(rp)i =
1




I
pn d� =

=
1




h
1

2
(pa + pb)sab +

1

2
(pb + pc)sbc +

1

2
(pc + pd)scd +

1

2
(pd + pa)sda

i
=

=
1

2


�
(yd � yb)(pc � pa)� (yc � ya)(pd � pb)

�(xd � xb)(pc � pa) + (xc � xa)(pd � pb)

�
; (4.68)

which is the same result as obtained with the path integral method. When two cell

centers, say b and d, are located on the normal line through xi, they are considered

to be in quadrant 2 and 4, respectively. In this case (4.70) reduces to

(rp�N)i =
pd � pb

jxd � xbj : (4.69)

In the situation that one quadrant is empty, which occurs in the vicinity of bound-

aries, we use a three-point stencil. Also for the three-point stencil, the path integral
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Figure 4.10: The pressure stencil for the four quadrant method in the vicinity of

boundaries is indicated by bullets (�).

and contour integral formulation yield identical results, but the sign-criterion is not

always satis�ed. In the situation that two quadrants are empty, we use in each of

the non-empty quadrants one additional point, namely the one second closest to face

i. This is summarized in Figure 4.10.

In order to see whether the sign-criterion is satis�ed, consider again the contour

integral formulation, and use a projection on Ni:

(rp�N)i =
1



Ni �

I
pn d� =

=
1




h
1

2
(pa + pb)sab +

1

2
(pb + pc)sbc +

1

2
(pc + pd)scd +

1

2
(pd + pa)sda

i
�Ni =

=
1

2

[pa(sdb �Ni) + pb(sac �Ni) + pc(sbd �Ni) + pd(sca �Ni)]: (4.70)

It is easy to see that the gradient coeÆcients all have the correct sign (in view of

the assumed direction of Ni, consider negative increments of pa and pb, and posi-

tive increments of pc and pd), and that this is due to their location in the di�erent

quadrants. Furthermore, the gradient coeÆcients satisfy c = �a and d = �b.

Evaluation of the pressure gradient at boundary faces

When the normal momentum component is not given, as is usually the case at out-

ow boundaries, the pressure gradient must be computed. We have implemented

two ways, depending on the gradient scheme used, to approximate the normal pres-

sure gradient there. With pi0 the given pressure at xi0 , see Figure 4.11, the normal

pressure gradient at the outow boundary face i is computed from:

(rp�N)i =
pi0 � p1

jxi0 � x1j (4.71)

when the PI method, the AP method or the FQ method is employed. At a supersonic

outow boundary, pi0 is not given, and we put it equal to p1, which is equivalent

to putting the normal pressure gradient equal to zero. If the CI method is used,
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Figure 4.11: Boundary face i and boundary cell 1.

another strategy is pursued. Integration over cell 1 leads to:

(rp�N)i =
1


1

X
e(1)

pe�le(Ne �Ni); (4.72)

where the summation runs over the faces in e(1) 2 fi; j; kg. The pressure pi is given,
and pressures pe, e 2 fj; kg, follow from a weighted interpolation, cf. equation (4.59),

if e is an internal face. If e is a boundary face, pe is put equal to the prescribed

pressure, or, if pe is not given, we put it equal to p1.

4.2.6 Discretization of the viscous term

Integration of the viscous term over the two cells connected to face i yields:Z
CV

N�

i
�
��

;�
dx =

I
@CV

N�

i
���n� d� � N�

i

X
e(i)

���
e
N�

e
�le; (4.73)

where the summation runs over the control volume faces. We repeat the expression

for the deviatoric stress tensor:

��� = �
�
u�
;�
+ u�

;�
� 2

3
� Æ��

�
; � = u�

;�
: (4.74)

We have the normal velocities, obtained from the normal momentum components

using (4.12), as unknowns at the faces. From (4.73) and (4.74) we conclude that the

velocity gradient must be computed at the CV-faces. The velocity gradient at face

k, see Figure 4.12, is obtained by taking the gradient of the bilinear interpolation

of the velocity in the quadrilateral formed by the four surrounding velocity points,

i.e. v, i, j and w. The gradient of this bilinear polynomial de�nes the gradient

of the velocity vector. The bilinear polynomial is constructed in the usual �nite

element sense. To that end, the quadrilateral is mapped onto the unit square in the

(�; �)-domain by means of an isoparametric transformation. The latter is de�ned by

x =
X
s

xs�s(�; �); (4.75)
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Figure 4.12: Mapping of the quadrilateral vijw to a unit square.

where summation runs over the faces in s 2 fv; i; j; wg, and �v = (1 � �)(1 � �),

�i = �(1� �), �j = �� and �w = (1� �)�. The velocity is approximated in the same

way, i.e.

u =
X
s

us�s(�; �): (4.76)

The transformed coordinates (�k; �k) of face k are found by solving the nonlinear set

of equations (4.75) using the standard Newton-Raphson procedure. The gradient of

the velocity components follows with help from equations (4.75) and (4.76):

u�
;�
=
X
s

u�
s
(�s);� (4.77)

where

(�s);� =
@�s

@x�
=
@�s

@�

@�

@x�
+
@�s

@�

@�

@x�
: (4.78)

Hence, the gradient of the velocity vector is expressed in terms of the velocity vector

in the four surrounding faces. Since only normal components of the velocity at the

faces are given, the tangential components must be recovered, and this is done by

means of the reconstruction procedure. The velocity vector at face i is decomposed

into a normal and tangential component:

ui = uiNi + ~uiti; (4.79)

where ui = ui �Ni is the normal velocity component and ~ui = ui �ti represents the
tangential velocity component. Using the decomposition of the tangential vector ti
at face i on adjacent normal vectors, see Figure 4.2a for notation:

ti = �jNj + �kNk; ti = �lNl + �oNo; (4.80)



Chapter 4. Spatial discretization on unstructured staggered grids 73

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

i

Figure 4.13: Faces that form the viscous stencil for face i.

approximations for ~ui in cells 1 and 2 follow from

~ui;1 = �juj + �kuk; ~ui;2 = �lul + �ouo: (4.81)

Weighted averaging results in an approximation for the tangential velocity compo-

nent at face i:

~ui =

2


1 +
2

~ui;1 +

1


1 +
2

~ui;2: (4.82)

In the end we arrive at a stencil containing at most (some faces may coincide) 29

faces, see Figure 4.13. This is a bit more than the 21 faces that are included in the

viscous stencil on structured curvilinear grids.

Computation of the divergence of u at face k is done as follows:

�k =
1


1 +
3

Z
r�u dx =

1


1 +
3

I
u�n d� � 1


1 +
3

X
e(k)

ue�le; (4.83)

where integration is over the two cells neighboring face k, and summation runs over

the faces in e(k) 2 fi; j; v; wg. Note that we do not take the trace of the velocity

gradient to compute �k, since this results easily in �k 6= 0 in incompressible ows.

On the other hand, expression (4.83) yields always �k = 0 for incompressible ows,

see also equation (4.92), provided that the velocity in this expression is taken at the

previous time level.

Boundary conditions

Due to the large stencil, discretization in the vicinity of the boundaries requires

care. Suppose �rst that a next-neighboring face, for example face v in Figure 4.2a,
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is located at the boundary. At this face, the velocity vector is required to obtain

the velocity gradient at face k. If the tangential velocity ~uv is not given, the recon-

struction procedure is applied in a similar fashion as in equation (4.24). Next we

consider the situation in which a CV-face is located at the boundary, for instance

face k in Figure 4.3. The following boundary conditions are frequently encountered

for viscous ow: (i) uk is given; (ii) uk and �nt
k

are given; (iii) ~uk and �nn
k

are

given, or (iv) �nn
k

and �nt
k

are given. Here uk and ~uk are the normal and tangential

velocity at face k, respectively, and

�nn
k

= N�

k
���N

�

k
; �nt

k
= N�

k
���t

�

k
(4.84)

represent the normal and tangential stress component at face k, with ��� is de�ned

in (2.4). Since

Ni = cos�Nk + sin� tk; (4.85)

where � refers to the angle between the vectors Ni and Nk, and

cos� = Ni �Nk; sin� = Ni �tk; (4.86)

the following relation between the stress tensor projected on Ni and its normal and

tangential components at face k holds:

N�

i
�
��

k
N

�

k
= cos��nn

k
+ sin��nt

k
: (4.87)

The boundary conditions and, if necessary, linear interpolation in the boundary cell

based on the velocity vector in its three faces are used in order to arrive at a suitable

discretization. At boundary face k, (4.83) is replaced by:

�k � 1


1

X
e(1)

ue�le; (4.88)

with summation over the three faces of cell 1.

Now consider the momentum equation for boundary face k. When the normal

velocity at face k is given (boundary condition types (i) and (ii)), the discretized

momentum equation at this face is trivial. Also the situation in which the normal

velocity is not given is trivial, because the only required component of the stress

tensor is �nn
k
, which is given.



Chapter 4. Spatial discretization on unstructured staggered grids 75

j

i

1k
4

2

3

l o

(a)

j

i

1k
4

3

(b)

Figure 4.14: The CV for the continuity and energy equation is shaded, with cell 1

an internal cell (a) or a boundary cell (b).

4.3 Discretization of the continuity equation

The triangles serve as CV for the continuity equation. Integration of the continuity

equation (2.1) over triangle T1, see Figure 4.14, is done as follows:Z
T1

@�

@t
dx+

Z
T1

r�(�u) dx =
d

dt

Z
T1

� dx+

I
@T1

�(u�n) d� �

� 
1

�n+11 � �n1
�t

+
X
e(1)

�eue�le = 0; (4.89)

with n the outward unit normal at the boundary @T1 of cell 1. Superscripts n and

n + 1 refer to the time level and �t is the time step. The area of T1 is denoted by


1, summation takes place over the three faces e(1) 2 fi; j; kg of cell 1, the normal
velocity at face e is given by ue = (ue �Ne) and �le is de�ned in (4.8). Note that we

do not insert �eue = me, with me evaluated from the momentum equation. The

reason is that we consider the continuity equation as a convection equation for the

density and that we want to be able to use an upwind bias in order to introduce

a measure of irreversibility, which is bene�cial for satisfying the entropy condition,

see also [9, 37, 69]. The normal velocity components ue are obtained by means of

(4.12). In the fully compressible ow approach, we use ue = mn+1
e

=�n
e
, hence with

the momentum at the new time level and the density at the previous one. We think

this enhances stability with respect to taking ue = mn

e
=�n

e
. In the Mach-uniform

approach, the velocity is taken at the previous time level: ue = mn

e
=�n

e
. The reason

to do so is that in (nearly) incompressible ows this results in (nearly) zero density

variations, since the discrete velocity at each time level is (nearly) divergence free;

this obviously does not hold in general for ue = mn+1
e

=�n
e
.
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Discretization of the convection term

The �rst order upwind approximation for the density at face i is

�i =

�
�1 if ui�li > 0;

�2 if ui�li < 0.
(4.90)

The central scheme is given by

�i =
1

2
(�1 + �2): (4.91)

Remark that we use a factor 1=2 and not, for example, a weighted averaging. By

doing this the symmetry of the underlying operator is preserved. This is discussed

in more detail in Appendix C. At boundaries, as shown for instance in Figure 4.14b,

one-sided di�erences are taken, i.e. �i is put equal to �1 when the normal momentum

componentmi is not prescribed (e.g. at outow boundaries). Ifmi is given, we insert

ui�i = mi into equation (4.89).

Continuity equation in the incompressible ow case

Discretization of the continuity equation (2.19) for incompressible ow leads to:Z
T1

r�u dx =

I
@T1

(u�n) d� =
X
e(1)

ue�le = 0; (4.92)

which speci�es the operator D in (3.7). Note that, given the normal velocities at two

triangle faces, expression (4.92) determines the third one. With uj and uk given,

(4.92) results in:

ui = �(uj�lj + uk�lk)=�li: (4.93)

One may wonder whether the reconstruction procedure discussed in Section 4.2.3

yields the same value for this normal velocity component. We will show that this is

indeed the case. Making use of

lini + ljnj + lknk = �liNi + �ljNj + �lkNk = 0; (4.94)

which is obtained with help of (4.1) and (4.8), we arrive with Vi = Ni in (4.9) at:

�i
j
= ��lj=�li; �i

k
= ��lj=�li: (4.95)

Inserting this in (4.11) gives (4.93). For stationary compressible ows, the continuity

equation reduces to r�m = 0, which is of course similar to (4.92). In conclusion, the

reconstruction procedure yields, for incompressible ows and stationary compressible

ows, a normal velocity (momentum) that satis�es the discrete continuity equation.

4.4 Discretization of the energy equation

In the Mach-uniform approach, the energy equation is replaced by a pressure-

correction equation; see Section 4.5 for a discussion on its discretization. In the
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fully compressible ow (FC) approach, see Section 3.3, a formulation of the inviscid

energy equation (2.9) is required that is suitable for updating the primary vari-

ables sequentially in the order (m; �;	), with 	 a suitably chosen energy variable.

Possible formulations are easily obtained from manipulations with (2.11){(2.15):

@

@t

�
1


	+

1

2

 � 1


�(u�u)

�
+r�(	u) = 0; 	 = �H; (4.96a)

@	

@t
+r�

�
u

�
	� 1

2
( � 1)�(u�u)

��
= 0; 	 = �E; (4.96b)

@

@t

�
1


�	+

1

2

 � 1


�(u�u)

�
+r�(	m) = 0; 	 = H; (4.96c)

@

@t

�
�


	+

1

2
�(u�u)

�
+r�

�
m

�
	+

1

2
(u�u)

��
= 0; 	 = h: (4.96d)

These relations, although mathematically equivalent, lead to di�erent discretizations

and as a consequence one might perform better than the other. Because it is hard to

see a priori which energy variable is to be preferred, numerical experiments will play

a decisive role in this matter. They will lead, see Section 6.2.1, to the conclusion

that it is best to select �H as primary energy variable in the FC approach. The

energy equation is integrated over each triangle. There are, from a discretizational

point of view, four distinct terms in equations (4.96a){(4.96d).

� The time derivative of 	 is discretized asZ
T1

d	

dt
dx � 
1

	n+1
1 �	n

1

�t
; (4.97)

where T1 stands for a triangle which area equals 
1, the superscripts refer to

the time level and �t is the time step.

� The time derivative of the kinetic energy, needed when 	 2 f�H;H; hg, is
evaluated as

d

dt

Z
T1

(�u�u) dx � 
1

(�u�u)n+11 � (�u�u)n1
�t

: (4.98)

Approximation of the term (�u�u)1 will be discussed in Section 4.6.

� The convection term is computed as follows:Z
T1

r�(	u) dx =

I
@T1

	(u�n) d� �
X
e(1)

	eue�le; (4.99)

with 	e evaluated using the upwind or central scheme given for �e in (4.90)

or (4.91). The normal velocities at e(1) 2 fi; j; kg, i.e. the faces of T1, follow
from (4.12).
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� When �E or h is selected as primary variable, a term representing convection

of kinetic energy is present. The following approximation is used for this term:Z
T1

r�[u�(u�u)] dx =

I
@T1

(u�n)(�u�u) d� �
X
e(1)

ue(�u�u)e�le: (4.100)

Originating from r�(u�H), also for this term the same sort of interpolation

(central or upwind) as for the convected energy needs to be applied. The terms

(�u �u)e are evaluated using the upwind or central scheme given in (4.90) or

(4.91). Approximation of (�u�u) in the cell centers is discussed in Section 4.6.

4.5 Discretization of the Mach-uniform pressure-

correction equation

In this section we discuss the discretization of the Mach-uniform pressure-correction

equation (3.51). As stated in Section 3.2, we apply the discrete pressure-correction

method, which means that �rst the spatial and temporal discretization are per-

formed, and afterwards the pressure-correction is derived. By doing this, one avoids

the need to de�ne additional boundary conditions for the pressure, which is fortu-

nate since no such conditions are given.

Discretization of the time derivative

Integration of the time derivative, i.e. the �rst line in equation (3.51), over cell 1

yields:


1M
2
r

(
(Æp)1

�t
+

1

2
( � 1)

�
(m�

1)
2 � 2�t (m� �rÆp)1

�
=�n+11 � (mn

1 )
2=�n1

�t

)
; (4.101)

where 
1 is the area of cell 1. Quantities (m�

1)
2 and (mn

1 )
2 are obtained using one

of the methods described in Section 4.6.2. The vector quantity (rÆp)1 is expressed
in terms of normal pressure gradients (rÆp �N)e at the three faces of cell 1. Note

that only methods 1 and 4 of the ones discussed in Section 4.6.2 are appropriate

for this, since method 2 leads to an undesirable enlargement of the pressure stencil

and method 3 would yield (rÆp)1 �(rÆp)1 which is not the quantity we need. By

default, method 1 is used. Now let face i of cell 1 be located at the boundary. If the

normal momentum component mi is given, then there is no need to compute the

pressure-correction term (rÆp�N)i since it is zero (because we have putm
�

i
= mn+1

i
).

This is implemented by putting all gradient coeÆcients j corresponding to face i,

cf. equation (4.46), equal to zero. If mi is not given, the term (rÆp�N)i needs to

be computed at the boundary face. Note that the ways to evaluate the pressure

gradient at boundary faces, see Section 4.2.5, are suited for this, and that a given

pressure di�erence (Æp)i at the boundary has to be put in the right-hand side.
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Discretization of the convection term

Integration of the convection term (the second line in (3.51)) over cell 1 and appli-

cation of Gauss's theorem results inX
e(1)

u�
e
�le

n
1 + M2

r
[pn
e
+ (Æp)e] +

1

2
( � 1)M2

r
(m�

e
)2=�n+1

e

o
; (4.102)

with summation over the faces of cell 1. The normal component of the predictor of

the velocity is computed using u�
i
= m�

i
=�n+1

i;av , where �i;av follows from a weighted

averaging like in (4.12). The kinetic energy (m�)2=�n+1 is evaluated in each cell

by means of one of the methods discussed in Section 4.6.2. Because the complete

term between curly braces originates from the term �H, each part in it needs to be

evaluated in the same fashion, e.g. using upwind or central interpolations. The �rst

order upwind and central schemes used for this purpose are identical to the ones

applied for the continuity equation, see equations (4.90) and (4.91). Let face i of

cell 1 be located at a boundary. The term

1

2
( � 1)M2

r
u�
i
�li(m

�

1)
2=�n+11 ; (4.103)

with u�
i
evaluated by means of one-sided di�erences for �i;av, is put into the right-

hand side. If both the enthalpy and the normal component of the momentum are

given at this face, then

u�
i
�li
�
1 + M2

r
[pn
i
+ (Æp)i]

	
= un+1

i
�li
�
1 + M2

r
pn+1
i

	
=

= un+1
i

�li�
n+1
i

hn+1
i

= mn+1
i

hn+1
i

�li; (4.104)

in which we used (3.38), is moved to the right-hand side. If a central scheme is

applied and pi is given, then we write

u�
i
�li
�
1 + M2

r
[pn
i
+ (Æp)i]

	
= u�

i
�li

n
1 +

1

2
M2

r
[pn1 + (Æp)1 + pn+1

i
]
o
: (4.105)

One-sided di�erences of the form

u�
i
�li
�
1 + M2

r
[pn
i
+ (Æp)i]

	
= u�

i
�li
�
1 + M2

r
[pn1 + (Æp)1]

	
(4.106)

are employed in all other situations (e.g. homogeneous Neumann conditions for the

enthalpy and pressure at freeslip walls, or �rst order upwind and the pressure given).

Discretization of the Laplacian term

Integration of the last line in (3.51) over cell 1 leads to:

�
X
e(1)

�t

�n+1e

�le

n
1 + M2

r
pn
e
+

1

2
( � 1)M2

r
(m�

e
)2=�n+1

e

oX
c(e)

c(Æp)c; (4.107)

with e(1) indicating the faces of cell 1, and c(e) referring to the gradient stencil

of face e, cf. equation (4.46). The quantities �e, pe and (m�

e
)2=�e at faces e are
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obtained using weighted averaging. If face i is located at the boundary, then the

prescribed values or, if the required quantities are not given, one-sided di�erences are

used to arrive at �i, pi and (m�

i
)2=�i. At the faces at which the normal momentum

component is given, the gradient coeÆcients c are put to zero. At faces i at which

the pressure is given, we have

(rÆp�N)i =
X
c(i)

c(Æp)c = i(Æp)i +
X
c(i)6=i

c(Æp)c; (4.108)

with (Æp)i = pn+1
i

� pn
i
the prescribed pressure di�erence at boundary face i, and

summation over c(i) 6= i implies summation over neighboring cells.

