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1 Introduction

In this second course on numerical flow problems we shall focus our attention to two specific
subjects:

- the solution of the incompressible Navier-Stokes equations by finite elements;

- the efficient solution of large systems of linear equations.

Although, at first sight there seems no connection between both subjects, it must be remarked
that the numerical solution of partial differential equations and hence also of the Navier-Stokes
equations, always results in the solving of a number of large systems of sparse linear systems.
Since, in general the solution of these systems and the storage of the corresponding matrices
take the main part of the resources (CPU time and memory), it is very natural to study
efficient solution methods.

In the first part of these lectures we shall be concerned with the discretization of the incom-
pressible Navier-Stokes equations by the finite element method (FEM). First we shall give a
short introduction of the FEM itself. The application of the FEM to potential problems is
considered and the extension to convection-diffusion type problems is studied. The Galerkin
method is introduced as a natural extension of the so-called weak formulation of the partial
differential equations. One of the reasons why finite elements have been less popular in the
past than finite differences, is the lack of upwind techniques. In the last decade, however,
accurate upwind methods have been constructed. The most popular one, the so-called stream-
line upwind Petrov-Galerkin method (SUPG), will be treated in Chapter 3. It is shown that
upwinding may increase the quality of the solution considerably. Another important aspect of
upwinding is that it makes the systems of equations more appropriate for the iterative meth-
ods treated in part II. As a consequence both the number of iterations and the computation
time decrease.
In Chapter 4 the discretization of the incompressible Navier-Stokes equations is considered.
Since the pressure is an unknown in the momentum equations but not in the continuity equa-
tion, the discretization must satisfy some special requirements. In fact one is no longer free to
choose any combination of pressure and velocity approximation but the finite elements must
be constructed such that the so-called Brezzi-Babuška (or BB) condition is satisfied. This
condition makes a relation between pressure and velocity approximation. In finite differences
and finite volumes the equivalent of the BB condition is satisfied if staggered grids are ap-
plied. Even if the BB condition is satisfied we are still faced with a problem with respect to
the solution of the linear systems of equations. The absence of the pressure in the continuity
equation induces zeros at some of the diagonal elements of the matrix. In general linear
solvers may be influenced by such zeros, some iterative solvers even do not allow non-positive
diagonal elements. For that reason alternative solution methods have been developed, which
all try to segregate the pressure and velocity computation.
Chapter 5 treats the most popular segregated method, the so-called penalty function formu-
lation. In this approach the continuity equation is perturbed with a small compressibility
including the pressure.
From this perturbed equation the pressure is expressed in terms of velocity and this is sub-
stituted into the momentum equations. In this way the velocity can be computed first and
afterwards the pressure. A disadvantage of this method is that the perturbation parameter
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introduces extra complications.
In Chapter 6 an alternative formulation is derived, the so-called solenoidal approach. In this
method, the elements are constructed in such a way that the approximate divergence freedom
is satisfied explicitly. To that end it is necessary to introduce the stream function as help
unknown. This method seems very attractive, however, the extension to three-dimensional
problems is very difficult.
Finally, in Chapter 7, methods for the time-dependent incompressible Navier-Stokes equa-
tions are treated. For this type of methods an alternative segregation is possible, the so-called
pressure-correction method. This method is also popular in finite differences and finite vol-
umes.

In the second part we consider the efficient solution of large system of linear equations. As
applications and examples we mostly use systems of equations resulting from the discretiza-
tion of 2- and 3 dimensional partial differential equations.

We start in Chapter 2.1 by considering direct methods as there are: Gaussian elimination
and Cholesky decomposition. These methods are used if the dimension of the system is not
too large. Since these methods are implemented on computers we consider the behavior of
the methods with respect to rounding errors. For large problems the memory requirements
of direct methods are a bottle neck, using special methods for banded, profile or ”general
sparse” matrices we can solve much larger systems. These methods only use the non zero
part of the resulting decomposition.

In Chapter 2 we consider classical iterative methods for linear equations. These methods are
very cheap with respect to memory requirements. However, convergence can be very slow so
the computing time may be much larger than for direct methods.

In Chapter 3 and 4 we consider modern iterative methods of Krylov subspace type. In Chapter
3 the conjugate gradient method for symmetric positive definitive matrices, and in Chapter 4
Krylov methods for general matrices. The rate of convergence is much better than for basic
iterative methods, whereas no knowledge of the spectrum is needed in contrast with some
basic iterative methods. A drawback for general matrices is that there are many methods
proposed and until now there is no clear winner. We shall summarize the most successful
ones and try to give some guidelines for choosing a method depending on the properties of
the problem.

The Krylov subspace methods become much faster if they are combined with a preconditioner.
For the details we refer to Chapter 5. We only note that in essence a preconditioned Krylov
method is a combination of a method given in chapter 3 and 4 and a basic iterative method
or an incomplete direct method.

In many applications eigenvalues give information of physical properties (like eigenmodes) or
they are used to analyze, and enhance mathematical methods for solving a physical problem.
If only a small number of eigenvalues are needed for a very large matrix it is a good idea to
use iterative methods, which are given in Chapter 6. We start with the Power method which
is easy to understand, and approximate the largest eigenvalue. Thereafter we consider the
Lanczos method for symmetric matrices, which is closely related to the CG method. Again
for general matrices different methods are proposed and it is not always clear, which one is
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the best.

Finally in Chapter 7 we give a summary of present day supercomputers. There are mainly
two types: vector- and parallel computers. For the problems considered in this report super-
computers are necessary to obtain results for large 3 dimensional problems. At this moment
vector computers give the best results, with respect to computing time and memory. However,
we expect that in the near future parallel computers (especially those based on a clustering
of very fast nodes) will beat them for real live problems.
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2 Introduction to the finite element method

2.1 Differential equations and boundary conditions

The finite element method (FEM) may be considered as a general discretization tool for
partial differential equations. In this sense the FEM forms an alternative for finite difference
methods (FDM) or finite volume methods (FVM). The main reason to use the FEM is its
ability to tackle relatively easily, problems that are defined on complex geometries. However,
the programming of finite element methods is more complicated than that of finite differences,
and hence in general requires standard software packages.

In this lecture we shall restrict ourselves to the application of the FEM to two general types of
differential equations: the convection-diffusion equation and the incompressible Navier-Stokes
equations. The last type of equations are the subject of Chapter 4, and convection-diffusion
type of equations will be the subject of Chapter 3. In this introductory chapter we shall
neglect the convective terms and focus ourselves to diffusion type problems:

ρ
∂c

∂t
−

n
∑

i,j=1

∂

∂xi

(

aij
∂c

∂xj

)

+ βc = f (1)

where c denotes the unknown, for example the potential, temperature or concentration. The
matrix A with elements aij represents the diffusion tensor and is supposed to be symmetric
and positive definite. The coefficient β is zero in many practical problems, but is added for
the sake of generality. f represents a source term and ρ∂c

∂t
the time-derivative part, where

ρ must be positive in the instationary case. All coefficients ρ, aij , β and f may depend on
time and the space variable x. n is the dimension of space which in our applications varies
from 1 to 3.
If the coefficients also depend on the solution, the equations become non-linear. In this
chapter we restrict ourselves to linear problems only.
Equation 1 is usually written in vector notation:

ρ
∂c

∂t
− div (A∇c) + βc = f, (2)

where ∇ denotes the gradient operator.
In this chapter we shall only consider stationary problems, so equation (2) reduces to

−div (A∇c) + βc = f (3)

In order that equation (3) has a unique solution, and to make the problem well posed it is
necessary to prescribe exactly one boundary condition at each part of the boundary. In the
sequel the region at which the differential equation is defined is called Ω and its boundary is
denoted by Γ. Common boundary conditions in equation (3) are:

c = g1 on Γ1, (4)

A∇c · n = g2 on Γ2, (5)

σc+A∇c · n = g3 on Γ3 (σ ≥ 0), (6)
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where the boundary Γ is subdivided into three parts Γ1, Γ2 and Γ3.

Boundary conditions of type (4) are called Dirichlet boundary conditions, boundary conditions
of type (5) Neumann conditions and boundary conditions of type (6) are called Robbins
boundary conditions. In fact (5) may be considered as a special case of (6).
Other types of boundary conditions may also be applied, but they will not be studied in this
lecture.

It can be shown that equation (3) with boundary conditions (4) to (6) has a unique solution
provided the coefficients and the boundary of the region are sufficiently smooth. Only in the
special case Γ1 = φ, Γ3 = φ and β = 0, the function ϕ is determined up to an additive
constant. In that case the functions f and g2 must satisfy the compatibility condition

∫

Ω

f dΩ = −
∫

Γ

g2 dΓ . (7)

(7) can be derived by integrating equation (3) over the domain Ω and applying the Gauss
divergence theorem.

2.2 Weak formulation

Before applying the FEM to solve equation (3) under the boundary conditions (4) to (6), it
is necessary to transform the equation into a more suitable form. To do that there are two
alternatives:

1. one can derive an equivalent minimization problem, which has exactly the same solution
as the differential equation.

2. one can derive a so-called weak formulation.

Both methods lead finally to exactly the same result, however, since for the general equations
to be treated in Chapters 2 and 4, no equivalent minimization problem exists, we shall restrict
ourselves to method 2.

Originally the weak formulation has been introduced by pure mathematicians to investigate
the behavior of the solution of partial differential equations, and to prove existence and
uniqueness of the solution. Later on numerical schemes have been based on this formulation
which lead to an approximate solution in a constructive way.
The weak formulation of equation (3) can be derived by multiplying (3) by a so-called test
function v and integrating over the domain. So:

∫

Ω

(−div(A∇c) + βc) v dΩ =

∫

Ω

fv dΩ . (8)

The choice of the class of functions to which v belongs, determines whether (8) has a solution
and whether this solution is unique.
It is common practice to apply integration by parts to equation (8) in order to get rid of
the second derivative term. integration by parts is derived by applying the Gauss divergence
theorem:

∫

Ω

div a dΩ =

∫

Γ

a · n dΓ (9)
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to the function
a = v A∇c . (10)

Hence
div a = div(vA∇c) = ∇v · A∇c+ vdiv A∇c . (11)

Substitution of (11) in (9) yields

∫

Ω

vdiv A∇c dΩ = −
∫

Ω

∇v · A ∇c dΩ+

∫

Γ

v A∇c · ndΓ (12)

and so (8) can be written as

∫

Ω

{A∇c · ∇v + βcv} dΩ−
∫

Γ

vA∇c · ndΓ =

∫

Ω

fvdΩ . (13)

The boundary conditions (4) to (6) are applied by evaluating the boundary integral at (13)
if possible. This boundary integral can be subdivided into three parts:

∫

Γ

vA∇c · ndΓ =

∫

Γ1

vA∇c · ndΓ +

∫

Γ2

vA∇c · ndΓ +

∫

Γ3

vA∇c · ndΓ . (14)

On boundary Γ1 we have the boundary condition c = g1. Since this boundary condition can
not be incorporated explicitly in (14) we demand that the function c in (13) satisfies (4) and
furthermore in order to get rid of the boundary integral over Γ1:

v = 0 at Γ1 . (15)

On boundary Γ2 we can substitute the boundary condition (5) and the same is true for
boundary Γ3. For that reason we do not demand anything for the solution c or the test
function v at these boundaries.

The boundary condition (4) is called essential, since it should be satisfied explicitly. The
boundary conditions (5), (6) are called natural, since they are implicitly satisfied by the
formulation. These terms are in first instance motivated by the corresponding minimization
problem.

The weak formulation corresponding to equation (3) under the boundary conditions (4) to
(6) now becomes:
find c with c|Γ1

= g1 such that

∫

Ω

{A∇c · ∇v + βcv} dΩ+

∫

Γ3

σ cv dΓ =

∫

Ω

fv dΩ+

∫

Γ2

g2 v dΓ +

∫

Γ3

g3 v dΓ , (16)

for all functions v satisfying v|Γ1
= 0.

Furthermore it is necessary to demand some smoothness requirements for the functions c and
v. One can prove that it is sufficient to require that all integrals in (16) exist, which means
that both ∇c and ∇v must be square integrable.
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We see in this expression that an essential boundary condition automatically implies that the
corresponding test function is equal to zero, whereas the natural boundary conditions do not
impose any condition either to the unknown or to the test function. It is not immediately
clear whether a boundary condition is essential or natural, except in the case where we have a
corresponding minimization problem. In general, however, one can say that for second order
differential equations, all boundary conditions containing first derivatives are natural, and a
given function at the boundary is essential.
In fourth order problems the situation is more complex. However, for physical problems, in
general, one can state that if the boundary conditions contain second or third derivatives
they are natural, whereas boundary conditions containing only the function or first order
derivatives are essential. The easiest way to check whether a boundary condition is essential
or natural is to consider the boundary integrals. If in some way the boundary condition can
be substituted, the boundary condition is natural. Otherwise the condition is essential and
the test functions must be chosen such that the boundary integral vanishes.

2.3 The Galerkin method

Formulation (16) is one of the various possible weak formulations. However, it is the most
common one and also the most suitable for our purpose. In the FEM we use formulation
(16) instead of (3)-(6) to derive the discretization. Starting point is the so-called Galerkin
method. In this method the solution c is approximated by a linear combination of expansion
functions the so-called basis functions:

cn(x) =
n
∑

j=1

cj ϕj(x) + c0(x) (17)

where the parameters cj are to be determined. The basis functions ϕj(x) must be linearly
independent.
Furthermore they must be such that an arbitrary function in the solution space can be ap-
proximated with arbitrary accuracy, provided a sufficient number of basis functions is used
in the linear combination (17). The function c0(x) must be chosen such that cn(x) satisfies
the essential boundary conditions. In general this means that

c0(x) = g at Γ1 (18)

ϕj(x) = 0, at Γ1 (19)

In order to determine the parameters cj(j = 1, 2, ..., n) the test functions v are chosen in the
space spanned by the basis functions ϕ1(x) to ϕn(x).
It is sufficient to substitute

v(x) = ϕi(x) i = 1(1)n (20)

into equations (16). This leads to a linear system of n equations with n unknowns. The
choice (20) implies immediately that v satisfies the essential boundary conditions for v.
After substitution of (17) and (20) into (16) we get the so-called Galerkin formulation

∫

Ω

{A∇cn · ∇ ϕi + β cn ϕi} dΩ +

∫

Γ3

σcn ϕi dΓ

=

∫

Ω

f ϕi dΩ+

∫

Γ2

g2 ϕi dΓ +

∫

Γ3

g3 ϕi dΓ , (21)
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with cn =
n
∑

j=1
cj ϕj + c0 .

Hence

n
∑

j=1

cj







∫

Ω

{A∇ϕj · ∇ϕi + β ϕi ϕj}dΩ+

∫

Γ3

σ ϕj ϕi dΓ







=

∫

Ω

f ϕi dΩ +

∫

Γ2

g2 ϕi dΓ +

∫

Γ3

g3 ϕi dΓ−
∫

Ω

{A∇c0 · ∇ ϕi + β c0 ϕi} dΩ . (22)

Clearly (22) is a system of n linear equations with n unknowns, which can be written in
matrix-vector notation as

S c = F , (23)

with

sij =

∫

Ω

{A∇ϕj · ∇ϕi + β ϕi ϕj} dΩ+

∫

Γ3

σ ϕj ϕi dΓ , (24a)

Fi =

∫

Ω

f ϕi dΩ +

∫

Γ3

g2 ϕi dΓ +

∫

Γ3

g3 ϕi dΓ−
∫

Ω

{A∇c0 · ∇ϕi + β c0 ϕi} dΩ .

(24b)

2.4 The finite element method

The FEM offers us a constructive way to create the basis functions ϕi and to compute the
integrals in (24a-24b) in a relatively simple way. To that end the region Ω is subdivided into
simple elements. In IR1 these elements are intervals, in IR2 usually triangles or quadrilaterals
and in IR3 tetrahedra and hexahedra are very popular. The subdivision of a region in elements
is performed by a so-called mesh generator.
In each element a number of nodal points are chosen and the unknown function is approxi-
mated by a polynomial. Although other types of approximations are permitted it is common
practice to restrict one selves to lower degree polynomials (linear or quadratic). These poly-
nomial approximations implicitly define the basis functions ϕi.
For example a piecewise linear polynomial in IR1 defined on n elements ei(xi−1, xi) (see Fig-
ure 1),

n

x x x x

f

f

f
f

0 1 n-1 n

0

1

n-1

Figure 1: Piecewise linear approximation of function f(x)

can be written as

fn(x) =

n
∑

j=0

f(xj)λj(x), (25)
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where λj(x) is defined as follows:
{

λj(x) is linear on each element,
λj(xk) = δjk .

