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Chapter 1

Introduction

As a result of osteoporosis, osteoarthritis, rheumatoid arthritis or severe trauma
from a shoulder fracture, it is possible that the shoulder joint dysfunctions.
The cartilage is thinner than it is supposed to be or the bones are too weak.
As a result the bones rub together causing pain, swelling and/or loss of motion
of the joint. To improve the movement of the joint and to relieve the pain, a
prosthesis to replace the glenoid of the shoulder joint is an option.

The shoulder is a so called ball-and-socket joint [1]. In ball-and-socket
joints the spherical of hemispherical head of one bone articulates with the
cup-like socket of another. These joints are multiaxial and the most freely
moving synovial joints. Moving is allowed in all axes and planes, including
rotation.
In the shoulder joint, stability has been sacrificed to provide the most freely
moving joint of the body. The large hemispherical head of the humerus fits in
the small glenoid cavity of the scapula (shoulder blade), see Figure 1.1.

Figure 1.1: The shoulder joint is a ball-and-socket joint [2].
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The range of motion of the joint is determined by the rate of coverage of
the ball by the socket. In the shoulder joint the glenoid cavity is only about
one-third of the size of the humeral head, so it provides a large range of motion,
but little joint stability.

Before the prosthesis is placed, the cartilage will be removed from the glenoid
cavity, so the prosthesis will have direct contact to the bone. The prosthesis,
often made of stainless steal combined with polyethylene, replaces this glenoid
cavity and is made of porous material at the bone side, see Figure 1.2. This way
bone can grow into the prosthesis, which leads to a fusion of bone and prosthesis.

According to Wolff’s law [1], it is possible that no bone ingrowth will
occur at all, if the mechanical stress is too low. The anatomy of a bone reflects
the common stresses it encounters. A bone is loaded whenever weight bears
down on it or muscles pull on it. Since this loading is usually off-center, it
tends to bend the bone. Deforming of the bone produces an electrical current
which signals the cells responsible for bone modeling. One can speculate that
the hormonal loop determines whether and when bone remodeling occurs (in
response to changing blood calcium levels), and mechanical stress determines
where it occurs. For this reason it is important to know what the stress

Figure 1.2: The glenoid replacement is made of polyethylene or stainless steel
[3].

distribution should be and what material is best to be used for the prosthesis,
to make sure the bone ingrowth is optimal. With that information then it
can be determined, what exercises should be done after joint replacement to
provide optimal growth, see Figure 1.3.

The model to simulate the bone ingrowth consists of two parts: one part
relating to the biophysical stimuli and the other part relating to the tissue
differentiation. In this report the tissue differentiation will be discussed by
using two different models.
Chapter 2 explains the cell differentiation process, which is similar to the
process of secondary healing of a bone fracture. Several models describing this
process will be discussed. For two models the differential equations will be
given and boundary conditions will be derived.
The models can be solved using numerical methods. The Finite Element
Method discretisation is used in this report and will be shown for the differen-
tial equations of the biological part of the model due to Prendergast in Chapter
3. This has been implemented to get a solution.
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Figure 1.3: Exercises to be done after surgery [2].

In Chapter 4 the results will be given and also a sensitivity analysis is
performed.
Chapter 5 discusses the discretisation of the model due to Bailon-Plaza, using
the Finite Element Method, and the results of this model are shown in Chapter
6. The mechanical part of the Prendergast model will be derived in Chapter 7
and in Chapter 8 the discretisation of the equations will be shown.
The biological part, which was already handled in Chapter 3, and the me-
chanical part of the model due to Prendergast is implemented and simulated
together. The results are shown in Chapter 9.
All simulations in this report are performed with MATLAB.
In chapter 10 some conclusions are drawn and some recommendations will be
given.
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Chapter 2

Models of tissue
differentiation

The cell differentiation during bone ingrowth in an artificial shoulder is actually
the same process as the cell differentiation during a secondary fracture healing.
Fracture healing begins as undifferentiated mesenchymal cells migrate from
the periosteum and the surroundings (like muscles). They produce initial
connective tissue around the fracture side, forming an initial stabilizing callus
[4]. This callus depends on the size of the fracture gap and the mechanical
stability.

Healing processes can be divided into two groups: primary healing and
secondary healing. Primary healing takes place when the fracture size is very
small and stable. The bone fragments get reattached by direct bone remodeling,
forming a very small or no callus.
In most cases fractures heal by secondary healing. This happens when the
fracture size is relatively big or unstable. Secondary healing can be divided
into four stages [4] [1]: Inflammation, callus differentiation, ossification and
remodeling, see Figure 2.1.

Stage 1: Inflammation. During the inflammation stage blood cells, coming
from the ruptured blood vessels, form a fibrin matrix. Mesenchymal cells orig-
inate from the broken periosteum and replace the fibrin matrix to form the
external callus.
Depending on the mechanical and biological environment the mesenchymal
cells differentiate into fibroblast (cells forming fibrous tissue), chondrocytes
(cartilage-forming cells) or osteoblast (bone-forming cells).
Stage 2: Callus differentiation. During callus differentiation mesenchymal
cells along the bone side differentiate into osteoblasts, which begin to actively
synthesize intra-membranous woven bone. In the interior of the callus mesenchy-
mal cells differentiate into chondrocytes, while mesenchymal cells that reach the
fracture gap will differentiate into fibroblasts.
Stage 3: Ossification. During healing the intra-membranous ossification front
advances towards the center of the callus and the chondrous callus grows due
mesenchymal cell differentiation into chondrocytes and chondrocytic prolifera-
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Figure 2.1: The different stages during the process of bone fracture healing [5].

tion. As time goes on ossification of the cartilage callus starts, called endochon-
dral ossification.
During endochondral ossification chondrocytes undergo apoptosis and will be
replaced with osteoblasts. This process continues until all the cartilage is re-
placed with bone and the fracture gap is closed.
Stage 4: Bone remodeling. The excess material within the cavity is removed
and compact bone is laid down to reconstruct the original form of the bone. The
final structure resembles the original unbroken bony region, because it responds
to the same mechanical stressors. This last stage has not been studies in the
models presented here.

2.1 Model due to Prendergast

The first model to be discussed with is the model due to Prendergast. This
model describes the behavior of the mesenchymal cells, the fibroblasts, the
chondrocytes and the osteoblasts and also the matrix production caused by
these various cell types [6].
Since it is assumed that the mesenchymal cells and the fibroblasts migrate
through the callus, they are modeled by means of a diffusion-reaction equation.
The chondrocytes and the osteoblasts are assumed not to migrate, so their
equations do not contain diffusion terms.
For all these cell types there is one term that describes the proliferation of
the cell type and one or more terms to describe the differentiation of the cells
(see Figure 2.2). For example the mesenchymal cells can differentiate into
fibroblasts, chondrocytes or osteoblasts, so the equations for the mesenchymal
cells contains three differentiation terms. The matrix densities are influenced
by the production and resorption rates of the various tissues and the cellular
densities of the corresponding tissue. The resorption rates are chosen to be
equal to the production rates.
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Figure 2.2: Mesenchymal cells can differentiate into fibroblasts, chondrocytes
or osteoblasts. Fibroblasts can differentiate into chondrocytes and osteoblasts.
Chondrocytes can differentiate into osteoblasts.