Incompressible ow pressure-correction equation

As we saw in Section 3.5.2, the Mach-uniform pressure-correction equation reduces

to the standard incompressible pressure-correction equation forMr = 0 and constant

density. Inserting this in the discretization given above leads to:

�
X
e(1)

u�
e
�le ��t

X
e(1)

X
c(e)

c(Æp)c = 0; (4.109)

which is the standard discretization of the incompressible pressure-correction equa-

tion.

Discretization of the correction equation

Discretization of the correction equation (3.44) for a normal momentum component

at face i is trivial:

mn+1
i

= (mn+1
i

�Ni) = (m�

i
�Ni)��t (rÆp�N)i = m�

i
��t

X
j(i)

j(Æp)j : (4.110)

Note that at boundary faces at which the normal momentum component is given,

inserting this in the discretization of the momentum equation and putting the cor-

responding gradient coeÆcients to zero suÆces.

4.6 Evaluation of the equation of state

In the type of systems studied here there are at most two independent state variables;

all other state variables depend on these through equations of state. Discretization

of the equation of state for the Mach-uniform approach and the fully compressible

ow approach forms the topic of Sections 4.6.1 and 4.6.2, respectively.

4.6.1 Mach-uniform approach

In the Mach-uniform approach, evaluation of the equation of state (3.38) in cell 1

yields, with the density and pressure given, the enthalpy in this cell:

h1 =
1

�1
(1 + M2

r
p1): (4.111)



Chapter 4. Spatial discretization on unstructured staggered grids 81

Evaluation of this expression is trivial, since all present quantities are located in the

cell centers.

4.6.2 Fully compressible ow approach

In the fully compressible ow approach, the equation of state is an equation for the

pressure. The equation of state, yielding the pressure in cell 1, is given by:

p1 =
 � 1



h
	1 � 1

2
(�u�u)1

i
; 	 = �H; (4.112a)

p1 = ( � 1)
h
	1 � 1

2
(�u�u)1

i
; 	 = �E; (4.112b)

p1 =
 � 1



h
�1	1 � 1

2
(�u�u)1

i
; 	 = H; (4.112c)

p1 =
 � 1


�1	1; 	 = h; (4.112d)

where 	 refers to the primary energy variable. Computation of the kinetic energy

term in the cell center, appearing in (4.112a){(4.112c), and also in (4.98), (4.100),

(4.101), (4.102) and (4.107), is not trivial, since the velocity vector is not located in

the cell center. Rewriting the kinetic energy in terms of primary variables gives

1

2
(�u�u)1 = 1

2

(m�m)1

�1
; (4.113)

where the diÆculty now lies in �nding a suitable approximation for (m�m)1. Several

methods are possible, and we will describe four of them.

1. Computation of the kinetic energy using a least squares approach

Since we have three knowns, namely the normal momentum components at the three

cell faces, and two unknowns, the Cartesian components of m1 = (mx;1;my;1), the

use of a least squares approach appears as an obvious choice. If the ow �eld is

smooth, we have me = me �Ne � (m1 �Ne) for all e(1) 2 fi; j; kg. We choose m1

such that the least squares functional

F(m1) =
X
e(1)

[me � (m1 �Ne)]
2

(4.114)

is minimal. The minimum of this functional is found there where8>>><
>>>:

@F
@mx;1

=
X
e(1)

�2Nx;e(me �mx;1Nx;e �my;1Ny;e) = 0;

@F
@my;1

=
X
e(1)

�2Ny;e(me �mx;1Nx;e �my;1Ny;e) = 0:
(4.115)
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This boils down to solving the system:2
4

P
N2
x;e

P
Nx;eNy;e

P
Nx;eNy;e

P
N2
y;e

3
5
2
4 mx;1

my;1

3
5 =

2
4
P
meNx;e

P
meNy;e

3
5 ; (4.116)

with summations again over the three faces of cell 1. This method is discussed in [96]

for grids consisting of quadrilaterals.

2. Computation of the kinetic energy using the reconstruction procedure

In a manner identical to (4.79){(4.82), the momentum vector at the cell faces can

be obtained. Linear interpolation is used to evaluate the momentum vector in the

cell center, after which computation of (m�m)1 is trivial.

3. Computation of the kinetic energy using Gauss's theorem

We begin with Gauss's divergence theorem for triangle T1 and vector quantity f :Z
T1

r�f dx =

I
@T1

f �n d� =
X
e(1)

ne �
Z
@Te

f d�; (4.117)

where the summation runs over the faces of the triangle and ne is the outward unit

normal at face e. We set f = (m�r)m, where r = (x�x0) is the position vector with
arbitrary origin x0. Then Gauss's theorem gives:Z

T1

r�(m�r)m dx =
X
e(1)

ne �
Z
@Te

(m�r)m d�: (4.118)

Writing the left-hand side of this expression in Cartesian tensor notation yieldsZ
T1

�
m�r�m�

�
;�
dx =

Z
T1

m�m�r�
;�
dx+

Z
T1

r�
�
m�m�

�
;�
dx: (4.119)

With r�
;�
= Æ��, where Æ�� is the Kronecker delta, and assuming that m is constant

over T1, we arrive after evaluation of the integrals at:


1(m�m)1 =
X
e(1)

me(m�r)e�le: (4.120)

If we put x0 in the circumcenter of cell 1, then we get for the position vector:

re = he1ne, with he1 the distance between the circumcenter of cell 1 and the midpoint

of face e. This leads to

(m�m)1 =
1


1

X
e(1)

m2
e
he1le; (4.121)

which states that the cell kinetic energy can be approximated by summation over

the cell faces of the `kinetic energy' of the normal momentum components multiplied



Chapter 4. Spatial discretization on unstructured staggered grids 83

by some weight. This method is introduced in Section 5.2 of [89].

4. Computation of the kinetic energy using the momentum vector in the

cell

We set f = (a�r)m, where r = (x�x0) and arbitrary x0, while a 6= 0 is an arbitrary

constant vector. Gauss's theorem givesZ
T1

r�(a�r)m dx =
X
e(1)

ne �
Z
@Te

(a�r)m d�: (4.122)

In Cartesian tensor notation, the left hand side of this equation can be written asZ
T1

�
a�r�m�

�
;�
dx =

Z
T1

a�r�
;�
m� dx+

Z
T1

a�r�m
�

;�
dx; (4.123)

since a�
;�
= 0. With r�

;�
= Æ�� and since a is an arbitrary vector,

Z
T1

m dx+

Z
T1

r (r�m) dx =
X
e(1)

Z
@Te

(m�n)r d�: (4.124)

Assuming that the momentum �eld is constant and putting x0 in the circumcenter

of triangle 1, we arrive at

m1 =
1


1

X
e(1)

meNehe1�le; (4.125)

where he1 represents the distance between the circumcenter of cell 1 and the midpoint

of face e. With this, it is trivial to compute (m1 �m1). This method is described in

Section 5.4 of [89].

Discussion

All four methods to obtain the kinetic energy are �rst order accurate. The second

method uses 9 momentum points, whereas the other three restrict themselves to the

three momentum points located at the faces of the considered cell. In Section 6.2.1

we will investigate numerically the accuracy of the �rst two methods, and it will

turn out that method 1 performs best. Method 3 and 4 have not been tested yet,

but since they are of the same order of accuracy, we do not expect major di�erences

with the �rst two methods.

4.7 Postprocessing

For visualization purposes, the primary variables are interpolated to the grid vertices.

All other variables are then easily obtained by means of algebraic relations.
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Interpolation of scalar quantities to the grid vertices

Let Qj indicate the value of scalar primary variable Q at the center of cell j. The

value of Q at vertex V is computed using

QV =

P
j
wj QjP
j
wj

; (4.126)

where summations run over the cells connected to vertex V . For the weights wj we

choose the inverse of the distance between the cell center of j and vertex V , since

this is second order accurate in the one-dimensional case. In the covolume method

the same interpolation for postprocessing is used, see equation (18) in [39].

Interpolation of the momentum vector to the grid vertices

At each of the faces the tangential component of the momentum vector is obtained by

means of reconstruction, see (4.79){(4.82). For interpolation to the vertices expres-

sion (4.126) is employed, where the summations now run over the faces connected

to vertex V , and wj is the inverse of the distance between V and the midpoint of

face j.



Chapter 5

Results for viscous

incompressible ows

In this chapter numerical results for viscous incompressible ows, computed using

the pressure-correction approach described in Section 3.2, will be presented. The

Poiseuille ow, discussed in Section 5.1, is a useful test case because the analytical

solution is known. This test case is employed to study the accuracy on grids that are

chosen irregular deliberately, the behavior of the error under grid re�nement, and

the convergence behavior of the linear solver on stretched and nonstretched grids. In

addition, the symmetry properties of the discrete viscous and Laplacian matrix are

studied. Far less trivial test cases are the backward facing step, studied in Section 5.2,

and the lid-driven cavity, which is the topic of Section 5.3. For several values of the

Reynolds number results computed with our unstructured staggered scheme are

compared to experimental and numerical results obtained by other authors.

5.1 Poiseuille ow

The problem de�nition of a Poiseuille ow is stated in Section 5.1.1. Numerical

results obtained with di�erent pressure gradient methods on deliberately made non-

smooth grids are discussed in Section 5.1.2. In Section 5.1.3, some interesting issues,

including accuracy and eÆciency, concerning computations on stretched grids are

given. The eigenvalues of the viscous and Laplacian matrices on various grids form

the topic of Section 5.1.4, and some conclusions are collected in Section 5.1.5.

5.1.1 Problem de�nition

A steady laminar incompressible ow between two �xed in�nite parallel walls is

called a Poiseuille ow. The exact solution for a horizontal Poiseuille ow is given



86 Section 5.1. Poiseuille ow

by:

u(x; y) =
G

2�
(a2 � y2); v(x; y) = 0; p(x; y) = �Gx+ p0; (5.1)

where u and v stand for the velocity in the x- and y-direction, respectively, G > 0 is

the constant pressure gradient, the pressure p is �xed up to an additive constant p0
and the horizontal walls are located at y = �a. The Reynolds number is de�ned by

Re =
�urLr

�
; (5.2)

where we choose ur = max(u) = Ga2=2� as reference velocity and Lr = 2a as

reference length. The drop in pressure over a domain with length equals GLx.

In our computations we choose the following parameters: a = 1=2, � = 1, ur = 1,

Re = 1, � = 1 and G = 8. At the inlet (x = 0), the exact velocity is given and at the

horizontal walls the no-slip condition is enforced. At the outow, located at x = Lx,

zero stress (�nn = �nt = 0) is prescribed. Consequently, p(x; y) = �8x + 8Lx and

u(x; y) = 1 � 4y2 are the exact solution for the pressure and velocity respectively,

where 0 � x � Lx and �1=2 � y � 1=2. As initial condition we take u = v = 0 and

p = constant. We assume to have arrived at the steady ow solution when a relative

accuracy of 10�4 is reached for all unknowns; choosing an even smaller value was

found to make negligible di�erence. It made hardly any di�erence whether central

or upwind interpolation was applied for the inertia term; this was to be expected,

since convection is absent in the analytic solution.

5.1.2 Non-smooth grids

In this section, we compare the accuracy of various pressure gradient schemes for

the Poiseuille ow on grids that are made non-smooth deliberately. In [78], a similar

investigation is described for a structured colocated scheme. We recall the gradient

schemes, described in full detail in Section 4.2.5: the path integral (PI) method,

the contour integral (CI) method, the auxiliary point (AP) method and the four

quadrant (FQ) method. We compare our results with �nite element method (FEM)

results on the same grid. For this purpose we have used a Taylor-Hood element in

which both the pressure and the velocity basisfunctions, both located in the grid

vertices, are linear and continuous. This is the classical mini-element, in which the

velocity is extended with a bubble function which is zero at the boundaries of the

element and 1 in the centroid. This bubble function is necessary in order to satisfy

the Brezzi-Babuŝka (BB) condition, i.e. to avoid spurious pressure modes. Both the

velocity and pressure are solved simultaneously.

Distorted grid 1

The distorted grid is shown in Figure 5.1a. Figures 5.1b{e illustrate the isobars

obtained by the various gradient schemes. As we see, the results obtained with
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Figure 5.1: Distorted grid 1 (a), and isobars computed with the gradient schemes PI

(b), CI (c), AP (d) and FQ (e). Results computed with the �nite element method

(f).

the FQ method are worse than the other ones, which show isobars that are quite

straight and uniformly spaced. The CPU time for each of the computations is

roughly the same. The �nite element result, see Figure 5.1f, appears to be slightly

more accurate than the �nite volume results, since the isobars are more straight

and a more accurate value for the pressure drop is obtained (should be: 32). Note

that this may (partly) be caused by the interpolations needed for postprocessing in

the �nite volume method, see Section 4.7; in Taylor-Hood elements the pressure is

already located at the vertex .

Distorted grid 2

The distorted grid, containing an abrupt change in meshsize near x = Lx=2, and the

computed isobars are depicted in Figure 5.2. The grid is too skewed for the current

implementation of the FQ method, i.e. for at least one grid face the standard six
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Figure 5.2: Distorted grid 2 (a), and isobars computed with the gradient schemes

PI (b), CI (c) and AP (d). Results computed with the �nite element method (e).

The relative error in the pressure along the horizontal line through the middle of the

domain (f).
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point stencil did not cover all four surrounding quadrants. Since we do not expect, in

view of the results on distorted grid 1, the FQ method to perform exceptionally well

on grid 2, we did not bother to improve upon this scheme. The quality of the isobars

stemming from the AP method is somewhat less than that of the other two schemes,

of which the PI method seems to be the most accurate one. The pressure gradient

as computed by means of the CI and AP method is, in the left part of the domain,

somewhat too small. The interpolation required for the postprocessing causes the

artefacts in the isobars near the inow and solid walls in the left part of the domain.

Also for this test case, there were no large di�erences between computation times.

Again, the result obtained by means of the �nite element method is slightly more

accurate than the �nite volume results.

5.1.3 Stretched grids

In order to resolve accurately and eÆciently the thin boundary layers and wakes that

appear in high-Reynolds number ows, stretched grids are a prerequisite in these

regions. Proper boundary-layer resolution requires mesh spacings that are much

smaller in the direction normal to the boundaries than in the streamwise direction,

resulting in large cell aspect-ratios in these regions. We will study the behavior of

the error and the linear solver for large aspect-ratio cells by means of computing

solutions to the Poiseuille ow.

Grid de�nition

Examples of what is called a Courant grid, i.e. a grid that is formed by subdividing

the rectangles of a structured Cartesian grid, are shown in Figure 5.3. The aspect-

ratio of the triangles in these Courant grids is de�ned as r = �x=�y, with �x and

�y the cell size in the x- and y-direction, respectively. We will restrict ourselves

in this section to three types of grids: (i) type R1 is characterized by r = 1 and

Lx = 4; (ii) type R8 is characterized by r = 8 and Lx = 4, and (iii) type L8 is

characterized by r = 8 and Lx = 32.

Information with respect to the pressure-correction matrix

The elements of the pressure-correction matrix on a Courant grid depend solely on

the value of r and the gradient scheme employed. Numerical values for the matrix

elements in the interior of the domain for grids with r = 1 and r = 8 are given in Fig-

ure 5.4. The nonsymmetric matrix resulting from the PI method is not an M-matrix,

hence the resulting linear system might be awkward to solve. The CI method leads

to a symmetric Laplacian matrix in which there is no coupling between triangles

with di�erent orientations in the domain interior; this spells accuracy troubles as

we will see later on. The AP method and FQ method yield in the domain interior

(but not near the boundaries) the same values for the matrix elements, resulting in

a nonsymmetric M-matrix.
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Figure 5.3: Grids with r = 1 and r = 8. These grids are representatives of types

R1, R8 and L8, respectively.
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Figure 5.5: Logarithm of the maximum norm of the error in pressure (upper row)

and velocity (lower row) at the several types of grid versus the logarithm of �y.

Behavior of the error during grid re�nement

A grid re�nement study has been performed on the three types of grids described

above. For the error we take the maximum of the di�erence between the numerical

and (pointwise) exact value of the corresponding variable in each designated grid

point (i.e. centroid for the pressure and face-midpoint for the normal velocity). The

errors in the pressure and the velocity have been scaled with respect to the total

pressure drop and ur, respectively. From Figure 5.5 we conclude that the errors in

the pressure and velocity behave as O(�y1:7), independently of the gradient scheme
(apart from the CI method, see below) or type of grid used. Dependence on �y was

to be expected, since the pressure behaves linearly with x while the pro�le of the

velocity is parabolic in y. The reason for the power in �y being 1.7 is probably due

to a combination of the discretization, being O(�y) on non-smooth grids, and the

smoothness of the grids which usually tends to increase the order of accuracy. The

CI method demonstrates an anomalous behavior of the pressure on grids of type L8

and R8, which is explained in the next item.
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Figure 5.6: Odd-even distribution at a grid of type L8. Shown is the error, i.e. the

exact minus computed value, of cell values of the pressure.

Odd-even decoupling for the CI method

The anomalous behavior of the error of the pressure as resulting from the CI method

at grids of type L8 and R8 apparently does not reduce the accuracy of the veloc-

ity and seems not present at grids of type R1. It is not diÆcult to show that,

in incompressible ows, the CI method does not suppress pressure oscillations on

Courant grids between triangles with di�erent orientations. This is an immediate

consequence of the fact that all cells have the same area, see the description of the CI

method in Section 4.2.5. In Figure 5.6, the spurious pressure distribution between

triangles with di�erent orientations is clearly visible, and this undesirable result has

caused the anomalous behavior. Note that the error is rather large (up to 14 pressure

units) compared to the total pressure drop (8� 32 = 256 pressure units). The only

coupling between triangles with di�erent orientations is present near solid walls, due

to the truncated gradient stencil, and at the outow boundaries, where the pressure

is prescribed. It can be shown after a rather lengthy and tedious analysis that the

strength of this coupling diminishes for increasing values of r, explaining why the

spurious pressure modes are most prominent at grids of type R8.

Solution of the pressure-correction equation

Solution of the pressure-correction equation is computationally expensive, and this

renders a study of the eÆciency of di�erent linear solvers worthwile. Because the

pressure-correction matrix is generally not symmetric, we cannot use the CG method

and therefore we decided to study the performance of Bi-CGSTAB and GMRES,

see also Section 3.6.1. Information concerning the start vector, stopping criterion

and restarts can be found in the section just mentioned. From Figure 5.4 we deduce

that some o�-diagonal elements stemming from the PI method have the `wrong'

sign, preventing the matrix from being an M-matrix. In order to avoid a bad ILU

preconditioning in such a situation, a so-called lumped ILU preconditioner can be

used (C. Vuik, private communication). This type of preconditioning can be briey

described as follows: (i) de�ne an auxiliary matrix Â in which the o�-diagonal ele-
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Figure 5.7: Average number of solver iterations for ILU preconditioned GMRES as

function of the number of unknowns. The labels 1 and 8 refer to grids of type R1

and R8.

ments with the wrong sign are lumped in a carefully designed way to the diagonal,

and (ii) ILU preconditioning is taken with respect to Â. This amounts up to, in

total, four distinct solver strategies: ILU preconditioned GMRES or Bi-CGSTAB,

and lumped ILU preconditioned GMRES or Bi-CGSTAB. The average number of

solver iterations needed to solve one pressure-correction equation is ns = Ns=Nt.

Here, Ns stands for the total number of solver iterations in the time-stepping pro-

cess, which consists of Nt time steps from initial to steady state. Although the

pressure-correction matrix remains unaltered in the time-stepping process (it only

depends on grid topology), the actual number of solver iterations in a time step

may show large uctuations around ns, especially when ns is in the order of several

hundreds. This is caused by variations in the right-hand side.

The number of GMRES-iterations required to solve the pressure-correction equa-

tion depends strongly on the aspect-ratio r and the number of unknowns C, see

Figure 5.7. We see that grid stretching leads to an enormous deterioration of the

performance of ILU preconditioned GMRES applied to matrices stemming from the

AP method and, especially, the PI method. This is disadvantageous, since in Sec-

tion 5.1.2 we found that the PI method is very accurate. In Figure 5.8 we observe

that using a lumped ILU preconditioning results in a major improvement with re-

spect to using a standard (not lumped) ILU preconditioning for matrices stemming
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Figure 5.8: Number of solver iterations ns for GMRES and Bi-CGSTAB, with ILU

preconditioner and lumped ILU preconditioner, at grids of type R8. The pressure

gradient is computed with the PI method (left �gure) and the CI method (right

�gure). The continuous line in the right �gure corresponds to the Bi-CGSTAB

LUMP line in the left �gure.

from the PI method. On the other hand, as was to be expected, lumping does

not have any e�ect on the results for the CI method. Furthermore, Bi-CGSTAB

requires substantially fewer iterations than GMRES. Note that the CI results corre-

spond more or less to the eÆciency that one would get for a standard Laplacian on

a stretched grid.