(26)

So in terms of the Galerkin method the function values f(xj) take the role of the parameters
and the shape functions λj(x) the role of the basis functions. Figure 2 shows a typical linear
basis function ϕi(x).

i

x x x

ϕ

i-1 i i+1

(x)

Figure 2: Example of a linear basis function

In the case of so-called quadratic elements in IR1 we define the vertices as well as the centroid
as nodal points and the basis functions ϕi(x) are defined by

{

ϕi(x) is quadratic on each element,
ϕi(xj) = δij

. (27)

Figure 3 shows the two types of quadratic basis functions we may expect in IR1.

i+1/2

b)a)

x x x x x x x xi-1 i-1/2 i i+1 i-1 i-1/2 i

Figure 3: Quadratic basis functions in IR1 a) corresponding to vertex b) corresponding to
midpoint

In IR2 and IR3 the basis functions are merely extensions of the one-dimensional basis functions.
Typical elements in IR2 have been sketched in Figure 4.
With respect to the linear elements, the boundaries of the elements are usually straight,
however for quadratic elements, the boundaries of the elements may be quadratic in order to
get a good approximation of the boundary. In general one can state that the boundary must
be approximated with the same type of polynomials as the solution. Once the basis functions
have been constructed it is necessary to compute the integrals (24a) and (24b) in order to
build the matrix and right-hand side of the system of equations (23). For a typical finite
element grid as the one depicted in Figure 2.5, these computations seem rather complicated.
For that reason the integrals over the region are split into integrals over the elements, i.e.

∫

Ω

{A∇ϕi · ∇ϕi + β ϕi ϕj} dΩ =
ne
∑

k=1

∫

Ωek

{A∇ϕi · ∇ϕi + β ϕi ϕj} dΩ, (28)
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d)a) b) c)

Figure 4: Examples of elements inIR2: a) linear triangle, b) quadratic triangle, c) bilinear
quadrilateral, d) biquadratic quadrilateral

X

Y

Figure 5: Typical example of a two-dimensional finite element mesh.

and so on. In (28) ne is the number of elements and Ωek is the area of element ek. Since the
mesh generator produces automatically the topological information of the mesh, it is an easy
task for the computer to carry out the additions. If we restrict ourselves to a typical element
ek, then it is clear that only a very little number of the possible integrals

∫

Ωek

{A∇ϕi · ∇ϕi + β ϕi ϕj} dΩ (29)

are unequal to zero. Only those basis functions corresponding to nodal points in the element
ek have a non-zero contribution to the integrals. So it is sufficient to compute only those
integrals that are non-zero on the element and store them in a so-called element matrix. For
a linear triangle such an element matrix is for example of size 3× 3.
In exactly the same way it is natural to introduce the so-called element vector, which in a
linear triangle reduces to a 3× 1 vector, with elements

∫

Ωek

f ϕi dΩ (30)

In order to compute the boundary integrals in (24a) and (24b) so-called boundary elements
or line elements are introduced. These boundary elements are identical to the intersection
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of the internal elements with the boundaries Γ2 and Γ3 and have no other purpose then to
evaluate the boundary integrals. Here we have assumed that the boundary is identical to the
outer boundary of the elements.
Hence we get:

∫

Γ3

σ ϕi ϕj dΓ =
nbe3
∑

k=1

∫

Γ
ek
3

σ ϕi ϕj dΓ

∫

Γ2

g2 ϕi dΓ =
nbe2
∑

k=1

∫

Γ
ek
2

g2 ϕi dΓ

∫

Γ3

g3 ϕi dΓ =
nbe3
∑

k=1

∫

Γ
ek
3

g3ϕi dΓ

(31)

2.5 Computation of the element matrix and element vector

The evaluation of the system of equations (23), (24a-24b) is now reduced to the computation of
some integrals over an arbitrary element. For the sake of simplicity we shall restrict ourselves
to IR2. As an example we consider the computation of the integral given by (29):

Sek
ij =

∫

Ωek

{A∇ϕj · ∇ϕi + β ϕj ϕi} dΩ (32)

Before we are able to compute this integral it is necessary to compute the basis functions ϕi.
For a so-called linear triangle (see Figure 2.6), ϕi(x) = λi(x) is defined by (26).
From (26,(1)) it follows that:

λi(x) = ai0 + ai1 x+ ai2 y (33)

and from (26,(2)):

XA = I , with

A =





a10 a20 a30
a11 a21 a31
a12 a22 a22



 X =





1 x1 y1
1 x2 y2
1 x3 y3



 (34)

and hence A = X−1

3

1

2

Figure 6: Linear triangle with local numbering

where the local numbering of Figure 2.6 is used. A necessary condition for the existence of
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λi(x) is that the determinant of the matrix to be inverted is unequal to zero.
This determinant is given by:

△ = (x2 − x1)(y3 − y2)− (y2 − y1)(x3 − x2) (cyclic) (35)

One can prove that |△| is equal to two times the area of the triangle, hence the triangle may
not deform to a line. In practice it is necessary that the largest angle of the triangle is limited
by some angle (for example 150◦).
The coefficients ai1 and ai2 are easily computed from (34) and one immediately verifies that
they are given by:

a11 =
1
△(y2 − y3) a21 =

1
△(y3 − y1) a31 =

1
△(y1 − y2)

a12 =
1
△(x3 − x2) a22 =

1
△(x1 − x3) a32 =

1
△(x2 − x1) .

(36)

Since ∇λi =
[

ai1
ai2

]

, (36) immediately defines the gradient of ϕi.

In general the integral (32) can not be computed exactly and some quadrature rule must be
applied. A quadrature rule has usually the shape:

∫

Ωek

Int (x)dΩ =

m
∑

k=1

wk Int (xk), (37)

where m is the number of quadrature points in the element, wk are the weights and xk the
co-ordinates of the quadrature points. We distinguish between the so-called Newton-Cotes
rule based upon exact integration of the basis functions and so-called Gauss quadrature.
The weights and quadrature points of the Gauss rules can be found in the literature, see for
example Strang and Fix (1973) or Hughes (1987).
The Newton-Cotes rule can be derived by:

Int (x) =

n+1
∑

k=1

Int (xk) ϕk(x), (38)

where n + 1 is the number of basis functions in the element, and application of the general
rule:

∫

simplex

λm1

1 λm2

2 . . . λ
mn+1

n+1 dΩ =
m1! m2! . . . mn+1!

(m1 +m2 + . . .+mn+1 + n)!
|△|, (39)

where n denotes the dimension of space. For a proof, see Holand and Bell (1969), page 84.

From (28) and (39) it follows that the Newton-Cotes rule for the linear element is defined by:

∫

Ωen

Int (x)dΩ =
|△|
6

3
∑

k=1

Int (xk), (40)

where xk is the kth vertex of the triangle.
Application of (40) to (32) gives

Sek
ij =

|△|
6

3
∑

k=1

A(xk)∇ ϕi · ∇ ϕj + β(xk)δij (41)
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In the same way (30) may be approximated by

f eki =
|△|
6
f(xi) . (42)

In order to evaluate the boundary integrals (31) we use linear boundary elements as sketched
in Figure 7.

1

2

Figure 7: Linear boundary element in IR2, with local numbering.

One easily verifies that the Newton-Cotes rule for this element is identical to the trapezoid
rule:

∫

Γe

Int(x) =
h

2
(Int(x1) + Int(x2)) , (43)

where h is the length of the element:

h =
√

(x2 − x1)2 + (y2 − y1)2 (44)

Application of (43) to the three integrals (31) gives

∫

Γ
ek
3

σ ϕi ϕi dΓ = h
2 σ(xi)δij ,

∫

Γ
ek
2

g2 ϕi dΓ = h
2 g2(xi),

∫

Γ
ek
3

g3 ϕi dΓ = h
2 g3(xi).

(45)

2.6 Higher order elements

In (5) we have derived the element matrix and vector for linear triangles. However, in practice
also other types of elements are used. A simple extension of the linear triangle is for example
the quadratic triangle. For that element both the vertices and the mid-side points are used
as nodal points. See Figure 8 for the definition of the nodes. One can verify
that the basis functions ϕi(x) may be expressed in terms of the linear basis function λi(x)
by:

ϕi(x) = λi(2λi − 1), i = 1, 2, 3,
ϕij(x) = 4λiλj , 1 ≤ i < j ≤ 3.

(46)

See for example Cuvelier et al (1986) for a derivation.

Quadrilateral elements are not so easy to derive. Nodal points will be either the vertices
(bi-linear elements) or the vertices and midside points (bi-quadratic elements). However to
derive the basis function the quadrilateral is mapped onto a square reference element.
Such a mapping is plotted in Figure 9.
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3

1 12 2

2313

Figure 8: Quadratic triangle with nodal points and local numbering.

2

T

34

y

1
x

1 2

34

η

ξ

Figure 9: Mapping T from quadrilateral in (x, y)-plane onto square in (ξ, η) plane.

All basis functions are derived in the reference element by choosing products of one-dimensional
basis functions. Also all integrals to be computed over the quadrilateral are transformed to
integrals over the reference element.
For example:

∫

Ω
ek
xy

A∇ϕi · ∇ϕi + β ϕi ϕj dΩxy =

∫

Ω
ek
ξη

{A∇ϕi · ∇ϕi + β ϕi ϕj} |J | dΩξη , (47)

where J is the Jacobian of the transformation. The transformation itself is a so-called isopara-
metric transformation defined by the basis functions in the following way:

(

x
y

)

=

4
∑

k=1

ϕi(ξ, η)

(

xk
yk

)

. (48)

For details of the derivation of basis functions and element matrices and vectors the reader
is referred to Cuvelier et al (1986).

2.7 Structure of the large matrix

The finite element method applied to the linear differential equation (3) leads to linear systems
of equations of the form (23):

S c = F (49)

The matrix is often referred to as the stiffness matrix. From the relation (24a) it is clear that
this matrix is symmetric. Furthermore one can prove that the matrix S is positive definite,
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except in the case of Neumann boundary conditions and β = 0, in which case the matrix is
singular because the original problem is singular.
If we consider a number of adjacent triangles in a mesh as sketched in Figure 10, then it is
clear that the basis function corresponding to nodal point i is only non-zero in those elements

l

i n

m

k

j
O

Figure 10: Nodal point i with direct neighbors j − o as part of a triangular mesh.

containing node i. As a consequence products with basis functions that correspond to nodes
not in these triangles are zero.
If we identify row i in matrix S with nodal point i, it is clear that only the entries sii, sij , . . . , sio
may be unequal to zero. All other matrix elements in row i are identical to zero. So we see
that in the matrix S, only a very limited number of entries is non-zero. Such a matrix is
called sparse.

If the numbering of the nodal points is chosen in a clever way, the sparse matrix S may have a
band structure. For example if we consider the mesh in Figure 11 with rectangular elements,
then a natural numbering is to use either a horizontal or a vertical numbering of

m

1 2 n
1

2

Figure 11: Rectangular elements in a rectangle, with n nodes in horizontal and m nodes in
vertical direction.

the nodes. Figure 12a shows that in case of a horizontal numbering the band width is equal
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to 2n + 3, where n is the number of nodes in horizontal direction. Figure 12b shows that a
vertical numbering leads to a band width of 2m+ 3, with m the number of nodes in vertical
direction. Hence an optimal band width is achieved if nodes are numbered in the shortest
direction.

b)a)

i+1 i+m+1

i-m i

i-m+1

i-m-1 i-1 i+m-1

i+m

i+n i+n+1

i

i-n i-n+1

i+1i-1

i-n-1

i+n-1

Figure 12: Connections of node i with neighbors a) horizontal numbering b) vertical number-
ing.

In general finite element meshes are not so structured as the one in Figure 11. and so locally
a larger band width may be present. A typical example is sketched in Figure 13

band

profile

Figure 13: Example of a matrix with a local wide profile.

The external non-zero elements in this matrix define the so-called profile. A very simple ex-
ample of a profile matrix is created by a one-dimensional example with periodical boundary
conditions as sketched in Figure 14. In this example point i is connected to points i− 1 and
i+ 1 leading to a band width of 3. However, because of the periodical boundary conditions,

(n=1)1 2 n-1

Figure 14: One-dimensional mesh, for problem with periodical boundary conditions.

point n and 1 have the same unknown and point 1 is connected to both n − 1 and 2. Point
n− 1 connected to n− 2 and 1. The corresponding matrix gets the structure as sketched in
Figure 15. The band width of this matrix is equal to n − 1, which means that in case of a
band storage, the matrix is full. The profile sketched in Figure 2.15b is much smaller.
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a) b)

Figure 15: a) non-zero pattern of one-dimensional problem with periodical boundary condi-
tions, b) corresponding profile.

Methods employing the band-structure are called band methods, whereas methods using the
profile of the matrix only are called profile methods. Both methods belong to the class of
direct solvers. Iterative methods fully utilize the sparsity pattern of the matrix and are there-
fore recommended in case of problems with many unknowns.

A good numbering may reduce the band width or the profile of the matrix considerably. For
finite element methods various renumbering algorithms have been constructed. Many of them
are variants of the so-called Cuthill-Mckee renumbering algorithm. See for example George
and Liu (1981).

Part II of this book is devoted to efficient methods for the solution of systems of equations of
the form (49).
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3 Convection-diffusion equation by the finite element method

3.1 Formulation of the equations

In this chapter we shall investigate the solution of convection-diffusion equations of the shape:

ρ
∂c

∂t
−

n
∑

i,j=1

∂

∂xi
(aij

∂c

∂xj
) +

n
∑

i=1

ui
∂c

∂xi
+ βc = f . (50)

Compared to equation (1), equation (50) is extended with the convective term

n
∑

i=1

ui
∂c

∂xi
, (51)

or in vector notation
(u · ∇ c) , (52)

where u denotes the velocity.

In the stationary case, (50) reduces to:

−div (A ∇ c) + (u · ∇c) + βc = f . (53)

For a unique solution of (53) it is necessary to prescribe exactly one boundary condition at
each part of the boundary. Theoretically exactly the same type of boundary conditions as
for equation (3) may be used. In many practical flow problems, however, the convection
term strongly dominates the diffusive terms. Numerically this means that the character of
the equations resembles more that of the pure convection equation than that of the diffusion
equation. For a pure convection equation, boundary conditions should only be given at inflow
not at outflow. Since for the convection-diffusion equation, boundary conditions must be
given at outflow, it is advised to use those boundary conditions that influence the solution as
little as possible. In general this means that at outflow one usually applies natural boundary
conditions; Dirichlet boundary conditions may result in unwanted wiggles.

With respect to the instationary equation it is not only necessary to prescribe boundary
conditions, but also to define an initial condition.

In the remainder of this chapter we shall study the discretization of the convection-diffusion
equation by finite elements and standard Galerkin. It will be shown that this discretization
might introduce inaccurate solutions in the case of dominant convection. For that reason
an upwinding technique is introduced. It will be shown that this upwinding improves the
accuracy considerably.

3.2 Standard Galerkin

In order to apply the standard Galerkin approach (SGA) the weak formulation of (50) under
the boundary conditions (4) - (6) is derived.
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Multiplication of (50) by a time-independent test function v and integration over the domain
yields:

∫

Ω

ρ
∂c

∂t
vdΩ+

∫

Ω

{−div (A∇c) + (u · ∇c) + βc}vdΩ =

∫

Ω

fvdΩ . (54)

After application of the Gauss divergence theorem, which results in relation (12), (54) can be
written as

∫

Ω

ρ
∂c

∂t
vdΩ+

∫

Ω

{(A∇c · ∇v + βcv + u · ∇c)v}dΩ −
∫

Γ

vA∇c · ndΓ =

∫

Ω

fvdΩ . (55)

Substitution of the boundary conditions in the same way as is performed in Chapter 2 results
in the weak formulation:

Find c(x, t) with c(x, 0) given and c|Γ1
= g1 such that

∫

Ω

ρ
∂c

∂t
vdΩ +

∫

Ω

{(A∇c · ∇v) + u · ∇cv + βcv}dΩ +

∫

Γ3

σcvdΓ =

∫

Ω

fvdΩ+

∫

Γ2

g2vdΓ +

∫

Γ3

g3vdΓ , (56)

for all functions v(x) satisfying v|Γ1
= 0 .

In the SGA the weak form (56) is approximated by a finite dimensional subspace. To that
end we define time-independent basis functions in exactly the same way as for the potential
problem. The solution c is approximated by a linear combination of the basis functions:

ch(x, t) =
n
∑

j=1

cj(t)ϕj(x) + c0(x, t) . (57)

The basis functions ϕj(x) and the function c0(x, t) must satisfy the same requirements as in
Chapter 2, i.e. (18) and (19) are still necessary.
For the test functions v(x) again the basis functions ϕi(x) (i = 1, 2, ..., n) are substituted. So
finally we arrive at the Galerkin formulation:

n
∑

j=1

∂cj
∂t

∫

Ω

ϕiϕjdΩ+
n
∑

j=1

cj{
∫

Ω

[(A∇ϕj · ∇ϕi) + (u · ∇ϕj)ϕi + βϕiϕj ]dΩ

+

∫

Γ3

σϕiϕjdΓ} =

∫

Ω

fϕidΩ+

∫

Γ2

g2ϕidΓ +

∫

Γ3

g3ϕidΓ (58)

−
∫

Ω

{(A∇c0 · ∇ϕi) + βc0ϕi + (u · ∇c0)ϕi}dΩ −
∫

Ω

∂c0
∂t

ϕidΩ , i = 1(1)n .

