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Abstract

In [14] an unstructured staggered scheme for the two-dimensional Euler equations is dis-
cussed. Such a scheme cannot be in classic conservation form for momentum. The aim of the
present paper is to formulate a generalized conservation form for momentum on unstructured
staggered grids, and to demonstrate by numerical experiments that the scheme satisfies the
Rankine-Hugoniot conditions. Numerical results for one-dimensional Riemann problems on
two-dimensional unstructured grids confirm that the scheme converges to the entropy solu-
tion. In addition, transonic flow around an airfoil is computed.

Keywords: Euler equations; compressible flows; conservative schemes; unstructured grids;
staggered schemes

(*) Supported by The Netherlands Organization for Scientific Research (NWOQ)



1 INTRODUCTION 2

1 Introduction

Most established methods for compressible gas dynamics use colocated schemes. For in-
compressible flows, a straightforward discretization on a colocated grid results in odd-even
oscillations of the pressure. To remedy this, artificial stabilizing measures, like the pressure-
weighted interpolation method of Rhie and Chow [11], have to be taken. This problem of
spurious pressure oscillations does not occur with staggered schemes. The difficulty also does
not arise in the compressible case. Because on non-orthogonal grids colocated discretization
is more straightforward than staggered discretization, colocated schemes are prevalent for
compressible flows, and have reached a certain degree of maturity.

The classic incompressible staggered scheme of Harlow and Welch [6] can be applied to com-
pressible flows as well, as shown already in [4, 5]. In addition, staggered schemes can be
devised that are accurate on highly non-orthogonal structured grids, see [16, 15] for the
incompressible flow case and [2, 13] for compressible flows. Because an extension of an in-
compressible scheme is involved, a unified method for compressible and incompressible flows
can be obtained, with Mach-uniform accuracy and efficiency. To achieve this with colocated
schemes, special measures, such as preconditioning, have to be taken, leading to additional
computing costs, particularly in the nonstationary case. For a recent discussion of difficulties
and remedies concerning the zero Mach limit of compressible colocated schemes, see [3].

The above remarks pertain to structured schemes. It has become generally recognized that
structured grid generation in complicated domains cannot be automated to a satisfactory
extent. Therefore unstructured grids are now receiving widespread attention.

Unstructured staggered schemes for compressible flows have, apart from [14], apparently not
yet been considered. In this paper we focus on the conservation properties of the spatial
discretization that is introduced in [14]. Generalization to a Mach-uniform compressible-
incompressible method has been done also and will be discussed in a forthcoming paper.
Here we restrict ourselves to the fully compressible case, because this is least explored.

Weak solutions of hyperbolic conservation laws are called genuine if they satisfy the jump con-
ditions; these are called the Rankine-Hugoniot conditions in the case of the Euler equations
of gasdynamics. The well-known Lax-Wendroff theorem [7] states that convergent numerical
schemes in conservation form converge to genuine weak solutions. Colocated finite volume
schemes for conservation laws, i.e. schemes in which all primary unknowns reside in the same
nodes, are in conservation form. The proof of the Lax-Wendroff theorem assumes colocated
schemes. Because the theorem suggests and experience confirms that conservation is impor-
tant for satisfying the jump conditions, our staggered scheme is in conservation form for mass
and energy, and on Cartesian grids also for momentum. However, on non-Cartesian grids,
with normal momentum components at the cell faces, there is no conservation form, because
momentum and pressure balance only in a fixed direction. Therefore we use a generalized
concept of conservation form for momentum and rely on numerical experiment to show that
the jump conditions are satisfied.

Conservation of kinetic energy, circulation and momentum is demonstrated for two different
unstructured staggered schemes for incompressible flows by Perot in [10]. Perot needs a dual
mesh, formed by the associated Voronoi tessellation of the triangular mesh, in his conservation
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Figure 1: Part of a staggered grid as used by the present authors (a) and Perot (b). The
control volume in both approaches is shaded.

proofs. Hence, a Delaunay triangulation has to be employed. The unstructured staggered
scheme described in [14] does not need a dual mesh, and is therefore not restricted to Delaunay
grids. This is advantageous, since in some cases Delaunay triangulations are unacceptable [8]
due to, for example, violation of boundary integrity or the presence of obtuse angles. Since
our scheme is applied to compressible flows, it is highly desirable that it satisfies the jump
conditions. It is the aim of the present paper to show, by demonstrating conservation of
momentum and showing the results of several numerical experiments, that this is indeed the
case.