Since it is not easy to compare the computational e�ort required for one GMRES

iteration with that for one Bi-CGSTAB iteration, we measured for both methods

the computation time ts to solve one pressure-correction equation. We observe, see

Figure 5.9, that Bi-CGSTAB needs less computing time than GMRES, and that

lumping of the preconditioner, if appropriate, should be employed. The pressure-

correction matrix resulting from the CI method is cheaper (roughly a factor 2 or 3

in CPU time) to solve than the matrix arising from the PI method, but, as stated

above, the CI method has the danger of odd-even decoupling of the pressure.
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5.1.4 Properties of the viscous and Laplacian matrices

Both the viscous and Laplacian operators are symmetric positive de�nite, which

makes it desirable that this holds for the discretization as well. The correspond-

ing matrices turn out to be nonsymmetric, hence the present discretization is not

symmetry-preserving. Closely related, see Appendix C.1, is the property of posi-

tive de�niteness. Because the eigenvalues of positive de�nite matrices are real and

positive, deviations of the eigenvalues in the complex plane from the positive real

axis may be interpreted as a measure for how `close' the studied matrices are to

being positive de�nite. In Figure 5.10c the eigenvalues of the viscous and Laplacian

matrices, the latter with various gradient schemes, as obtained on the grids of Fig-

ures 5.10a-b are shown. All eigenvalues have, as required, a positive real part. The

imaginary part of the eigenvalues of the viscous matrix is much a�ected when the

grid is made less regular. This conclusion holds, to a somewhat lesser extent, also for

the Laplacian matrices computed with the AP, CI and FQ gradient schemes. The PI

method yields, of all methods, eigenvalues that are closest to the positive real axis.

Note that this is in correspondence with the conclusions drawn in Section 5.1.2, e.g.

the PI method is, of the four studied gradient methods here, the most accurate one.

5.1.5 Conclusions

We studied for Poiseuille ow the accuracy of several schemes to compute the pres-

sure gradient. On grids that are made irregular deliberately, the PI is slightly more

accurate than the CI method. The AP method is less accurate than the former

two, and the FQ method yields unacceptable results. On stretched Courant grids,

frequently encountered in the computation of high-Reynolds number ow, spurious
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Figure 5.10: Regular (a) and distorted (b) grid. In (c) the eigenvalues of the viscous

(left �gure) and Laplacian matrices (four remaining �gures) as obtained on the

regular and distorted grid are indicated by Æ and �, respectively.

pressure modes degrade the accuracy of the CI method, making the use of this

method for the computation of incompressible ows questionable. On stretched

Courant grids, all schemes (apart from the CI method) are close to second order ac-

curacy. A disadvantage of the PI method is that it can result in pressure-correction

matrices that are not M-matrices, and as a consequence the resulting pressure-

correction system is expensive to solve. Solving this system should be done by

means of Bi-CGSTAB together with a lumped ILU preconditioner, since GMRES

and standard (not lumped) ILU preconditioning are much more expensive. A numer-

ical study of the symmetry properties of the viscous and pressure-correction matrices

is performed, from which we conclude that the discretized viscous term is a�ected

when the grid is made less regular, while the pressure-correction matrix following

from the PI method remains close to positive de�nite.
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Figure 5.11: Geometry of the backward facing step.

5.2 Backward facing step

A suitable test case for validation of incompressible ow methods is the backward

facing step. The problem de�nition, including information concerning the numerical

experiments we performed, is given in Section 5.2.1. Numerical results for various

Reynolds numbers between 100 and 800 are discussed in Sections 5.2.2 to 5.2.4. The

reattachment length forms the topic of Section 5.2.5, and conclusions are given in

Section 5.2.6.

5.2.1 Problem de�nition

The geometry of the 2D backward facing step is de�ned in Figure 5.11. The ex-

perimental con�guration as used in the experiments of Armaly [2] had the following

dimensions: h = 5.2 mm, H = 10.1 mm, S = H � h = 4.9 mm, l = 200 mm and

L = 500 mm. The Reynolds number is, following Armaly, de�ned as

Re =
urLr

�
; (5.3)

where Lr = 2h is the height of the inlet channel, ur is two-thirds of the mea-

sured maximum inlet velocity, and � = �=� is the kinematic viscosity, which is

� = 1:5� 10�5 m2/s for air at 20oC [31]. For laminar ows, to which we will restrict

ourselves, the velocity at the inlet is given by a parabolic pro�le in the x-direction:

u = u(y) = umax

"
1�

�
y � h=2

h=2

�2#
; 0 � y � h: (5.4)

It is easy to deduce that in the laminar case ur = 2umax=3 corresponds to the

average inlet velocity. Note that in many computations, to name only a few refer-

ences [20, 24, 56], for apparent reasons of simplicity the stepheight S is put equal

to 2h. In other works, for example [33, 57], the geometry is even more simpli�ed by

omitting the entire inlet channel, resulting in a rectangular domain. As far as we

know no one has published a systematic study of how these geometrical di�erences
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inuence the solution.

In order to investigate grid sensitivity of the numerical solution, we de�ne �ve dif-

ferent types of grids. The letters labeling these grids refer to the corresponding

SEPRAN grid generator [95]: G (general), R (rectangular), Q (quadrilateral), T

(triangle) and I (ISNaS), see also Figure 5.12. Grids of type G are smooth unstruc-

tured grids. Grid types Q and R are structured triangular grids, where grids of

type Q are used to investigate sensitivity with respect to arbitrary orientations of

the oblique faces. Grids of type T are less smooth than the other ones, and grids

of type I are structured multiblock grids. Computations on the �rst four grid types

are carried out with the unstructured staggered scheme described in this thesis. The

classical staggered Marker-And-Cell (MAC) scheme [44], which is known to be very

accurate, is used on grid type I. A parameter, to be denoted grid level, indicates

the �neness of the grid. Grid-levels 1, 2 and 3 correspond to 3, 6 and 12 vertices per

unit of length S, respectively, distributed in an equidistant manner at the domain

boundaries. Unless stated otherwise, we locate the inlet at x = �l = �3 (again in

units of S). The length L of the computational domain behind the step is chosen

such that the presence of the step is not felt at the outow boundary, i.e. at the

outow the ow has reverted back to a parabolic pro�le. This consideration has led

to, in units of S: L = 10 for Re = 100, 200 and 300; L = 15 for Re = 389 and 500,

and L = 25 for Re = 600, 700 and 800. We choose, unless stated otherwise, the

same ratio for S=h as in the experimental con�guration of Armaly, i.e. 4.9/5.2. For

L = 10, the number of vertices in the various grids is given between parentheses:

R2, Q2, I2 (919); G2 (1078); T2 (1234); R3, Q3, I3 (3493); G3 (4168); T3 (5144).

Obviously, for larger values of L these numbers increase accordingly.

For the inertia term, central di�erencing is applied, since the numerical di�usion

introduced by an upwind scheme would arti�cially lower the e�ective Reynolds num-

ber. Unless stated otherwise, the path integral method is used for computation of

the pressure gradient. At the inlet, the parabolic velocity pro�le (5.4) is prescribed

and at solid walls the no-slip condition is enforced. At the outow boundary we as-

sume free ow (�nt = �nn = 0); whether this is correct was veri�ed afterwards. We

impose zero velocity and zero pressure as initial condition. All computations were

driven to steady state by time stepping; a relative accuracy of � = 10�2 between two

successive time steps turned out to be suÆcient.

The advantage of using the implicit instead of the explicit Euler scheme for time

stepping can be demonstrated by comparing the stability restriction of the latter

with the actual time steps used in our computations. Since the Navier-Stokes equa-

tions are extremely complicated, some heuristic arguments have to be employed to

arrive at an appropriate estimate for the time-step restriction for the explicit Eu-

ler method. Assume that the Neumann stability restrictions for a one-dimensional

nonstationary convection-di�usion equation apply equally well to the velocity pre-
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Figure 5.12: Grids G1 (a), Q1 (b), R1 (c), T1 (d) and I1 (e), with L = 10 and l = 3.

diction step; the pressure-correction step is thought not to hamper stability. With

a di�usion coeÆcient equal to 1=Re, the following restriction for �t for the explicit

Euler scheme is derived (see also Section 5.8 of [129]):

�t � minf�ti;�tvg; �ti = 2=u2Re; �tv = �x2Re=2; (5.5)

where �ti and �tv represent the time-step restriction stemming from the inertia and

the viscous term, respectively. From these relations we deduce that for Re > 2=u�x

the inertia term limits stability; for Re < 2=u�x it is the viscous term that restricts

the allowable time step. In the computations for the backward facing step, the

values for u, Re and �x are always such that the inertia term would limit stability

if the explicit Euler scheme were used. With u � 1, the time step for the explicit

Euler scheme should be chosen such that �t < 2=Re, which ranges from 2:0� 10�2

to 2:5 � 10�3 for Reynolds numbers varying from 100 to 800. The time steps we

used with the implicit Euler scheme are of the order 1, i.e. two to three orders of

magnitude larger. For Re = 100 and Re = 389, the number of time steps required

to arrive at a converged solution is about 20 and 50, respectively, for �t � 2.

5.2.2 Solution for Re = 100

The streamlines of the converged solution for Re = 100 are shown in Figure 5.13a.

The computed values for the reattachment length, i.e. the horizontal distance be-
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Figure 5.13: Solution for Re = 100. Streamlines computed on grid G3 (a), and the

horizontal velocity, in units of ur, at several vertical intersections of the domain (b).

The line corresponds to the experimental results of Armaly, and the symbols refer

to the grid used: Æ: G2; �: Q2; �: R2; 4: T2; O: I2.
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Table 5.1: Computed values for the reattachment length, in units of S.

Re Grid-level G Q R T I

100 2 2.7 2.6 2.8 2.4 2.5

3 2.8 2.7 2.8 2.6 2.7

389 2 7.6 6.9 8.0 6.2 7.3

3 7.9 | 8.0 | 7.5

tween the step and the point where the recirculation zone ends, are collected in

Table 5.1. Especially those obtained on grids of type G and R are close to 3:0S, the

experimental value. This was to be expected since grid types G and R are smoother

than the other ones; apparently grids of type I contain too few cells to match the

accuracy attained at grids of type G and R.

The measured and computed velocity in the x-direction at several vertical inter-

sections of the domain are depicted in Figure 5.13b. The results at grids G2 and

R2 seem to be the most accurate, although di�erences between the various results

are small and a good correspondence between numerics and experiment is already

present on grid-level 2. The velocity pro�les computed on grids with grid-level 3

are not shown, but it suÆces to state that they are even closer to the experimental

results.

In addition, we studied the use of the various gradient schemes. Application of the

AP, FQ, CI and PI method for computation of the pressure gradient leads hardly to

any di�erences between the resulting steady state solution on grids G2 and R2. On

grid Q2, the isobars computed with the AP, CI and FQ method are virtually the

same, but slightly less accurate than the isobars obtained with the PI method, as we

derived from comparison with solutions obtained at �ner and smoother grids. On

grid T2, the CI method does not converge and the FQ method yields less accurate

results while needing more computation time than the AP and PI method. That it

is best to use the PI method is in agreement with conclusions drawn from the study

of the Poiseuille ow, see Section 5.1.

5.2.3 Solution for Re = 389

The streamlines of the converged solution on grid G3 are shown in Figure 5.14a.

Computed values for the reattachment length are given in Table 5.1, and the exper-

imental value is 8:3S. On grids Q3 and T3 no computations were done, because,

in view of the results on grids Q2 and T2, the accuracy is expected to be less than

on grids G, I and R. It can be concluded from this that computation of the in-

ertia term is by far more sensitive to grid irregularities than that of the pressure

gradient and viscous operator, recalling that these irregularities made themselves
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Figure 5.14: Solution for Re = 389. Streamlines computed on grid G3 (a), and the

horizontal velocity, in units of ur, at several vertical intersections of the domain (b).

The line corresponds to the experimental results of Armaly, and the symbols refer

to the grid used: Æ: G2; �: Q2; �: R2; 4: T2; O: I2.
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less felt in ows with a smaller Reynolds number. Rida et al. [91] obtain for the

same Reynolds number a reattachment length equal to 7:65S on a grid consisting

of 2240 cells that is �ne near the inlet and stretched near the outlet. Thomadakis

and Leschziner [103] use a structured triangular grid consisting of 21,804 cells. They

claim that the experimental and the computed reattachment point lie at 3:7S and

3:65S respectively; these must be typing mistakes. Pro�les of the velocity at some

vertical intersections of the domain are shown, for grid-level 2, in Figure 5.14b. We

observe a good agreement between theory and experiment at grids of type G, R and

I; the results at grids Q and T are less accurate.

5.2.4 Solution for Re = 500, 600, 700 and 800

As we found out the steady state solutions obtained grid-level 2 are not accurate

for Re > 400 because of the coarseness of the grid. On the other hand, for higher

Reynolds numbers it becomes increasingly more diÆcult to reach steady state, es-

pecially on �ne grids. This is usually attributed to the fact that the ow becomes

three-dimensional [2] for Re > 400, questioning the existence of a two-dimensional

steady state for these Reynolds numbers. It turns out that for Re � 600 we could

not drive the ow to steady state on grids of grid-level 3 (G3, R3 and I3), not even

after restarting with the solution of Re = 500 as initial condition. In order to get rid

of the singularity at the step, we decided to use the domain as de�ned for example

in the computations of Kim and Moin [57], Gartling [33] and Sohn [101]. The two

relevant di�erences between this domain, which we label with (C), and the experi-

mental one are: (i) in domain (C), the inlet is located on top of the step, resulting

in a rectangular domain, and (ii) in domain (C), the stepheight S is taken equal to

h, the height of the inlet. A triangulation similar to that of type G3 is taken, result-

ing in a grid containing 6999 vertices. On the same grid, no steady state solution

could be obtained for Re = 700, not even after restarting from converged solution

at Re = 600.

5.2.5 Reattachment length

As we saw above, the reattachment length varies strongly with the Reynolds number,

and its computation is very sensitive to grid irregularities. Computed values for the

reattachment length on grids of type I3, R3 and G3 (both at the experimental

geometry and geometry (C)) are shown, together with experimental data from [2]

and numerical results from Kim and Moin [57], in Figure 5.15. Note that it is hard

to get accurate quantities from [2, 57] since no tabular results were given; graphical

results had to be scanned optically. The results of Kim and Moin are obtained,

on geometry (C), by means of the MAC scheme on a grid consisting of 101 � 101

grid points, with the outstream boundary located at x = 30S. Up to Re = 300,

all results do not di�er signi�cantly. For larger values of Re, deviations start to
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Figure 5.15: Reattachment length versus Reynolds number.

appear. The di�erences between the experimental results and the numerical results

are usually attributed to the fact that the ow becomes three-dimensional for values

of Re larger than 400, see [2]. The small di�erences between the experimental and

the computational (C) geometry can be felt from Re � 400. Only for Re = 600, the

changes between the Kim and Moin result and the G3 (C) result become signi�cant.

Virtually no di�erences between the G3 and R3 solution can be distinguished. This

is desirable, since grids of type R3 are structured triangular grids (hence accurate),

while type G3 is a `true' unstructured grid. The less accurate MAC scheme results at

grid I3 must be caused by the smaller amount of grid cells and faces for a given node

distribution at the boundaries. Indeed, on a �ner grid better results are obtained

(results not shown).

5.2.6 Conclusions

Computations that we did for the backward facing step using the unstructured stag-

gered scheme are compared with other, both experimental and numerical, results.

On relatively coarse grids (grid-levels 1 and 2), steady state solutions were obtained
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over the whole studied range in Reynolds numbers (100 � Re � 800). The Euler

implicit scheme allows for time steps which are in the order of 102 or 103 larger than

the time-step restriction for the explicit Euler scheme. For values of Re up to 300,

di�erences between numerical and experimental results are small, demonstrating

that the viscous and pressure gradient operator perform satisfactorily on relatively

coarse and non-smooth grids. For higher Reynolds numbers, the grids need to be

�ne and smooth in order to come close to other published results. Hence, the inertia

term is by far more sensitive to grid irregularities than the pressure and viscous

term, while, in addition, it becomes increasingly diÆcult to arrive at a stationary

solution. For �ne grids, the ow could not be driven to steady state for Re � 700,

not even if the steady state solution of Re = 600 was used as initial condition.

5.3 Lid-driven cavity ow

The lid-driven cavity ow has served over and over again as a model problem for

testing and evaluating numerical techniques. The problem de�nition is given in

Section 5.3.1, and numerical results are discussed in Section 5.3.2. A comparison

with results obtained using other unstructured grid methods as presented in the

literature are, together with some conclusions, gathered in Section 5.3.3.

5.3.1 Problem de�nition

The lid-driven cavity ow is a laminar incompressible ow in a square cavity with

a top wall that moves with a uniform velocity in its own plane. At all walls, the

no-slip condition is enforced. The Reynolds number Re is based on the velocity of

the top wall and the size of the cavity. The selected Reynolds numbers are 100, 400,

1000, 3200, 5000, 7500 and 10,000. To minimize CPU time and to improve initial

conditions for the high-Reynolds number cases, a restart procedure with incremental

increase of Re is used. In the case of Re = 100, the solution of Stokes ow (Re = 0)

is chosen as initial condition. The relative stationary accuracy, see equation (3.1), is

put to 10�2. Central di�erencing for the inertia term and the path integral method

for the pressure gradient are employed. Three grids, with n = 30, 60 and 120

nodes at each wall, are used. The size of the elements is roughly the same over the

domain, see Figure 5.16. The coarse grid (n = 30) has 2058 cells, 3147 faces and

1090 vertices, the grid with n = 60 has 8374 cells, 12,681 faces and 4308 vertices,

and the �ne grid (n = 120) has 33,492 cells, 50,478 faces and 16,987 vertices. The

solutions of Ghia et al. [34], who used a multigrid �nite di�erence method for the

streamline-vorticity formulation with a �ne (257 � 257 grid points) and uniform

grid, are generally considered to be of benchmark quality. Another thorough study

of the lid-driven cavity is presented in Sohn [101], who used a consistent integration

penalty �nite element method withQ2=P1 (nine-node biquadratic velocity and linear
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Figure 5.16: Coarse grid used for the lid-driven cavity ow, with 30 nodes at each

wall.

discontinuous pressure) �nite elements on a nonuniform grid consisting of 40 � 40

rectangular elements (81� 81 grid points).

5.3.2 Results

Figure 5.17 shows the velocity pro�les for the horizontal velocity along the vertical

line through the geometric center. The thinning of the wall boundary layers with

increasing Re is evident for these pro�les, although the rate of thinning is very slow

for Re � 5000. The near-linearity of the velocity pro�le in the central core of the

cavity is indicative for the uniform vorticity region that develops here for large Re.

We observe that for up to Re = 1000, a good correspondence between the velocity

pro�les at the coarse grid and the benchmark result is obtained. At the grid with

n = 60, a good agreement holds up to Re = 5000. The �ne grid solution remains

accurate up to Re = 10; 000.