Clearly (58) forms a system of n linear ordinary differential equations with n unknowns, which
can be written in matrix-vector notation as

Mċ+ Sc = F , (59)
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where . denotes differentiation with respect to time, M is the so-called mass matrix and S
the stiffness matrix. The elements of the matrices and right-hand side are defined by:

mij =

∫

Ω

ϕiϕjdΩ (60a)

sij =

∫

Ω

{(A∇ϕj · ∇ϕj) + (u · ∇ϕj)ϕi + βϕiϕj}dΩ+

∫

Γ3

σϕiϕjdΓ (60b)

Fi =

∫

Ω

fϕidΩ−
∫

Ω

{(A∇c0 · ∇ϕi) + (u · ∇c0)ϕi + βc0ϕi}dΩ

−
∫

Ω

∂c0
∂t

ϕidΩ+

∫

Γ2

g2ϕidΓ +

∫

Γ3

g3ϕidΓ . (60c)

The construction of the basis functions and the computation of the integrals is exactly the
same as for the potential problem. The only extra parts are the time-derivative with the mass
matrix and the extra convective terms in the stiffness matrix. Due to these extra convective
terms the stiffness matrix becomes non-symmetric.

The computation of the mass-matrix can be performed exactly or by a quadrature rule. In
general M has exactly the same structure as S. However, if the integrals (60a) are computed
by the Newton Cotes rule corresponding to the basis functions, the matrix M reduces to a
diagonal matrix. In that case one speaks of a lumped mass-matrix. A non-lumped mass
matrix is also known as a consistent mass matrix. The (dis-)advantages of both types of
matrices will be treated in Paragraphs 3.3 and 3.5.

In the next paragraph we shall consider some methods to solve the instationary equations.
After that, problems in case of a dominant convective term will be investigated and a upwind
technique will be introduced.

3.3 Solution of the system of ordinary differential equations

The discretization of the instationary convection-diffusion equation results in a system of
ordinary differential equations of the shape (59). In order to solve this system of equations
any classical method for the solution of ordinary differential equations may be used.
In general one may distinguish between explicit and implicit methods and between one-step
and multi-step methods. In this chapter we shall restrict ourselves to one-step methods only.
That means that to compute the solution at a certain time-step only information of the
preceding time-step is used and not of older time-steps.
In most ordinary differential equation solvers the time derivative in (59) is replaced by a
forward difference discretization:

ċ =
ck+1 − ck

∆t
, (61)

where k denotes the present time-level and k + 1 the next time-level. A method is called
explicit if the term Sc is only taken at the time-level k. As soon as Sc is also taken at the
new time-level k + 1, the method is called implicit. The reason is that in that case always a
system of equations has to be solved, even if the matrix M is the identity matrix.
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Among the many available methods for solving the system (59) we restrict ourselves to the
so-called θ-method:

M
ck+1 − ck

∆t
+ θSck+1 + (1− θ)Sck = θF k+1 + (1− θ)F k , 0 ≤ θ ≤ 1 , (62)

The most common values for θ are:

θ = 0 , Explicit Euler
θ = 1 , Implicit Euler and
θ = 1/2 , Implicit Heun or Crank Nicolson.

For θ = 0, (62) reduces to

Mck+1 = (M −∆tS)ck +∆tF k . (63)

Although it concerns an explicit method, we still have to solve a system of equations. However,
in the case of a lumped mass matrix, the solution implies only the inversion of a diagonal
matrix. In that case an explicit method is relatively cheap. A clear disadvantage of an explicit
method is that the time-step must be restricted in order to get a stable solution. For example
in the case of a pure time-dependent diffusion problem a stability criterion of the shape

∆t ≤ C∆x2 (64)

is required, where C is some constant and ∆x a local diameter of the elements.
In the case of a dominant convection, the Euler explicit method is not longer stable and one
should use either an implicit method or a higher order explicit method. For such problems
the classical fourth order Runge Kutta method is a good choice.

For θ = 1 (62) reduces to

(M +∆tS)ck+1 = Mck +∆tF k+1 ,

which is a purely implicit method. One can show that this method is unconditionally stable,
for the convection equation (see for example Cuvelier et al 1986), so the only reason to restrict
the time-step is because of accuracy requirements. It can be easily verified that the accuracy
of both the implicit and the explicit Euler time-discretization is of O(∆t). The implicit Euler
method belongs to the class of ultra-stable methods, which means that errors in time always
will be damped.

The most accurate scheme is achieved for θ = 1/2 (Crank Nicolson). This scheme can be
written as

(M +
∆t

2
S)ck+1 = (M − ∆t

2
S)ck +

∆t

2
(F k + F k+1) . (65)

One can show that this scheme is also unconditionally stable and that the accuracy is one
order higher, i.e. of O(∆t2). This scheme does not have the damping property of Euler
implicit and as a consequence once produced errors in time will always be visible. This one
usually starts in these cases with one step Euler implicit.

So the solution of the systems of ordinary differential equations is always reduced to a time-
stepping algorithm in combination with matrix-vector multiplications, and sometimes the
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solution of a system of linear equations.

For θ 6= 0 it is easier to replace the θ-method (62) by the so-called modified θ-method:

M
ck+θ − ck

∆t
+ θSck+θ = F k+θ, 0 ≤ θ ≤ 1 (66)

ck+1 =
1

θ
ck+θ +

1− θ

θ
ck (67)

One can prove that equation (62) is equal to equation (66) if the system of equations to be
solved is linear. In case of a non-linear system the approximation (66) is of the order ∆t2. A
clear advantage of (66) above (62) is that the matrix to be solved is always independent of θ
and that no explicit matrix-vector multiplication is required.

A disadvantage of the θ-method is the fixed θ. It could be advantageous to combine a number
of different θ’s per time step in such a way that second order accuracy is accomplished, and
some damping is ensured as well. Two methods that offer this opportunity are the fractional
θ-method and the generalized θ-method. The latter is a generalization of the fractional θ-
method, so we will restrict ourselves to the description of the generalized θ-method. We
rewrite equation ( 62) as follows, letting Σk =

∑k
i=1 θi:

cn+Σ2 = cn +∆t
(

θ1f(x, t
n) + θ2f(x, t

n+Σ2)
)

cn+Σ4 = cn+Σ2 +∆t
(

θ3f(x, t
n+Σ2) + θ4f(x, t

n+Σ4)
)

(68)

...
...

cn+Σ2k = cn+Σ2k−2 +∆t
(

θ2k−1f(x, t
n+Σ2k−2) + θ2kf(x, t

n+Σ2k)
)

There are two necessary conditions:

1. Σ2k = 1 for a k-stage method. This gives a first order method, and is only a scaling
requirement.

2.
∑k

i=1 θ
2
2i−1 =

∑k
i=1 θ

2
2i to guarantee second order accuracy.

A third condition is optional, but guarantees some damping:

1. θ2i−1 = 0 for at least one i ∈ 1, . . . , k.

This condition includes at least one Implicit Euler step per time step.

The generalized θ-method is a 3-stage method, and is therefore 3 times as expensive as the
Crank-Nicolson method. However, one may choose ∆tgenθ = 3 ·∆tCN to accomplish similar
results for both methods. A common choice for the generalized θ-method is the following
‘optimum’ for k = 3:

θ1 = θ5 =
α

2
, θ3 = 0,

θ2 = θ6 = α

√
3

6
, θ4 = α

√
3
3 (69)

α =

(

1 +
2√
3

)−1

.
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A common choice for the fractional θ-method is the following:

θ1 = θ5 = βθ, θ3 = α(1− 2θ),

θ2 = θ6 = αθ, θ4 = β(1− 2θ), (70)

α =
1− 2θ

1− θ
, β = θ

1−θ
,

θ = 1− 1

2

√
2.

3.4 Accuracy aspects of the SGA

One can show that the SGA in combination with the FEM yields an accuracy of O(hk+1),
where h is some representative diameter of the elements and k is the degree of the polynomials
used in the approximation per element. However, this is only true for problems where the
convection does not dominate the diffusion. As soon as the convection dominates, the accuracy
strongly decreases as can be seen in Table 1, which shows the accuracy of the following artificial
mathematical example:

−ε△c+ u · ∇c = f , x ∈ Ω (71a)

c(x, y) = sin(x) sin(y) , x ∈ Γ (71b)

where u =

(

x
y

)

and f = 2ε sin(x) sin(y) + x cos(x) sin(y) + y sin(x) cos(y) . (71c)

One easily verifies that the exact solution of this problem is given by

c(x, y) = sin(x) sin(y) . (72)

This problem has been solved on the square (0, 1)×(0, 1) using linear and quadratic elements.
Table 1 shows the maximal error for ε = 1, 10−3 respectively 10−6 and triangular elements.
The results for quadrilaterals are comparable. In the linear case a subdivision in 6×6, 11×11
respectively 21 × 21 nodes has been made, in the quadratic case only 11 × 11 and 21 × 21
nodes have been used. From this table we may draw the following conclusions:

number of linear triangles quadratic triangles
nodes ε = 1 ε = 10−3 ε = 10−6 ε = 1 ε = 10−3 ε = 10−6

6× 6 3.010−4 3.310−2 3.9101 - - -
11× 11 7.610−5 4.110−3 1.5100 8.010−6 5.410−3 2.2100
21× 21 1.910−5 1.010−3 8.410−2 6.310−7 4.810−4 9.810−2

Table 1: Error in max-norm of convection-diffusion problem (71a-71c) for various values of ε.
Linear and quadratic triangles

- for relatively small convection the accuracy of the linear elements is O(h2), and for the
quadratic elements at least O(h3),

- for convection-dominant flow the numerical solution is very inaccurate especially for
coarse grids,
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- the use of quadratic elements makes only sense for problems with small convection.

Remark: the conclusions are based on an example with a very smooth solution. For prob-
lems with steep gradients the conclusion may be different, especially for the quadratic
elements, in which cases the O(h3) cannot be expected anymore.

The most important part of the conclusion is that SGA is not a good method for convection-
dominant flows. This conclusion is also motivated by the following less trivial problem.

Rotating cone problem

Consider the region Ω sketched in Figure 16. The region consists of a square with a cut B. In

Ω
(0,0)

y B

(-1/2, -1/2)

(1/2, 1/2)

(0, -1/2)

x

Figure 16: Definition region for rotating cone problem

the inner region we suppose that the concentration satisfies the convection-diffusion equation

−ε△c+ u · ∇c = 0 , (73)

where ε is chosen equal to 10−6 and the velocity u is such that the flow rotates counter

clockwise. This is achieved by setting u =

[

−y
x

]

. At the outer boundary we use the

boundary condition
c|Γ = 0 . (74)

On the starting curve B the concentration c is set equal to

c|B = cos(2π(y +
1

4
)) , (75)

and due to the small diffusion one expects that the concentration at the end curve is nearly
the same. The end curve has the same co-ordinates as B but the nodal points differ, which
means that the solution may be different from the starting one. Since no boundary condition
is given at the outflow curve ”B” implicitly the boundary condition

ε
∂c

∂n
|B = 0 , (76)

is prescribed.

Figure 17 shows a 23 × 23 mesh consisting of triangles. The direction of the diagonals in
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the squares are chosen randomly. Figure 18 shows the lines of equal concentration. For the
exact solution these should be concentration circles with levels 0, 0.1, . . . , 10. However, the
standard Galerkin method completely destroys the result. Finally Figure 19 shows a 3D plot
of the concentration, which contains a large number of wiggles. It must be remarked that the
solution is relatively smooth in the case of a grid consisting of squares or triangles all pointing
in the same direction.

 

Figure 17: Triangular mesh for rotating cone problems random diagonals.
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Figure 18: Equi-concentration lines for rotating cone problem computed by SGA.
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Figure 19: 3D plot of concentration in rotating cone problem computed by SGA.

3.5 Streamline Upwind Petrov Galerkin

In the previous paragraph we have seen that the SGA method may lead to wiggles and
inaccurate results for convection-dominant flows. In finite differences this phenomenon is
well known for a long time and one has tried to solve it by so-called upwind methods. This
has motivated researchers in finite elements to construct schemes, which are comparable to
classical finite difference upwind schemes. Among the various upwind techniques for the
FEM, the streamline upwind Petrov-Galerkin method (SUPG) is the most popular one. This
method has first been derived by Brooks and Hughes (1982) and is later on improved by a
large number of authors.

Starting point for SUPG is the weak formulation (54). However, instead of choosing the test
function in the same space as the solution a test function v̄ is introduced according to

v̄ = v + p , (77)

where v is the classical test function and p denotes a correction in order to take care of the
upwinding part. Substitution of (77) in (54) gives:

∫

Ω

ρ
∂c

∂t
(v + p)dΩ+

∫

Ω

{−div (A∇c) + u · ∇c+ βc}(v + p)dΩ =

∫

Ω

f(v + p)dΩ . (78)

The function v is chosen in the same space as the solution, which means that the first derivative
is square integrable. However, with respect to the function p, we assume that it may be
discontinuous over the elements. As a consequence Gauss’ divergence theorem may only be
applied to the v part of (78). Hence after integration by parts we get

∫

Ω

ρ∂c
∂t
vdΩ+

∫

Ω

{A∇c · ∇v + (u · ∇c)v + βcv}dΩ +
∫

Γ3

σcvdΓ

+
∫

Ω

{ρ∂c
∂t

− div A∇c+ u · ∇c+ βc− f}pdΩ =
∫

Ω

fvdΩ+
∫

Γ2

g2vdΓ +
∫

Γ3

g3vdΓ .

(79)

Actually the second derivative of c does not have to exist over the element boundaries and is
certainly not integrable in the examples of elements we have given before. So we are not able
to compute the integral containing the p term. In order to solve that problem the integral
is split into a sum of integrals over the elements, and the inter-element contributions are
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neglected. So instead of (79) we write:

∫

Ω

ρ
∂c

∂t
vdΩ+

∫

Ω

{A∇c · ∇v + (u · ∇c)v + βcv}dΩ +

∫

Γ3

σcvdΓ

+

ne
∑

k=1

∫

Ωek

{ρ∂c
∂t

− div A∇c+ u · ∇c+ βc}pdΩ =

∫

Ω

fvdΩ+

∫

Γ2

g2vdΓ +

∫

Γ3

g3vdΓ +

ne
∑

k=1

∫

Ωek

fpdΩ . (80)

One can see that the approximation (80) itself is consistent since it consists of a standard
Galerkin part, which itself is consistent, and a summation of residuals of the differential
equation per element multiplied by a function. With consistency we mean that at least the
constant and first term of the Taylor series expansion of the solution are represented exactly.

At this moment the choice of the function p per element is completely free. However, it is
clear that the choice of p actually defines the type of SUPG method used. In fact a complete
class of different SUPG methods may be defined by different choices of p.

A common choice for the function p is inspired by the one-dimensional stationary diffusion
equation:

−ε d
2c

dx2
+ u

dc

dx
= 0 , (81)

with boundary conditions
c(0) = 0 , c(1) = 1 . (82)

The solution of (81), (82) is sketched in Figure 20 for ε = 0.01. It has a steep gradient in the
neighborhood of x = 1. The size of this gradient depends on the value of ε. The smaller ε,
the steeper the gradient. If a central difference scheme:

−εci+1 − 2ci + ci−1

∆x2
+ u

ci+1 − ci−1

2∆x
= 0 , (i = 1, 2, ..., n) , (83)

c0 = 0 , cn+1 = 1 ,

is applied with an equidistant step-size ∆x, the solution shows wiggles as long as ∆x > 2
Pe

,
where the Peclet number Pe is defined as

Pe =
u

ε
. (84)

Figure 20 shows an example for ∆x = 0.1, u = 1 and ε = 0.01.

In the classical finite difference upwind scheme one tries to get rid of these wiggles by replacing
the first derivative by a backward difference scheme provided the velocity u is positive. The
idea for this choice is based on the fact that for a pure convection problem all information is
transported from left to right and hence the discretization of the convective term should also
be based upon information from the left. Figure 21 shows the result of the upwinding; the
wiggles have been disappeared and the numerical solution has been smoothed. This figure
makes it clear that, although backward differences suppress the wiggles, it also makes the
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Figure 20: Solution of equation (81) for ε = 0.01 and u = 1: — exact solution,
− ◦ − numerical solution for ∆x = 0.1 and central differences.
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Figure 21: Solution of equation (81) for ε = 0.01 and u = 1; — exact solution, -+- numerical
solution for ∆x = 0.1 and backward differences.

solution inaccurate. In the literature many upwinding schemes for finite difference methods
have been derived which are much more accurate than the backward difference scheme.