The following symbols will be used:

cm the mesenchymal cellular density,
cf the fibroblast density,
cc the chondrocyte density,
cb the osteoblast density,
and ctot = cm + cc + cb + cf .
mf the fibrous matrix density,
mc the cartilage matrix density,
mb the bone matrix density,
and mtot = mc +mb +mf .
Dm the diffusion coefficient of the mesenchymal cells and
Df the diffusion coefficient of the fibroblasts,
(depending on mf , mc and mb).
Pi the proliferations rates, for i = m, f, c, b,
Fi the differentiation rates, for i = f, c, b,
Qi the production rates of the tissue(matrix), for i = f, c, b,
Di the tissue resorption rates (equal to Q), for i = c, b.

For the proliferation rates and the differentiation rates, the subscript i
refers to either mesenchymal cells (m), fibroblasts (f), chondrocytes (c) or
osteoblasts (b). For the production and resorption rates the index i refers to
either fibrous tissue (f), cartilage (c) or bone (b).

Initially the callus is only filled with granulation tissue and all the cell
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concentrations are zero. Thus the initial conditions are given by

ci(x, 0) = mi(x, 0) = 0.

Mesenchymal cells originate from the periosteum layer and the bone marrow.
Hence the mesenchymal cell density at those areas is kept constant at the highest
saturation level, thus

cm|periosteum = cmax,∀t.

The change in the cellular densities can be described by the following partial
differential equations:

∂cm
∂t

= ∇ · (Dm∇cm) + Pm(1− ctot)cm − Ff (1− cf )cm − Fc(1− cc)cm

−Fb(1− cb)cm, (2.1)
∂cf
∂t

= ∇ · (Df∇cf ) + Pf (1− ctot)cf + Ff (1− cf )cm − Fc(1− cc)cf

−Fb(1− cb)cf , (2.2)
∂cc
∂t

= Pc(1− ctot)cc + Fc(1− cc)(cm + cf )− Fb(1− cb)cc, (2.3)

∂cb
∂t

= Pb(1− ctot)cb + Fb(1− cb)(cm + cf + cc). (2.4)

The first terms on the right hand side of (2.1) and (2.2) represent the diffusion
of the mesenchymal cells and the fibroblasts respectively. The second terms
in (2.1) and (2.2) represent the proliferation of the cells. The last three terms
of (2.1) express the differentiation from mesenchymal cells into fibroblasts,
chondrocytes and osteoblasts. These last terms will come back in the equations
for the other cell types.
The third term of (2.2) represents the cells which differentiate from mesenchy-
mal cells into fibroblasts. The fourth and fifth term of (2.2) represent the
differentiation of fibroblasts into chondrocytes and osteoblasts.
The equations for chondrocyte density (2.3) and osteoblast density (2.4) only
contain terms for proliferation and differentiation.

The change in the matrix densities is given by the following differential
equations:

∂mf

∂t
= Qf (1−mtot)cf − (Dbcb +Dccc)mfmtot, (2.5)

∂mc

∂t
= Qc(1−mb −mc)cc −Dbcbmcmtot, (2.6)

∂mb

∂t
= Qb(1−mb)cb. (2.7)

The first terms on the right-hand-side of (2.5), (2.6) and (2.7) express the
production of the tissue. The second terms on the right hand side of (2.5) and
(2.6) represent the resorption of the tissue.

Cell differentiation, proliferation and tissue production are regulated by
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tissue shear strain and interstitial fluid velocity, so P , F , Q depend on S. The
following equation holds for S:

S =
γ

a
+
ν

b
, (2.8)

where γ represents the maximum shear strain and ν the fluid/solid velocity.
This will be discussed in Chapter 7.

2.2 Model due to Bailon-Plaza

Another model that is investigated is the model due to Bailon-Plaza [4]. This
model does not take the fibroblasts and the fibrous tissue into account and has
some additional equations for the growth factors of bone and cartilage .
Growth factors are hormones that are involved in cell differentiation and growth
[7]. So they influence the differentiation rates from mesenchymal cells into either
osteoblasts or chondrocytes and the endochondral replacement of the chondro-
cytes. Unlike the previous model, where the growth factors themselves are not
modeled, this models behavior is described by means of a convection-diffusion-
reaction equation. So they are assumed to migrate and they are depending on
their corresponding cellular densities and the growth factor production rates.
For the mesenchymal cells, chondrocytes and osteoblasts and the bone and car-
tilage matrix densities the same sort of equations are chosen as in the previous
model.
The equations for the change in mesenchymal, cartilage and bone cell densities
are

∂cm
∂t

= ∇ · (D∇cm − Ccm∇m) +Amcm(1− αmcm)− F1cm − F2cm,(2.9)

∂cc
∂t

= Accc(1− αccc) + F2cm − F3cc, (2.10)

∂cb
∂t

= Abcb(1− αbcb) + F1cm + F3cc − dbcb, (2.11)

whereD and C represent the haptotactic and haptokinetic cell migration speeds.
The proliferation rates are denoted by Am, Ac and Ab, further F1 is the
mesenchymal differentiation into osteoblasts, F2 the mesenchymal differentia-
tion into chondrocytes and F3 the endochondral replacement of chondrocytes.
The symbol db stands for osteoblasts removal and the αi’s result from non-
dimensionalizing the equations. Furthermore it holds: m = mc +mb.
The changes in cartilage and bone matrix densities are modeled in the following
way:

∂mc

∂t
= Pcs(1− κcmc)(cm + cc)−Qcdmccb, (2.12)

∂mb

∂t
= Pbs(1− κbmb)cb, (2.13)

where Pcs and Pbs represent constants of cartilage and bone matrix production
and Qcd is a constant of matrix degradation.
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The growth factor concentrations gc and gb are modeled in the following way:

∂gc

∂t
= ∇ · (Dgc∇gc) + Egccc − dgcgc, (2.14)

∂gb

∂t
= ∇ · (Dgb∇gb) + Egbcb − dgbgb, (2.15)

where Dgc and Dgb are diffusion coefficients, Egc and Egb are functions relating
growth factor production to growth factor concentration, and dgc and dgb are
constants of decay.
The initial and boundary conditions for the cellular densities and the matrix
densities are given by

cm|periosteum = cmax,
∂cm
∂x

∣∣∣∣
other boundaries

= 0, ∀t,

cm(x, 0) = 0, cc(x, 0) = 0, cb(x, 0) = 0.
mb(x, 0) = 0, mc(x, 0) = 0.1.