The streamlines, i.e. contourlines of the streamfunction  , for Re = 1000 at the

coarse grid and for Re = 10; 000 at the �ne grid are depicted in Figure 5.18. As

is well-known, the solutions exhibit additional counter-rotating vortices in or near

the cavity corners as Re increases. The letters P, T, B, L and R denote primary,



Chapter 5. Results for viscous incompressible ows 107

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
 Re = 100 

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
 Re = 400 

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
 Re = 1000 

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
 Re = 3200 

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
 Re = 5000 

 u 

 y
 

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
 Re = 10000 

Figure 5.17: Comparison of horizontal velocities along the vertical centerline for

several Reynolds numbers. Notation: n = 30 (� � � ); n = 60 (- -); n = 120 (|); Ghia

et al. (Æ).
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 (a)  (b)

Figure 5.18: Streamlines for Re = 1000 (a), obtained at the coarse grid, and Re =

10; 000 (b), obtained at the �ne grid.

top, bottom, left and right respectively, and the numerical subscript denotes the

hierarchy of secondary vortices. For example, in Figure 5.18a the vortices P, BL1,

BR1 and BR2 are visible, while in Figure 5.18b the vortices P, BL1, BL2, BR1, BR2

and TL can be distinguished. For Re � 1000, the location of the centers of the

vortices as computed on the coarse grid is less than 1 percent removed from the

coordinates given in [34]. At the grid with n = 60, this close correspondence holds

for Re � 3200, and at the �ne grid this is the case for the complete range of studied

Reynolds numbers. In [34] it is stated that the values of  at the vortex centers

are more sensitive to the meshwidth than the velocity pro�les. In Table 5.2, the

extreme values of the streamfunction at various vortices inside the cavity are given,

including the values listed in [34, 101]. As usual for this testcase, we put  = 0 at

the boundaries. The �ne grid solution shows a good agreement with the benchmark

solution of Ghia. The accuracy of the solution of Sohn (81 � 81 grid points) is

somewhere between that of the n = 60 and n = 120 solutions.

5.3.3 Discussion and conclusions

Many of the incompressible ow solvers on unstructured grids that are described in

Section 2.4 have been used to solve the lid-driven cavity problem, and we will discuss

their results. In [56], the streamlines of the solution for Re = 1000, obtained on a

grid consisting of 2450 triangles with a second order upwind scheme, are shown. In

order to resolve boundary layers near the wall, the grid is clustered to the walls, while
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Table 5.2: Extreme values of the streamfunction at various vortices inside a lid-

driven cavity.

Re Vortex (unit) n = 30 n = 60 n = 120 Ghia [34] Sohn [101]

100 P (10�1) �1:01 �1:03 �1:03 �1:03 �1:02
BR1 (10

�5) 2.54 1.44 1.34 1.26 1.16

BL1 (10
�6) 2.10 2.04 1.75 1.75 1.69

400 P (10�1) �1:09 �1:13 �1:14 �1:14 �1:12
BR1 (10

�4) 5.63 5.52 6.55 6.42 6.13

BL1 (10
�5) 1.55 1.11 1.23 1.42 1.32

1000 P (10�1) �1:09 �1:16 �1:19 �1:18 �1:15
BR1 (10

�3) 1.26 1.42 1.75 1.75 1.63

BL1 (10
�4) 2.01 2.06 2.26 2.31 2.17

3200 P (10�1) �1:06 �1:15 �1:24 �1:20 �1:16
BR1 (10

�3) 1.85 1.92 2.86 3.14 2.60

BL1 (10
�4) 10.1 9.58 10.3 9.78 10.4

TL (10�4) 15.0 4.33 7.53 7.28 6.06

5000 P (10�1) �1:05 �1:14 �1:24 �1:19 �1:15
BR1 (10

�3) 1.75 2.09 2.99 3.08 2.80

BL1 (10
�3) 1.79 1.10 1.26 1.36 1.25

TL (10�3) 1.85 0.97 1.48 1.46 1.29

7500 P (10�1) �1:04 �1:13 �1:24 �1:20 �1:13
BR1 (10

�3) 0.64 1.94 2.99 3.28 2.86

BL1 (10
�3) 2.66 1.28 1.38 1.47 1.55

TL (10�3) 0.95 1.86 2.14 2.05 1.83

10,000 P (10�1) �0:99 �1:10 �1:23 �1:20 �1:12
BR1 (10

�3) 0.77 1.63 2.80 3.42 2.80

BL1 (10
�3) 3.17 1.34 1.56 1.52 1.37

TL (10�3) 0.33 2.60 2.56 2.42 2.18
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the triangular cells are formed by subdividing rectangular cells. A good agreement

with the solution of Ghia is reported. In [24], a uniform triangular grid used for

Re = 100 and 400 consists of 1654 nodes, and of 14,996 nodes for Re = 3200. For

Re = 100 and 400, the velocity pro�les obtained from the central scheme correspond

closely to the results of Ghia, but the BL1 and BR1 vortices seem not present in

the streamline plots. A less good agreement with the results of Ghia, both for the

velocity pro�le as the streamlines, is reported for Re = 3200. The results presented

in this thesis are closer to the benchmark solution. A grid re�nement study on

uniform triangular grids for Re = 400 is given in [53]. The velocity pro�le agrees well

with the benchmark solution, but the value for the streamfunction in the center of

primary vortex is far o� the value  = �0:114 as obtained by Ghia, e.g.  = �0:092
for n = 30 and  = �0:105 for n = 60. The present unstructured staggered grid

method yields results that are closer to the benchmark solution, see Table 5.2. A

good agreement with the benchmark solution for Re = 1000 is reported in [60] with

the use of 10,240 control volumes. In [103] a grid re�nement study using quadrilateral

and triangular grids is described. For Re = 400, a 55 � 55 quadrilateral grid (2916

cells) clustered towards the walls does not yield accurate solutions. Subdivision of

each rectangle in this grid into four triangles (11,664 cells) gives a grid on which

results are obtained that, in our opinion, still need improvement near the walls.

A 120 � 120 quadrilateral grid (14,161 cells) clustered towards the walls leads to

unacceptable results for Re = 3200. Repetition of the subdivision strategy just

mentioned results in a grid with 56,644 triangles, and on this very �ne grid close

agreement with the benchmark data is obtained. Our method is, for a given grid

size, more accurate. The covolume method is applied on a grid consisting of 1016

triangles to solve the driven cavity problem for Re = 400, resulting in a reasonable

agreement, see [41]. The upwind scheme is used for Re = 4000, since the central

scheme is unstable for this Reynolds number. The method fails to resolve the TL

vortex, which is present already at Re = 3200.

It can be concluded that the present unstructured staggered scheme yields very

accurate solutions for the lid-driven cavity ow.



Chapter 6

Results for inviscid ows

In this chapter, numerical results for inviscid ows obtained with the unstructured

staggered scheme described before are given. Attention will be paid to the accuracy

of the spatial discretization and to the eÆciency of the sequential update procedure

for fully compressible ows (FC) and the Mach-uniform approach (MU). Unless

stated otherwise, the following options are taken as default: the control volume for

the momentum equation consists of two triangles; the �rst order upwind scheme is

employed for all equations; the convecting velocity in the inertia term is computed

in a central fashion, see (4.12); the pressure gradient is evaluated by means of the

path integral method; time stepping is carried out using the implicit Euler method

with a �xed time step; defaults for the linear solver as discussed in Section 3.6 are

used; the primary energy variable in the FC approach is �H, and method 1, see

Section 4.6.2, is employed to approximate vector quantities in cell centers. Accu-

racy of the approximation of the inertia term is studied in Section 6.1 by computing

solutions to the Burgers equation. In Section 6.2 the accuracy of our scheme for

Riemann problems is compared with analytical solutions and solutions obtained by

standard �rst order methods for compressible ows. Furthermore, Riemann prob-

lems o�er a nice opportunity to study various discretization schemes, since many

important ow phenomena that occur in inviscid ows are present while there is no

ambiguity concerning the exact solution. A grid re�nement study for incompress-

ible, subsonic and supersonic ow in a channel with bump is performed and some

properties of the inertia matrix are investigated in Section 6.3. Four distinct ows

(low subsonic, subcritical, transonic and supersonic) around a NACA 0012 airfoil

are computed in order to compare the Mach dependence of the performance of the

FC and MU approach, and this forms the topic of Section 6.4. Supersonic ow over

a circular blunt body with a freestream Mach number equal to 4.0 is discussed in

Section 6.5. In nozzles, large subregions with incompressible ow as well as large

subregions with compressible ow can coexist. This poses a problem for standard

compressible ow solvers. Results given in Section 6.6 for various contraction ratios
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Figure 6.1: Grid on which the Burgers equation and Riemann problems are solved.

demonstrate again the Mach-uniform accuracy and eÆciency of the MU approach.

Conclusions are gathered in Section 6.7.

6.1 Burgers equation

To test the accuracy of the �rst order upwind scheme (4.18) for the inertia term, we

apply it to a simple ow case in which the pressure and density are constant and

the ow is horizontal: u = (u; 0), with u = u(x; t), so that e�ectively we are solving

the inviscid Burgers equation:

@u

@t
+
@u2

@x
= 0: (6.1)

Unless speci�ed otherwise, all �gures in this section and Section 6.2 are taken along

the centerline, having 70 faces of uniform size, of the grid shown in Figure 6.1. A

�ne grid similar to this one, with 550 faces along the centerline, is used to study

grid convergence. This grid, to be referred to as the �ne grid, is not shown. We

will present numerical results to (6.1) for two di�erent initial conditions. In Section

6.1.1 the solution consists of a uniformly moving shock wave. The solution to the

problem given in Section 6.1.2 contains a shock wave and an expansion fan.

6.1.1 Solution with a shock wave

For an initial condition given by

u(x; 0) =

(
ul if x � x0;

ur if x > x0,
(6.2)

where ul and ur are constant states and ul > ur, the genuine weak solution of (6.1)

is

u(x; t) = u(x� x0 � st; 0); s = ul + ur; (6.3)

which states that the initial discontinuity propagates undisturbed with speed s. We

take ul = 1, ur = 0:5 and x0 = 0:5. The time step follows from speci�cation of

the Courant number, de�ned in Appendix A.4.2. In the grid of Figure 6.1, the
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Figure 6.2: Numerical solutions to the Burgers equation with a shock wave. Results

obtained with di�erent velocity interpolation methods with 70 (dashed line) and

500 (continuous line) faces along the centerline (a). Results obtained with central

approximation of the velocity and di�erent Courant numbers on the coarse grid (b).

smallest value for �x is 4:3 � 10�3, and in the �ne grid it is 4:4 � 10�4. The ve-

locity interpolation methods 1 (central interpolation) and 2 (upwind interpolation)

for the convecting velocity in the inertia term, see page 56, lead at t = 0:2 and a

Courant number equal to 1.0 to the results shown in Figure 6.2a. Recall that, for

the convecting velocity, the �rst order upwind scheme (4.18) is applied in all cases.

We conclude that both methods lead to the correct shock speed and that upwind

approximation of the convecting velocity (method 2) as done in expression (4.14)

introduces more numerical di�usion than method 1, the central velocity interpola-

tion method, see equation (4.12). The overshoot, which presence could be expected

since the discretization of the inertia term is not monotone, see Appendix A.3, is

small and remains small even on �ne grids. This overshoot grows, as illustrated

in Figure 6.2b, with increasing Courant number. This is not peculiar because also

standard compressible ow methods loose their monotonicity preserving properties

for Courant numbers larger than a certain threshold. Since the unstructured stag-

gered grid method does not consider the momentum equations for each Cartesian

coordinate direction separately, our method considers each ow as a truly 2D ow,

even though the exact solution for this problem is 1D. As a consequence, there are

small uctuations in v, the velocity in the y-direction. The largest value for v is

8� 10�3 for velocity interpolation method 2, and 6� 10�3 for interpolation method

1. These variations, smaller than a percent of the value of ul, can be considered

as very small. Note that these uctuations inuence on their turn the velocity in

the x-direction, and this explains the presence of the strange feature in the shock

as computed by velocity interpolation 2 on the �ne grid. All computations in the

remainder of this thesis are carried out with central interpolation (method 1) of the
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Figure 6.3: Numerical solutions to the Burgers equation with a shock wave and

expansion fan for various Courant numbers (a), and a contourplot of u (b).

convecting velocity in the inertia term, since upwind approximation (method 2) of

this term is considered to be too dissipative.

6.1.2 Solution with a shock wave and expansion fan

For the following initial condition:

u(x; 0) =

8><
>:
ul if x � xl;

um if xl < x < xr;

ur if x � xr,

(6.4)

with ul < um and um > ur � 0, the vanishing viscosity solution of the Burgers

equation is given by:

u(x; t) =

8>>><
>>>:
ul if

(x�xl)

t
� ul;

(x�xl)

t
if ul <

(x�xl)

t
< um;

um if um � (x�xl)

t
and x < (st+ xr);

ur if x � (st+ xr),

(6.5)

where s = um + ur. Between the constant states ul and um, for t > 0 an expansion

fan is present. We take the numerical values ul = �0:5, um = 0:5, ur = 0, xl = 0:3

and xr = 0:6. The analytical and numerical solution, computed on the grid of

Figure 6.1, at t = 0:2 are depicted in Figure 6.3. We observe that the expansion

fan is smeared whereas the shock is captured in a few cells at the correct location.

The overshoot right before the shock increases, as was also observed in Section 6.1.1,
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for increasing Courant numbers. The change in sign of u in the rarefaction wave

does not introduce a glitch as for example the Godunov scheme does, see Figure 5.15

of [104]. The contourlines of u are, as they should, vertically aligned to a satisfactory

degree.

Even though it is not desirable that monotonicity is lost in the computation of

solutions to a nonlinear scalar conservation law, this does not imply that wiggles

will occur in results obtained for the system case, e.g. for the Euler equations. To

investigate this, we have applied our scheme to various so-called Riemann problems,

and this will be discussed in the next section.

6.2 Riemann problems

Numerical schemes applied to the Euler equations should converge to the genuine

weak solution, often referred to as the entropy solution. This solution represents the

vanishing viscosity solution of the physical problem. As far as we know, only for the

Osher scheme [28, 83, 84] convergence to the correct weak solution has been proven,

provided that the numerical solution converges. Also for our scheme no convergence

proof is available, hence we validate it by means of numerical experiments. For an

important kind of test case for compressible ow methods, namely the Riemann

problem, we will compare the numerical solution resulting from the unstructured

staggered method with the exact solution and with solutions computed with some

examples of standard compressible ow schemes. The Riemann problem consists of

solving the 1D Euler equations for initial conditions of the following form:

U(x) =

(
Ul if x < x0;

Ur if x > x0.
(6.6)

In other words, the initial state vector U(x) = [u(x); p(x); �(x)] consists of two

constant states Ul = [ul; pl; �l] and Ur = [ur; pr; �r], separated by an initial disconti-

nuity located at x0. For all test cases we used x0 = 0:5 the grid shown in Figure 6.1,

which is bounded by x = 0 and x = 1. Exact solutions for Riemann problems can

be determined using solution procedures that are discussed in several textbooks, see

for example Chapter 4 of [104] for a thorough discussion. Note that the staggered

scheme, because of the arbitrary directions of the normal vectors, considers these

1D Riemann problems as truly 2D ows. The Courant number, de�ned in (A.30)

and with the maximum signal speed taken from the analytical solution, is, unless

stated otherwise, put to 1.0.
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Figure 6.4: Numerical solutions to the test case of Lax at t = 0:1, computed with

various primary energy variables (a), methods to compute the kinetic energy (b)

and pressure gradient schemes (c).

6.2.1 Choices with respect to energy variable and interpola-

tion methods

Three choices concerning the discretization are studied by means of comparing nu-

merical solutions to the test case of Lax, to be speci�ed in Section 6.2.3.

Choice of primary energy variable in the FC approach

In the FC (fully compressible ow) approach, four distinct primary energy vari-

ables, namely �H, �E, H and h, can be selected. The steady state solution does

not depend on which variable is used, but unsteady problems or the route to steady

state are a�ected by this choice. It turns out that results obtained with the several

variables for a Courant number equal to 1 are hardly distinguishable. Results for
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� = 2:5 are shown in Figure 6.4a. The results using H as primary variable are

unacceptable, and using h leads even to unphysical results in the form of negative

densities. The solutions obtained with �H and �E are hardly distinguishable. Since

the energy equation with �H as primary variable is somewhat more straightforward

to discretize and easier to implement, we prefer �H as primary energy variable in

the FC approach. In the MU (Mach-uniform) approach such a freedom of choice of

primary variables does not exist.

Choice of method to compute kinetic energy

In Section 4.6.2 four di�erent ways to evaluate the kinetic energy in cell centers

are introduced. Only the �rst two methods are actually implemented, and their

accuracy is studied here. In order to keep the stencil for the Mach-uniform pressure-

correction equation relatively small, only method 1 (the least squares approach) is

suitable for the MU approach. For the FC approach, both methods can be applied

equally well. Results depicted in Figure 6.4b, with � = 2:2, show that method 1

is slightly more accurate than method 2 (linear interpolation of the reconstructed

momentum vector). Hence, from now on method 1 is used.

Choice of pressure gradient scheme

In Sections 5.1 and 5.2, among others the accuracy of four schemes to compute the

pressure gradient in incompressible ows is investigated. It turned out that it is best

to use the path integral (PI) method. For the test problem discussed in this section,

these four schemes yield, as can be derived from Figure 6.4c, almost identical re-

sults. Also on grids that are made deliberately even more rough, we found out that

this remains the case. Note that even though the PI method is not conservative,

see the discussion in Appendix D.2, this apparently does not lead to wrong shock

speeds. All results shown from now on are computed using the PI method, since

in incompressible ows it is the method of choice and in compressible ows it is as

accurate as the other proposed schemes.

6.2.2 Sod's shocktube problem

The Riemann problem is called a shocktube problem when ul = ur = 0. Such a

problem can be realized experimentally by removing an impermeable membrane in

an in�nitely long 1D tube where gases at both sides are initially at rest with di�er-

ent pressure and density. The dimensionless initial conditions for Sod's shocktube

problem [100] are:

Ul = [ul; pl; �l] = [0; 1; 1]; Ur = [ur; pr; �r] = [0; 0:1; 0:125]: (6.7)

With max(u + a) = 2:19 for the exact solution and putting � = 1 this leads to

�t = 2:0� 10�3. Numerical solutions of the density resulting from the FC and MU

approach are together with the analytical solution shown in Figure 6.5. We have also

included results of the Roe [92] and AUSM [70] scheme, obtained on a 1D equidistant
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Figure 6.5: Sod's shocktube problem. Comparison of numerical results with the

exact solution for the density at t = 0:15. For clarity, only half of the solution points

are shown.

grid with the same number (70) of grid points as we have on the centerline of the 2D

unstructured grid. We see that our schemes converge to the genuine weak solution

and that spurious wiggles are absent. The contact discontinuity is, as is common

for �rst order upwind methods, smeared. This is due to the linear character of

the contact discontinuity: characteristics on either side of the discontinuity run

parallel to it. Since characteristics converge into shocks, this produces a steepening

e�ect resulting in a crisp shock resolution. We observe that both approaches on 2D

unstructured staggered grids have similar accuracy as the well-established colocated

Roe and AUSM scheme on 1D equidistant grids. Due to the two-dimensional nature

of our scheme, the maximum value of the velocity in the y-direction is not equal

to zero, but remains everywhere (in absolute value) smaller than 0.02. We consider

this value acceptable, since it is only two percent of the maximum value of the

velocity in the x-direction. The contourlines of the several variables are, as they

should, vertically aligned; see also Figure D.3a and the accompanying discussion in

Appendix D.3.
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Figure 6.6: Test case of Lax. Comparison of numerical results with the exact solution

for the density at t = 0:14. For clarity, only half of the solution points are shown.

6.2.3 Test case of Lax

Frequently used is the test case of Lax [67], for which the dimensionless initial state

is speci�ed by

Ul = [ul; pl; �l] = [0:698; 3:528; 0:445]; Ur = [ur; pr; �r] = [0; 0:571; 0:5]: (6.8)

Using the exact solution, the maximumwave speed turns out to be max(u+a) = 4:69,

leading to �t = 1:0 � 10�3 for � = 1. The main diÆculties in computing solutions

to this test case are the strong contact discontinuity and shock, which are also

relatively close to each other. Results from the FC and MU approach, the Roe and

AUSM scheme are, together with the analytical solution, shown in Figure 6.6. We

see that our schemes converge to the correct weak solution. As already observed in

the results for Sod's shocktube problem, the contact discontinuity is smeared while

the shock resolution is crisp. Due to the use of relatively few grid points and the

small distance between the contact discontinuity and the shock, the density does

not reach its maximum value. Note that the staggered grid approach has similar

accuracy as the well-established Roe and AUSM scheme.
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6.2.4 Mach 3 test case

In the preceding two test cases, the ow remained subsonic. Supersonic ow may
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Figure 6.7: Mach 3 test case. Comparison of numerical results with the exact solution

for the density at t = 0:081. For clarity, only half of the solution points are shown.

bring additional numerical diÆculties. In the supersonic ow problem posed by

Arora and Roe [3], which we will call the Mach 3 test case, the Mach number rises

to a value of approximately 3.0. For this problem the Roe scheme violates the entropy

condition by replacing the expansion fan with an expansion shock in the sonic point.