The backward difference scheme for (81), (82) reads:

−εci+1 − 2ci + ci−1

∆x2
+ u

ci − ci−1

∆x
= 0 (i = 1, 2, ..., n) , (85)

c0 = 0 , cn+1 = 1 .

Using Taylor series expansion one can show that (85) gives a local truncation error of

−u∆x
2

d2c

dx2
+O(∆x2) , (86)

which is only of order ∆x instead of ∆x2. Moreover, the second derivative appears in the
truncation error, which implies that in fact one may consider (85) as the discretization of a
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convection-diffusion equation with a diffusion of

ε+
u∆x

2
. (87)

In fact (85) can be derived by taking the central difference scheme of the differential equation

−(ε+
u∆x

2
)
d2c

dx2
+ u

dc

dx
= 0 , (88)

c(0) = 0 , c(1) = 1 .

The term −u∆x
2

d2c
dx2 is usually called artificial diffusion. Many of the upwind schemes in

finite differences may be considered as a central difference scheme with artificial diffusion.
For example the exact solution of (81) is constructed by the Il’in scheme, which may be
considered as a central difference scheme with artificial diffusion equal to

u∆x

2
ξ̄
d2c

dx2
, (89a)

ξ̄ = coth (α)− 1

α
, α =

u∆x

2ε
. (89b)

Different schemes lead to different choices of ξ̄. The following values of ξ̄ are commonly
proposed:

Classical upwind scheme
Il’in scheme

Double asymptotic approximation

Critical approximation

ξ̄ = sign(α) , (90a)

ξ̄ = coth(α) − 1/α . (90b)

ξ̄ =

{

α/3 −3 ≤ α ≤ 3
sign(α) |α| > 3 .

(90c)

ξ̄ =







−1− 1/α α ≤ −1
0 −1 ≤ α ≤ 1

1− 1/α α ≥ 1 .
(90d)

The last choice is such that the amount of artificial diffusion is minimal in order to get a
diagonally dominant matrix. In this way it may be considered as a variant of the so-called
hybrid method.
This observation motivates us to choose the function p such that an artificial diffusion of the
form (89a) is constructed. If we confine ourselves to linear elements, the second derivative of
the approximate solution is zero per element and hence SUPG applied to (81), (82) reduces
to

∫

Ω

{udch
dx

vh + ε
dch
dx

dvh
dx

}dΩ +

ne
∑

k=1

∫

Ωek

phu
dch
dx

dΩ = 0 , (91)

where ch is defined by (57), vh represents the discretized classical test function and ph the
discretization of the extra function p.
In order to get an artificial diffusion of the shape (89a) it is sufficient to choose ph equal to

ph =
hξ̄

2

dvh
dx

, (92)
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where h = ∆x.

With Taylor series expansion it can be shown that if ξ̄ is chosen according to one of the possible
values of (90a-90d) (except the choice ξ̄ = 1), the accuracy of the scheme is O(∆x2)+εO(∆x),
which may be considered to be of O(∆x2) for small values of ε.

If the step size ∆x is not a constant, h in formula (92) must be replaced by the step size. For
quadratic elements h equal to half the local element width, has proven to be a good choice.

If we apply the SUPG method based upon formula (92) in 2D in each of the directions, a
typical cross-wind diffusion arises. That means that the solution perpendicular to the flow
direction is smoothed and becomes inaccurate. For that reason the SUPG method must be
extended in such a way that the upwinding is applied in the direction of the flow only. Brooks
and Hughes (1982) have solved this problem by giving the perturbation parameter p a tensor
character

p =
hξ̄

2

u · ∇vh
‖u‖ . (93)

In this formula h is the local element width, which may depend on the quadrature point.
Mizukami (1985) has extended (93) for triangles.

Many extensions of the SUPG method have been proposed, all based on different choices of
the function p. These improvements usually have a special function, for example to create
monotonous solutions (Rice and Schnipke 1984), discontinuity capturing (Hughes et al 1986),
or for time-dependent problems (Shahib 1988).
The SUPG method differs from the classical upwind methods in the sense that not only the
advective term is perturbed, but also the right-hand side and the time derivative. This has
two important consequences:

- the treatment of source terms is considerably better than for classical upwind techniques.

- the mass matrix is non-symmetric and may not be lumped. Hence explicit methods are
as expensive as implicit ones.

Table 2 shows the example of Table 1 but now with SGA replaced by SUPG. The improvement
for small values of ε and coarse grids is immediately clear. This table does not clearly show
the accuracy of the method in terms of orders ∆xp. Besides the accuracy aspects the SPUG

number of linear triangles quadratic triangles
nodes ε = 1 ε = 10−3 ε = 10−6 ε = 1 ε = 10−3 ε = 10−6

6× 6 6.010−4 5.210−3 5.910−3

11× 11 1.610−4 1.610−3 2.010−3 1.610−5 2.810−4 7.610−5

21× 21 4.010−5 4.210−4 5.510−4 1.110−6 1.310−4 1.310−5

Table 2: Error in max-norm of convection-diffusion problem (71a -71c) for various values of
ε Solution by SUPG. Linear and quadratic triangles.

method has an another important advantage. The use of upwind makes the matrices to be
solved more diagonally dominant. As a consequence iterative matrix solvers will converge
much faster than for SGA. This will be demonstrated in Paragraph 3.6.
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Finally we show some results of classical benchmark problems to investigate the behavior of
various schemes.

3.6 Some classical benchmark problems for convection-diffusion solvers

In this section we shall investigate the performance of the standard Galerkin approach as well
as the streamline upwind Petrov Galerkin method for some benchmark problems.
First we consider the rotating cone problem introduced in Section 3.4. The solution by SGA
is plotted in Figure 19. Figure 22 shows the lines of equal concentration produced by SUPG
and Figure 23 the corresponding three-dimensional plot. Exactly the same mesh as for the
central scheme is used. These pictures show a large qualitative improvement of the accuracy
compared to SGA. Not only the accuracy of the solution is enlarged considerably, also the
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Figure 22: Equi-concentration lines for rotating cone problem computed by SUPG.

 

Figure 23: 3D plot of concentration for rotating cone problem computed by SUPG

condition with respect to linear solvers. All previous pictures have been created by using a
direct linear solver. However, for large problems an iterative solver is much more attractive.
Numerical computations show that upwinding has a very important effect on the number of
iterations necessary for reaching a certain level of accuracy. Table 3.3 shows the number of
iterations required to solve the rotating cone problem for ǫ = 10−3 and ǫ = 10−6.
In this table SGA and SUPG are compared for various mesh sizes. From this table it is clear
that for small values of ǫ the SUPG method is superior to SGA with respect to iterative
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solvers.

SGA SUPG

ǫ number of nodes accuracy 10−3 accuracy 10−6 accuracy 10−3 accuracy 10−6

10−3 21× 21 15 19 6 9
41× 41 17 21 6 9
81× 81 31 38 27 32

10−6 21× 21 - - 9 12
41× 41 - - 13 17
81× 81 - - 24 32

Table 3: Number of iterations by a preconditioned CGS solver for the solution of the rotating
cone problem of Section 3.4. SGA and SUPG. A - in the table means that no convergence
was possible.

As last benchmark problem we consider is a time-dependent one dimensional convection-
diffusion equation given by:

∂c

∂t
+ u

∂c

∂x
= D

∂2c

∂x2
0 ≤ x ≤ 1 , (94)

c(x, 0) = sinπ x−a
b−a

a ≤ x ≤ b ,

c(x, 0) = 0 elsewhere, (95)

c(0, t) = c(1, t) = 0 ,

u = 1, D = 0.002, a = 0.2 and b = 0.4 . (96)

This benchmark problem has been solved by SGA with and without lumping of the mass
matrix and SUPG. Figures 3.9-3.11 shows the results of the various methods. These figures
show that lumping drastically decreases the accuracy of the numerical solution. Furthermore
for this moderate Peclet number, the standard Galerkin method performs a little bit better
than SUPG.
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Figure 3.9:
SGA applied to (3.40)-(3.42)
40 linear elements, lumped mass matrix
– exact solution, + numerical solution

Figure 3.10:
SGA applied to (3.40)-(3.42)
40 linear elements, consistent mass matrix
– exact solution, numerical solution
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Figure 24: SUPG with stationary upwind parameter applied to (3.40)-(3.42), 40 linear ele-
ments: – exact solution, + numerical solution
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4 Discretization of the incompressible Navier-Stokes equations

by standard Galerkin

4.1 The basic equations of fluid dynamics

In this chapter we shall consider fluids with the following properties:

• The medium is incompressible,

• The medium has a Newtonian character,

• The medium properties are temperature independent and uniform,

• The flow is laminar.

For a three-dimensional flow field the basic equations of fluid flow under the above restrictions,
can be written as:
The Continuity equation

div u =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

= 0 . (97)

The Navier-Stokes equations

ρ

(

∂u

∂t
+ (u.∇)u

)

− div σ = ρf , (98)

in which u = (u1, u2, u3)
T denotes the velocity vector, ρ the density of the fluid, f =

(f1, f2, f3) the body force per unit of mass, and σ the stress tensor.
Component-wise (98) reads:

ρ

(

∂ui
∂t

+ u1
∂ui
∂x1

+ u2
∂ui
∂x2

+ u3
∂ui
∂x3

)

−
(

∂σi1
∂x1

+
∂σi2
∂x2

+
∂σi3
∂x3

)

= ρ fi, (i = 1, 2, 3) .

(99)
For an incompressible and isotropic medium the stress terms σ can be written as

σ = −p I + d = −p I + 2µ e , (100)

where p denotes the pressure,
I the unit tensor
e the rate of strain tensor,
d the deviatoric stress tensor and
µ the viscosity of the fluid.

The components eij of the tensor e are defined by

eij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

, (101)

so

σij = −pδij + µ

(

∂ui
∂xj

+
∂uj
∂xi

)

. (102)
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If µ is constant it is possible to simplify the expression(98) by substitution of the incompress-
ibility condition (97) to

ρ

(

∂u

∂t
+ (u . ∇)u

)

− µ △ u+∇ p = ρf , (103)

however, we shall prefer expression (98) because boundary conditions will be implemented
more easily in (98) than in (103).

Equation (98) can be made dimensionless by the introduction of the Reynolds number Re
defined by

Re =
ρUL

µ
, (104)

where U is some characteristic velocity and L a characteristic length. Substitution of (104)
into (98), (100) gives

∂u

∂t
+ (u . ∇)u− div σ = f (105a)

σ = −p I +
2

Re
e (105b)

provided ρ does not depend on the space coordinates.

4.2 Initial and boundary conditions

In order to solve the equations (97), (98), it is necessary to prescribe both initial and boundary
conditions. Since only first derivatives of time are present in (98), it is sufficient to prescribe
the initial velocity field at t = 0. Of course this velocity field must satisfy the incompressibil-
ity condition (97)

Since (98) is a system of second order differential equations in space, it is necessary to pre-
scribe boundary conditions for each velocity component on the complete boundary of the
domain. However, at high Reynolds numbers the convective terms dominate the stress tensor
and as a consequence the boundary conditions at outflow must be such that they restrict the
flow as little as possible.
The continuity equation and the pressure play a very special role in the incompressible Navier-
Stokes equations. In fact there is a strong relation between both. It can be shown (Ladyshen-
skaya, 1969), that for incompressible flows no explicit boundary conditions for the pressure
must be given. Usually boundary conditions for the pressure are implicitly given by prescrib-
ing the normal stress.

The following types of boundary conditions are commonly used for the two-dimensional in-
compressible Navier-Stokes equations (the extension to IR3 is straight forward):

1 u given (Dirichlet boundary condition), (106a)

2 un and σnt given, (106b)

3 ut and σnn given, (106c)

4 σnt and σnt given, (106d)
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where un denotes the normal component of the velocity on the boundary and ut the tangential
component. σnn (n·σ ·n) denotes the normal component of the stress tensor on the boundary
and σnt (n · σ · t) the tangential component.

Typical examples of these boundary conditions are:

• At fixed walls: no-slip condition u = o. This is an example of type (106b).

• At inflow the velocity profile given: u = g. This is also an example of type (106b).
Typical inflow profiles are ut = 0, un parabolic or ut = 0 and un constant.

At outflow one may prescribe the velocity. However, for convection dominated flows, such a
boundary condition may lead to wiggles due to inaccuracies of the boundary conditions. Less
restrictive boundary conditions are for example ut = 0 and σnn = 0 or σnt = 0 and σnn = 0.
The first one (ut = 0, σnn = 0) prescribes a parallel outflow with zero normal stress. From
(102) it can be derived that

σnn = −p+ 2

Re

∂un
∂n

, (107)

and σnt =
1

Re

(

∂un
∂t

+
∂ut
∂n

)

. (108)

As a consequence for high Reynolds numbers σnn is approximately equal to −p. So σnn = 0
implies that implicitly p is set equal to zero.
The boundary condition ut = 0, σnn = 0 is correct for channel flow. The boundary condition
σnt = 0, σnn = 0 is in general not correct. For a channel flow, in which case we have a
parabolic velocity profile, ∂un

∂t
is linear and hence σnt 6= 0. However, in practical situations we

usually do not have a channel flow and it is very hard to formulate correct boundary conditions
at outflow. Vosse (1987) has shown that the boundary condition σnt = 0, σnn = 0, although
incorrect, may be a good choice in numerical computations.
He performed some experiments in the flow over a backward facing step. Figure 25 shows
the streamlines for Re = 150, and the length of the channel after the step large enough. In
this case the flow at the end may be considered as a channel flow and the boundary condition

1 2 3
4 5

67

 

Figure 25: Streamlines in backward step. Length of channel is 44H, where H is the step
height. Outflow boundary conditions σnn = 0, ut = 0. Only the part (−6H, 6H) is plotted.

ut = 0, σnt = 0 is a good approximation. However, if we make the length of the channel
such that the outflow boundary intersects the recirculation zone, it is impossible to define
correct boundary conditions. Figure 4.2 shows the results of computations with the boundary
conditions σnt = 0, σnn = 0. The agreement with the computations in the long channel is
remarkably good.
For a free surface we have the condition that there is no flow through the surface and that the
tangential stress is equal to zero. In that case we use the boundary condition un = 0, σnt = 0.
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Figure 26: Streamlines in backward step. Length of channel is 12H. Outflow boundary
conditions σnn = 0, σnt = 0.

One can show that the equations (97), (98) with a given initial flow field and combinations
of boundary conditions of type (106b-106d) have a unique solution. There is, however, one
exception. If we solve the stationary incompressible Navier-Stokes equations with the velocity
prescribed on the complete boundary (actually each combination in which the normal velocity
component is prescribed), the velocity is unique, but the pressure is fixed up to an additive
constant.

4.3 Axisymmetric flow

Since in general three-dimensional flow computations are very expensive, one usually tries
to reduce the dimension by considering symmetry in the flow or neglect flow in a certain
direction. The last possibility results in two-dimensional flow, such as channel flow. If we use
cylinder symmetry the flow reduces to so-called axisymmetric flow.

In such a case the Navier-Stokes equations and the velocity vector have to be transformed to
a cylindrical co-ordinate system with co-ordinates r, ϕ and z and velocity components ur, uϕ
and uz. In an axisymmetric flow the variation in ϕ-direction is zero and all ϕ-derivatives
may be neglected. Whether the uϕ component may be neglected depends on the flow. In
a rotating flow uϕ is not equal to zero and we have in that case three velocity unknowns,
although we have only two directions.