The initial and boundary conditions for the growth factors are given by

gi(x, 0) = 0, where i = c, b.

For t ≤ tK

gc|fracture gap = 20, gb|along bone = 20,
∂gi

∂x

∣∣∣∣
other boundaries

= 0.

For t > tK

∂gi

∂x

∣∣∣∣
all boundaries

= 0, where i = c, b.

tK is the time after which no growth factors will originate anymore from the
fracture gap and along the bone respectively.
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Finally the functions are defined by:

D =
Dh

(K2
h +m2)

m,

C =
Ck

(Kk +m)2
,

Am =
Am0

(K2
m +m2)

m,

Ac =
Ac0

(K2
c +m2)

m,

Ab =
Ab0

(K2
b +m2)

m,

F1 =
Y1

(H1 + gb)
gb,

F2 =
Y2

(H2 + gc)
gc,

F3 = (
m6

c

B6
ec +m6

c

)(
Y3

H3 + gb
)gb,

Egc = (
Ggcgc

Hgc + gc
)(

m

K3
gc +m3

),

Egb =
Ggbgb

(Hgb + gb)
,

where Dh, Kh,Ck, Kk, Am0, Km, Ac0, Kc, Ab0, Kb, Y1, H1, Y2, H2, Y3, H3,
Bec, Ggc, Hgc, Kgc, Ggb and Hgb are constants.
The functions and constants are not regulated by a mechanical stimulus. Hence,
in the model due to Bailon-Plaza, no mechanical stresses and strains have been
taken into account.

2.3 Other models

2.3.1 Model due to Ament and Hofer

Another model for fracture healing is the model due to Ament and Hofer [8].
It is an algorithm which also consist of a mechanical stimuli part and a tissue
differentiation part, only here both should be determined during every time
step. The three types of tissues that are involved here are: cartilage, bone and
fibrous connective tissue. The latter contains also granulation tissue in this
model. It is assumed that each element is completely composed by these three
types of tissue.

At every time step should, for each element, be looked at the domina-
ting part of the tissue composition, to figure out if it is fibrous tissue, cartilage
or bone.
The strain energy density can be determined using the Young modulus and the
Poisson ratio. The tissue differentiation is determined by the spatial change
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of the bone matrix density. This is called the osteogenic factor. This will be
calculated for every element.
Finally, when both the strain energy density and the osteogenic factor are
determined, the tissue differentiation rates per element are calculated, which
leads to the new tissue composition.

2.3.2 Model due to Adam

The model due to Adam [9] examines the conditions under which wound healing
will occur. A thin layer of bone at the wound edges manufactures growth factors.
In 1-D these layers is positioned at−L/2−δ ≤ x ≤ −L/2 and L/2 ≤ x ≤ L/2+δ.
The wound width is located at −L/2 ≤ x ≤ L/2.
Since this problem is symmetric from now on only the domain [0,∞) will be
considered. The goal is to find a value for δ, so healing will occur.
The fundamental equation for the growth factor concentration is described by

∂C

∂t
= D

∂2C

∂x2
− λC + PS(x), (2.16)

where D is the diffusion coefficient of the growth factor, λ the decay of the
growth factor and P the production rate of the growth factor. These are
all constants. S(x) is the source term, describing the distribution of the
growth factors, which is chosen to be piecewise uniform. So here S(x) = 1 at
L/2 ≤ x ≤ L/2 + δ and S(x) = 0 elsewhere.

It is assumed that the distribution is independent of time, so
∂C

∂t
= 0. Fur-

thermore the assumption has been made that the growth factors regulate the
growth of bone. It is also presumed that there are no mechanical constraints,
so the bone is free to grow into the wound.

Now the equation can be written as

d2C

dx2
− λ

D
C = −P

D
,

L

2
≤ x ≤ L

2
+ δ, (2.17)

d2C

dx2
− λ

D
C = 0, elsewhere. (2.18)

Two models are investigated. In the first model it is assumed there is no tissue
in the wound interior −L/2 ≤ x ≤ L/2, in the second model it is assumed that
there is still some tissue in the wound interior.

The boundary conditions for model 1 are given by
(i) C(x), dC

dx are continuous at x = L/2 + δ,
(ii)limx→∞ C(x) = 0,
(iii)dC

dx = 0 at x = L/2,

and the boundary condition for model 2 are given by
(i) C(x), dC

dx are continuous at x = L/2 and x = L/2 + δ,
(ii)limx→∞ C(x) = 0,
(iii)dC

dx = 0 at x = 0.
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Adam [9] presents some analytic solutions to the differential equations
involved. A constitutive equation is used to describe the movement of the edge
of the wound. When these models are solved, values for δ are obtained for
which healing will occur.
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Chapter 3

Numerical methods

The model to be solved in this paper will be the model due to Prendergast. To
solve the differential equations numerical methods will be used. In this paper
the Finite Element Method (FEM) will be used for discretisation in space and
a semi-implicit method will be used for discretisation in time.

3.1 Space discretisation: FEM

First the weak formulations will be derived: The differential equations will be
multiplied by an arbitrary, sufficiently smooth test function η ∈ H1(Ω), with
η = 0, where essential boundary conditions are given. After this the equations
will be integrated.
First recall the equations

∂cm
∂t

= divDm∇cm + Pm(1− ctot)cm − Ff (1− cf )cm

−Fc(1− cc)cm − Fb(1− cb)cm.
∂cf
∂t

= divDf∇cf + Pf (1− ctot)cf + Ff (1− cf )cm − Fc(1− cc)cf

−Fb(1− cb)cf .
∂cc
∂t

= Pc(1− ctot)cc + Fc(1− cc)(cm + cf )− Fb(1− cb)cc,

∂cb
∂t

= Pb(1− ctot)cb + Fb(1− cb)(cm + cf + cc).

∂mf

∂t
= Qf (1−mtot)cf − (Dbcb +Dccc)mfmtot,

∂mc

∂t
= Qc(1−mb −mc)cc −Dbcbmcmtot,

∂mb

∂t
= Qb(1−mb)cb.

The FEM will be applied to equation (3.1). To show the procedure for the

general case, the Robin boundary condition Dm
∂cm
∂n

= kB(cm − cmB) is used.
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When kB ↓ 0 follows Dm
∂cm
∂n

= 0, so a Neumann boundary condition is
obtained.
If kB → ∞, then cm → cmB since cm is smooth and it tends to a Dirichlet
boundary condition.

Multiplying by η and integrating gives:∫
Ω

η
∂cm
∂t

dΩ =
∫

Ω

η[Dmdiv∇cm + Pm(1− ctot)cm (3.1)

−Ff (1− cf )cm − Fc(1− cc)cm − Fb(1− cb)cm]dΩ.

Writing out the terms yields∫
Ω

η
∂cm
∂t

dΩ =
∫

Ω

Dmηdiv∇cmdΩ +
∫

Ω

ηQcmdΩ, (3.2)

where Q = Pm(1− ctot)− Ff (1− cf )− Fc(1− cc)− Fb(1− cb).