A sonic entropy �x, as introduced for example by Harten [45], is necessary to cure

this problem, but a sonic glitch remains. Also results from the Godunov, Van Leer,

AUSM and Osher schemes give rise to sonic glitches at sonic points, see for example

Figures 6.8, 8.4, 8.5 and 12.9 in [104]. The dimensionless initial left and right states

for the Mach 3 test case are de�ned by:

Ul = [ul; pl; �l] = [0:92; 10:333; 3:857]; Ur = [ur; pr; �r] = [3:55; 1; 1]: (6.9)

The maximum wave speed in the ow, using the exact solution, is max(u+a) = 5:00,

resulting in �t = 9:0�10�4 for � = 1. The exact and numerical solution at t = 0:081
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are shown in Figure 6.7. For Roe's scheme, Harten's sonic entropy �x with � = 0:5,

was employed; this results in a clearly visible sonic glitch at x � 0:5. Also AUSM

give rise to a, somewhat smaller, sonic glitch at this location. Note that, again, the

staggered schemes converge to the entropy solution, but without a sonic glitch. The

ow is dominated by a huge expansion fan followed by a contact discontinuity and

a small shock which, as one observes, are hard to capture accurately using a �rst

order scheme. Of the four considered schemes, AUSM seems to capture the contact

discontinuity best. The Roe scheme and the staggered FC approach have similar

accuracy concerning resolution of the contact discontinuity, while the MU approach

appears to be slightly more di�usive.

6.2.5 Riemann problems on a less smooth grid

The Riemann problems discussed in the three previous sections have been recom-

puted on the grid depicted in Figure 6.8a. The aim is to study the accuracy on a

grid that is made irregular deliberately. The MU formulation is used for this pur-

pose. The number of grid points in the x-direction is approximately 100, and the

Courant number, based on the minimal meshwidth, is put to 1.0 for all examples.

For comparison, results computed on a Courant grid with 100 grid points in the

x-direction and triangular cells with angles equal to 90o and 45o are included. In

Figure 6.8b the numerical and analytical solutions for the density are shown. We

observe that the quality of the numerical solutions does not degrade when the grid

is distorted. This is, of course, a strong feature of the present method.

6.2.6 Stationary contact discontinuity and slip ows

As pointed out by Van Leer [118], a signi�cant defect of the van Leer scheme is the

fact that stationary or slowly moving contact discontinuities are not resolved satis-

factorily: they are approximated by a smooth pro�le that di�uses as time progresses.

We wonder whether the staggered scheme has this defect. The initial condition for a

stationary contact discontinuity is given by: ul = ur = 0, �l 6= �r and pl = pr. It is

trivial to see that, since the discretization of the convection terms in the staggered

scheme depends on the velocity, the stationary discontinuity remains una�ected in

the computation and does not smear. This is also observed in numerical experi-

ments.

Now we turn to study the crosswind di�usion for a slip ow. States 1 and 2, indicated

in Figure 6.9a, are separated at y = y0, and are given by:

[u1; p1; �1] = [2
p
2; 1; 1=2]; [u2; p2; �2] = [0:4; 1; 1]; (6.10)

where u is the horizontal velocity component, and the horizontal velocity component

is zero. The Mach numbers in states 1 and 2 equal M1 = 0:8 and M2 = 0:4. On the

grid that is shown in Figure 6.9b, the solution is computed using the exact solution
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Figure 6.8: Grid (a) and the solution for the density (b).
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Figure 6.9: Speci�cation of the domain (a) and the grid used (b) for the study of

slip ow. Mach number isolines for y0 = 0:5 (c) and y0 = 0:55 (d).
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as initial condition. Note that the horizontal bold line in the grid is located at

y = 0:5. The resulting Mach number isolines of the computed stationary solution

for y0 = 0:5 and y0 = 0:55 are given in Figures 6.9c and 6.9d. We observe that the

solution is more smeared when the initial discontinuity is not aligned with a grid

line, and that the resolution is comparable to that of other schemes, see [62].

6.3 Flow in a channel with a bump

Flow in a channel with a bump was chosen to evaluate the code for computation

of inviscid steady state solutions. In Section 6.3.1, special attention is given to

the inertia term in incompressible ow. Examples of subsonic (including a grid

re�nement study) and supersonic ow are addressed in Sections 6.3.1 and 6.3.2.

6.3.1 Incompressible ow

We consider the incompressible, inviscid ow in a channel with a 10% circular arc

bump. The aim is to demonstrate clearly the di�erences between the �rst order

upwind and central di�erence scheme for the momentum equation. The coarse grids

(on �ne grids the di�erences would, of course, be much smaller) used for this pur-

pose are denoted by `rectangular' and `general', see Figures 6.10a and 6.10b. At the

upper and lower walls the freeslip condition is applied, at the inow boundary (on

the left) the velocity is prescribed and at the outow boundary the pressure is given.

Freestream ow is taken as initial condition, and a relative accuracy equal to 10�2 is

used to compute the stationary solution. From the isobar patterns in Figures 6.10c{f

one deduces that the central scheme, as opposed to the �rst order upwind scheme,

hardly introduces arti�cial di�usion. As discussed in Appendix C, it is desirable

that the inertia term C = C(u) is discretized in a symmetry-preserving fashion, i.e.

C = �CT . Hence, it is desirable that the eigenvalues of C are imaginary, or, if that

is not the case, have at least a positive real part in order to avoid instability. In

Figure 6.10g the eigenvalues of C(~u), for central and �rst order di�erences, on the

rectangular and general grid, are depicted. Here, ~u represents the stationary solu-

tion. The eigenvalues have a non-negative real part, hence the numerical solution is

stable; this is con�rmed by letting the computation run for a long time.

The eigenvalues corresponding to the �rst order upwind discretization have a large

real part, expressing its di�usive character. The eigenvalues on the rectangular grid

form three clusters: the zero eigenvalues correspond to boundary faces with Dirichlet

condition for the velocity, and the eigenvalues with a real part roughly equal to 0.125

and 0.25 originate from the vertical and oblique respectively the horizontal faces.

This can be explained by noting that on a Courant grid there exists in the upwind

discretization only a nonzero coupling between faces with the same orientation. A

suitable rearrangement of the numbering of the variables then results in an inertia
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Figure 6.10: Rectangular (a) and general (b) grid in a channel with 10% bump,

used for the incompressible computations. Isobars obtained using �rst order upwind

discretization on the rectangular (c) and general (d) grid, and isobars obtained using

central discretization on the rectangular (e) and general (f) grid. Eigenvalues of the

inertia operator in the complex plane (g).
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 (a)  (b)

Figure 6.11: Example of grids of type r (a) and g (b), with n = 8, for subsonic ow

over a sinusoidal bump.

matrix consisting of three lower triangular subblocks, corresponding to the vertical,

oblique and horizontal faces. The eigenvalues of these subblocks are easily found to

be ul, ul and 2ul, respectively, with u the velocity and l the size of the horizontal

and vertical faces. The ow computed on the rectangular grid in Figure 6.10a is rel-

atively close to uniform ow computed on a Courant grid with u = 1 and l = 0:125,

and this closes the explanation.

As was to be expected, for the central scheme the imaginary part of the eigenval-

ues is much larger than the real part. The eigenvalues with real part larger than

0.05 are due to the one-sided di�erences needed to deal with the outow boundary.

Since there is not much di�erence between the eigenvalues obtained on the general

and rectangular grid, it can be concluded that the central scheme has satisfactory

properties on both types of grids.

Subsonic ow: grid re�nement

Our purpose is to show that the spatial accuracy of our unstructured upwind scheme

is �rst order, and that the accuracy is relatively insensitive to the shape of the

triangles. The curve describing the lower wall of the domain is di�erentiable; the

singularities present in the geometry of a circular arc bump (which is used as a test

case in, for example, [9, 22, 77]) may lower the order of the scheme signi�cantly.

With the corners of the domain located at (�1:5; 0) and (�1:5; 1), the lower wall is
de�ned by:

y =

(
0 if x 2 [�1:5;�0:5i [ h0:5; 1:5];
0:05(1 + cos(2�x)) if x 2 h�0:5; 0:5i. (6.11)

A grid re�nement study on structured (quadrilateral cells) and unstructured (rect-

angular and general cells) grids, labeled s, r and g respectively, has been performed.

The structured grid results are computed by means of the Mach-uniform pressure-

correction scheme of Bijl and Wesseling [9]. The boundaries of the channel, having
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Figure 6.12: The Mach isolines of subsonic ow over a bump, computed with n = 32

on grids of type g (a), r (b) and s (c).
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Figure 6.13: The Mach number at the lower wall at grids of type g (a), r (b) and s

(c), and the entropy at the lower wall at grids of type g (d), for various values of n.
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Figure 6.14: The natural logarithm of the error Eh versus the meshwidth h, for the

three types of grids considered. The continuous line is an auxiliary line with slope

1.

length 3 and height 1, are divided into 3n � n nodal points, with n an integer. In

Figure 6.11 the unstructured grids with n = 8 are shown; the structured grid is the

same as grid (a), but with the oblique faces omitted. At the inow boundary (on

the left) the Mach number is put to 0.5. The stationary solution is computed, using

a relative accuracy equal to 10�2, at grids with n = 8; 16; 24; 32; 48; 64; 96; 128; 160.

Di�erences between the steady state solutions obtained with the FC and the MU

approach are, as they should be, negligible. In all computations, the converged value

of the total enthalpy is close to the exact value H = 1:05, with variations smaller

than 2� 10�4. The Mach number isolines of the converged solutions obtained with

the �rst order upwind scheme on grids with n = 32 are depicted in Figure 6.12.

Note that the solutions on both unstructured grids are virtually the same, while the

solution on the structured grid shows some di�erences near the top of the bump and

with respect to the shape of the contourline M = 0:5. For n ! 1, the solutions

become indistinguishable. The Mach number and entropy at the lower boundary

are displayed in Figure 6.13. For inviscid subsonic ow the solution should be sym-

metric with respect to the symmetry axis of the problem. The asymmetry, visible in

Figures 6.12 and 6.13, is due to the numerical di�usion introduced by the �rst order

upwind scheme. This asymmetry becomes, as one observes, less pronounced with

�ner grids. From Figure 6.13c we deduce that the the spatial discretization used on

the structured grid introduces less numerical di�usion than the spatial discretization
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on the unstructured grid. This can be attributed to the fact that the gridlines and

the stencil used in the structured grid are aligned with or perpendicular to the ow,

while this is not the case for the unstructured grid.

In inviscid subsonic ows, the entropy S = ln(p=�) is a constant, so that variations

in the computed entropy can be regarded as a measure for the numerical error. This

naturally leads to the following way to quantify the error of the numerical scheme:

Eh =

Z
�

jShj d�; (6.12)

where Sh is the computed entropy along the lower boundary � at a grid with mesh-

width h; we choose h = 1=n. When h is small, the error is expected to behave

as:

Eh = Khp; (6.13)

where p is the order of the numerical method, and K is a constant. Plotting ln(Eh)

versus ln(h) gives, see Figure 6.14, for h small a slope roughly equal to p = 1.

Hence, the �rst order upwind scheme is, as was to be expected, �rst order accurate

in space. In addition, we note again that on both unstructured grids roughly the

same accuracy is obtained, while the error for the structured grid scheme is smaller

for a given h.

6.3.2 Supersonic ow

Another frequently encountered test case is that of supersonic ow in a channel

with 4% circular arc bump and inlet Mach number equal to M1 = 1:65. At the

supersonic inlet, in addition to the momentum and enthalpy, the pressure is pre-

scribed, while at the supersonic outlet no boundary condition is given. Only the

MU approach can take the supersonic inow boundary conditions into account in

an appropriate fashion: the way in which a given boundary pressure enters the FC

approach is through computation of the pressure gradient, but this quantity needs

not be computed when the momentum is already given at the considered boundary,

i.e. the inow boundary. The relative accuracy of all primary variables, see equation

(3.1), is put to 10�2.

Three grids similar to the one depicted in Figure 6.10b have been generated, with

72 � 24, 144 � 48 and 288 � 96 nodes at the domain boundaries. The results illus-

trated in Figure 6.15 are in excellent agreement with previously published results

in, for example, [9, 22, 77].
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Figure 6.15: Mach number contours for the unstructured grid with 288 � 96 nodes

at the domain boundaries (a), and the Mach number along the upper and lower wall

(b).
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6.4 Flows around the NACA 0012 airfoil

Flows around airfoils provide excellent test cases for CFD codes, since these ows

contain much of the physics involved in aerodynamics while the problem de�nition,

including the geometry, is relatively easy. Four di�erent kinds of inviscid ows,

 

Figure 6.16: Part of the grid that is used to compute ows around the NACA 0012

airfoil.

parameterized by the freestream Mach numberM1 and angle of incidence �, around

the NACA 0012 airfoil have been considered: (i) low subsonic ow with M1 =

0; 10�3; 10�2; 10�1 and � = 0o; (ii) subcritical ow with M1 = 0:63 and � = 2o;

(iii) transonic ow with M1 = 0:8 and � = 1:25o, and (iv) supersonic ow with

M1 = 1:2 and � = 0o. The accuracy of the results is discussed in Sections 6.4.1,

6.4.2, 6.4.3 and 6.4.4, respectively. The eÆciency of the fully compressible ow
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(FC) and Mach-uniform (MU) approach forms the subject of Section 6.4.5. Unless

stated otherwise, the grid partly depicted in Figure 6.16 is used. With the leading

and trailing edge of the airfoil located at coordinates (0,0) and (1,0), the left lower

and right upper coordinates of the rectangle de�ning the considered ow domain

are given by (-3,-5) and (5,5). This grid contains 9610 cells, 14612 faces and 5002

vertices, of which 320 are positioned at the airfoil, and the minimal meshwidth equals

1:0� 10�3.

6.4.1 Low subsonic ow around the NACA 0012 airfoil

As discussed in Section 3.4.1, the accuracy of standard compressible ow solvers de-

teriorates with decreasing Mach number. For standard solvers, sometimes theM1 =

0:1 solution of the ow around an airfoil is even closer to the incompressible one than

is the M1 = 10�3 solution, see [36]. For � = 0o and M1 = 0; 10�3; 10�2; 10�1, we

computed the solution with the MU approach, and for comparison we included the

solution obtained with the FC approach for M1 = 10�1.

Results obtained with the Mach-uniform formulation

For the low subsonic ow computations, we chose � = 10�2 for the relative sta-

tionary accuracy and a time step equal to 0.05. The MU algorithm reduces to the

incompressible pressure-correction algorithm when Mr = M1 = 0 is inserted, and

this is also con�rmed experimentally. The isobars of the incompressible solution are

shown in Figure 6.17a. The pressure uctuations, nondimensionalized as in (3.30),

should remain constant for Mr small, see also (3.32). We observe in Figure 6.17

that this is indeed the case: the computed isobars for M1 = 0, 10�3 and 10�2 are

virtually identical, while in the M1 = 0:1 result compressibility e�ects start to play

a nonnegligible role. Hence, the MU approach clearly does not su�er from loss of

accuracy in the low Mach number regime.

Results obtained with the fully compressible ow approach

Since the FC approach is density-based, we expect it to perform poorly for low Mach

number ow because of the weak pressure-density coupling. From (3.34) and the

MU results we �nd that the dimensionless pressure as used in the FC approach is

bounded as follows: 0:9973 < ~ps < 1:0066. This spells accuracy problems, and in

order to obtain acceptable results with the FC approach, the relative stationary ac-

curacy � had to be decreased to 10�3. We found that the default stopping criteria of

the linear solver, given in Section 3.6.1, were suÆcient, because increasing their ac-

curacy did not have any impact on the steady state solution. The computed isobars

for M1 = 10�1, in the same units as the MU results, are shown in Figure 6.17e.

Note that for the same parameter the FC result is di�erent from the MU result,

compare Figures 6.17d and 6.17e. Apparently, at the airfoil these di�erences make
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Figure 6.17: Isobars around NACA 0012 pro�le, computed using the MU approach,

for M1 = 0 (a), M1 = 10�3 (b), M1 = 10�2 (c) and M1 = 10�1 (d). Isobars

for M1 = 10�1 obtained with the FC approach (e). Pressure coeÆcient for various

cases (f).

themselves hardly felt, since the pressure coeÆcient at the airfoil:

cp =
p� p1
1

2
�1u21

; (6.14)

is almost the same for the FC and MU approach, see Figure 6.17f. Note that the

pressure distribution at the airfoil of the incompressible ow solution is still very

close to that of theM1 = 10�1 solution. Hence, the FC approach su�ers from some

loss of accuracy in the low Mach number regime; the issue of loss of eÆciency will

be addressed in Section 6.4.5.

6.4.2 Subcritical ow around the NACA 0012 airfoil

The computed isobars and Mach number at the airfoil of subcritical ow around

the NACA 0012 airfoil with a freestream Mach number M1 = 0:63 and an angle of
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Figure 6.18: Subcritical ow around the NACA 0012 airfoil. Isobars (a) and Mach

number at the airfoil (b).

attack � = 2o are illustrated in Figure 6.18. Note that there is, as it should, hardly

any di�erence between the FC and MU solution (di�erences in the Mach number at

the airfoil are smaller than 10�5). The computed values for the lift coeÆcient, drag

coeÆcient and maximum Mach number in the domain are 0.27, 1:1�10�2 and 0.875

respectively, whereas the benchmark solution [23] yields 0.33, 0 and 0.99 for these

quantities. The di�erences are attributed to the fact that we use a simple �rst order

upwind scheme and a relatively coarse grid.

6.4.3 Transonic ow around the NACA 0012 airfoil

For computation of inviscid ow around a NACA 0012 airfoil with a freestream

Mach number of M1 = 0:8 and an angle of attack � = 1:25o, the grid shown in

Figure 6.16 is too coarse to get an acceptable shock resolution, and consequently

these results are not shown here. At a similar but �ner grid, with 80,256 cells,

12,1104 faces and 40,848 vertices, of which 1320 are located at the airfoil, we get

the solution shown in Figure 6.19. We observe that entropy is generated at the

leading edge. This increase in entropy causes boundary-layer-like viscous losses near

the airfoil visible in the Mach isolines plot, which are also present for instance in

the �rst order results in Figure 4.1b of [6]. This `numerical boundary layer' turns

out to correspond to the region in which the entropy has increased considerably.

With respect to the AGARD benchmark solution [138], the shock is shifted towards
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Figure 6.19: Transonic ow around the NACA 0012 airfoil computed on a �ne grid.

Isobars (a), Mach isolines (b), Mach number (c) and entropy (d) at the airfoil.
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Figure 6.20: Supersonic ow around the NACA 0012 airfoil. Mach isolines (a) and

pressure coeÆcient (b) at the airfoil.

the leading edge. The weak shock at the lower wall is not present in our results.

These aspects are attributed to the losses just mentioned, which result e�ectively in

a lowering of the freestream Mach number. Repeating the computation on a larger

ow domain does not improve the results. In order to get a closer approximation of

the AGARD benchmark solution, higher order methods are indispensable. Never-

theless, we have demonstrated that a staggered discretization on unstructured grids

can resolve transonic ows without causing spurious oscillations or other undesired

phenomena.

6.4.4 Supersonic ow around the NACA 0012 airfoil

Also for the supersonic ow case, with M1 = 1:2 and � = 0o, around the NACA

0012 airfoil, the grid displayed in Figure 6.16 turns out to be too coarse to get a good

resolution of the shocks. We did only perform computations using the MU approach,

since the FC approach cannot deal with supersonic ows, see the remarks made in

Section 6.3.2. On a grid that is re�ned in the vicinity of the shocks, with 31,144

cells, 46,931 faces and 15,787 vertices, of which 320 are positioned at the airfoil, we

get the results depicted in Figure 6.20. The Mach isolines are virtually identical to
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the AGARD benchmark solution [138]. In addition, the pressure distribution at the

airfoil can hardly be distinguished from the AGARD result. Furthermore, even the

result obtained at the grid of Figure 6.16, with 5002 vertices, turns out to yield a

very accurate pressure distribution at the airfoil. So, apparently the lack of shock

resolution does not prevent one from having a good agreement on the ow properties

at the airfoil. The location of the sonic point upstream of the x-axis (�0:43 in our

results and �0:42 in the AGARD solution) and the value for the drag (0.0967 in our

results and 0.0960 in the AGARD solution) are also in close correspondence with

each other.