The incompressible Navier-Stokes equations in cylinder co-ordinates are still given by the
expressions (97) and (98). However, the operators divergence and gradient as well as the
stress tensor get a different shape:

∇v =

(

∂v

∂r
,
1

r

∂v

∂ϕ
,
∂v

∂z

)T

, (109a)

div u =
1

r

(

∂rur
∂r

+
∂uϕ
∂ϕ

+
∂ruz
∂z

)

= 0 , (109b)

σrr = −p+ 2µ
∂ur
∂r

, σϕϕ = −p+ 2µ

(

ur
r

+
1

r

∂uϕ
∂ϕ

)

, (109c)

σzz = −p+ 2µ
∂uz
∂z

, σrϕ = σϕr = µ

(

r
∂

∂r

(uϕ
r

)

+
1

r

∂ur
∂ϕ

)

,

σϕz = σzϕ = µ

(

1

r

∂uz
∂ϕ

+
∂uϕ
∂z

)

, σrz = σzr = µ

(

∂ur
∂z

+
∂uz
∂r

)

.
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Note that in these expressions the term 1/r frequently occurs. As a consequence one has to
be careful in the numerical computations at r = 0. At the symmetry axis r = 0, we need
extra boundary conditions, the so-called symmetry conditions. One immediately verifies that
these symmetry conditions are given by:

ur = 0 ,
∂uz
∂r

= 0 , uϕ = 0 at r = 0 , (110)

or translated to stresses:

ur = 0 , uϕ = 0 and σnt = 0 at r = 0 . (111)

4.4 The weak formulation

In the next paragraph we shall derive the standard Galerkin equation for the incompressible
Navier-Stokes equations. First we shall derive the weak formulation. In order to consider the
four boundary conditions (106b- 106d), we shall assume that the boundary consists of four
parts each with one of the boundary conditions (106b-106d). Furthermore we shall restrict
ourselves in this chapter to stationary problems. The instationary case will be treated in
Chapter 7.

Γ

ΓΓ

3Γ

Ω

4 1

2

Figure 27: Artificial example with region Ω and boundaries Γ1,Γ2,Γ3 and Γ4.

Furthermore we restrict ourselves for the moment to the two-dimensional case. Figure 4.3
shows an artificial example of a region Ω with four boundaries Γ1 to Γ4. On each of these
boundaries we have a different type of boundary condition. The formulation of our example
is now: For x ∈ Ω solve u satisfying

div u = 0 , (112a)

−div σ + ρ(u ·∇ u) = ρf , (112b)

σij = −pδij + µ

(

∂ui
∂xj

+
∂uj
∂xi

)

, (112c)

u = g1 for x ∈ Γ1, (112d)

un = g2, σnt = g3 , x ∈ Γ2 , (112e)

ut = g4, σnn = g5 , x ∈ Γ3 , (112f)

σnt = g6 σnn = g7 , x ∈ Γ4 . (112g)
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In order to derive the weak formulation, equation (112a-112b) must be multiplied by test
functions. First equation (112a) is multiplied by a test function q resulting in

∫

Ω

q div u dΩ = 0 (113)

The momentum equations (112b) consist of two equations, which may be each multiplied by
separate test functions v1 and v2. If we define v = (v1, v2)

T these equations can be combined
to:

∫

Ω

(−div σ + ρ(u · ∇ u)) · v dΩ =

∫

Ω

f · v dΩ . (114)

Choosing v2 respectively v1 equal to zero gives us the original weak formulation for each of
the equations.

The first term in (114) may be further reduced by applying integration by parts (Gauss
theorem) to

∫

Ω

(−div σ) · v dΩ =

∫

Ω

σ · ∇ v dΩ −
∫

Γ

(vn σ
nn + vt σ

nt)dΓ, (115)

where Γ denotes the boundary of Ω, vn the component of v in the normal direction and vt in
the tangential direction. For a derivation of formula (115) we refer to Appendix A.

In order to apply the boundary conditions (112d-112g), the boundary integral over Γ is split
into 4 parts Γ1, to Γ4.
On Γ1 we have a prescribed velocity and hence the test function v is chosen equal to zero.
On boundary Γ2 un is prescribed and so vn is chosen equal to zero, and on boundary Γ3 ut is
prescribed and vt is set equal to zero.

If we furthermore substitute relation (100) into (115), the first term of (114) can be writ-
ten as:

∫

Ω

−(div σ) · v dΩ =

∫

Ω

2µ e · ∇ v dΩ −
∫

Ω

p div v dΩ

−
∫

Γ2

g3 vt dΓ −
∫

Γ3

g5 vn dΓ −
∫

Γ4

g6 vt + g7 vn dΓ . (116)

Combinations of all these results leads to the weak formulation of the Navier-Stokes equations
(112a-112g):
Find u , p with

u = g1 at Γ1 , un = g2 at Γ2 , ut = g4 at Γ3,
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such that
∫

Ω

q div u dΩ = 0 , (117)

∫

Ω

2µe · ∇ v dΩ +

∫

Ω

ρ(u · ∇ u) · v dΩ −
∫

Ω

p div v dΩ =

∫

Γ2

g3 vt dΓ +

∫

Γ3

g5 vn dΓ +

∫

Γ4

g6 vt + g7 vn dΓ +

∫

Ω

ρf · v dΩ , (118)

for all v such that v = o at Γ1, vn = 0 at Γ2 and vt = 0 at Γ3, and e given by (101).

We see that in the relations (117) and (118) no derivatives of p and q are necessary. Hence
it is sufficient that p and q are integrable. With respect to u and v, first derivatives are
required and hence not only u and v but also their first derivatives must be integrable. As
a consequence we do not need continuity of p and q in the Galerkin formulation, but the
functions u and v must be continuous over the element boundaries.

The weak formulation (117-118) shows a strong relation between u and v, as well as between
p and q. If we for example demand that both u and v are divergence free, then the first
equation (117) vanishes and the pressure disappears from (118). Indeed in all theoretical
investigations with respect to the weak form of the Navier-Stokes equations, p and q are
taken from the same space and u and v are taken from the same space. This observation
motivates the choice of the basis functions in the standard Galerkin method.

4.5 The standard Galerkin method

In the standard Galerkin method we define two types of basis functions, basis function Ψi(x)
corresponding to the pressure and functions ϕi(x) corresponding to the velocity components.
We may combine the velocity basis functions into vector form by

ϕi1(x) =

(

ϕi(x)
0

)

, ϕi2(x) =

(

0
ϕi(x)

)

. (119)

Now the approximation of u and p will be defined by

ph =
m
∑

j=1

pj Ψj(x) , (120)

uh =
n
∑

j=1

u1j ϕj1(x) + u2j ϕj2(x) =
2n
∑

j=1

uj ϕj(x) . (121)

In (121) uj is defined by uj = u1j , (j = 1(1)n), uj+n = u2j , (j = 1(1)n) and ϕj in the same
way. For simplicity the summation has been carried out over all degrees of freedom including
the prescribed ones at the boundary. The test functions, however, must only be coupled to
the free degrees of freedom. Mark that the number of basis functions ϕi(x) and Ψi(x) do
not have to be the same, nor that these basis functions must have the same shape. In fact,
in most practical applications ϕi(x) and Ψi(x) are chosen differently.
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In order to get the standard Galerkin formulation we substitute v = ϕi(x), q = Ψi(x) into
the weak formulation (117-118).
In this way we get:

Find pn and un defined by (120),(121) such that

∫

Ω

Ψi div uh dΩ = 0 , i = 1(1)m , (122)

and
∫

Ω

2µ (eh · ∇ ϕi)dΩ+

∫

Ω

ρ(uh · ∇ uh) · ϕi dΩ

−
∫

Ω

ph div ϕi) dΩ =

∫

Γ2

g3(ϕi · t) dΓ +

∫

Γ3

g5(ϕi · n) dΓ

+

∫

Γ4

g6(ϕi · t) + g7(ϕi · n) dΓ +

∫

Ω

ρf · ϕi dΩ

(123)

where eh is given by (101); u replaced by uh

i in (123) must be taken for all free degrees of freedom ui.

Expression (123) may be easily evaluated as long as n or t on the boundaries Γ2, Γ3 and Γ4

are in the direction of the co-ordinate axis. If they are not in that direction it is necessary
to transform the unknowns on the boundary locally such that they are expanded into normal
and tangential direction. The technique of local transformations is described in Zienkiewicz
and Taylor (1989).

The finite element method may be used to construct the basis functions ϕi and Ψi, in the
same way as for the potential problem in Chapter 1. Once the basis functions are known, the
integrals (122) and (123) may be evaluated element-wise. Finally we arrive at a system of
m+2n−np non-linear equations with m+2n−np unknowns, where np denotes the number
of prescribed boundary values, and m and N are defined in (120), (121).

Formally the system of equations can be written as

SU +N (U)−LTP = F (124a)

LU = o (124b)

where U denotes the vector of unknowns u1i and u2i, P denotes the vector of unknowns
pi, SU denotes the discretization of the viscous terms, N(U ) the discretization of the non-
linear convective terms, LU denotes the discretization of the divergence of u and −LTP the
discretization of the gradient of p. The right-hand side F contains all contributions of the
source term, the boundary integral as well as the contribution of the prescribed boundary
conditions.

The solution of the system of equations (124a-124b) introduces two difficulties. Firstly the
equations are non-linear and as a consequence some iterative solution procedure is necessary.
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Secondly equation (124b) does not contain the unknown pressure P . The last aspect intro-
duces a number of extra complications which will be treated in Paragraph 4.7. The non-linear
iterative procedure will be the subject of Paragraph 4.6.

4.6 Treatment of the non-linear terms

In order to solve the system of non-linear equations, an iterative procedure is necessary. In
general such a procedure consists of the following steps:

make an initial estimation

while (not converged) do

linearize the non-linear equations based on the previous solution
solve the resulting system of linear equations

Examples of such methods are Newton methods, quasi-Newton methods, and Picard type
methods.

In order to derive the iterative method one may proceed in two ways. Firstly one can apply
the method to equations (124a-124b), which is the classical approach. An alternative is to
linearize the non-linear differential equations first and then to discretize the resulting linear
equation. Sometimes both approaches are identical. The last approach is conceptually easier
than the first one and will therefore be applied in this paragraph. Since it is the only non-
linear term in equation (112a-112g) we only consider the convective terms.

Suppose we have computed the solution uk at a preceding iteration level k. We write this so-
lution as uk. First we shall derive the Newton linearization. To that end we define f(u, ∇ u)
as

f(u, ∇ u) = u · ∇ u . (125)

Taylor-series expansion of (125) gives

fk+1(u, ∇ u) = fk
(

uk, ∇ uk
)

+
(

uk+1 − uk
)

· ∂fk

∂u

+∇
(

uk+1 − uk
)

· ∂fk

∂∇u
+O

(

uk+1 − uk
)2

.

(126)

Neglecting the quadratic terms and substitution of (125) gives

uk+1 · ∇ uk+1 ≈ uk · ∇ uk +
(

uk+1 − uk
)

· ∇ uk +∇
(

uk+1 − uk
)

· uk

= uk+1 · ∇ uk + uk · ∇ uk+1 − uk · ∇ uk .
(127)

(127) forms the standard Newton linearization. Alternative linearization are constructed by
the so-called Picard iteration methods in which one or both terms in (125) are taken at the
old level.
Hence:

(u · ∇ u)k+1 ≃ uk+1 · ∇ uk , (128)

(u · ∇ u)k+1 ≃ uk · ∇ uk+1 , (129)

(u · ∇ u)k+1 ≃ uk · ∇ uk . (130)
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Numerical experiments have shown that from these last three possibilities only (129) produces
a good convergence. (127) shows that Newton is in fact a linear combination of (128)-(130).
After linearization of the convective terms the standard Galerkin method may be applied,
resulting in a system of linear equations.
An important question with respect to these iterative methods is, how to find a good initial
estimate. It is well known that Newton’s method converges fast (i.e. quadratically) as soon
as the iteration is in the neighborhood of the final solution. However, if the distance between
iteration and solution is too large, Newton may converge slowly or even diverge. The Picard
iteration seems to have a larger convergence region, which means that this iteration does not
need the same accurate initial estimate, however, this method converges only linearly.

A possible strategy to converge to the final solution is the following:

- start with some initial guess,

- perform one step Picard iteration in order to approach the final solution, sometimes
more than one step,

- use Newton iteration in the next steps.

An initial guess may be for example the solution of the Stokes problem, which is formed by
the Navier-Stokes equations where the convective terms have been neglected. If the Reynolds
number is too high it is possible that the distance between the solution of Stokes and Navier-
Stokes is too large. In that case the solution of Navier-Stokes with a smaller Reynolds number
might be a good choice. A process in which the Reynolds number is increased gradually is
called a continuation method.

In general one may expect that the iteration process no longer converges as soon as the flow
becomes instationary or turbulent.

4.7 Necessary conditions for the elements

In Paragraph 4.5 it has been derived that the standard Galerkin method results in a system of
non-linear equations of the form (124a-124b). After linearization this system can be written
as

SU +N (Uk)U −LTP = F ,
LU = o ,

(131)

where Uk is the solution of the previous iteration.

In Section 4.5 it has already been pointed out that with respect to the velocity it is neces-
sary that the approximation over the element-sides must be continuous, whereas the pressure
approximation may be discontinuous over the element boundaries. However, there is an-
other problem. The continuity equation, discretized as LU = o, does contain only velocity
unknowns. However, the number of rows in this equation is completely determined by the
number of pressure unknowns. Suppose that there are more pressure unknowns than velocity
unknowns. In that case equation (131) contains more rows than unknowns and we have either
a dependent or inconsistent system of equations. In both cases the matrix to be solved is
singular. So we have to demand that the number of pressure unknowns never exceeds the
number of velocity unknowns. Since we want to solve the Navier-Stokes equations by finite
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element methods for various grid size, this demand should be valid independently of the num-
ber of elements. This demand restricts the number of applicable elements considerably. In
order to satisfy this criterion, a general accepted rule is that the order of approximation of the
pressure must be one lower than the order of approximation of the velocity. So if the velocity
is approximated by a linear polynomial, then the pressure is approximated by a constant per
element and so on.
Unfortunately this rule is not sufficient to guarantee that the number of pressure unknowns
is not larger than the number of velocity unknowns independently of the number of elements.
Consider for example the mesh in Figure 28a, based upon linear elements for the velocity and
constant elements for the pressure. For convenience the constant has been coupled to the
centroid of the element. In this example the mesh contains 8 pressure nodes and 9 velocity

b)

p=8, K=9, L=8 p=8, K=16, L=8

element

ΩRegion       with

P:  pressure nodal points

K:  velocity nodal points

on the outer boundary

L:  velocity nodal points

a)

Figure 28: Triangular elements with three nodal points for the velocity (x) and one nodal
point for the pressure (0): a) vertices are the velocity nodal points: conforming element, b)
mid-points of the sides are the velocity nodal points: non-conforming element.

nodes. Suppose we have Dirichlet boundary conditions for the velocity, which means that all
boundary velocities are prescribed. The pressure is unique except for an additive constant.
To fix this constant one of the pressure unknowns is given. So finally we have 2 velocity
unknowns and 7 pressure unknowns. Hence we have an example of a singular matrix. The
corresponding element is not admissible. One might remark that if we add sufficient elements
to the mesh eventually the number of velocity unknowns will be larger than the number of
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pressure unknowns. However, practical computations have shown that in that case still the
matrix remains singular.
Figure 4.4b gives an example of an admissible element. The velocity unknowns are not posi-
tioned in the vertices of the triangle but in the midside points. The velocity approximation
is linear but not continuous over the element boundaries. Such an element is called non-
conforming and introduces for that reason extra problems with the approximation. However,
with respect to the continuity equation the element satisfies the demand that there must be
more velocity unknowns than pressure unknowns. A simple count shows that for the given
mesh, the number of velocity unknowns is equal to 16 and the number of pressure unknowns
equal to 7 in the case of Dirichlet boundary conditions.
The derivation of the admissibility condition given above is rather ad-hoc and does not ex-
plain why an element is admissible. It just helps to identify non-admissible elements. In the
literature, see for example Cuvelier et al (1986), an exact admissibility condition is derived.
This condition is known under the name Brezzi-Babuŝka condition (or BB condition). How-
ever, the BB condition is rather abstract and in practice it is very difficult to verify whether
the BB condition is satisfied or not. Fortin (1981) has given a simple method to check the
BB condition on a number of elements.

The method is based on the following statement:

an element satisfies the BB condition, whenever, given a continuous differentiable vector
field u, one can explicitly build a discrete vector field ũ such that:

∫

Ω

Ψi div ũ dΩ =

∫

Ω

Ψi div u dΩ for all basis functions Ψi . (132)

In Cuvelier et al (1986) it is demonstrated how (132) can be checked for a number of elements.

Fortin (1981) formulates the following engineering statement with respect to the admissibility
of elements.

Midside velocity points in two dimensions and centroid velocity points on surfaces in
three dimensions make it possible to control the amount of flow through a side (2D)
and through a surface (3D) of an element, without altering the amount of flow through
other sides or surfaces. Hence such nodal points make it easier to satisfy the continuity
equations.

In fact it is sufficient that the normal component of the velocity in these centroid points is
available as unknowns.
In the literature frequently elements are used, that do not satisfy the BB condition. Such
elements cannot be used with the standard Galerkin method, however the penalty function
method (see Chapter 5), permits the use of these elements.

4.8 Examples of admissible elements

In this section we shall treat some of the admissible elements for two-dimensional applica-
tions. For a more thorough review as well as three-dimensional elements we refer to Cuvelier
et al (1986) and Fortin (1981).
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With respect to the types of elements that are applied we make a subdivision into two groups:
elements with continuous pressure (The Taylor-Hood family) and elements with discontinuous
pressure (The Crouzeix-Raviart family). We shall restrict ourselves to quadratic elements,
since these elements are the most frequently used.