Integrating by parts the first term on the right-hand-side leaves∫
Ω

η
∂cm
∂t

dΩ =
∫

Γ

ηDm
∂cm
∂n

dΓ−
∫

Ω

∇η ·Dm∇cmdΩ +
∫

Ω

ηQcmdΩ. (3.3)

The Robin boundary condition can be substituted to obtain∫
Ω

η
∂cm
∂t

dΩ =
∫

Γ

ηkB(cm − cmB)dΓ−
∫

Ω

∇η ·Dm∇cmdΩ +
∫

Ω

ηQcmdΩ

=
∫

Γ

ηkBcmdΓ−
∫

Γ

ηkBcmBdΓ−
∫

Ω

∇ηDm∇cmdΩ

+
∫

Ω

ηQcmdΩ, (3.4)

∀η ∈ H1(Ω).
This is the weak formulation, in which cm ∈ H1(Ω) is to be found.
Now the Galerkin equations can be derived. The solution is approximated by a
linear combination of basis functions. Put

cnm(x) =
n∑

j=1

cm(j)(t)φj(x), (3.5)

where φj(x) ∈ H1(Ω) are the basis functions.
Since η is from the same space as cm it is possible to write η as a linear combi-
nation of n basis functions

η =
n∑

i=1

biφi(x). (3.6)

The function η is arbitrarily chosen, so for simplicity the coefficients of bi are
chosen equal to 1 and the others equal to 0. Then it follows that η = φi with
i = 1, ..., n.
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Substitution into the weak formulation (3.4) gives the Galerkin equations

n∑
j=1

∫
Ω

φiφj

dcm(j)

dt
dΩ =

n∑
j=1

cm(j)

∫
Γ

φikBφjdΓ−
∫

Γ

φikBcmBdΓ

−
n∑

j=1

cm(j)

∫
Ω

∇φiDm∇φjdΩ (3.7)

+
n∑

j=1

cm(j)

∫
Ω

φiQφjdΩ.

Since the FEM involves an element-by-element assembly of all the matrices and
vectors for both internal and boundary elements, the development of the ele-
ment matrices and vectors will now presented.
At first an integration rule will be given. This integration rule, called the
Newton-Cotes rule, is based on the FEM basis function interpolation [10]:

g(x) ≈
n+1∑
k=1

g(xk)φk(x). (3.8)

Also the following theorem will be used [10]:

Theorem 3.1. Let Sε be a simplex in Rn and let 4 be the determinant defined
by

4 =

∣∣∣∣∣∣∣∣∣
1 x1

1 x1
2 · · · x1

n

1 x2
1 x2

2 · · · x2
n

...
...

...
...

1 xn+1
1 xn+1

2 · · · xn+1
n

∣∣∣∣∣∣∣∣∣ , (3.9)

with x1, x2, . . ., xn+1 the vertices of Sε.
Let λi(x) be the linear basis functions over Sε defined by

λi(x) linear,

λi(xj) = δij , i, j = 1, 2, · · · , n+ 1. (3.10)

Then the following general integral rule holds:∫
Sε

λm1
1 λm2

2 · · ·λmn+1
n+1 dΩ =

m1!m2! · · ·mn+1!
(
∑

imi + n)!
|4|, (3.11)

for all mi ≥ 0.

Triangular elements are chosen (see Figure 3.1), which use the function values
at the three vertices of the triangle and a linear interpolation.
So for the basis functions the following holds:

φi(x) = ai
0 + ai

1x+ ai
2y,

φi(xj) = δij , i, j = 1, 2, · · · , n+ 1, (3.12)
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Figure 3.1: Linear triangular element, for the interior points, where |4| is equal
to two times the area of the triangle.

Figure 3.2: Linear line element, for the boundary points, where Sε is the length
of the line.
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The Newton-Cotes rule for these triangles (n = 2) for interior points is given by∫
Sε

g(x)dΩ =
∫

Sε

n+1∑
k=1

g(xk)φk(x)dΩ

=
n+1∑
k=1

g(xk)
∫

Sε

φk(x)dΩ

=
n+1∑
k=1

g(xk)
1!

(1 + 2)!
|4|

=
|4|
6

(g(x1) + g(x2) + g(x3)). (3.13)

For points on the boundary the simplex is a line (n = 1, see Figure 3.2) and so
the Newton-Cotes rules is given by∫

Sε

h(x)dΩ =
n+1∑
k=1

g(xk)
1!

(1 + 1)!
|4|

=
`(Sε)

2
(g(x1) + g(x2)). (3.14)

Note that this is the trapezoidal rule.

Using this the integrals from (3.8) can be solved.
For the integral on the left hand side it follows:∫

Ω

φiφjdΩ =
|4|
6

3∑
k=1

φi(xk)φj(xk)

=
|4|
6
δij , (3.15)

(3.16)

where δij is the Kronecker delta.
This will be entered in the Mass-time-matrix Mtime, so

Mel
time =

|4|
6

 1 0 0
0 1 0
0 0 1

 .
From the first integral on the right hand side it follows∫

Γ

φikBφjdΓ =
`(Sε)

2

2∑
k=1

φi(xk)kBφj(xk)

=
`(Sε)

2
kBδij , (3.17)

which will be added to the Mass-matrix R, so

Rel = −|4|
2
kB

[
1 0
0 1

]
.
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The second integral on the right hand side leads to

−
∫

Γ

φikBcmBdΓ = −`(Sε)
2

2∑
k=1

φi(xk)kBcmBdΓ

= −`(Sε)
2

kBcmB , (3.18)

contained in the element vector f :

fel = −`(Sε)
2

kBcmB

[
1
1

]
.

The third integral contributes to the stiffness-matrix Z

−
∫

Ω

∇φiDm∇φjdΩ = −|4|
6

(ai
1a

j
1 + ai

2a
j
2)

3∑
k=1

Dm(xk),

so

Zel =
|4|
6

3∑
k=1

Dm(xk)

 (a1
1a

1
1 + a1

2a
1
2) (a1

1a
2
1 + a1

2a
2
2) (a1

1a
3
1 + a1

2a
3
2)

(a2
1a

1
1 + a2

2a
1
2) (a2

1a
2
1 + a2

2a
2
2) (a2

1a
3
1 + a2

2a
3
2)

(a3
1a

1
1 + a3

2a
1
2) (a3

1a
2
1 + a3

2a
2
2) (a3

1a
3
1 + a3

2a
3
2)

 .
The last integral is contained in the mass-matrix R:∫

Ω

φiQφjdΩ =
|4|
6

3∑
k=1

φi(xk)Q(xk)φj(xk)

=
|4|
6
Q(xi)δij , (3.19)

so the element matrix looks like

Rel = −|4|
6

 Q(x1) 0 0
0 Q(x2) 0
0 0 Q(x3)

 .
So at the end the equation for (3.1) becomes

Mtime
dcm
dt

= (−Z −R)cm + f, (3.20)

where Z the stiffness matrix follows from the diffusion term and R is the mass
matrix following from the reaction term. Mtime is the time mass matrix.