In Section 2 the staggered grid arrangement and some remarks concerning the sequential up-
date procedure will be given. In Section 3 a generalized conservation form for momentum on
staggered grids is formulated. Numerical experiments to confirm that the scheme converges
to genuine weak solutions are presented in Section 4. It is found that the scheme also satisfies
the entropy condition. Section 5 contains conclusions.

2 Solution procedure

In our scheme, the normal momentum components are located at the cell faces and the
scalar variables are positioned at the cell centroids, see Figure la. In Perot’s discretization,
the pressure is stored in the circumcenters, which are the vertices of the associated Voronoi
tessellation, while the normal velocity components are located at the cell faces, as indicated
in Figure 1b.

At a control volume face, ‘left’ and ‘right’ state vectors (containing all primitive variables)
form the starting point for the familiar flux splitting and flux difference schemes for the
Euler equations. In iterative solution methods, the elements of the state vector in a cell are
usually updated collectively. However, definition and collective updates of such state vectors
are not naturally given on a staggered grid. On the other hand, discretization by a simple
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finite difference or finite volume scheme for each primary variable separately is natural on
a staggered grid. It is also natural to update the primary variables sequentially in a time-
stepping or iterative procedure. For the primary variables we take the momentum m = pu,
the density p and the density times total enthalpy pH as energy variable. Other variables
follow from algebraic relations like the equation of state. Upwind or central interpolations
for the convection term in each of the governing equations result in a very simple scheme.
Such a staggered and decoupled approach is common in incompressible CFD and for the
shallow-water equations, but not in compressible CFD.

3 Conservative discretization of the momentum equation

The scalar equations, i.e. the continuity and energy equation, are integrated over the trian-
gles. The resulting discretization, discussed in more detail in [14], is trivially shown to be
conservative.

Integration of the inviscid momentum equation over the domain D with boundary 0D yields:
d
—/ mdx + [(u-n)m + pn] dT" =0, (1)
dt Jp aD

where n is the outward unit normal at dD. The only way in which the total amount of
momentum [, mdx can change is by having a non-zero net flux over 9D, which is why (1) is
called a conservation law. The control volume (CV) for each internal face consists of the union
of the two adjacent triangles, whereas the CV for a boundary face consists of the neighboring
boundary cell. Note that Perot has opted for another CV, see Figure 1b. Assume for the
moment that at each triangle face the momentum vector is located; we will return to this
later. Integration over the CV for the momentum in face f leads to a discretized momentum
vector equation of the following form:

Qf dtf + Z ‘Ne)mg + pene)le =0, (2)
e(f)

where e(f) indicates the set of faces of the CV and €y is the area of the CV. For example,
in Figure 1a, we have e(i) = {j, k, 0,q} and ; = Q; + Q9, and, assuming ¢ to be a boundary
face, e(q) = {q,4,7} and Q; = Qo. We will show below that summation of (2) over all faces
leads to a discrete equivalent of (1), hence equation (2) is in conservation form. After that
we return to (2) and the discretized equation for normal momentum components: it is the
latter that is actually solved.

Time derivative
Summation over all faces f of the term containing the time-derivative in (2) yields:

d d
o > Qpmy = > ) my =3 <2ch>, (3)
f c f(e)
where we approximate the momentum vector in the cell centroid by means of:

1
m., = gsz, (4)
f(c)
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with f(c) the set of (three) faces of cell c.

Inertia term

The inertia flux term (u;-n;)m;l; at face 4, see Figure 1a, appears in the discretized momentum
vector equations for the faces j, k, o and ¢q. The evaluation of this term is done by means
of the reconstruction procedure, introduced in [14]. A first order upwind scheme is used. As
far as we know no higher order schemes on unstructured staggered grids have been developed
yet. The outward unit vector n; points in the direction of cell 2 in the equations for faces j
and ¢, and in the opposite direction in the remaining two equations. Hence, summation over
all momentum vector equations cancels the inertia flux term at face 7. All other internal flux
contributions disappear similarly. The inertia term (u, - ng)mgl,; at boundary face g shows
up in the momentum vector equations for faces ¢, j and ¢. Since this term is not cancelled,
we arrive at

> (ug-np)myplp =3 (uy, - np)myly, (5)
7 b

where the subscript b refers to the boundary faces.