The Taylor-Hood family

Taylor-Hood elements (Taylor and Hood 1973) are characterized by the fact that the pressure
is continuous in the region Ω. A typical example is the quadratic triangle of Figure 29. In
this element the velocity is approximated by a quadratic polynomial and the pressure by a

2

Velocity:

x x x

xx

x3

5 4

1 6 2

quadratic  (6  nodal  points:  x)

Pressure: linear   (3  nodal  points:  0)

Accuracy  velocity:

Accuracy  pressure:

O(h  )3

O(h  )

Figure 29: Taylor-Hood element (P2 − P1).

linear polynomial. One can easily verify that both approximations are continuous over the
element boundaries. It can be shown, Segal (1979), that this element is admissible if at least
3 elements are used. The quadrilateral counterpart of this triangle is given in Figure 30.

2

(9  nodal points: x)
Velocity:

(4  nodal points: 0)
Pressure:

Accuracy velocity:

Accuracy pressure: O(h  

O(h  3)

)

bi-linear

bi-quadratic

Figure 30: Taylor-Hood element (Q2 −Q1)

The Taylor-Hood family is very suitable for the standard Galerkin methods treated in this
chapter. However, with respect the special methods of Chapter 5 and 6, the discontinuous
pressure elements are most favorable. For that reason we consider some of these elements.

The Crouzeix-Raviart family
These elements are characterized by a discontinuous pressure; discontinuous on element
boundaries. For output purposes (printing, plotting etc.) these discontinuous pressures are
averaged in vertices for all the adjoining elements, see Figure 31. We shall discuss some of
the Crouzeix-Raviart elements. The most simple Crouzeix-Raviart element has already been
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Figure 31: Averaging in each nodal point xk over all elements containing xk in order to get
a continuous pressure for Crouzeix-Raviart elements.

mentioned in Section 4.7. It is the non-conforming linear triangle with constant pressure.
Figure 32 shows this element again. Although this element has no practical significance, we

ΓΓ

Γ

O(h  )

3

12

Velocity:
Pressure:

Accuracy  pressure:

Accuracy  velocity:

Constant  (1  nodal  points:  0)
linear  (3  nodal  points:  x)

2

O(h)

Figure 32: Crouzeix-Raviart element (p1 − p0)

shall use it to demonstrate how Fortin’s translation (132) of the BB condition can be checked.
To that end we explicitly create a vector ũ such that (132) is satisfied, i.e.

∫

Ωek

div u dΩ =

∫

Ωek

div ũ dΩ =

∫

δΩek

ũ . n dΓ (133)

given the continuous vector field u. In (133) we have used the fact that the pressure is
constant per element, but discontinuously over the element boundary. As a consequence the
basis functions Ψi(x) are defined by

Ψi(x) =

{

1 in element ei ,
0 in all other elements .

(134)

If we define ũ in the midside point of element ei by

∫

Γk

u dΓ =

∫

Γk

ũ dΓ = |Γk| uk, (135)

with Γk the k-th side of ei, |Γk| the length of Γk and uk the velocity in the midside point of
side Γk, we see immediately that (133) is satisfied. (135) implicitly defines ũ. The definition
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is unique and does not introduce inconsistencies along adjacent elements since (135) is defined
along one side of the elements only. The natural extension of the linear-constant element is
the quadratic velocity, linear pressure element. The discontinuous linear pressure is defined
by three parameters, for example the pressure and the gradient of the pressure in the centroid.
Application of the counting mechanism demonstrated in Section 4.7 shows that this element
cannot be admissible. In order to make it admissible it is necessary to introduce the velocity
vector in the centroid as extra unknowns. In this way we get the so-called extended quadratic
triangle of Figure 33.

Velocity:

2

x x x

xxx

x3

5 47

1 6 2

enriched quadratic

Pressure:

(7  nodal  points:  x)

linear   (1  nodal  point:  0
including  2  derivatives)

Accuracy  velocity: O(h  )3

Accuracy  pressure: O(h  )

Figure 33: Crouzeix-Raviart element (P+
2 − P1)

The basis function for this element can be expressed in terms of the linear basis functions
Ψi(x) for triangles, defined in Chapter 2:

ũi =
7

∑

j=1

uij φj,

with φj = λj(2λj − 1) + 3λ1λ2λ3 , j = 1, 2, 3,

φ4 = 4λ2λ3 − 12λ1λ2λ3 , ϕ5 = 4λ1λ3 − 12λ1λ2λ3 , φ6 = 4λ1λ2 − 12λ1λ3λ3,

φ7 = 27λ1λ2λ3, (136)

and p̃ = p7Ψ1 +
∂p

∂x1

(

x7
)

Ψ2 +
∂p

∂x2

(

x7
)

Ψ3,

with Ψ1 = 1, (137)

Ψ2 = x1 − x71,

Ψ3 = x2 − x72.

The natural quadrilateral extension of this triangle is given in Figure 34.

4.9 Solution of the system of linear equations due to the discretization of
Navier-Stokes

In Sections 4.5 and 4.6 the discretization of Navier-Stokes equations has been derived. It has
been shown that in each step of the non-linear iteration process it is necessary to solve a
system of linear equations of the shape

Su−Lt p = F , (138a)

Lu = 0. (138b)
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3

(9  nodal points: x)
Velocity:

Pressure:

bi-quadratic

linear
(1  nodal point: 0,
including  2  derivatives)

Accuracy velocity:

Accuracy pressure: O(h  )

O(h  )
2

Figure 34: Crouzeix-Raviart quadrilateral (Q2 − P1)

Here Su denotes the discretization of both the viscous terms and the linearized convective
terms. If the unknowns are numbered in the sequence: first all velocity unknowns and then
all pressure unknowns it is clear that the system of equations gets the shape as sketched in
Figure 4.11 provided an optimal nodal point numbering is applied. Unfortunately this num-
bering (velocity first, pressure last) is far from optimal. The total profile is still very large.

velocity

pressure

Figure 35: Profile of the large matrix.

A much smaller profile may be achieved if pressure and velocity unknowns are intermixed.
Figure 4.12 shows a typical example of such a numbering.
The resulting system of equations has a much smaller profile than the one for the original
system of equations. Due to renumbering, however, it is possible that the first diagonal el-
ements of the matrix are equal to zero. This is for example the case in Figure 4.12 where,
because of the boundary conditions, the first degrees of freedom are pressures, which do not
appear in the continuity equation. In order to prevent zeros on the main diagonal, partial
pivoting must be applied. Unfortunately, partial pivoting reorders the sequence of the equa-
tions and increases the profile or band width. Therefore a large amount of extra computing
time and computer memory is required. However, it still remains cheaper than application of
the numbering of Figure 4.12b. It is possible to define a numbering which produces a nearly
optimal profile and prevents the appearance of zeros at the start of the main diagonal. Such
a numbering, however, goes beyond the scope of this lecture.

Another problem arising from the zeros at the main diagonal is that it is not simple to use
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1 2 3 4 5

a

b .  .  .

p1 ,  p 3 ,  .  .  .

Degrees of freedom:

c Degrees of freedom: u , u    ,1211 p 1 , u

u , u    ,1211 u , .  .  . ; u 21 , u 22 , u 23 ,

12 ,

13

u 22 , u 13 , u 23 , p 3 ,

Figure 36: Renumbering of unknowns: a the region Ω, b sequence of unknowns component-
wise, c sequence of unknowns nodal point wise.

iterative methods for the solution of the systems of linear equations.

In Chapters 5 and 6 we shall derive some alternative solution techniques in which the com-
putation of pressure and velocity are segregated and as a consequence partial pivoting is not
longer necessary.
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5 The penalty function method

5.1 Introduction

In Chapter 4 the discretization of the Navier-Stokes equations has been derived. It has
been shown that the direct solution of the resulting system of linear equations introduces
extra complications due to the absence of the pressure in the incompressibility constraint.
In this chapter we shall discuss a method which tries to solve this problem by segregating
computation of velocity and pressure. For the sake of simplicity we shall restrict ourselves to
the stationary Stokes equations, the extension to the instationary and to the non-linear case
is straightforward.

Consider the stationary linear Stokes equation in dimensionless form:

− 1

Re
∆u+∇p = f , (139a)

div u = 0 . (139b)

(139a) follows from (105a) by neglecting the time-derivative and the convective terms, sub-
stitution of (105b) and the incompressibility condition in (105a-105b). For the sake of the
argument we restrict ourselves to homogeneous Dirichlet boundary conditions:

u = 0 x ∈ ∂Ω (140)

The pressure p is unique up to an additive constant. The idea of the penalty method is to
perturb the continuity equation (139b) by a small term containing the pressure. An obvious
choice is

εp + div u = o , (141)

however, in the literature several other possibilities have been proposed.

The pressure p can be eliminated from (141) and substituted into (139a) resulting in an
equation for the velocity:

p = −1

ε
div u , (142)

− 1

Re
∆u− 1

ε
∇(div u) = f . (143)

So one can first solve the velocity from (143) and afterwards compute the pressure directly
from (142). Such an approach will be called segregated approach.

The perturbation (141) makes only sense if the solution of (142), (143) approaches the solution
of (139a-139b) for ε approaching zero. It is a simple mathematical exercise to show that this
is indeed the case. See for example Cuvelier et al (1986) for the details.

The discretization of the penalty function method may be applied in two ways. One may
first discretize the Stokes equations and then apply the penalty function method, or one may
discretize the formulation (142), (143). Both approaches will be treated separately in the
Sections 5.2 and 5.3.
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Remark: the origin of the penalty method is motivated by the theory of optimization with
constraints. One can show (see Chapter 6) that (139a-139b) is equivalent to the con-
strained minimization problem:

∫

Ω

1

2

1

Re
|∇u|2 − u · f dΩ , (144)

for all functions u satisfying divu = 0.

5.2 The discrete penalty functions approach

In the discrete penalty function method, the (Navier-)stokes equations are discretized before
applying the penalty function method. So we start with the formulation (138a-138b):

Su− LTp = F , (145a)

Lu = 0 . (145b)

The continuity equation is perturbed by a term εMpp, where Mp is the so-called pressure
mass matrix, defined by

Mp(i, j) =

∫

Ω

ψiψjdΩ , (146)

Hence
εM pp+Lu = 0 , (147)

or

p = −1

ε
M−1

p Lu . (148)

Substitution of (148) in (145a) gives

(S +
1

ε
LTM−1

p L)u = F . (149)

So u is computed from (149) and afterwards p is computed from (148). In exactly the
same way as for the continuous equation, it can be shown that the solution of (148), (149)
approaches the solution of (145a-145b).

If we want to solve (148), (149), it is necessary that the matrix M−1
p can be computed

easily. This is for example the case if Mp is a lumped mass matrix. In the discontinuous
pressure elements, Mp is in a block diagonal matrix, i.e. a diagonal matrix consisting of
small matrices as diagonal elements. One can easily verify that these small matrices have
the size of the number of pressure unknowns per element, since Mp(i, j) = 0 if ψi and ψj

correspond to different elements. So for the Taylor-Hood family the matrix Mp is lumped,
in the Crouzeix-Raviart family inversion of M p is quite simple.

Another practical aspect is that the building of the matrix LTM−1
p L must be easy. Moreover,

it would be very nice if this matrix could be build per element by element matrices. In that
case the structures of S and LTM−1

p L are identical and the solution of (149) is as simple as
the solution of Su = F . One can immediately verify that for the Taylor-Hood elements this
is not the case. Consider for example the simple triangular mesh in Figure 37. For simplicity
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Figure 37: Triangular mesh with quadratic Taylor-Hood triangles.

only the vertices of the triangles have been numbered. The midside points are present but
are not shown. From Chapter 2 it is clear that in the momentum equation for unknowns in
point 5 only the vertex unknowns in the points 1, 2, 4, 5, 6, 8 and 9 are present not those
of the points 3 and 7. If we furthermore simplify the matrix Mp to a unity matrix, we can
compute the elements of LTM−1

p L relatively simple by:

LTL(i, j) =
∑

k

LT (i, k)L(k, j) =
∑

k

L(k, i)L(k, j) . (150)

Let us for the sake of the argument identify the matrix elements with the vertex numbers. In
fact each matrix element is in that case a 2× 2 matrix itself.
From chapter 2 it is clear that S (5, 7) is equal to zero, since node 5 and node 7 do not belong
to the same element. However, LTL(5, 7) =

∑

k

L(k, 5)L(k, 7) is in general unequal to zero,

since for example L(4, 5) and L(4, 7) are unequal to zero. So LTL has a larger bandwidth or
profile than S.

In the case of a Crouzeix-Raviart element L(i, j) is only non-zero as long as point i and pointj
belong to the same element, because of the discontinuity of the pressure approximation. As
a consequence the matrix LTM−1

p L may be split into a sum over element matrices and

LTM−1
p L may be evaluated at element level. This makes the implementation of the penalty

function method relatively easy.

Before we consider some practical remarks concerning the penalty method in Section 5.4, we
shall first analyze the so-called continuous penalty function method.

5.3 The continuous penalty function method

The penalty function method as introduced in Section 5.2 will be called discrete penalty
function method, since first the equations are discretized and then the pressure is eliminated.
Conceptually it is much easier to start with the penalty function formulation (142), (143),
and then to discretize the equations.

For the sake of the argument we shall restrict ourselves to Dirichlet boundary conditions for
the velocity. Application of the standard Galerkin method to equation (143) gives component-
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wise:
∫

Ω

{ 1

Re
∇(uh)k ·∇ϕi +

1

ε
div uh

∂ϕi

∂xk
}dΩ =

∫

Ω

fkϕidΩ , (151)

i = 1, 2, ..., n; k = 1, 2, 3,

where (uh)k denotes the k-th component of uh and fk the k-th component of f .
In matrix vector notation (151) can be written as

Su+
1

ε
Au = F . (152)

A clear advantage of the formulation (152) is that it is no longer necessary to compute
the matrix LTM−1

p L and as a consequence Taylor-Hood elements are as simple as Crouzeix-
Raviart elements. However, a closer examination of (151) shows that (152) has a disadvantage
which is not present in (149).

If in (149) we let ε approach zero, it is immediately clear that

LTM−1
p Lu → 0 , (153)

and it is easy to show that also
Lu → 0 . (154)

From (152) it follows that ε→ 0 implies

Au → 0 , (155)

or
∫

Ω

div undiv ϕidΩ = 0 , (156)

for all basis functions ϕi.
(156) is equivalent to (122), where div ϕiplays the role of the basis function ψi.
Now consider the quadratic Taylor-Hood element. In equation (156) div ϕi is a linear dis-
continuous polynomial. So relation (156) is comparable to the discretization of the continuity
equation for a quadratic Crouzeix-Raviart element with linear pressure. From Section 4.8,
however, we know that such an element is not admissible.

Although the penalty function formulation does not give rise to singular systems of equations,
still one can expect some troubles with elements which in the limit approach non-admissible
elements. Indeed, computations with this approach, show that the velocity behaves rather
good, but that the pressure produce unrealistic wiggles (Sani et al 1981). These wiggles are
generally known as spurious modes or checkerboard modes for the pressure.

In the literature non-admissible elements are frequently used. To suppress the wiggles one
either uses some filtering (smoothing) of the computed pressure, or the penalty matrix is
computed with a so-called reduced integration technique (Malhus et al 1978). The filtering
technique may produce nice results, however, this technique is not so easy at non-rectangular
grids. With the reduced integration technique, actually the term

∫

Ω

div uhdiv ϕidΩ is approx-

imated by an inaccurate quadrature rule. This is comparable to approximating div ϕi by

59



a lower degree polynomial. As a consequence the actual pressure approximation is reduced,
leading to an admissible but less accurate element.

From the discussion given above it is clear that the discrete penalty function approach is su-
perior above the continuous penalty method. In the remainder of this lecture we shall restrict
ourselves to this discrete form.

5.4 Practical aspects of the penalty function method

In the previous sections the continuous and discrete penalty function method have been
derived. It has been shown that the discrete penalty function method, applied to admissible
elements is the most recommendable. What remains is the choice of the parameter ε. It is
clear that εmust be so small that the computed velocity and pressure approximates the actual
solution accurately. However, there is one draw back with respect to the penalty function
formulation. In fact we add the matrix 1

ε
LTM−1

p L to the matrix S in (149). The matrix S

corresponds to the discretization of a vector Laplacian equation (in the case of Stokes flow)
or a convection-diffusion type vector equation (Navier-Stokes flow). It is well known that this
matrix is good conditioned and has nice properties for many kinds of solvers.