6.4.5 Mach uniform eÆciency

In the computation of ows around pro�les it was veri�ed that the FC and MU

approach yield identical steady state solutions, apart from accuracy problems en-

countered by the FC approach when the Mach number tends to zero or the impossi-

bility of the FC approach to deal with supersonic ows. In addition to the accuracy

problem there is, at least for standard ow solvers, the problem of eÆciency, i.e. the

problem that computation time increases severely for low Mach number ows. In

this section we will show that the eÆciency of the MU approach is uniform in the

Mach number; this in contrast with the FC approach, which has some similarities

with the standard ow solvers concerning eÆciency. In fact, we will see that the

MU approach is more eÆcient than the FC approach over the whole range of Mach

numbers, from low subsonic to supersonic.

Steady state is reached after Nt time steps at Tend = Nt�t, where one time unit cor-

responds to the time needed to travel the distance of one chord length at freestream

velocity. The relation between the Courant (CFL) number and the time step is, up

to a reasonable approximation, given by (in dimensionless units):

� =
(u1 +

p
h1=Mr)�t

�x
; (6.15)

where the ow velocity and acoustic speed are based on the freestream values; see

also the discussion following equation (A.30). The total number of solver iterations

in the process of time stepping from initial to steady state is indicated by Ns,

hence the average number of solver iterations per time step equals ns = Ns=Nt. In

Table 6.1 results for these quantities are gathered as obtained on the grid displayed

in Figure 6.16 during the computations described in Sections 6.4.1 to 6.4.4. The time

steps in this table are `optimal', i.e. chosen such that the total computation time

TCPU is minimal; this is determined by trial and error. It turns out that then also

Ns and Nt are minimal. If the time step is chosen slightly larger than the optimal

time step, the transient behavior becomes too strong, and numerical breakdown

occurs. Hence, the optimal time step corresponds to the largest possible time step

for which convergence is attained. The only exception to this rule is the M1 = 0
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Table 6.1: Results related to eÆciency of the airfoil computations. The part left

of the double vertical line corresponds to the MU approach, right of it to the FC

approach.

M1 0 0.1 0.63 0.8 1.2 0.1 0.63 0.8

�t (10�2) 8.0 8.0 9.0 8.0 8.2 0.014 0.1 0.0144

� | 800 233 180 150 1.5 2.59 3.25

Tend 4.72 2.96 17.2 49.5 52.5 2.02 16.9 28.5

Nt 59 37 191 619 642 14,387 16,910 19,813

TCPU (s) 279 165 668 2021 1645 12,324 13,671 17,112

tCPU (s) 4.73 4.46 3.50 3.26 2.56 0.857 0.808 0.864

Ns 6431 3853 14,554 40,828 30,834 43,305 68,332 80,746

ns 109 104 76.2 70.0 48.0 3.01 4.05 4.08

n� 3 10 12 10 4 1 2 2

nm 18 19 22 22 15 1 1 1

n�H | | | | | 1 1 1

np 83 75 48 33 22 | | |

problem: this one turns out be require less computing time with smaller time steps,

e.g. TCPU = 28 and Nt = 6 for �t = 0:01. But we included values belonging to

the �t = 0:08 solution, so that a better comparison with the M1 = 0:1 results is

achieved. As can be derived from the table, the fact that in the MU approach the

pressure is taken implicitly allows for much larger Courant numbers. It is remarkable

that, if the Courant number were de�ned as follows:

~� =
u1�t

�x
; (6.16)

then the largest allowable value for ~� remains almost constant over the whole range of

Mach numbersM > 0 for the MU approach. Inserting u1 = 1 and �x = 1:0�10�3

yields values for ~� ranging between 80 and 90. The omission of the term
p
h1=Mr

can be made plausible by noting that the pressure, and hence the acoustic waves, are

taken into account in an implicit manner in the MU approach, thereby not limiting

stability.

It turns out that in the MU approach much fewer time steps are necessary to arrive at

steady state, and, even though ns is larger, the MU approach is much more eÆcient

than the FC approach in terms of computation time. With n�, nm, n�H and np
we indicate the number of iterations in the linear solver to solve the continuity,

momentum, energy and pressure-correction equation, respectively. Recall that one

iteration in Bi-CGSTAB, which is used to solve the pressure-correction equation, is

more expensive than one GMRES iteration, which is utilized to solve the density,
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momentum and energy equation. The reason why ns = Ns=Nt does not exactly

satisfy ns = n�+nm+np (for the MU approach) or ns = nm+n�+n�H (for the FC

approach), is that the values for n�, nm, n�H and np are taken in the �nal steps of

the time-marching procedure, where these values are constant and do not show the

large variations that are present in the initial stage. The values for np, n�, nm, n�H
and np are seen to increase for larger values of the time step, which is attributed to

the 1=�t-behavior of the main diagonal. This is observed in additional experiments,

the results of which are not included in Table 6.1. In addition, for a given time step,

np is seen to decrease with increasing Mr, and this is caused by the M2
r
term in the

main diagonal. Clearly, Table 6.1 shows that TCPU does not blow up as Mr # 0.

This is the distinguishing feature of the MU method as compared to methods based

on extension of fully compressible ow methods to the weakly compressible case.

The time step can be chosen independently of Mr. In the fully compressible ow

case the ow takes longer to settle to steady state; this e�ect would be irrelevant for

instationary ows. The computing time per time step depends only weakly on Mr.

We may say that the eÆciency is uniform in the Mach number.

The total CPU time for a computation consists, apart from the time Ti=o needed

for initialization and writing output data, of the time Tm needed to construct the

linear systems, the time Ts needed to solve these and the time Tother for overhead

during the computation and, e.g., evaluation of the equation of state. With Ti=o
negligible when Nt � 1, and Tother much smaller than Tm or Ts, we arrive to a good

approximation at:

TCPU = Tm + Ts: (6.17)

The time to solve the linear systems encountered in the time stepping procedure is

equal to

Ts = Nsts; (6.18)

where ts is the average CPU time for one iteration in the linear solver. Note that,

since both GMRES and Bi-CGSTAB are used, ts does not correspond to either a

GMRES or a Bi-CGSTAB iteration. In a similar fashion, the average time tm to

compute the matrix elements and right-hand sides of the three linear systems in one

time step follows from:

Tm = Nttm: (6.19)

Hence,

tCPU = TCPU=Nt = (Nttm +Nsts)=Nt = tm + nsts: (6.20)

In Figure 6.21 we have plotted tCPU versus ns for various Mach numbers and di�er-

ent time steps. From this �gure we deduce that expression (6.20) holds to a fairly

good extent, with the solid line corresponding to tm = 0:86 and ts = 0:035. Hence,

the time needed to build the three matrices (density, momentum and pressure) cor-

responds to the time needed to do, roughly, 0:86=0:035 � 25 iterations in the linear

solver. From Table 6.1 and Figure 6.21 we deduce that, using the optimal time step,
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Figure 6.21: CPU time per time step versus ns for the MU and FC method.

the MU approach spends most of the CPU time in the linear solver, whereas the

FC approach spends by far most of its computing time in construction of the linear

systems. What does this all imply with respect to Mach-uniform accuracy? For an

explicit time integration method, as one usually encounters in compressible codes,

obviously no time is spent in the linear solver (ns = 0). This means that the CPU

time needed to update the variables can be put in the term Tm. Although for an

explicit time integration method the (sparse) matrix needs not be stored explicitly

in memory as for our implicit method, each element needs to be computed anyway.

Hence, the CPU time required in an explicit ow solver to go from one time level

to the next one is approximately the same as the term tm in (6.20). But an explicit

method needs to satisfy a stability criterion of the form � < C, with C a constant

of the order unity. Especially for small Mr, we saw that (and this is also obvious

from expression (6.15)) this limits �t severely. However, our method does not need

to satisfy such a strict stability criterion. Combining the facts that, for the studied

case, the CPU time spent in the linear solver is up to four times the CPU time

needed to construct the matrices (the ratio nsts=tm), while the factor in the time

step that one gains is of the order of several hundreds, it seems that our method is

much more eÆcient than a comparable explicit scheme. In the discussion above we

have not addressed the issue of computational eÆciency of the ux evaluation. We

expect that the present staggered scheme requires signi�cantly less computing time

than the schemes based on approximate Riemann solvers, because the numerical
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Figure 6.22: Supersonic ow over a circular blunt body. Computed isobars (a) and

CPU time and number of solver iterations per time step (b).

uxes are much simpler.

In the derivation of the Mach-uniform pressure-correction approach, we wonder

whether approximation (3.49), necessary to linearize the convection term, should be

used in the time derivative of the Mach-uniform pressure-correction equation as well.

This, although not necessary for linearization, simpli�es implementation of the �rst

line of equation (3.51) since the term �( � 1)M2
r
m
��rÆp=�n+1 needs not be taken

into account. We tried so, but found that the maximal Courant number for which

the transonic ow test case is stable reduced from 180 (with the mentioned term left

in) to 100. With � = 100, keeping the mentioned term or omitting it does not a�ect

the CPU time, hence for reasons of stability the term �( � 1)M2
r
m
� �rÆp=�n+1

needs is kept in.

6.5 Supersonic ow over a circular blunt body

The 2D supersonic ow over a circular blunt body with M1 = 4:0 was chosen

to demonstrate the ability of the unstructured staggered scheme and the MU ap-

proach to correctly resolve the strong bow shock and the acceleration of stagnant

ow through a sonic point to supersonic speed. The isobars, computed on a grid
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Table 6.2: Mmax for the converging-diverging nozzle.

Source c = 2:5 c = 5 c = 10 c = 15 c = 20

Bijl | 0.25 0.53 | 2.67

Theory Laval 0.113 0.232 0.529 2.443 2.443

Our results 0.118 0.237 0.513 2.707 2.707

consisting of 6488 vertices of which 96 are positioned at the body, are illustrated in

Figure 6.22a. From Figure 6.22b we conclude that also for this test case expression

(6.20) is valid, with tm = 1:71 and ts = 0:0448. Hence, the time needed to build

the three matrices corresponds to the time needed to do, roughly, 1:71=0:0448 � 38

iterations in the linear solver. The maximal time step for which the computation

remains stable corresponds to a Courant number, de�ned as in (6.15), equal to 6.6.

6.6 Converging-diverging nozzle

The converging-diverging nozzle, also studied by Bijl using a structured grid of 490

cells in Section 8.2 of her PhD thesis [8] and in [9], is an excellent test case to demon-

strate the Mach-uniform accuracy and eÆciency of the Mach-uniform pressure-

correction method. This is the case because large regions with compressible as well

as with (nearly) incompressible ow are present. The following contraction ratios,

denoted by c, are considered: 2.5, 5, 10, 15 and 20. The inlet Mach number in all

cases is put to equal to 0.045. The dimensionless initial conditions are: m = (0; 1),

p = 0 and h = 1. The relative stationary accuracy of all variables, see expression

(3.1), is put to 10�3. Only in the case of subsonic outow, the pressure is prescribed

at the outlet. The height of the outlet is kept at 2.5 times the height of the throat.

For all contraction ratios, the number cells, faces and vertices in the grid are kept

roughly the same (850, 1350 and 490, respectively), and the minimal meshwidth is

kept approximately 2� 10�2. For the time-step �t, several values between 0.01 and

0.16 are chosen. With the Courant number as de�ned in (6.15) and Mr = 0:045, �

consequently varies between 12 and 186. In Figure 6.23a{b the grids for c = 2:5

and c = 20 are depicted, and the ow is directed from the bottom of the �gure to

the top.

The ow remains subsonic for contraction ratios equal to 2.5, 5 and 10, while it

becomes supersonic behind the throat for c = 15; 20, see Figure 6.23c. The max-

imum of the Mach number Mmax occurs for subsonic ow in the throat, while for

supersonic owMmax is found in the corners near the outlet. In Table 6.2 the values

for Mmax, as obtained by Bijl [8] and our Mach-uniform unstructured scheme, are

given. In addition, values derived from the theory of the Laval nozzle are listed.

Under the assumption of isentropic quasi 1D ow, the following relation is derived
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Figure 6.23: Grids used for the nozzle ow with a contraction ratio equal to 2.5 (a)

and 20 (b). Mach number at the centerline of the domain for various contraction

ratios (c). The throat is located at x = 0 and the outlet at x = 1.



Chapter 6. Results for inviscid ows 145

0 0.05 0.1 0.15
0

20

40

60

80

100

∆ t

T
C

P
U

c = 2.5
c = 5
c = 10
c = 15
c = 20

(a)

0 0.05 0.1 0.15
0

100

200

300

400

500

600

∆ t

N
t

c = 2.5
c = 5
c = 10
c = 15
c = 20

(b)

0 5 10 15 20 25 30
90

95

100

105

110

115

120

125

130

135

140

Contraction ratio

t C
P

U

dt = 0.02
dt = 0.04
dt = 0.06
dt = 0.08
dt = 0.10
dt = 0.12
dt = 0.14
dt = 0.16

(c)

0 5 10 15 20 25 30
25

30

35

40

45

50

55

Contraction ratio

n s
dt = 0.02
dt = 0.04
dt = 0.06
dt = 0.08
dt = 0.10
dt = 0.12
dt = 0.14
dt = 0.16

(d)

Figure 6.24: For several values of �t and c the following quantities are shown: total

CPU time needed to reach steady state (a), number of time steps needed to reach

steady state (b), CPU time per time step (c), and number of solver iterations per

time step (d).

in the theory of the Laval nozzle (see standard works on compressible ows):

A

A�
=

1

M

�
2

 + 1

�
1 +

 � 1

2
M2

��(+1)=2(�1)
; (6.21)

where A is the width of the nozzle at the location where the Mach number equals

M , and A� denotes the width of a reference throat with sonic ow conditions. For

c = 2:5 and 5, a good correspondence between theory and the numerical results

exists, whereas for c = 10 this correspondence is less good for our results. Grid
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re�nement by a factor 2 improves the results considerably, resulting inMmax = 0:528.

For contraction ratios equal to 15 and 20, the ow is choked, leading to supersonic

ow after the throat. The assumption of quasi 1D ow clearly does not hold in the

diverging part of the nozzle, explaining the large di�erence between the computed

and theoretical values for Mmax. In a choked nozzle there is no communication

between the (subsonic) converging and (supersonic) diverging part. This explains

why the solution in the diverging part is exactly the same for c = 15 and 20, see

Figure 6.23c.

For contraction ratios equal to 2.5 and 5, we saw that the ow remains virtually

incompressible. For the other studied values of c, large regions with incompressible

as well as with compressible ow are present. The accuracy is already established for

this test case; now we turn to study the computational eÆciency. Figures 6.24a and

6.24b illustrate the required computational time TCPU and the elapsed number of

time steps Nt to converge to steady state, for several values of c and �t. For subsonic

ow, quickest convergence is obtained for large values of �t, e.g. �t > 0:1. Attaining

convergence for supersonic nozzle ow turns out to be slightly more time consuming,

at least for larger values of �t. From Figure 6.24c we conclude that tCPU = TCPU=Nt

hardly depends on the contraction ratio. This means that both incompressible ows

and ows in which both large incompressible and large compressible regions are

present can be computed without deteriorating tCPU or TCPU. Hence, Mach-uniform

eÆciency has been demonstrated. The increase in CPU time per time step for

increasing values of �t is attributed to the O(1=�t)-behavior of the main diagonals:
more solver iterations are needed because for larger values of �t the matrices become

less diagonally dominant. This is demonstrated in Figure 6.24d, where the number

of solver iterations ns = Ns=Nt, with Ns the total number of solver iterations in the

time-stepping procedure, is displayed for various �t and c.

6.7 Conclusions

In this chapter, computations for various inviscid compressible ows carried out with

the unstructured staggered scheme are described. The Burgers equation is appropri-

ate to test the discretization of the inertia term in the momentum equation. We �nd

that the convecting velocity should, in order to avoid excessive numerical di�usion,

be approximated in a central manner according to (4.12), and for the convected mo-

mentum term the �rst order upwind scheme (4.18) should be selected. This scheme,

although a small overshoot appears right before discontinuities, is found to perform

satisfactorily. Riemann problems are suitable test cases for studying the capability

of numerical schemes for the resolution of shocks, contact discontinuities and rar-

efaction waves. Our scheme is found to converge, without giving rise to spurious

modes, to the entropy solution. This con�rms numerically that the discretization

conserves mass, momentum and energy. The accuracy is similar to that of the well-
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accepted Roe and AUSM scheme. For supersonic ow, no entropy �x is required

and no glitch appears when the velocity changes sign or when the ow evolves from

subsonic to supersonic. The path integral method is found to perform slightly better

than the other schemes to compute the pressure gradient. For the fully compressible

ow (FC) method, it is best to select �H as primary energy variable.

Central discretization of the inertia term leads to a matrix that has eigenvalues that

are close to the imaginary axis. This is investigated by computing the eigenvalues of

this matrix for an incompressible ow in a channel with 10% circular arc bump. A

grid re�nement study for subsonic ow demonstrates that the upwind scheme is �rst

order accurate in space, and that the accuracy is relatively insensitive to whether

Courant or `general' unstructured grids are used. Supersonic ow in a channel with

4% circular bump shows the capability to deal with supersonic ow: good agreement

with previously published results is obtained.

Flows around the NACA 0012 airfoil are used to study the accuracy and perfor-

mance of our schemes for incompressible and compressible ows. It is found that

the Mach-uniform (MU) formulation is for the whole studied range of Mach numbers

much more eÆcient than the fully compressible ow (FC) approach. This is due to

the fact that in the MU formulation the pressure is taken implicitly, which enables

the use of much larger time steps. In the MU formulation, quick convergence is

obtained for Courant numbers typically in the order of a few hundred, whereas the

FC becomes unstable for Courant numbers larger than 2 or 3. In the FC approach,

most CPU time is spent in computation of the matrix elements and right-hand side,

whereas the MU approach spends most of its CPU time in the linear solver. As is

common for density-based methods, the FC approach becomes less accurate in the

low Mach number regime; this is not the case for the pressure-based MU approach.

An example of a ow in which both incompressible and compressible ow regions

occupy a large part of the ow domain is that in a converging-diverging nozzle. So-

lutions demonstrate good agreements with structured grid and theoretical results.

Mach-uniform accuracy is obtained, since the computation time per time step only

depends on the time step size and not on the contraction ratio of the nozzle.

In conclusion, it can be said that the present discretization on unstructured staggered

grids, in conjunction with the Mach-uniform formulation, is capable of computing

both incompressible and compressible ows in a way that is accurate and eÆcient

uniform in the Mach number.





Appendix A

Monotonicity considerations

Designing numerical schemes to compute accurate solutions to (scalar) conserva-

tion laws is especially diÆcult when discontinuities or steep gradients are to be

expected. Theoretical convergence requirements are summarized briey in Ap-

pendix A.1. Obtaining a monotone discretization for the Burgers equation is de-

scribed in Appendix A.2 for a 1D grid and in Appendix A.3 for an unstructured

staggered grid. A suitable de�nition for the Courant number on unstructured stag-

gered grids is derived in Appendix A.4.

A.1 Requirements for convergence

The celebrated Lax-Wendro� theorem [66] asserts that if the solution of a conserva-

tive and consistent scheme converges as the time step and meshwidth tend to zero,

then it converges to a weak solution of the conservation law. Ensuring convergence

to the physically relevant weak solution, often called the genuine weak solution, en-

tropy solution or vanishing viscosity solution, requires that the numerical scheme

must in addition satisfy some form of the entropy condition. It turns out, see [47],

that monotone schemes ful�ll this requirement for scalar conservation laws. Let a

numerical scheme designed for solving the scalar conservation law

@'

@t
+
@f

@x
= 0; (A.1)

with f = f(') a given ux function and ' = '(x; t) a scalar, be given by

'n+1
i

= Ĥi('
n

i�m
; : : : ; 'n

i+k): (A.2)

Here 'n
i
is an approximation to '(xi; t

n), Ĥi is the operator representing the dis-

cretization, and n;m; k � 0 are integers. The numerical scheme is monotone when
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Ĥ is a nondecreasing function of each of its arguments:

@Ĥi

@'n
j

� 0; 8j: (A.3)

This de�nition of monotone is a discrete version of the following property of exact

solutions of conservation law (A.1): if two initial data functions �(x; 0) and  (x; 0)

satisfy �(x; 0) �  (x; 0) for all x, then their corresponding solutions �(x; t) and

 (x; t) satisfy �(x; t) �  (x; t) for all x and t.