3.2 Time discretisation: Semi-implicit method

Recall equation 3.20. Since R also contains a term with cm this is a non-linear
equation.
This term should be linearized and to that purpose there are three methods [11]:

(i) Newton: (cn+1
m(j))

2 ' 2cn+1
m(j)c

n
m(j) − (cnm(j))

2,
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(ii) Picard:(cn+1
m(j))

2 ' cn+1
m(j)c

n
m(j),

(iii) extrapolated Picard: (cn+1
m(j))

2 ' (2cnm(j) − cn−1
m(j))(c

n+1
m(j))

2.

In this report Picard linearization will be chosen. Choosing to use the
values of cm on the future time step and the other values at the present,
time-discretisation looks as follows (dropping underlines):

Mtime
cn+1
m − cnm

τ
= (−Zn −Rn)cn+1

m + fn. (3.21)

So

(
Mtime

τ
+ Zn +Rn)cn+1

m =
Mtime

τ
cnm + fn. (3.22)
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Chapter 4

Results for the model due
to Prendergast

In this chapter the stimulus is kept constant and the biological part of the
model is investigated. Keeping a constant mechanical stimuli of S = 1, the
values for the fibroblast concentrations cf and the fibrous matrix mf are 0.
The following values for the parameters are used:

Dm0 = 2.37, Df0 = 0.1152, Pm0 = 1.2, Pf0 = 0.1, Pc0 = 0.75, Pb0 = 0.5,
Ff = 0.01, Fc = 0.3, Fb = 0.15, Qf = 0.06, Qc = 0.2, Qb = 0.1, Dc = 0.2,
Db = 0.1.

The prosthesis, see figure 4.1, is assumed to be 10 mm thick in total.
The upper layer (Ω1), chosen to be 5 mm thick, consists of polyethylene, where
bone cannot grow into. The lower layer, chosen to be 5 mm thick also, consists
of porous tantalum, and this is the region where the bone grows into. For this
simulation only the area Ω2 is considered.

It is shown in figure 4.2 that after 80 days the concentration of mesenchymal
cells is zero, except for the Dirichlet boundary. Near the same boundary the
concentration of the chondrocytes, see Figure 4.3, is high and gets lower towards
the end of the prosthesis.

For the osteoblasts density the same holds as for the chondrocyte density: The
highest value can be seen at the implant-bone interface and decreases towards
the end of the prosthesis.
As said before, the concentrations of the fibroblasts and of the fibrous tissue are
zero.

Endochondral ossification has started and the matrix density of the cartilage is
fading, see Figure 4.5. The highest value 0.115 is seen at the implant-shoulder
interface. The bone matrix density already increased, with the highest value
0.905 in the end of the prosthesis, see Figure 4.6.

In Figure 4.7 the different values of the cell- and matrix concentrations through
time are shown, for a point in the middle of the prosthesis. The red line re-
presents the mesenchymal cellular density, the cyan line shows the chondrocyte
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Figure 4.1: The geometry of the Bone-Implant interface.

Figure 4.2: The concentration of the mesenchymal cells at T = 80, while stimulus
S is kept at a value of 1.

concentration and the green line is the osteoblast density. The dotted lines stand
for the matrix densities, the cyan one representing cartilage and the green one
representing bone.
So if the stimulus is kept at a value of 1, the endochondral ossification process
start around day 30. From that moment on the cartilage density starts to de-
crease.
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Figure 4.3: The concentration of the chondrocytes at T = 80, while stimulus S
is kept at a value of 1.

Figure 4.4: The concentration of the osteoblasts at T = 80, while stimulus S is
kept at a value of 1.
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Figure 4.5: Cartilage matrix at T = 80, while stimulus S is kept at a value of 1.

Figure 4.6: Bone matrix at T = 80, while stimulus S is kept at a value of 1.
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Figure 4.7: The cell and matrix densities, keeping stimulus S at 1, T = 80, at
point n/2.
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Chapter 5

FEM for the model due to
Bailon-Plaza

Also to the model due to Bailon-Plaza the FEM will be applied. This will be
shown only for the first equation. Recall the first equation:

∂cm
∂t

+∇ · (Ccm∇m) = div(D∇cm) + [Am(1− αmcm)− F1− F2]cm.

The weak formulation is derived by multiplying with test function η and inte-
grate over Ω. This leads to∫

Ω

η
∂cm
∂t

dΩ +
∫

Ω

η∇ · (Ccm∇m)dΩ =
∫

Ω

η∇ · (D∇cm)dΩ +
∫

Ω

ηQcmdΩ,

where Q = Am(1−αmcm)−F1−F2, taken at the previous time step. Integrating
the second and third integral by parts, leads to∫

Ω

η
∂cm
∂t

dΩ +
∫

Γ

ηCcm
∂m

∂n
dΓ−

∫
Ω

∇η · Ccm∇mdΩ =
∫

Γ

ηD
∂cm
∂n

dΓ

−
∫

Ω

∇η ·D∇cmdΩ +
∫

Ω

ηQcmdΩ.

Applying the Dirichlet and Neumann boundary conditions leaves∫
Ω

η
∂cm
∂t

dΩ−
∫

Ω

∇η · Ccm∇mdΩ = −
∫

Ω

∇η ·D∇cmdΩ +
∫

Ω

ηQcmdΩ. (5.1)

Next, the Galerkin equations can be derived, by setting η = φi(x) and

cnm(x) =
n∑

j=1

cm(j)(t)φj(x),

and

mn(x) =
n∑

j=1

mj(t)φj(x).
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At the end cm is the unknown to be solved for this equation, for mj the values
at the previous time step will be used.
Adding this to equation (5.1), it follows:

n∑
j=1

dcm(j)

dt

∫
Ω

φiφj −
n∑

j=1

cm(j)mj(ai
1a

j
1 + ai

2a
j
2)

∫
Ω

CφjdΩ =

−
n∑

j=1

cm(j)(ai
1a

j
1 + ai

2a
j
2)

∫
Ω

DdΩ +
n∑

j=1

cm(j)

∫
Ω

φiQφjdΩ. (5.2)

The integrals are computed by applying the Newton cotes rule. Recall∫
Ω

φiφjdΩ =
|4|
6
δij ,

with δij the Kronecker delta, and∫
Ω

φiQφjdΩ =
|4|
6
Q(xi)δij .

The corresponding element matrices are given by

Mel
time =

|4|
6

 1 0 0
0 1 0
0 0 1

 ,
and

Rel =
|4|
6

 Q(x1) 0 0
0 Q(x2) 0
0 0 Q(x3)

 .
For the second integral on the left-hand-side of (5.2) it follows∫

Ω

CφjdΩ =
|4|
6
C(xj)

and the element matrix is represented by

Y el =
|4|
6

 Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

 ,
where Yij = (ai

1a
j
1 + ai

2a
j
2)m(xj)C(xj).