Pressure term
A completely similar reasoning as used for the inertia term leads for the pressure term to

> pmgly =3 pymyls,. (6)
7 b

The path-integral formulation used to approximate the pressure term in [14] cannot be written
in this form, and is not conservative. Nevertheless, so far all numerical experiments done with
this method have resulted in correct shock speeds.

Discussion
Using (3), (5) and (6), summation of (2) over all faces results in:

dm
> Q. dtc + ) [(uy - np)my + ppny] Iy = 0, (7)
c b

which is in conservation form. This expression is equivalent to conservation of momentum for
the (colocated) cell centered scheme. However, as stated before, the staggered scheme uses
only the normal momentum components at the faces, hence it uses the projection of (2) on
the corresponding normal vectors, and therefore conservation of momentum is not obvious.
The reason to use only the normal components lies in the desire to avoid unwanted pressure
oscillations in the incompressible case. Since the normal vectors can have any direction,
summation over all projected momentum equations does in general not lead to cancellation
of the internal flux contributions. But the set of the momentum equations solved consists of
linear combinations of components of (7), and is therefore a subset of the conservative system
(7). When this is the case, we say that the system is in generalized conservation (GC) form.
Below we show by numerical experiments that the jump conditions are satisfied if the discrete
momentum equations are in GC form.
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4 Numerical tests

The Lax-Wendroff theorem [7] does not apply to schemes in GC form. However, it suggests
that conservation properties are important, which is why we have introduced the concept of
generalized conservation form. In addition, satisfaction of the entropy condition has, for the
case of the Euler equations, only been proven for the Osher scheme [9]. We verify numerically
whether the entropy solution is satisfied, since also for our scheme no such proof is available.

Riemann problems

On the grid shown in Figure 2a, numerical solutions for the test case of Lax and the supersonic
flow problem posed by Arora and Roe [1] are computed. We have included in Figures 2b,c
results from the Roe scheme and the AUSM scheme obtained on an equidistant 1D grid with
the same number of gridpoints (70) as on the centerline in the 2D grid. For the Lax problem,
all three methods are of comparable accuracy. For the Mach 3 case, the Roe scheme violates
the entropy condition, and Harten’s sonic entropy fix had to be employed. Again, the accuracy
for the three methods is almost similar, with our scheme yielding a slightly more smeared
contact discontinuity. Note that the staggered scheme, because of the arbitrary direction of
the normal vectors, considers these 1D Riemann problems as 2D flows. On a similar grid,
refined to 550 gridpoints at the centerline, we computed the solution to the modified Sod
problem [12]. We observe satisfaction of the shock relations and convergence to the genuine
weak solution, also on a fine grid.

Transonic flow around the NACA0012 airfoil

The transonic flow around the NACAQ012 airfoil with freestream Mach number M, = 0.8
and angle of incidence 1.25° is computed, with 480 nodes located at the airfoil. In Figure 3
the computed isobars are depicted, and the Mach number at the airfoil is compared to the
AGARD reference result [17]. The shock at the upper surface is captured without oscillations
at almost the correct location, and the weak shock at the lower surface is absent. The quality
of the result is similar to what is generally obtained with first order colocated schemes.

5 Conclusions

We have formulated the property of generalized conservation for momentum in unstructured
staggered schemes. Conservation of mass and energy for the scheme is obtained in the same
manner as for colocated schemes. Numerical experiments have been conducted using the
generalized conservative scheme, showing that this scheme satisfies the Rankine-Hugoniot
shock conditions and leads to the genuine weak solutions. The accuracy is comparable to that
of state-of-the-art approximate Riemann solvers. Higher order upwind schemes are currently
under development.
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Figure 2: Grid (a) used for Riemann problems. Solutions for the Lax (b), Arora and Roe (c)
and modified Sod problem (d) at the centerline. For clarity, in (b) and (c) only half of the
solution points are displayed.
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Figure 3: Isobars (a) and Mach number (b) for the transonic profile flow.
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