The matrix L is a m × 2n matrix, where in general m ≪ n. The maximal rank of L is
m or m − 1, depending on the type of boundary conditions. As a consequence the rank of
the 2n × 2n matrix LTL can also not exceed m or m − 1. The same is true for the matrix
LTM−1

p L. As a consequence the penalty matrix is a singular matrix with a large number
of dependent rows. This penalty matrix is multiplied by a large number 1/ε and added to a
non-singular matrix. It is very natural to assume that the resulting matrix has a condition
number which is proportional to 1/ε. Indeed practical computations show such a behavior.
As a consequence ε may not be chosen too small since otherwise the condition of the resulting
matrix is so bad that an accurate numerical solution is not longer possible. As a rule of the
thumb one may choose ε such that

‖εp‖ ≈ k‖u‖ , (157)

where k is some value between O(10−3) and O(10−9). This statement is based on a 64 bits
accuracy for the computations, i.e. double precision arithmetic on a 32 - bits computer.
Especially for very viscous flow, which for example appear in non-newtonian fluids, a good
choice for ε may be hard to find.

The fact that we have to choose ε carefully is a clear disadvantage. The relative large condi-
tion number has also another disadvantage. It is nearly impossible to solve the matrix with
standard iterative techniques. Only if we enlarge the value of ε and use some outer iterative
procedure, it is possible to use penalty function type methods in combination with iterative
linear solvers. A well known outer iterative procedure is the so-called Uzawa scheme (Cuvelier
et al 1986), which is however, beyond the scope of this lecture.

Despite the clear disadvantages of the penalty function method, still this method is very
popular. The reason is that it is a rather simple and fast method, provided the number of
unknowns are not too large. The segregation of pressure and velocity gives a large reduction
in computing time compared to the direct solution of the original equations. Only for large
three-dimensional problems, direct linear solvers become so expensive that it is practically

60



nearly impossible to apply this method.

In the next chapter we shall derive an alternative segregated method to solve the incompress-
ible Navier-Stokes equations, the so-called solenoidal approach.
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6 Divergence-free elements

6.1 Introduction

In Chapter 4 we have treated the standard Galerkin approach. It has been shown that this
method may be applied, provided an admissible element is used. A clear disadvantage of the
Galerkin method is the unavailability of the pressure in the continuity equation, and as a
consequence the presence of zeros on the main diagonal of the equations (138a-138b). As a
consequence the solution of the equations introduces extra difficulties. In the penalty function
method we have solved this problem by segregating pressure and velocity, thus reducing the
number of unknowns as well as avoiding the zeros at the main diagonal. The only problem
with this method is that it is sometimes difficult to get a good of choice of the small parameter
ε and the bad condition of the remaining system of equations. Especially for very viscous
(non-newtonian fluids) this may be a problem. In this chapter we shall derive an alternative
segregated approach in which it is not necessary to choose some parameter, and which does
not lead to ill conditioned systems of equations.
To that end we consider the weak formulation (117-118). If for the sake of simplicity we neglect
both the convective terms and all boundary integrals, substitute the continuity equation in
the stress tensor and use the dimensionless form, (117-118) can be written as:

∫

Ω

q div udΩ = 0 , (158a)

∫

Ω

1

Re
∇u ·∇vdΩ−

∫

Ω

p div vdΩ =

∫

Ω

f · vdΩ . (158b)

Except with respect to the essential boundary conditions, u and v are chosen in the same
space. So if we restrict this space to all divergence-free vector fields, then it is immediately
clear that (158a) is satisfied automatically and, moreover,

∫

Ω

p div vdΩ vanishes. In other

words an equation in the velocity alone remains. Unfortunately it is very hard to find functions
which are completely divergence-free. However, formulation (158a-158b) shows that it is not
necessary to demand div u = 0, but that it is sufficient to weaken this statement to

∫

Ω

q div vdΩ = 0 for all q . (159)

If both our test functions and the solution u satisfy (159), (158a) is satisfied and (158b)
reduced to

∫

Ω

1

Re
∇u ·∇vdΩ =

∫

Ω

f · vdΩ, for all v , (160)

which is again an equation for the velocity alone.
If we construct a basis ϕi in the space of approximately divergence-free vector fields satisfying
(159), (160) can be written as:

uh =

n
∑

j=1

ujϕj(x) , (161a)
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n
∑

j=1

uj

∫

Ω

1

Re
∇ϕj ·∇ϕidΩ =

∫

Ω

f ·ϕidΩ , i = 1(1)n . (161b)

The extension to the non-linear Navier-Stokes equations, the general form of stress tensor
and non-vanishing boundary integrals is trivial.

The system of equations (161b) is of double Laplacian type (in IR2), and may be solved quite
easily. The only problem is of course, how to construct basis functions that are divergence-free
in the sense of (159). In Section 6.2 we shall show the construction of such basis functions
for one specific element.

6.2 The construction of divergence-free basis functions for 2D elements

In this section we shall construct divergence-free basis functions in the sense of (159) for two-
dimensional elements. The extension to IR3 is quite complicated and introduces a number
of extra problems. We refer to Cuvelier et al (1986) for a derivation. The construction of
divergence-free basis functions is relatively simple for elements of the Crouzeix-Raviart type,
how to construct such functions for Taylor-Hood elements is not known at this moment. For
simplicity we shall restrict ourselves to triangular elements; the extension to quadrilaterals
is straightforward. In fact we shall derive these basis functions for the extended quadratic
triangle of Figure 33, with the basis functions given in (136). But in order to get some insight
in the problems associated with this derivation we shall first consider the non-conforming
linear triangle with constant pressure given in Figure 32.

In general (159) can be written as
∫

Ω

Ψi div uhdΩ = 0 for all pressure basis functions Ψi . (162)

In other words we have to construct basis functions ϕi such that
∫

Ω

Ψj div ϕidΩ = 0 , for all Ψj . (163)

One may expect that the basis functions ϕi(x) satisfying (163), have vector components,
which are both nonzero, so these will be linear combinations of the classical basis functions
defined by (119).
In order to find these linear combinations we recall that for the non-conforming element, (163)
reduces to

∫

Ωej

div ϕidΩ = 0 , (164)

for all elements ej , since Ψj is one in element ej and zero outside the element.
Application of the Gauss-divergence theorem to (164) gives

∫

Γej

ϕi · ndΓ = 0 , (165)

where Γej is the boundary of the triangle ej. In each triangle we have 6 unknown velocities
corresponding to the three midside points. In all previous examples (compare with 121) these
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velocity components were in fact the Cartesian components. However, for our purposes it is
better to decompose the velocity in a tangential and a normal component along the boundary
of the triangle. See Figure 38 for a definition. In this element the velocity u is approximated
by

t
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Figure 38: Element e, with boundary Γ2 separately plotted. Normal and tangential unity
vectors on Γ2 are indicated.

uh =
∑

k=2,4,6

u1kϕk1(x) + u2kϕk2(x) , (166)

which can be written as

uh =
∑

k=2,4,6

unkϕkn(x) + utkϕkt(x) , (167)

where unk respectively utk denote the normal and tangential component of u in node k.
ϕkn(x) and ϕkt(x) are defined by

ϕkn(x) = ϕk(x)nk , (168a)

ϕkt(x) = ϕk(x)tk . (168b)

Here ϕk(x) denotes the scalar basis function corresponding to point k and nk and tk the
normal respectively tangential vector corresponding to the edge on which node k is positioned.

The basis functions ϕkt(x) satisfy (165) exactly, since ϕk(x) = 1 on the edge containing
node k and linear from -1 to 1 at the other sides. On the edge containing node k we have
nk · tk = 0, on the other edges n is constant and the integral over ϕk(x) vanishes because
of the linearity. So one set of divergence-free basis functions is formed by the set of basis
functions corresponding to the tangential components.

The other set of basis functions must be constructed such that (165) is satisfied. Now
∫

Γk

uh · ndΓ (169)

defines the amount of flow through side Γk. For an incompressible flow one can define a
stream function Ψ by

u = (
∂Ψ

∂y
,−∂Ψ

∂x
) . (170)
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An important property of the stream function is that the difference between the values of
the stream function in two points defines the amount of flow between these two points. See
Figure 39 for an explanation. So it is quite natural to define a discrete stream function in the

2

1

2

u

Γ

Ψ

Ψ

1

Figure 39: Amount of flow between points 1 and 2 is given by
∫

Γ

u · ndΓ = Ψ2 −Ψ1

vertices by

Ψk+1 −Ψk =

∫

Γk+2

uh · ndΓ , k = 1, 2, 3 , (171)

where a cyclic permutation with the numbers 1, 2 and 3 is used. It is clear that definition
(171) does not introduce any contradictions. Moreover, this stream function Ψ is constructed
such that (165) is satisfied exactly.

Definition (171) is unique for the complete mesh, since in (171) only values on one element
side are used, so the definition in contiguous elements is the same. Furthermore, given a
divergence-free vector field in the sense of (159) or (162), the stream function Ψ can be
computed in each vertex, provided it is fixed in an arbitrary vertex.

From (171) we can express the normal component on the mid side points into the values of
the stream function on the vertices. Using the fact that the basis function ϕk(x) is equal to
1 along the edge corresponding to node k, it follows immediately that

un2 =
Ψ2 −Ψ1

L1
, un4 =

Ψ3 −Ψ2

L2
, un6 =

Ψ1 −Ψ3

L3
, (172)

where Lk denotes the length of side Γk.
Substitution of (172) into (167) gives

uh =
∑

k=2,4,6

utkϕkt(x) + (
1

L2
ϕ6n − 1

L3
ϕ2n)Ψ1

+(
1

L3
ϕ2n − 1

L1
ϕ4n)Ψ2 + (

1

L1
ϕ4n − 1

L2
ϕ6n)Ψ3 . (173)

In other words, the second set of basis functions, denoted by ϕkΨ (k = 1, 2, 3) is given by

ϕkΨ =
1

Lk+1
ϕ2(k+2)n − 1

Lk+2
ϕ2k (cyclic) . (174)

One easily verifies that these functions satisfy (165).
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This completes the construction of the 6 basis functions that are divergence-free. Substitution
of these basis functions into the weak formulation (161b) gives a system of linear equations
in the unknowns utk and Ψk.

The basis functions ϕkt and ϕkΨ are characterized by the following properties:

i The components of ϕkt and ϕkΨ are linear in x and y per element.

ii ϕtj = 0 at the midside nodes not equal to j. ϕtj is equal to the unit tangential vector
in midside node j.

iii ϕΨj = 0 at the mid-side node opposite to vertex j. ϕΨj is equal to plus or minus the
unit normal vector divided by the length of the side, in the two mid-side points of the
sides containing the vertex j. The sign is opposite for these two points.

It must be remarked that in order to get a unique definition of normal and tangential compo-
nents, it is necessary to define the normal and tangential vector in the same way in adjacent
elements. A possible unique definition is to choose the tangential vector from smallest node
number to highest node number and defining the corresponding normal vector in the clock-
wise direction. See Figure 40.

In conclusion, the procedure to construct divergence-free basis functions consists of the fol-
lowing steps:

- define basis functions corresponding to normal components and tangential components
at mid side points

- the first set of basis functions is formed by the basis functions corresponding to the
tangential components

- Introduce stream function unknowns at the vertices and eliminate the normal com-
ponents of the velocity at mid-side points by expressing them in the stream function
unknowns. The basis functions corresponding to the stream function unknowns from
the second set of basis functions.

The computation of the pressure is postponed to Section 6.5. Now we have seen how the

3

2

1

8

6

t n

e

e 1

Figure 40: Definition of normal and tangential vector at side 1-6 for elements e1 and e2. The
global node numbering is plotted.
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divergence-free basis functions may be derived for the non-conforming triangle, we shall apply
the same procedure for the more complex extended quadratic triangle with linear pressure.

The first step in the construction of the divergence-free basis functions is the elimination of
the velocity in the centroid points of the elements and as a consequence the gradient of the
pressure in these points. This process is also known as static condensation.
Substitution of the pressure basis functions given in (136) into (162) gives

∫

e

div uhdΩ = 0 , (175a)

∫

e

(x− x7) div uhdΩ = 0 , (175b)

where the centroid is denoted by x7.

From (175b) uh in the centroid can be expressed in terms of the velocity components in the
remaining points of the element. It can be easily shown that (175b) is a regular system of
equations for u7 (see for example Cuvelier et al 1986). Substitution of the basis functions
ϕ17(x) and ϕ27(x) per element into (158b) gives an expression for the gradient of the pressure
in terms of the velocity unknowns at the boundary. Also in Cuvelier et al (1986) it is shown
that this expression is never singular. So in fact both the pressure gradient and the velocity
in the centroid have been eliminated. The practical procedure will be treated in Section 6.3.

Once the velocity components in the centroid have been eliminated, twelve velocity compo-
nents remain, six in the vertices and six in the mid side points.

We write the approximation uh in the following form per triangle

uh =

3
∑

i=1

{u1iΦ1i + u2iΦ2i}+
6

∑

i=4

{uniΦni + utiΦti} . (176)

The functions Φ1i and Φ2i are adapted basis functions because of the elimination of the
centroid degrees of freedom. The velocity components in the midside points are split in normal
and tangential components in exactly the same way as for the non-conforming element.

For this element again, the stream function in the vertices is introduced as new unknowns
and the velocity components in the midside points are eliminated using relation (171). It can
be shown that the thus constructed basis functions are divergence-free.

In the next section we shall treat how the element matrices and vectors corresponding to the
(approximate) divergence-free basis functions may be computed, without actually creating
these basis functions.

6.3 The construction of element matrices and vectors for (approximate)
divergence-free basis functions

The Galerkin equations for the Stokes equations using divergence-free basis functions are
given in (161b). The corresponding element matrices and vectors may be constructed by
explicit substitution of the divergence-free basis functions constructed in Section 6.2.

67



However, an alternative possibility is to start with the original set of equations (122), (123)
using the classical basis functions and then to perform the elimination process. Let us demon-
strate this process for the extended quadratic triangle. We shall execute the algorithm in two
steps. In the first step the centroid velocity components and the gradient of the pressure are
eliminated. In the second step the normal components of the velocity at mid-side points are
eliminated.

To perform step 1 we start with the system of linear equations (138a-138b):

Su−LTp = F , (177a)

Lu = 0 . (177b)

The velocity u will be split into a part corresponding to the centroid (uz) and the rest of the
velocities (û). In the same way the pressure p will be split into a part p∇ corresponding to
the gradient of the pressure in the centroid and a part p̂ corresponding to the values of p in
the centroids. Hence we define

u =

[

û

uz

]

, p =

[

p̂

p∇

]

. (178)

If we split equations (177a-177b) according to (178) we get

S1û+ S2uz −LT
2 p̂∇ = F , (179a)

L1u = L11û+L12uz = 0 , (179b)

L2u = L21û+L22uz = 0 . (179c)

The elimination of the velocity components in the centroid follows from (179c):

uz = −L−1
22 L21û , (180)

in other words
u = Rzû , (181)

with

Rz =

[

I

R0

]

=

[

I

−L−1
22 L21

]

. (182)

From (182) we get

L2Rz = L21I +L22R0 = L21 −L22L
−1
22 L21 = 0 , (183)

and hence also
RT

z L2 = 0 . (184)

Substitution of (181) into (179a) gives:

S1û+ S2R0û−LT
1 p̂−LT

2 p∇ = 0 . (185)

If we premultiply (185) by RT
z and use (184) we get:

(RT
z S1 +RT

z S2R0)û−RT
z L

T
1 p̂ = RT

z F , (186)
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and (179b) can be written as
L1u = L1Rzû = 0 . (187)

In other words the result of the elimination process is

Ŝû− L̂
T
p̂ = F̂ , (188a)

L̂û = 0 , (188b)

with

Ŝ = RT
z S1 +RT

z S2R0 , (189a)

L̂ = L1Rz , (189b)

F̂ = RT
z F . (189c)

Due to the discontinuous character of the pressure, the matrices Ŝ and L̂ and the right-hand
side vector F̂ may be computed at element level.

The next step is the elimination of the normal components in the midside points in favor of
the stream function at the vertices. This elimination process can be expressed by a matrix
Rd according to

û = Rdud , (190)

where ud is the vector of new unknowns.
The transformation is such that the continuity equation is satisfied exactly in other words

L̂Rd = 0 . (191)

Substitution of (191) in (188a-188b) and premultiplication by RT
d gives

RT
d ŜRdud = RT

d F̂ . (192)

Again the matrix and vector can be constructed at elements level.

So we have shown that it is not necessary to construct the divergence-free basis functions
explicitly. It is sufficient to construct the transformation matrices Rz and Rd per element and
to compute the final element matrix and element right-hand side by matrix-matrix respectively
matrix-vector multiplications.