For the first integral on the right-hand-side of (5.2) it follows∫
Ω

DdΩ =
|4|
6

3∑
k=1

D(xk),

with element matrix

Zel =
|4|
6

3∑
k=1

D(xk)

 (a1
1a

1
1 + a1

2a
1
2) (a1

1a
2
1 + a1

2a
2
2) (a1

1a
3
1 + a1

2a
3
2)

(a2
1a

1
1 + a2

2a
1
2) (a2

1a
2
1 + a2

2a
2
2) (a2

1a
3
1 + a2

2a
3
2)

(a3
1a

1
1 + a3

2a
1
2) (a3

1a
2
1 + a3

2a
2
2) (a3

1a
3
1 + a3

2a
3
2)

 .
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At the end the equation to be solved is:

Mtime
dcm
dt

= (−Y − Z −R)cm + f,

where Z the stiffnessmatrix, following from the diffusion term. Matrix Y comes
from the convection term and R is the mass matrix following from the reaction
term. Mtime is the time mass matrix.

For discretisation in time the semi-implicit scheme from Section 3.2 is used
again. Then the following system is obtained[

Mtime

τ
+ Y n + Zn +Rn

]
cn+1
m =

(
Mtime

τ

)
cnm + fn.
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Chapter 6

Results Bailon-Plaza

The following values for the parameters are used:

αm = 1, αc = 1, αb = 1, Am0 = 1.01, Ac0 = 1.01, Ab0 = 0.202, Pcs = 0.2,
Pbs = 2, H1 = 0.1, H2 = 0.1, H3 = 0.1, κb = 1, κc = 1, Dh = 0.014,
Ck = 0.0034, Kh = 0.25, Kk = 0.5, Kb = 0.1, Km = 0.1, Kc = 0.l, Dgc = 0.005,
Dgb = 0.005, Y1 = 10, Y2 = 50, Y3 = 100, Qcd = 2, Bec = 1.5, db = 0.1,
Ggc = 50, Ggb = 500, Hgc = 1, Hgb = 1, Kgc = 0.1, dgc = 100, dgb = 100.

The simulation takes place on a 1 × 1.3 rectangular grid, where the growth
factors of bone originate from {y ∈ (0, 0.5), x = 0}, which represents the bone.
This is the blue line in Figure 6.1. The cartilage growth factors originate from
the fracture gap which will be placed at {x ∈ (0, 0.3), y = 1.3} (the green line).
The mesenchymal cells originate from the periosteum and the surrounding
tissue, which will be placed at (y = 0, x > 0.5) ∩ (x = 1, y < 0.65) (the black
line). The reason for this is that the mesenchymal cells and bone growth factors
originate from surfaces very close to each other (the bone and the periosteum),
while the fracture gap, where the cartilage growth factors originate from, lies
more far away.

As can be seen from Figure 6.2 the mesenchymal cells originate from the broken
periosteum and the chondrocytes originate from the fracture gap into the callus.
Along the bone the osteoblasts are spreading.

6.1 Fracture healing after 2.4 days

The concentration of cartilage, which was 0.1 at the beginning, has increased
under influence of the mesenchymal cells and the chondrocytes, and the cartilage
growth factors have spread into the callus (see Figure 6.3). The bone growth
factors are also diffusing towards the callus and already some bone has been
appeared under influence of the osteoblasts.
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Figure 6.1: Geometry of the callus. Left: the grid used in the simulation. Right:
the actual geometry of the fracture. The green line represents the surface where
the cartilage growth factor originate from, the blue line represents the bone
growth factors and the black line represents the source of mesenchymal cells.

Figure 6.2: Mesenchymal cell (upper left picture), chondrocyte (upper right
picture) and osteoblasts (lower left picture) density after 2.4 days.

6.2 Fracture healing after 4 days

After 4 days concentration of the mesenchymal cells has decreased and only
remains at a high level near the periosteum. The concentrations of chondrocytes
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Figure 6.3: Cartilage (upper left picture) and bone matrix (upper right picture)
density and concentration of growth factors of cartilage (lower left picture) and
bone (lower left picture), after 2.4 days.

and osteoblasts both have increased and spread out, see Figure 6.4.

The cartilage and bone matrix has both increased and approach each other in
the callus. The cartilage growth factor has decreased to a value of 2, while the
bone growth factors cover a larger area now, see Figure 6.5.

6.3 Fracture healing after 8 days

After 8 days the mesenchymal cells have almost disappeared, while the chon-
drocyte concentration has increased to 1 at certain areas. The osteoblasts front
is moving throughout the whole area now, see Figure 6.6.

Cartilage is slowly getting ’pushed back’ by bone and the cartilage growth fac-
tors are also disappearing. The growth factors of bone has also decreased to a
value around 3, see Figure 6.7.

6.4 Fracture healing after 20 days

After 20 days the concentration of chondrocytes is 1 throughout almost the
whole callus and the osteoblasts concentration has a value around 0.55 almost
everywhere, see Figure 6.8.
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Figure 6.4: Mesenchymal cell (upper left picture), chondrocyte (upper right
picture) and osteoblasts (lower left picture) density after 4 days.

In Figure 6.9 the cell densities at a certain point X in the area are shown as
a function of time. The mesenchymal cell front has reached this point around
day 2, whereafter the chondrocytes peak at day 3. After day 3 the osteoblast
density grows to a value of 0.5 and after that slowly decreases. The whole callus
is filled with bone now, and there is also a small concentration of 0.15 cartilage
present. The growth factor concentrations of cartilage is zero now while the
growth factors of bone decreased to a level around 2, see Figure 6.10.

Figure 6.11 shows the matrix densities of point X as a function of time. The
cartilage starts at a value of 0.1 and increases to a value of 0.5 around day 4.
After that the endochondral ossification starts and the value of cartilage will
decrease and bone will appear. The cartilage growth factor peaks at day 3 and
the bone growth factors reach this point around day 5.

6.5 Important parameters

It is interesting to analyze the influence of the different parameters. An increase
of Ab0 to a value of 1.01 leads after 20 days to an higher value of the osteoblast
density. The chondrocyte density at day 20 is the same, but the peak around
day 3 is lower. Cartilage has appeared in the same area but the density is lower,
and now stays at a value of 0.1, while bone seems to grow faster. The bone
growth factor concentration has increased to a value around 3.5 throughout the
whole callus. Figure 6.12 shows the densities at point X as a function of time.



6.5Important parameters 32

Figure 6.5: Cartilage (upper left picture) and bone matrix (upper right picture)
density and concentration of growth factors of cartilage (lower left picture) and
bone (lower left picture), after 4 days.