A.2 Monotone discretization of the Burgers equa-

tion on a 1D grid

Consider the 1D grid shown in Figure A.1, where the momentum and velocity are

located in grid points xi+k, k 2 ZZ. For �nite volume integration of the 1D momen-

tum equation in point i we propose the following options for the control volumes

(CV):

Option 1. The CV is bounded by adjacent momentum points: [xi�1; xi+1].

Option 2. With x~{ positioned half way xi and xi+1, the CV is formed by [x~{�1; x~{].

The length of the CV in option 1 is 2�xi, with �xi equal to the length of the CV in

option 2, i.e. �xi = x~{ � x~{�1 = 1

2
(xi+1 � xi�1). Integration of the 1D momentum

equation over the CV, omitting the pressure and viscous terms, results in:(
2�imi + (um)i+1 � (um)i�1 = 0; option 1;

�imi + (um)~{ � (um)~{�1 = 0; option 2,
(A.4)

where �i = �xi=�t. By putting m = u, a scalar conservation law, often referred to

as the Burgers equation, is obtained; see equation (6.1). Assuming that the velocity

is in the positive direction, the following upwind ux evaluations and time step

restrictions lead to monotone schemes:(
(um)i+1 = uimi; �i � 1; option 1;

(um)~{ = uimi; �i � 1=2; option 2.
(A.5)

Here �i stands for the local Courant number:

�i = ui=�i = ui�t=�xi: (A.6)

Note that, though it may seem to contradict intuition, ux evaluations of the form

(um)i+1 = ui+1mi+1, (um)i+1 = ui+1mi or (um)~{ =
1

2
(ui + ui+1)mi are not mono-

tone. The notion that also the convecting velocity must be upwind biased inspired

us to propose the upwind approximation (4.14) for the convecting velocity in the 2D

case.
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Option 1

Option 2

i−1 i

i−1 i i+1

~ ~

Figure A.1: A 1D grid and possible control volumes.

A.3 Monotone discretization of the Burgers equa-

tion on an unstructured staggered grid

Standard multi-dimensional methods often constitute of a more or less straightfor-

ward application of one-dimensional methods to the direction normal to the CV

face. Properties of multi-dimensional methods are usually considered by studying

the one-dimensional version of the underlying scheme and by using then some more

or less heuristic arguments. Experience con�rms that this approach is useful. Since

in our staggered scheme only normal components of the momentum are stored, such

an approach is not possible. This is so because the normal vectors at the faces in

the grid do not point in the same direction, and, obviously, there exists nothing like

monotonicity preservation for arbitrarily directed momentum components. We will

study whether our scheme for the momentum equation is monotone by assuming ow

in a �xed direction, after which (A.3) is applied to the discrete momentum compo-

nents in the given ow direction. Namely, by imposing a 1D ow, which is obviously

a special case of a 2D ow, we can arrive afterwards at the discretization in terms of

the horizontal momentum components. And to this underlying discretization, the

de�nition of monotone schemes can be applied.

Consider the grid illustrated in Figure A.2. The normal vectors are indicated and

we put Ni = (1; 0). Assume a 1D ow with a Cartesian velocity vector (û; v̂) that

follows from: 8<
:
@m̂

@t
+
@ûm̂

@x
= 0; m̂ = û;

v̂ = 0;
(A.7)

hence the ow is parallel to Ni. For reasons of clarity, we keep a di�erence in

notation between û and m̂. The relation between the normal velocity (momentum)

component and û (m̂) at some face e is given by:

ue = ue �Ne = ûeNe;x; me =me �Ne = m̂eNe;x; (A.8)

with Ne;x the x-component of Ne. Integration over the two triangles adjacent to

face i, cf. (4.7), and explicit Euler time integration yields:

mn+1
i

= mi � �t


i

X
e(i)

(ue �Ne)(me �Ni)le: (A.9)
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Figure A.2: Part of a 2D grid.

All terms in the right-hand side are taken at time-level n, and summation runs over

the faces j, k, l and o. Assume that û > 0, i.e. the ow is from left to right, and

that (part of) it enters the CV through face o. The reconstruction procedure, with

Ni = �i
q
Nq + �i

r
Nr; (A.10)

yields the following �rst order upwind approximation at face o, cf. (4.18):

mo �Ni = �i
q
mq + �i

r
mr = �i

q
Nq;xm̂q + �i

r
Nr;xm̂r: (A.11)

For the computation of the convecting velocity, two methods have been designed,

see page 56, and we will study both.

1. Central approximation

Application of (4.12) yields for the convecting velocity at face o:

uo �No = ûoNo;x: (A.12)

With m̂ = û we arrive at, cf. (A.3):

@Ĥi

@ûr
= ��t


i

ûoNo;x�
i

r
Nr;x; (A.13)

resulting in a scheme which, recalling No;x < 0, is not monotone if �i
r
Nr;x < 0.

2. Upwind approximation

Upwinding of the convecting velocity according to (4.14) results in:

uo �No = uo �(�oqNq + �o
r
Nr) � �o

q
uq + �o

r
ur = �o

q
Nq;xûq + �o

r
Nr;xûr: (A.14)

Applying the de�nition of monotone schemes gives:

@Ĥi

@ûr
= �t

��2ûr�or �irNr;x � ûqNq;xNr;x(�
o

q
�i
r
+ �o

r
�i
q
)
�
=
i: (A.15)
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Discussion

With, for example, Nr = (1;�2)=p5, Nq = (�5; 2)=p29 and No = (�1;�1)=p2,
none of the velocity interpolation methods in combination with (A.11) results in

a monotone scheme, since in both cases we have @Ĥi=@ûr < 0, and as a result

spurious wiggles might appear. On the basis of numerical experiments discussed in

Section 6.1, we observe that indeed a spurious mode is generated, but it remains

relatively small, especially if the convecting velocity is approximated in an upwind

manner. No spurious oscillations appeared in the numerical experiments for the

Euler equations, see the rest of Chapter 6, not even with central approximation of

the convecting velocity. Hence, the pessimistic conclusions that one could draw from

this section are not justi�ed.

A.4 De�nition of the Courant number

Usually a condition of the form � < C, where � is the Courant number and C

some small positive number, must be satis�ed for stability of schemes based on

explicit time integration for hyperbolic systems. In this appendix we will derive,

using (A.3), such conditions for discretizations on unstructured staggered grids. In

Appendix A.4.1 this is done for the continuity and energy equation. A suitable con-

dition for the momentum equation is derived in Appendix A.4.2. A useful condition

for the Euler equations is given in Appendix A.4.3.

A.4.1 Courant number for the continuity and energy equa-

tion

Consider the continuity equation (2.1) as a scalar conservation law for the density.

Discretization on an unstructured staggered grid using the explicit Euler time inte-

gration scheme gives, cf. (4.89):

�n+11 = �n1 �
�t


1

X
e(1)

�n
e
ue�le; (A.16)

where summation runs over the three faces of cell 1. Inserting central scheme (4.91)

into this expression and using the notation of Figure 4.14 yields:

�n+11 = �n1 �
1

2

�t


1

2
4�1X

e(1)

ue�le + �2ui�li + �3uj�lj + �4uk�lk

3
5 : (A.17)

With (A.3) it is easy to see that monotonicity is only preserved if ui�li � 0, uj�lj � 0

and uk�lk � 0 are satis�ed simultaneously, i.e. the ow must enter cell 1 through
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all its three faces. Since this is impossible hold for each cell in the grid, the central

scheme is, as was of course to be expected, not monotone.

The �rst order upwind scheme for face i, expression (4.90), can be written in the

following form:

�iui�li = �1max(ui�li; 0) + �2min(ui�li; 0); (A.18)

where

max(z; 0) =
1

2
(z + jzj); min(z; 0) =

1

2
(z � jzj): (A.19)

It is obvious that max(z; 0) � 0 and min(z; 0) � 0 for all z 2 IR. Putting the �rst

order upwind scheme into (A.16) and application of (A.3) results in:

@Ĥ

@�1
= 1� �t


1

X
e(1)

max(ue�le; 0);
@Ĥ

@�2
= ��t


1

min(ui�li; 0);

@Ĥ

@�3
= ��t


1

min(uj�lj ; 0);
@Ĥ

@�4
= ��t


1

min(uk�lk; 0):

Hence, the �rst order upwind scheme is monotone if

�1 =
�t


1

X
e(1)

max(ue�le; 0) � 1; (A.20)

where �1 can be interpreted as the local Courant number.

A global time-stepping scheme, with a �xed time-step �t given in advance, is used

in our numerical experiments. We will show how condition (A.20) can be applied to

determine a value for �t such that the scheme remains monotone. Assuming that

the velocity �eld u does not vary much over a cell leads to

0 = u�
X
e(1)

Ne
�le =

X
e(1)

(u�Ne)�le �
X
e(1)

(ue �Ne)�le =
X
e(1)

ue �le: (A.21)

This result, replacing the `�'-sign by a `='-sign, is used to arrive atX
e(1)

max(ue �le; 0) = max(jui �lij; juj �lj j; juk �lkj) � max
e(1)

jue �lej; (A.22)

which follows after some easy manipulations. With ue � juj1, where juj1 is the

maximal magnitude of the velocity in cell 1, it is trivial to see that

max
e(1)

jue �lej � juj1max
e(1)

le: (A.23)

This all leads for the local Courant number in cell 1 as de�ned in (A.20) to:

�1 � juj1�t
�x1

; �x1 = 
1=max
e(1)

le: (A.24)
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In order to obtain a safe estimate for the time step, the global Courant number � is

de�ned as follows, with maxc indicating the maximum over all cells c:

max
c
�c � max

c

� jujc�t
�xc

�
� maxc jujc�t

minc�xc
=

max juj�t
�x

� �; (A.25)

and max juj the maximum velocity in the domain. The minimal meshwidth is de�ned

as

�x = min
c

�xc = min
c

�

c=max

e(c)
le

�
; (A.26)

where e(c) refers to the three faces of cell c. Monotonicity, and hence stability, for

the explicit Euler scheme is ensured for � � 1. Application of this approach to the

energy equation goes in a similar fashion, leading to identical results.

A.4.2 Courant number for the momentum equation

Usually, application of condition (A.3) to the diagonal element (i.e. @Ĥi=@'i > 0)

results in the time-step restriction � < C; this also holds for the derivation in

Appendix A.4.1. We will use the condition @Ĥi=@'i > 0 to arrive at a suitable def-

inition for the Courant number for the discretized momentum equation (although,

as discussed in Appendix A.3, our discretization of the momentum equation is not

monotone since we have @Ĥi=@'j < 0 for some j 6= i).

Application of the �rst order upwind approximation (4.18) to the discretized mo-

mentum equation (A.9) yields:

mn+1
i

= mi � �t


i

0
@mi

X
e(i)

max(ue�le; 0) +
X
e(i)

(me �Ni)min(ue�le; 0)

1
A ; (A.27)

where summations run over the adjacent faces of face i, and in the interpolations to

obtain (me �Ni) only o�-diagonal elements are present. Application of (A.3) to the

diagonal element results in the following criterion:

�i =
X
e(i)

max(ue�le; 0)�t=
i � 1: (A.28)

Using (A.21), while recalling that the summation now runs over four faces, we get:X
e(i)

max(ue�le; 0) � 2max
e(i)

jue�lej: (A.29)

Following the same route as pursued in Appendix A.4.1, we arrive at the same

de�nition for the Courant number and meshwidth, namely equations (A.25) and

(A.26), and the same consequence of (A.3): � � 1.
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A.4.3 Courant number for the Euler equations

In the previous two sections we have derived an appropriate de�nition for the

Courant number for the discretized continuity, energy and momentum equations,

under the restriction that these equations could be considered as independent scalar

conservation laws. However, the Euler equations form a coupled system in which in-

formation travels along the characteristics with velocities equal to (u�a); u; (u+a),
where a is the speed of sound and u = juj the velocity of the uid. Inspired by this,

we replace the maximum velocity in (A.25) by the maximum signal speed (u + a).

This leads to our de�nition of the Courant number for the Euler equations on un-

structured staggered grids:

� =
max(u+ a)�t

�x
; �x = min

c
�xc; �xc = 
c=max

e(c)
le: (A.30)

On a given grid it is easy to compute �x. The problem is �nding a suitable value

for the maximum signal speed, since this value may vary in time while we keep �t

�xed. For the Riemann problems discussed in Section 6.2 we use the exact solution

to determine the maximal signal speed. For all other test cases, we base the signal

speed on the freestream conditions, for which we take the prescribed values at the

inlet of the ow domain. Note that, since we employ an implicit time-stepping

scheme, we are not restricted to time steps satisfying � � 1. In fact, Courant

numbers encountered in our computations are typically in the order of 102.

It is clear that the reasoning given in this and the previous sections contains many

heuristic arguments. A practical approach is to consider (A.30) as an easy applicable

de�nition for the Courant number, and choose �t such that an appropriate value

for � results.
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Consistent discretization of

the inertia term

In Section 4.2.1, two possible options for a control volume (CV) for the momentum

equation are introduced. Option 1 embodies a CV consisting of the two triangles

adjacent to the face under consideration, while in option 2 integration over the half

of these triangles is performed. These options result in distinct discretizations for

the inertia term, see Sections 4.2.3 and 4.2.4, and in this appendix we study whether

the resulting schemes are consistent.

Consistency of schemes for the inertia term is studied by postulating an exact solu-

tion m(e) =m
(e)(x). Substition gives the following equation:

(u�m�);� = f�; f� � ((u(e))�(m(e))�);� : (B.1)

Finite volume integration gives, with CV indicating the control volume for face i:Z
CV

(u�m�);� dx =

Z
CV

f� dx: (B.2)

For simplicity, the right-hand side is approximated as follows:Z
CV

f� dx � f�
i

i; (B.3)

where 
i is the area of the CV and f�
i

= f�(xi), with xi the location of face

midpoint i. This approximation may a�ect the rate of convergence, but does not

cause a convergent scheme to become nonconvergent. The left-hand side of (B.2)

is approximated according to the scheme selected, and linearization is achieved by

inserting the exact velocity (u(e))� for u� . A scheme is consistent if the error, i.e.

the di�erence between the exact and numerical solution, tends to zero as the mesh



158

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

h

E
rr

or

Option 1 (upw. total)
Option 1 (upw. tang.)
Option 2             

(b)

Figure B.1: Example of a grid used for testing consistency (a). Behavior of the

maximum norm of the error for the various options (b).

is re�ned. We choose the following exact solution for the momentum and velocity

�eld, putting � = 1: m
(e) = u

(e) = (sin(x) + 1; sin(y) + 1). The grid on domain

[0; 1 1

2
]� [0; 1 1

2
], depicted in Figure B.1a, is re�ned various times. Figure B.1b shows

that a CV formed by two triangles together with upwind method (4.18) (indicated

by: Option 1, upw. total) leads to a consistent scheme. On the other hand, using

the upwind method given by (4.21) (indicated by: Option 1, upw. tang.), or using

integration over half triangles (indicated by: Option 2) leads to inconsistency. It

must be noted however, that we computed some realistic 2D ow problems with

upwind scheme (4.21), and that the results were about as accurate as the favored

scheme.
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Symmetry-preserving

discretization

In the works of Veldman et al. [119, 122, 123], convincing arguments are given to use

a so-called symmetry-preserving or spectro-consistent discretization for the various

di�erential operators (e.g. the convection operator) that govern incompressible ows.

In Appendix C.1 we give the de�nition of a symmetry-preserving discretization, and

generalize this idea to compressible ows. As discussed in Appendix C.2, the central

scheme for the convection term in scalar equations on unstructured staggered grids

is always symmetry-preserving for scalar equations, while some grid regularity is

required in order to arrive at a symmetry-preserving discretization for the inertia

term in the momentum equation. Discussion of discretization in the vicinity of

boundaries is included.

C.1 What is a symmetry-preserving discretization?

Symmetry-preserving properties of the convection term: continuous case

Let C : V ! V be a linear operator and let C� : V ! V be its adjoint, de�ned by

hC�;  i = h�; C� i (C.1)

for all � and  suÆciently smooth. Let V be the Hilbert space of square-integrable

functions on IRn with the inner product

hf; gi =
Z
S

fg dx: (C.2)

Integration takes place over a domain S, and f = f(x) and g = g(x). The convection

operator is de�ned by

C� = r�(u�); (C.3)
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where we assume both � and u to be di�erentiable. The di�usion and viscous

operator will be discussed later on in this section. With help of the identity

 r�(u�) + �r�(u ) = r�(u� ) + � (r�u) (C.4)

we arrive at:

hC�;  i = �
Z
S

�r�(u ) dx+
Z
S

� (r�u) dx+
I
@S

(u�n)� d�; (C.5)

where n is the outward normal at @S, the boundary of S. We write C = Ci+Cb+Cr,
where operators Ci, Cb and Cr are de�ned as follows:

hCi�;  i = �
Z
S

�r�(u ) dx; (C.6a)

hCd�;  i =

Z
S

� (r�u) dx; (C.6b)

hCr�;  i =

I
@S

(u�n)� d�: (C.6c)

We see that operator Cr vanishes for ows in closed systems, since in this case

(u�n) = 0 at @S. In addition, operator Cd = (r�u) vanishes for incompressible ows.
Note furthermore that operator Ci is skew-symmetric:

Ci = �C�
i
: (C.7)

Consider a scalar conservation law of the following form:

@�

@t
+r�(u�) = 0; (C.8)

where u = u(x; t) is given and � = �(x; t) is the unknown. We again assume u and

� to be di�erentiable. Multiplication by � yields, with help of (C.4) and inserting

 = 1

2
�:

@k

@t
+r�(uk) = �k(r�u); k =

1

2
�2: (C.9)

Integration over a domain S with boundary @S gives:

dK

dt
+

Z
S

k(r�u) dx = �
I
@S

(u�n)k d�; K =

Z
S

k dx: (C.10)

This expresses that in incompressible ows convection does not create nor destroy,

but merely redistributes quantity k, and that consequently K is conserved if S is

closed. Note that (C.10) is identical to�
@�

@t
+ C�; 1

2
�

�
= 0: (C.11)
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In the integral term in the left-hand side of (C.10) we recognize hCd�; �i=2, and the

right-hand side contains the term �hCr�; �i=2. Because of operator Ci being skew-

symmetric, this operator is not present in (C.10).

Symmetry-preserving properties of the convection term: discrete case

Finite volume discretization of (C.8) gives

H
d�

h

dt
+ C�

h
= r; (C.12)

where �
h
stands for the solution vector containing all unknowns, H is a positive

de�nite diagonal matrix containing the areas of the control volumes, matrix C =

C(uh) represents the discretized convection operator and right-hand side vector r

corresponds to the boundary conditions. We split C in two parts:

C = Ci +
1

2
HCd; (C.13)

where Ci and Cd can, as we will see in Section C.2, be chosen such as to correspond

to the continuous operators Ci and Cd respectively, while vector r will turn out to

correspond to Cr�. E.g. for incompressible ow in closed systems, Cd and r vanish,

and time evolution of the discrete equivalent of K, which is Kh =
1

2
�
T

h
H�

h
, follows

from (omitting the factor 1=2):

d(�T
h
H�

h
)

dt
=

d�T
h

dt
H�

h
+ �T

h

d(H�
h
)

dt
= � �H�1Ci�h

�T
H�

h
� �T

h
Ci�h =

= �
�
�
T

h
CT

i
H�TH�

h
� �T

h
Ci�h

�
= ��T

h
(CT

i
+ Ci)�h; (C.14)

where we applied (C.12). Hence, if the discrete convection operator Ci is skew-

symmetric:

Ci = �CT

i
; (C.15)

then Kh is, as is K in the continuous case, conserved. If this is so, then the dis-

cretization is called spectro-consistent or symmetry-preserving. Note that Ci and
1

2
HCd correspond to the skew-symmetric and symmetric part of C, respectively. If

Ci cannot be made, for whatever reason, skew-symmetric, then C should for stability

reasons be a positive real matrix (i.e. C+CT is positive de�nite), and consequently

C is N -stable (i.e. all eigenvalues have a positive real part). Preferably, the real

part of the eigenvalues is small compared to the imaginary part.

Consider now the general situation, i.e. compressible ow in an open system. In

this case, r and Cd are not equal to zero, and a derivation similar to the one given

above results in (assuming (C.15) to hold):

dKh

dt
+

1

2
�
T

h
HCd�h = r

T
�
h
; (C.16)



162 Appendix C.1. What is a symmetry-preserving discretization?

which is clearly a discrete equivalent of (C.10). To arrive at this expression, we used

CT

d
= Cd.