We have constructed a new set of equations with new unknowns. The question that remains
is of course: is this new system of equations uniquely solvable? Furthermore, which type of
boundary conditions must be prescribed to the new unknowns. These questions will be the
subject of Section 6.4.

6.4 Boundary conditions with respect to the divergence-free elements

In the construction of the divergence-free elements treated in the preceding sections, it was
necessary to introduce new unknowns. First of all the velocity has been decomposed into
normal and tangential part. With respect to the boundary conditions this does not introduce
extra problems, since in general boundary conditions are formulated in tangential and normal
direction and not in Cartesian directions. Next the stream function has been introduced as
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new unknown. This introduces two extra problems. The first one is that the stream function
is never unique but fixed up to an additive constant. As a consequence, it is necessary to
prescribe the stream function in at least one point. The second one is that, if the normal
velocity is unknown at a part of the boundary, it is not automatically possible to compute
the stream function along that part. This is best demonstrated with the configuration of
Figure 41. In this Figure we have one inflow with prescribed velocity field (boundary i),
three fixed walls with no-slip boundary condition (boundaries ii, iv and vi) and two outflow
boundaries where for example the normal stress is prescribed (boundaries iii and v). If the
stream function at the common point of sides i and vi is set equal to zero then Ψ along
sides i, ii and vi may be computed from the definition (171). The stream function value at
sides iii and v does not have to be prescribed, since the normal component at these sides is
not prescribed. However, at side iv we have a no-slip condition, implying un = 0. Hence Ψ
is constant at side iv but the value is unknown. So for such boundaries it is necessary to
prescribe the boundary condition Ψ is unknown constant. For a practical implementation of
such a boundary condition the reader is referred to Cuvelier at al (1986).

v

ii

vi

i iv

iii

Figure 41: Example of a region with two outflow parts. On the boundary iv we have the
boundary condition Ψ equals unknown constant

6.5 Computation of the pressure

Once the velocity is known, the pressure must be computed. Let us first restrict ourselves
to the non-conforming triangle. We return to the weak formulation (158b), and substitute
non-divergence-free basis functions. An obvious choice is to use the basis functions ϕnh

corresponding to the normal components of the velocity. Substitution of these basis functions
in (158b) gives

∫

Ω

1

Re
∇uh · ∇ϕnkdΩ−

∫

Ω

ph div ϕnk =

∫

Ω

fϕnkdΩ , k = 1, 2, ... . (193)

Since uh is known, this is an equation in the unknowns p alone. Since ϕnk = 0 outside the
two elements containing node k it is sufficient to consider two adjacent elements e1 and e2 as
indicated in Figure 42. (193) reduces to

∫

e1∪e2

ph div ϕndΩ =

∫

e1∪e2

{ 1

Re
∇uh · ∇ϕn − f · ϕn}dΩ , (194)
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where ϕn is the abbreviated notation for ϕnk in the common midside point. Application of

2

1 2

e

e 43

n

1

2

p

p

1

Figure 42: Two adjacent elements e1 and e2. The pressure nodal points have been indicated.

the Gauss divergence theorem to the left-hand side of (194) gives
∫

e1∪e2

ph div ϕndΩ =

∫

∂e1

phϕh · ndΓ +

∫

∂e2

phϕn · ndΓ = (p1 − p2)L23 , (195)

where L23 is the length of side 23.
Hence given p1, p2 can be computed immediately. This procedure may be repeated for all
adjacent elements. So starting by prescribing the pressure in one element, the pressure can
be computed in all elements by finding neighboring elements and applying (195).
The computation of the pressure in the case of the extended quadratic Crouzeix-Raviart
triangle is again performed in two steps. In step 1 the pressure in the centroids is computed
using the method described for the non-conforming triangle.
In the second step the gradient of the pressure in the centroid is computed. To that end
equation (179a) is applied at element level. This is possible since each row of the divergence
matrix L has only non-zero contributions for one element at a time, due to the discontinuous
pressure definition.
Hence

−LT
2 p∇ = F − S1û− S2uz +LT

1 p̂ , (196)

where uz = −L−1
22 L21û.

Per element LT
2 reduces to a (2× 2) matrix, hence (196) immediately defines p∇ per element.

6.6 Practical aspects of the divergence-free elements

In this chapter we have shown how divergence-free elements may be constructed in 2D. The
derivation has been restricted to discontinuous pressure elements. The extension to three-
dimensional element is quite complicated, and seems rather impractical. The construction
of element matrices and vectors may be performed by the introduction of transformation
matrices. Complicating factor may be the definition of boundary conditions as shown in
Section 6.4. Once the velocity is computed a post-processing step is necessary to compute
the pressure. A clear advantage of the use of divergence-free elements is that velocity and
pressure are segregated, without the introduction of an extra parameter to be chosen. As a
consequence, this method allows the solution of the resulting systems of equations by iterative
techniques. So for two-dimensional problems the method based on divergence-free elements
seems very promising.

71



7 The instationary Navier-Stokes equations

7.1 Introduction

Until now we have restricted ourselves to stationary Navier-Stokes equations only. However,
in some practical applications one is also interested in the time-dependent behavior of the
solution. Or, alternatively, sometimes it is hard to find the solution of a stationary problem,
because the iteration process does not converge well enough. In that case, considering the
stationary solution as limit of a time-dependent solution may help to get a convergent solution.
For that reason we shall consider some methods to solve the time-dependent Navier-Stokes
equations.

In first instance we shall use the method of lines as derived in Chapter 3. With respect to the
discretization of the continuity equation all three methods derived in the previous chapters
may be applied. This well be the subject of Section 7.2.

In Section 7.3 an alternative approach will be treated, which is especially developed for
time-dependent incompressible flows. This method, the so-called pressure correction method,
consists of two steps per time-step. In first instance the velocity is computed using the pressure
at the old time-level and neglecting the continuity equation. In general, the computed velocity
is not divergence-free. In the next step the velocity is projected onto the space of divergence-
free vectors. This step also introduces a Laplacian type equation for the pressure.

7.2 Solution of the instationary Navier-Stokes equations by the method of
lines

The instationary incompressible Navier-Stokes equations read (compare with 4.3):

ρ
∂u

∂t
+ ρu ·∇u− div σ = ρf , (197a)

div u = 0 . (197b)

In order to get a finite element discretization, the weak from of (197a) - (197b) is derived.
To that end equation (197a) is multiplied by a time-independent test function v and (197b)
by a test function q. If we neglect the boundary integrals and furthermore apply (100) in the
same way as for the stationary case, the weak form of (197a) may be written as

∫

Ω

ρ
∂u

∂t
· vdΩ+

∫

Ω

2µe ·∇vdΩ+

∫

Ω

ρ(u ·∇u)vdΩ−
∫

Ω

pdiv vdΩ =

∫

Ω

f · vdΩ , (198a)

∫

Ω

q div udΩ = 0 . (198b)

We see that (198b) does not contain a time-derivative, and this will be an extra complicat-
ing factor. If we approximate u and p in the same way as in (120), (121), however, with
time-dependent coefficients, and if we substitute the time-independent basis functions ϕi(x)
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respectively Ψi(x), the Galerkin method reduces to the solution of a system of nonlinear
ordinary differential equations of the form

Mu̇+N (u)−LTp = F , (199a)

Lu = 0 , (199b)

whereN ,L,f ,u and p are defined as in (124a-124b) andM denotes the velocity mass matrix,
which can be written as:

M =

(

M1 0
0 M1

)

, (200)

M 1(i, j) =

∫

Ω

ϕi(x)ϕj(x)dΩ .

The absence of a time-derivative in (199b) has as consequence that (199b) must be satisfied
in every stage of the time integration. An important consequence is that if the equations
(199a-199b) are solved in a coupled way, explicit methods do not make sense. With respect
to the time-integration, all the classical methods, such as for example the ones mentioned
in Chapter 3 may be used. Very popular are the θ methods, especially θ = 1/2 and θ = 1,
and the two-step Adams-Bashfort discretization. In this last formulation one usually uses
an implicit formulation with respect to the viscous terms and an explicit formulation for the
convective terms. The reason for this splitting is that the matrix due to the convective terms
changes in each time-step, whereas the other matrices remain constant in time.

Of course the solution of the coupled equations (199a-199b), introduces exactly the same
problems as for the stationary case. As a consequence the same type of solution procedures
will be used. Hence it is quite usual to apply a segregated formulation in order to solve
(199a-199b). Both the penalty function approach, as the method with divergence-free basis
functions may be applied.

The penalty function approach, applied to (199a-199b) reads (compare with 150):

Mu̇+N (u) +
1

ε
LTM−1

p Lu = F , (201a)

p = −1

ε
M−1

p Lu . (201b)

It is clear that the pressure has only to be computed, if at a certain moment the pressure is
required. In the time-stepping algorithm it is sufficient to solve (201a).
With respect to the non-linear terms, it is necessary to perform a kind of linearization. In
general exactly the same type of linearization as for the stationary case are used. However,
in contrast to the stationary case, no iteration per time-step is applied. In general, the non-
linear terms are linearized with respect to the solution at the preceding time-level. If the
linearization is not accurate enough, a smaller time-step must be used.
The Picard type linearization of Section 4.6, all produce an 0(∆t) error, whereas the Newton
type linearization gives an 0(∆t2). Hence if the Crank-Nicolson scheme is applied, it is more
or less necessary to combine this scheme with a Newton linearization.
We have seen in the stationary case that the matrix corresponding to the penalty function
method has a large condition number. As a consequence it was not possible to use iterative
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methods for the solution of the linear systems of equations. With respect to the instationary
case there is another drawback. One can show that the solution of (201a) by an explicit time
integrator, requires time-steps which are proportional to ε, due to stability requirements.
Hence, in practice, only implicit methods are used to solve (201a). See Cuvelier et al (1986)
for the details. The Crank Nicolson scheme has the property that it does not damp high
frequencies. Due to the penalty term such frequencies may always be present in the equations.
As a consequence extra damping is necessary if the solution is non-smooth in time. For
example in the case of a transient one usually starts with one time-step Euler-implicit in
order to damp high frequencies, and than one resumes with Crank-Nicolson in order to get a
good accuracy.

An alternative for the penalty function method is of course to use divergence-free elements.
Although it looks as if there is no reason to use implicit time-methods for this approach, it
must be remarked that due to the coupled character of the basis functions, the mass matrix
M can never be put into diagonal form. As a consequence, even an explicit method, requires
the solution of system of linear equations per time-step.

Finally in the next section we shall treat an alternative approach for the incompressible
time-independent Navier-Stokes equations, the so-called pressure-correction formulation.

7.3 The pressure-correction method

The pressure-correction method has, in first instance, been developed for finite difference
methods. It is a special method for incompressible flows. In fact the pressure-correction
method consists of two steps. In the first step the momentum equation is solved with the
pressure at the preceding time-level. In this step the continuity equation is not taken into
account. The resulting velocity field may be considered as an intermediate field. In the next
step this intermediate field is projected onto the space of divergence-free vector fields. This
step implicitly introduces a Poisson-type equation for the pressure. The pressure-correction
method is strongly coupled with the type of time-discretization. We shall demonstrate it for
the general θ-method. First we shall derive pressure-correction in the case that the space
discretization has not yet been applied. Next we shall apply the space discretization first and
then derive the pressure-correction method.

Continuous approach

Consider the incompressible Navier-Stokes equations in dimensionless form:

∂u

∂t
− 1

Re
∆u+ u ·∇u+∇p = f , (202a)

div u = 0 . (202b)

The θ method applied to (202a-202b) reads

un+1 − un

∆t
+ θ(− 1

Re
∆un+1 + un+1 ·∇un+1 +∇pn+1)

+ (1− θ)(− 1

Re
∆un + un · ∇un +∇pn) = θfn+1 + (1− θ)fn , (203a)

div un+1 = 0 . (203b)
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Here, n denotes the old time level and n + 1 the new time level. In the first step of the
algorithm, the momentum equation is solved using p at the old time level. This yields an
intermediate velocity field u∗ satisfying

u∗ − un

∆t
+ θ(− 1

Re
∆u∗ + u∗ · ∇u∗) + (1− θ)(− 1

Re
∆un + un · ∇un) +∇pn

= θfn+1 + (1− θ)fn . (204)

u∗ is provided with the boundary conditions at level n+ 1. In order to solve (204) of course
the term u∗ ·∆u∗ must be linearized with respect to the old solution un.

Subtraction of (204) from (203a) gives

un+1 − u∗

∆t
+ θ(− 1

Re
∆un+1 + un+1 ·∇un+1 +

1

Re
∆u∗ − u∗ · ∇u∗)

+ θ∇(pn+1 − pn) = 0 . (205)

It can be shown that the second term of (205) is of the same order as the truncation error of
the method and hence may be neglected. As a consequence (205) reduces to

un+1 − u∗

∆t
+ θ∇(pn+1 − pn) = 0 . (206)

In the second step u∗ is projected onto the space of divergence-free vector fields by applying
the divergence operator to (206):

div un+1 − div u∗

∆t
+ θ div ∇(pn+1 − pn) = 0 . (207)

Since div un+1 = 0, (207) can be considered as an equation for the pressure difference
pn+1 − pn:

∆(pn+1 − pn) =
div u∗

θ∆t
. (208)

We have implicitly assumed that θ 6= 0; θ = 0 requires a slight modification.
Equation (208) may be solved by a standard Galerkin method, provided boundary conditions
for the pressure are defined along the complete boundary.
Once the pressure correction pn+1−pn has been computed, pn+1 follows immediately. Finally
un+1 may be computed from (206).

The pressure-correction method requires the solution of two partial differential equations:
(204) and (208). For both equations the standard Galerkin method may be used. Since no
special parameter is introduced, it is possible to solve the resulting systems of linear equations
by iterative methods. A clear disadvantage of the continuous pressure-correction method is
that it is necessary to define boundary conditions for the pressure. This may be difficult for
some types of boundaries and is not natural since the originating Navier-Stokes equations do
not require any pressure boundary conditions at all. This problem does not appear in the
so-called discrete pressure-correction method, in which first the space discretization is applied
and afterwards the pressure correction.

Discrete approach
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In the discrete approach we start with the discrete equations (199a-199b). For simplicity we
consider only the Stokes equations. The extension to Navier-Stokes is straight-forward. So
we start with:

Mu̇+ Su−LTp = F , (209a)

Lu = 0 . (209b)

Application of the θ method to (209a) gives

M
un+1 − un

∆t
+ θ(Sun+1 −LTpn+1) + (1− θ)(Sun −LTpn) = θF n+1 + (1− θ)F n , (210a)

Lun+1 = 0 . (210b)

Now the momentum equation (210a) is solved with the pressure at the old level. Hence

M
u∗ − u

∆t
+ θSu∗ + (1− θ)Sun −LTpn = θF n+1 + (1− θ)F n (211)

Subtraction of (211) from (210a), and neglecting the difference of the viscous terms gives:

M
un+1 − u∗

∆t
− θLT (pn+1 − pn) = 0 . (212)

In order to apply the continuity equation (210b), it is necessary to premultiply (212) by M−1.
Then the pressure-correction step becomes:

θLM−1LT (pn+1 − pn) = −Lu∗

∆t
. (213)

In order to solve this equation in a simple way it is necessary that the matrix M is a diagonal
matrix and furthermore that the matrix LLT can be constructed in an easy way. In practice
this is a problem, since the structure of the matrix LLT is in general different from the
structure of a standard Laplacian matrix. Only for the discontinuous pressure elements, both
structures are the same. Efficient solution of (213) is still a research subject.

Once (213) has been solved pn+1 can be computed, and finally un+1 from (212).
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A Derivation of the integration by parts for the momentum
equations

In this appendix we shall prove the relation

∫

Ω

(−div σ · v)dΩ =

∫

Ω

σ · ∇v −
∫

Γ

σnnvn + σntvtdΓ . (214)

Proof:

If we substitute w = vu in the Gauss divergence theorem

∫

Ω

div wdΩ =

∫

Γ

w · ndΓ , (215)

and use the relation
div w = v div u+ u · ∇v , (216)

we get

−
∫

Ω

v div udΩ =

∫

Ω

u · ∇vdΩ −
∫

Γ

vu · ndΓ . (217)

Writing div σ · v in components (we restrict ourselves to 2D), we get by applying (217) to
the left-hand side of (214)

∫

Ω

−(div

(

σ11
σ12

)

v1 + div

(

σ21
σ22

)

v2)dΩ =

∫

Ω

σ · ∇vdΩ −
∫

Γ

v1

(

σ11
σ12

)

n+ v2

(

σ12
σ22

)

ndΓ . (218)

So it remains to prove that the boundary integrals in (214) and (218) are equal.

The integrand in the boundary integral in (218) can be written as

σ · v · n = n · σ · v = n · σ(vnn+ vtt)

= n · σ · nvn + n · σ · tvt = σnnvn + σntvt (219)
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