Taken the value of F1 twice as high, seems to have no influence on the mes-
enchymal cell density . The peak of the chondrocyte density at day 3 is lower.
Less cartilage has been created and also the cartilage growth factor has a lower
peak. The growth of bone seems to start a little earlier.

Doubling the value of F3 does not have much influence. The growth of bone
proceeds a little faster, but makes no significant difference.

An increase of the value dgb to 150, leads to a slower healing process,
see Figure 6.13. More cartilage will appear and the growth of bone starts a few
days later. Also the bone growth factor concentrations remains longer at a zero
value. Increasing Egb leads to a very high value of bone growth factor, which is
not very surprising, and a very fast healing.

Doubling the value of Dgc shows, of course, a higher concentration of
cartilage growth factors and a little higher density of cartilage. However, it has
very little influence on the production of bone or the bone growth factors. The
same holds for doubling Egc.

A big influence seems to be the bone production rate Pbs, see Figure
6.14. For a lower value of Pbs the bone growth process takes a lot longer.
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Figure 6.6: Mesenchymal cell (upper left picture), chondrocyte (upper right
picture) and osteoblasts (lower left picture) density after 8 days.
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Figure 6.7: Cartilage (upper left picture) and bone matrix (upper right picture)
density and concentration of growth factors of cartilage (lower left picture) and
bone (lower left picture), after 8 days.
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Figure 6.8: Mesenchymal cell (upper left picture), chondrocyte (upper right
picture) and osteoblasts (lower left picture) density after 20 days.

Figure 6.9: Mesenchymal cell (upper left), chondrocyte (upper right) and os-
teoblasts density (lower left) after 20 days.



6.5Important parameters 36

Figure 6.10: Cartilage (upper left picture) and bone matrix (upper right picture)
density and concentration of growth factors of cartilage (lower left picture) and
bone (lower left picture), after 20 days
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Figure 6.11: Cartilage (- - - -)and bone(—–) densities (upper left picture) and
their growth factors (upper right: cartilage growth factor, lower left: bone growth
factor), as a function of time.
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Figure 6.12: The value of Ab0 has been set at 1.01. Cartilage (- - - -)and bone(—
–) densities (upper left picture) and their growth factors (upper right: cartilage
growth factor, lower left: bone growth factor), as a function of time. The cartilage
density is lower, while bone growth proceeds faster.
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Figure 6.13: For a higher value of dgb. Cartilage (- - - -)and bone(—–) densities
(upper left picture) and their growth factors (upper right: cartilage growth fac-
tor, lower left: bone growth factor), as a function of time. More cartilage has
appeared, while it takes longer for bone to grow in.
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Figure 6.14: For a higher value of Pbs. Cartilage (- - - -)and bone(—–) densities
(upper left picture) and their growth factors (upper right: cartilage growth fac-
tor, lower left: bone growth factor), as a function of time. It takes longer before
the bone has fully grown in.
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Chapter 7

The poro-elastic model

As mentioned in Section 2.1, the proliferation and differentiation rates of the
cells depend on the mechanical stimulus S. The stimulus S is defined by

S =
γ

a
+
ν

b
, (7.1)

with a = 0.0375 and b = 3µm/s, γ being the maximum shear strain and ν
the relative fluid/solid velocity. The shear strain is a measure of the mechanical
stimulus in the solid and the fluid velocity is a measure of the agitation in the
precursor cell pool [12].
Bone will develop if S < 1, cartilage if 1 < S < 3 and fibrous tissue for S > 3,
see Appendix A.

From the poro elastic model values for u,v and p are obtained. In 2-D the Cauchy
strain tensor is defined as

ε =
(
εxx εxy

εxy εyy

)
. (7.2)

Call λi the eigenvalues of ε. Then according to [6] the maximal distortional
strain γmax is defined as

γmax :=
1
2
|λ1 − λ2|. (7.3)

The pore velocity (νvel) is related to the Darcy flux (q) and the porosity (n).
The flux is divided by the porosity to account for the fact that only a fraction of
the total formation volume is available for flow [13]. The fluid velocity is given
by

νvel =
q

n
= − κ

nζ
∇p, (7.4)

where κ is the permeability and ζ the viscosity. The shear strain and the fluid
velocity will be calculated by equations for poro-elasticity.
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7.1 Derivation of the poro-elastic equations

To derive the poro-elastic model, the following system of equations must be
satisfied [14]:

equilibrium equation : divσ −∇p = 0, (7.5)
constitutive equation : σij = λδijεll + 2µεij , (7.6)

compatibility condition : εij =
1
2
(∂jui + ∂iuj), (7.7)

Darcy′s law : q = −κ
ζ
∇p, (7.8)

continuity equation : ∇ · q +∇ · u̇ = f. (7.9)

Here, λ and µ represent the Lamé constants.
Componentwisely, the equilibrium equation (7.5) is given by

∂σxx

∂x
+
∂σxy

∂y
− ∂p

∂x
= 0, (7.10)

∂σxy

∂x
+
∂σyy

∂y
− ∂p

∂y
= 0. (7.11)

The constitutive equations (7.6) imply that the above equations can be written
as

∂

∂x
((λ+ 2µ)εxx + λεyy) +

∂

∂y
(2µεxy)− ∂p

∂x
= 0,

∂

∂x
(2µεxy) +

∂

∂y
((λ+ 2µ)εyy + λεxx)− ∂p

∂y
= 0.

By substituting the compatibility condition (7.7) the following is obtained

∂

∂x

(
(λ+ 2µ)

∂u

∂x
+ λ

∂v

∂y

)
+

∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
− ∂p

∂x
= 0,

∂

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂y

(
(λ+ 2µ)

∂v

∂y
+ λ

∂u

∂x

)
− ∂p

∂y
= 0.

A further rearrangement of the above equations gives

(λ+ µ)
∂

∂x

(
∂u

∂x
+
∂v

∂y

)
+ µ∆u− ∂p

∂x
= 0, (7.12)

(λ+ µ)
∂

∂y

(
∂u

∂x
+
∂v

∂y

)
+ µ∆v − ∂p

∂y
= 0, (7.13)

or in vector notation

(λ+ µ)∇ (divu) + µ∆u−∇p = 0. (7.14)

These are the first equations of the poro-elastic model.

From the mass-balance equation

∂ρα

∂t
+∇ · (u̇αρα) = Qα,
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it follows

∂ρs

∂t
+∇ · (u̇sρs) = Qs, (7.15)

∂ρf

∂t
+∇ · (u̇fρf ) = Qf . (7.16)

Assuming no chemical interaction between the constituents implies Qα = 0.
Furthermore, the density of a constituent α, ρα, is defined per unit volume V
and actually represents an ’apparent’ density. The true density ρα

∗ is defined per
unit volume of the constituent V α so

ρα = nαρα
∗ , with nα =

V α

V
.