The reasoning given above, omitting the pressure and viscous terms, can equally

well be applied to the momentum equation. One can show that the momentum

equation not only governs conservation of momentum, but also conservation of ki-

netic energy k = 1

2
u �m. The kinetic energy of the discrete solution, de�ned by

Kh = 1

2
u
T

h
Hmh, is conserved under the same conditions as given above for conser-

vation of Kh = 1

2
�
T

h
H�

h
.

As we saw, in a symmetry-preserving discretization the convection operator merely

redistributes `energy' over the domain without dissipating (or creating) it. Although

a symmetry-preserving discretization does not necessarily minimize the local trun-

cation error, it certainly tends to keep the global truncation error small, which is,

of course, a very desirable property [119, 122, 123].

Symmetry-preserving properties of the di�usion and viscous operator

The discussion above is limited to convection operator; here we will discuss the sym-

metry properties of the di�usion and viscous operator. The Laplacian operator DG,
encountered in di�usion terms and in the pressure-correction equation, is de�ned by

DG� = �r�r�: (C.17)

Assuming that  and � are such thatI
@S

( n�r�� �n�r ) d� = 0; (C.18)

with n the outward normal at boundary @S of domain S, we arrive atZ
S

 r�r�dx =

Z
S

�r�r dx: (C.19)

In other words, see also de�nitions (C.1) and (C.2), the di�usion operator is sym-

metric: DG = (DG)�. For the viscous operator in incompressible ows

Vu� = �u�
;��
; (C.20)

while assuming that u� and w� are such thatI
@S

�
u�
;�
w�n� � u�w�

;�
n�
�
d� = 0; (C.21)

we get: V = V�. In the situation thatI
@S

�n�r�d� = 0;

I
@S

u�
;�
u�n� d� = 0; (C.22)
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we get

hDG�; �i =
Z
S

r��r�dx; hVu�; u�i =
Z
S

u�
;�
u�
;�
dx: (C.23)

With � and u� not identical to zero, we �nd that: hDG�; �i > 0 and hVu�; u�i > 0.

In other words, operators DG and V are, in addition to symmetric, positive de�nite.

In a symmetry-preserving discretization, the operators DG and V , i.e. the discrete

equivalents of DG and V, inherit these properties, and are consequently symmetric

positive de�nite.

Remark

Assume we have a symmetric operator S, whose adjoint S�, de�ned by

hS�;  i = h�;S� i; (C.24)

satis�es S = S�. The discrete equivalent of this expression is:

< S�
h
; 

h
>=< �

h
; ST 

h
>; (C.25)

where < u;w >= u� �w is the standard inner product for complex vectors, and �w is

the complex conjugate of w. In a symmetry-preserving discretization, the matrix S

corresponding to S is equal to its transpose: S = ST .

Suppose that the proposed discretization is not symmetry-preserving, i.e. S 6= ST ,

then we can show that (C.25) is still satis�ed provided that the eigenvalues of S are

real. Let vi be the eigenvector of S corresponding to eigenvalue �i, and expand �
h

and  
h
in terms of these eigenvectors:

Svi = �ivi; �
h
=
X
j

�jvj ;  
h
=
X
j

�jvj : (C.26)

Assuming that the eigenvectors are real and orthonormal, and assuming that all �

and � are real (which implies that �
h
and  

h
are real), we arrive at:

< S�
h
; 

h
>=

X
j

�j�j�j ; < �
h
; ST 

h
>=

X
j

�j��j�j : (C.27)

We can equate these two expressions only if �j = ��j for all j, hence when all

eigenvalues are real. In the situation that �j > 0 for all j, S is positive de�nite.

For skew-symmetric operators a similar derivation can be pursued, resulting in the

condition that all eigenvalues have to be imaginary. When we studied numerically

the symmetry-preserving properties of our discretization, see Sections 5.1.4 and 6.3.1,

we considered the location of the eigenvalues in the complex plane.
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C.2 Symmetry-preserving properties of the unstruc-

tured staggered scheme

In the unstructured staggered scheme, two di�erent types of discretized equations

are present: the equations for density and energy on the one hand, and the equation

for the momentum on the other. These discretizations are discussed in full detail

in Chapter 4, and here we restrict ourselves to study their symmetry-preserving

properties. In this section, the symmetry-preserving properties of the discretized

convection and inertia terms are studied by analytical means. It turns out to be

very elaborate to investigate analytically the symmetry-preserving properties of the

di�usion and viscous operators, hence these aspects are investigated only by numer-

ical means, see Section 5.1.4.

Scalar equations

Equation (C.8) is a generic form for a conservation law, similar to the continuity

and energy equation. Integration of this expression over cell 1 yields, cf. (4.89) and

see Figure 4.14 for notation:


1

d�1

dt
+
X
e(1)

ue�e�le = 0: (C.28)

The central scheme (4.91) gives for internal cell 1 the following nonzero elements in

the convection matrix (with cij the element of C in the ith row and jth column):

c11 =
1

2
(ui�li + uj�lj + uk�lk); c12 =

1

2
ui�li; c13 =

1

2
uj�lj ; c14 =

1

2
uk�lk:

(C.29)

Note that the diagonal term corresponds, as was to be expected, to the velocity

divergence term, and has consequently to be incorporated in matrix Cd, see equation

(C.13). To be more precise, c11 equals the (1; 1)th element of 1

2
HCd:

c11 =
1

2

X
e(1)

ue�le =
1

2

1

0
@X

e(1)

ue�le=
1

1
A =

1

2
h11cd;11: (C.30)

Hence, in agreement with (C.6b), matrix Cd is a diagonal matrix containing the

discrete equivalents of (r�u) at its main diagonal. The o�-diagonal elements of C

form Ci. It is easy to show that, after writing out the discretization for cells 2, 3

and 4, these o�-diagonal elements satisfy:

c21 = �c12; c31 = �c13; c41 = �c14; (C.31)

showing that, in the interior of the domain, property (C.15) holds.

Consider now the situation as indicated in Figure 4.14b in which face i is a bound-

ary face. The o�-diagonal element c12 does not exist anymore, while the elements



Appendix C. Symmetry-preserving discretization 165

c13 and c14 remain una�ected with respect to (C.29), hence matrix Ci remains

skew-symmetric when the presence of boundaries is included. Now we focus on the

diagonal element. Assume �rst that at face i the quantity ui�i is given, hence face

i is located at an inow, solid or freeslip boundary. The corresponding elements in

the main diagonal and right-hand side vector are:

c11 =
1

2
(uj�lj + uk�lk); r1 = �ui�i�li: (C.32)

Considering only the contribution of face i, we arrive with help of (C.16) at:

dKh

dt
+

1

2
�21(uj

�lj + uk�lk) = �ui�i�li�1: (C.33)

With �i � �1 we get:

dKh

dt
+

1

2
�21(ui

�li + uj�lj + uk�lk) � �1

2
ui�

2
i
�li; (C.34)

which is clearly the discrete analogon of (C.10) when the presence of other cells

is omitted. In the situation that ui�i is not given, i.e. face i is positioned at an

outow boundary, the corresponding elements in the main diagonal and right-hand

side vector are:

c11 =
1

2
(uj�lj + uk�lk) + ui�li; r1 = 0: (C.35)

It is easy to verify that (C.34) also holds for this situation. In conclusion, the central

scheme for scalar conservation laws on unstructured staggered grids satis�es (C.15)

and mimics de�nitions (C.6), hence it preserves symmetry.

Momentum equation

Suppose for a moment that the full momentum vector is stored at the cell faces.

Discretization of the momentum equation, omitting the pressure and viscous terms,

gives


i

dmi

dt
+
X
e(i)

ueme
�le = 0; (C.36)

see also equation (4.7). We propose the following central scheme for the momentum

vector at face k, with notation as in Figure 4.2:

mk =
1

2
(m1 +m3); (C.37)

where m1 and m3 are momentum vectors in cells 1 and 3. If we use

m3 =
1

2
(mv +mw); (C.38)

and similar relations in other cells, then among others the following elements in the

convection matrix for the x- and y-momentum component appear:

ciw =
1

4
uk�lk cwi =

1

4
uk�lk cii =

1

4
(uj�lj + uk�lk + ul�ll + uo�lo) =

1

4

X
e(i)

ue�le:

(C.39)
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Figure C.1: Some examples of regular grids at which the convection operator for the

momentum equation is skew-symmetric.

Note that ciw = �cwi because the sign of �lk is in ciw opposite to that in cwi.

Furthermore, as was to be expected, the diagonal term corresponds to the divergence

of the velocity. Hence, if the momentum vector were stored at the faces and scheme

(C.37){(C.38) were used, the skew-symmetry property (C.15) would be satis�ed.

However, we do not store the momentum vector at the faces, but only its normal

components. In this situation, the central scheme is given by equation (4.22). Among

others, the following elements in the convection matrix for the momentum at face i

are present:

cii =
1

2

X
e(i)

ue�le; cik = 0; civ =
1

2
uk�lk�

i

v
; ciw =

1

2
uk�lk�

i

w
; (C.40)

where the reconstruction coeÆcients � are de�ned as follows:

Ni = �i
v
Nv + �i

w
Nw; Nw = �w

i
Ni + �w

j
Nj : (C.41)

One of the elements in the convection matrix for the momentum equation for face

w is: cwi =
1

2
uk�lk�

w

i
. Hence, in order to have the desired skew-symmetric property,

the relation

�i
w
= �w

i
(C.42)

needs to be satis�ed. Unfortunately, this is not true in general. In the special

situation in which Ni and Nw are parallel and Nj and Nv are parallel, the skew-

symmetric property holds for the contribution coming from CV-face k. Hence, the

central scheme for the momentum equation preserves symmetry on grids that consist

of a tessellation of congruent triangles, i.e. when the grid consists of three sets of

parallel lines. This is illustrated in Figure C.1. These grids may be viewed as

structured grids consisting of identical triangles. In Section 6.3.1 a numerical study

of the symmetry-preserving properties of the inertia term is given.



Appendix D

Conservation properties of

the discretization

Weak solutions of hyperbolic conservation laws are called genuine if they satisfy the

jump conditions; these are called the Rankine-Hugoniot conditions in the case of

the Euler equations of gasdynamics. The well-known Lax-Wendro� theorem [66]

states that convergent numerical schemes in conservation form converge to a gen-

uine weak solution of the conservation law. Colocated �nite volume schemes for

conservation laws, i.e. schemes in which all primary unknowns reside in the same

nodes, are in conservation form. The proof of the Lax-Wendro� theorem assumes

colocated schemes. Because the theorem suggests that conservation is important

for satisfying the jump conditions, our staggered scheme is in conservation form for

mass and energy, and if applied on Cartesian grids also for momentum. However,

on non-Cartesian or unstructured grids, with arbitrarily directed normal momentum

components at the cell faces, there is no conservation form, because momentum and

pressure balance only in a �xed direction. Therefore we use a generalized concept

of conservation for momentum and rely on numerical experiments to show that the

jump conditions indeed are satis�ed.

Conservation of kinetic energy, circulation and momentum is demonstrated for two

di�erent unstructured staggered schemes for incompressible ows by Perot [89].

Perot's scheme, discussed in Section 2.4.3, needs a dual mesh, formed by the associ-

ated Voronoi tessellation of the triangular mesh, in his conservation proofs. Hence,

a Delaunay triangulation has to be employed. The unstructured staggered scheme

described in this thesis does not need a dual mesh, and is therefore not restricted to

Delaunay grids. This is advantageous, since in some cases Delaunay triangulations

are unacceptable [75] due to, for example, violation of boundary integrity or the

presence of obtuse angles. Since our scheme is applied to compressible ows, it is

highly desirable that it satis�es the jump conditions. It is the aim of this appendix
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Figure D.1: Part of a staggered grid. Faces are indicated by letters and numbers

denote the cells. Faces s and q are boundary faces.

to show that our scheme conserves mass, energy and momentum, which suggests

satisfaction of the jump conditions. Numerical experiments that are discussed in

Chapter 6 con�rm this.

D.1 Conservative discretization of the continuity

and energy equation

Consider the conservation law

@ 

@t
+r�(u�) = 0; (D.1)

where we have the continuity equation (2.7), the energy equation (2.9) and the Mach-

uniform pressure-correction equation (3.51) in mind. Integration over a domain S

with boundary @S yields:

d	

dt
+

I
@S

(u�n)�d� = 0; 	 =

Z
S

 dx; (D.2)

where n is the outward normal at @S. The only way in which 	 can change is

by having a nonzero net ux over @S, which is why (D.1) is called a conservation

law. Let S consist of non-overlapping triangles Sc with area 
c, and let @S be

approximated by non-overlapping straight faces @Sb with length lb. Then (D.2) is

equivalent to: X
c


c

d c

dt
+
X
b

(ub �nb)�blb = 0; (D.3)

where

 c =
1


c

Z
Sc

 dx; (ub �nb)�b = 1

lb

Z
@Sb

(u�n)�d�: (D.4)
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The summations over c and b run over all cells and all boundary faces, respectively.

By de�nition, a numerical scheme that is conservative reduces to (D.3) after sum-

mation over all cells. We will prove that the �nite volume approximation to (D.1)

as proposed in Sections 4.3, 4.4 and 4.5 is conservative. Integration of (D.1) over

cell 1, see Figure D.1, leads to


1

d 1

dt
+
X
e(1)

(ue �ne)�ele = 0; (D.5)

where the summation is over the faces of cell 1, i.e. e(1) = fi; j; qg, and ne is the

outward unit normal at face e. We observe that the ux term of each internal face

appears in the discretized equations for both adjacent cells, but with opposite sign.

For example, (ui�ni)�ili appears in the equations for  1 and  2. Summation of the

discretized equations over all cells then results in cancellation of the ux terms at the

internal faces, leaving only a contribution from the boundary faces. This cancellation

is essential and leads to expression (D.3), showing that (D.5) is conservative. In this

way, a conservation form arises naturally for colocated schemes.

D.2 Conservative discretization of the momentum

equation

Integration of the inviscid momentum equation over a domain S with boundary @S

yields the momentum conservation form:

d

dt

Z
S

m dx+

I
@S

[(u�n)m + pn] d� = 0; (D.6)

where n is the outward unit normal at @S. The control volume (CV) for each

internal face consists of the union of the two adjacent triangles, whereas the CV for

a boundary face consists of the neighboring boundary cell. Assume for the moment

that at each triangle face the momentum vector is located; we will return to this

later. Integration over the CV for the momentum in face f leads to a discretized

momentum vector equation of the following form:


f

dmf

dt
+
X
e(f)

[(ue �ne)me + pene] le = 0; (D.7)

where e(f) indicates the set of faces of the CV and 
f is the area of the CV.

For example, in Figure D.1 we have e(i) = fj; k; o; qg and 
i = 
1 + 
2, and

e(q) = fi; j; qg and 
q = 
1. We will show below that summation of (D.7) over

all faces leads to a discrete equivalent of (D.6), hence (D.7) is in conservation form.

After that we return to the relation between (D.7) and the discretized equation for

normal momentum components: it is the latter that is actually solved.
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Time derivative

Summation of the time derivative in (D.7) over all faces in the grid yields:

d

dt

0
@X

f


fmf

1
A =

d

dt

0
@X

c


c

X
f(c)

mf

1
A = 3

d

dt

 X
c


cmc

!
; (D.8)

where we approximate the momentum vector in the cell centroid by means of:

mc =
1

3

X
f(c)

mf ; (D.9)

with f(c) the set of faces of cell c.

Inertia term

The inertia ux term (ui�ni)mili at face i, see Figure D.1, appears in the discretized

momentum vector equations for the faces j, k, o and q. The outward unit vector ni
points in the direction of cell 2 in the equations for faces j and q, and in the opposite

direction in the remaining two equations. Hence, summation over all momentum

vector equations leads to a cancellation of the inertia ux term at face i. All other

ux contributions at internal faces disappear similarly. The inertia term (uq�nq)mqlq
at boundary face q shows up in the momentum vector equations for faces i, j and

q. Since this term is not cancelled, we arrive atX
f

(uf �nf )mf lf = 3
X
b

(ub �nb)mblb; (D.10)

where b refers to the boundary faces.

Pressure term

A completely similar reasoning as used for the inertia term leads for the pressure

term to X
f

pfnf lf = 3
X
b

pbnblb: (D.11)

Of the gradient schemes discussed in Section 4.2.5, only the contour integral for-

mulation is conservative. Nevertheless, so far all numerical experiments done with

other gradient schemes resulted in correct shock speeds as well.

Discussion

Summation of (D.7) over all faces and application of (D.8), (D.10) and (D.11) results

in, after division by 3:X
c


c

dmc

dt
+
X
b

[(ub �nb)mb + pbnb] lb = 0; (D.12)

which is in conservation form, cf. (D.6). Hence the discretization of the momen-

tum vector equation is conservative. The staggered scheme uses only the normal
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Figure D.2: Fine grid solution for some Riemann problems.

momentum components, hence it uses the projection of (D.7) on the correspond-

ing normal component. The reason to use only the normal components is that we

want to avoid undesirable pressure oscillations in the incompressible case. Since the

normal vectors can have any direction, summation over all projected momentum

equations does in general not lead to cancellation of the internal ux contributions.

But the set of the momentum equations solved consists of linear combinations of

components of (D.12), and is therefore a subset of the conservative system (D.12).

When this is the case, we say that the system is in generalized conservation (GC)

form. The Lax-Wendro� theorem [66] does not apply to schemes in GC form. How-

ever, it suggests that conservation properties are important, which is why we have

introduced the concept of generalized conservation form. In addition, satisfaction of

the entropy condition has, for the case of the Euler equations, only been proven for

the Osher scheme [28, 84, 83]. Also for our scheme no such proof is available, and in

Chapter 6 it is veri�ed for various test cases that our scheme computes the entropy

solution. The consequences of having a scheme that is not in GC form are discussed

in Appendix D.3.

D.3 Example of a result computed with a noncon-

servative scheme

The scheme of Bijl [9] is not in conservation form, and this explains the presence of

discrepancies in the shock speed as observed on �ne grids in [111]. In the previous

sections it is demonstrated that the unstructured staggered scheme conserves mass,

momentum and energy, and this strongly suggests that computed results will satisfy

the Rankine-Hugoniot conditions. In Figure D.2 results of the 2D unstructured
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 (a)  (b)

Figure D.3: Density contours resulting from the GC (a) and the not-GC (b) dis-

cretization.

staggered schemes, the 1D Roe and AUSM scheme on a �ne grid with 550 cells at the

centerline are depicted. It is clear that all solutions converge to the entropy solution,

and that the shock speeds are correct. For further information, see Section 6.2.

In order to see what loss of conservation might bring, we consider the following,

somewhat arti�cial, change in the discretization. Suppose that the boundary in

Figure D.1 is a freeslip wall, which means that the ow is parallel to the boundary.

Let us call a face with one vertex at a freeslip wall a quasi-internal face, and a face

without a vertex at a wall is called a real-internal face. Assume we do, considering

quasi-internal face o, the following. The inertia term uo(mo �Nz)�lo appears in the

momentum equations for z 2 fi; k; rg. We will evaluate this term by means of

upwind scheme (4.18) when z is a real-internal face, while the boundary condition

is used explicitly when z is a quasi-internal face. Explicit use of the boundary

condition and using an upwind approximation gives, with the x-axis parallel to the

boundary and ow from left to right: mo = (mr;x; 0). Here mr;x follows from:

mr = (mr �Nr) = mr;xNr;x, hence we explicitly insert the approximation that the

ow is parallel to the wall. Consequently, the considered inertia term becomes equal

to uomrNz;xlo=Nr;x in the momentum equations for quasi-internal faces z 2 fi; rg.
On the other hand, in the momentum equation for real-internal face k the considered

inertia term is computed with the standard �rst order upwind scheme:

uo(�
k

r
mr + �k

s
ms)�lo; Nk = �k

r
Nr + �k

s
Ns: (D.13)

When at face r the ow is not perfectly aligned with the wall, the cancellation leading

to (D.10) does not hold anymore, resulting in loss of conservation. This scheme may

look unnatural, but recall that our aim is merely to give a slight modi�cation to the

GC (generalized conservative) scheme such that it is not in GC form anymore. The

density contours of the solution for the Sod problem are, computed with both the

GC and the not-GC scheme on the grid of Figure 6.1, shown in Figure D.3. The

undesired inuence of the loss of conservation near the freeslip wall is clearly visible,

e.g. a wrong shock speed.
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