It is assumed that the solid part is incompressible [6], ρ̇s = 0, and that the fluid
part is slightly compressible according to

ρ̇f = βfρf ṗ,

where βf is the compressibility, which is equal to 1/K, withK the bulk modulus.
Then (7.15) and (7.16) become

∇ · (u̇sρs) = ∇ · (u̇snsρs
∗)

= ∇ · (u̇s(1− nf )ρs
∗) = 0,

∂ρf

∂t
+∇ · (u̇fρf ) = nf ρ̇f

∗ +∇ · (u̇fnfρf
∗)

= nfβfρf
∗ ṗ+∇ · (u̇fnfρf

∗)
= nfβf ṗ+∇ · (u̇fnf )

= nf ρ̇
f
∗

ρf
∗

+∇ · (u̇fnf ) = 0.

Taking the sum leads to

nfβf ṗ+∇ · (u̇fnf ) +∇ · (u̇s(1− nf )) = 0,

so

nfβf ṗ+∇ · (u̇f − u̇s)nf +∇ · (u̇s) = 0.

Applying nf (u̇f − u̇s) = −κ
ζ
(∇p+ ρg), which follows from Darcy’s law (7.8)

and the continuity equation (7.9) gives

nfβf ṗ−∇ · (κ
ζ
(∇p+ ρg) +∇ · u̇s) = 0.

Leaving out the gravity term

∂

∂t
(nfβfp+∇ · us)− κ

ζ
∆p = 0. (7.17)
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When assuming an incompressible fluid, the equation becomes

∂

∂t
(∇ · us)− κ

ζ
∆p = 0. (7.18)

So the system follows from (7.14) and (7.17) for a slightly compressible fluid

−µ∆u− (λ+ µ)∇ (∇ · u) +∇p = 0, (7.19)

nβṗ+∇ · u̇− κ

ζ
∆p = 0, (7.20)

and from (7.14) and (7.18) for an incompressible fluid

−µ∆u− (λ+ µ)∇ (∇ · u) +∇p = 0, (7.21)

∇ · u̇− κ

ζ
∆p = 0. (7.22)

7.2 Properties and conditions

The constants λ and µ are the Lamé constants, which are functions of the Young
modulus E and the Poisson ratio ν

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (7.23)

The Young modulus of the prosthesis is different when bone has grown in,
than when the prothesis only contains granulation tissue. The average elastic
properties of the porous tantalum filled with fibrocartilage or fibrous tissue
were taken as properties of the porous tantalum alone, because the latter is
much stiffer than the filling soft tissues [6].

Eporous tantalum+cart/fibr.tissue = Eporous tantalum.

νporous tantalum+cart/fibr.tissue = νporous tantalum.

The elastic properties of the porous tantalum filled with bone were determined
from the micro finite element voxel model, developed for this purpose [6]. The
average permeability of porous tantalum, filled with bone, fibrous tissue and
fibrocartilage is approximately determined based on the fact that permeability
of porous tantalum alone is very high compared to the permeability of the filling
tissues. So the average permeability of the whole material is mainly determined
by the permeability of the filling tissue. Hence, the following assumption is used:
The total permeability can be estimated as the permeability of the filling tissue
multiplied by the its fraction in the porous tantalum, with the porosity of the
porous tantalum being 0.82.
So with porosity of the porous tantalum layer being 0.82 and ζ being the vis-
cosity(

κ

ζ

)
bone+porous tantalum

=
(
κ

ζ

)
bone

· 0.82

= 3.7 · 10−13m
4

Ns
· 0.82 = 3.034 · 10−13m

4

Ns
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(
κ

ζ

)
cart.+porous tantalum

=
(
κ

ζ

)
cart.

· 0.82

= 5.0 · 10−15m
4

Ns
· 0.82 = 4.1 · 10−15m

4

Ns(
κ

ζ

)
fibr.+porous tantalum

=
(
κ

ζ

)
fibr.

· 0.82

= 1.0 · 10−14m
4

Ns
· 0.82 = 8.2 · 10−15m

4

Ns

Further for the porosity it is assumed

nporous tantalum+tissue = nporous tantalum

The values of the elastic properties in the porous tantalum will be computed
according to the rule

E = Ebone+poroustantalummb + Ecart.+poroustantalummc + Efibr.+poroustantalummf

ν = νbone+poroustantalummb + νcart.+poroustantalummc + νfibr.+poroustantalummf

κ = Ebone+poroustantalummb + κcart.+poroustantalummc + κfibr.+poroustantalummf

The mechanical properties are given by Table 7.1.

Material E (MPa) ν κ
ζ (m4

Ns ) n K (MPa)
Por. Tant. with fibr. tissue 3300 0.31 8.2 · 10−15 0.82 2300
Por. Tant. with cartilage 3300 0.31 4.1 · 10−15 0.82 2300
Por. Tant. with bone 5000 0.35 3.034 · 10−13 0.82 2300

Table 7.1: Mechanical properties of porous tantalum filled with fibrous tissue,
cartilage or bone.

For the grid, see Figure 7.1, the following conditions hold:
At Ω1, the polyethylene part of the prosthesis, an elastic model holds. This
means the pressure term is not present there. Ω2 is represented by the poro-
elastic equations.
For the boundaries the following conditions hold: On the implant interface Γ3

a free fluid flow is assumed and the other boundaries of the porous tantalum
layer are assumed to be impermeable. Further it is assumed a load of intensity
is applied to the prosthesis by the humerus (at Γ1). The load under an arm
abduction of 30 degrees is applied to area d2, the load under an arm abduction
of 90 degrees is applied to area d1.

pressure : ΓΩ̄1∩Ω̄2
:
∂p

∂n
= 0, (7.24)

Γ2 :
∂p

∂n
= 0, (7.25)

Γ3 : p = 0. (7.26)
displacement : Γ1 : σ = −σ0, (7.27)

Γ2 : σ = 0, (7.28)
Γ3 : u = 0. (7.29)

The loads applied to the prosthesis can be found in Table 7.2.
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Figure 7.1: The geometry of the Bone-Implant interface.

force arm abduction
165.84 N 30 degrees
325.85 N 60 degrees
392.85 N 90 degrees

Table 7.2: Applied forces
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Chapter 8

Numerical methods

Now the FEM can be applied to the system of equations (7.14) and (7.17).

8.1 Weak formulation

First the weak formulation will be determined. For the first equation it follows

−µdiv∇u− (λ+ µ)
∂

∂x

(
∂u

∂x
+
∂v

∂y

)
+
∂p

∂x
= 0,

or

−µ∂
2u

∂x2
− µ

∂2u

∂y2
− (λ+ µ)

∂2u

∂x2
− (λ+ µ)

∂2v

∂x∂y
+
∂p

∂x
= 0,

and rearranging terms gives

− ∂

∂x

(
(λ+ 2µ)

∂u

∂x
+ λ

∂v

∂y

)
− ∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+
∂p

∂x
= 0.

The weak formulation is given by∫
Ω

η

[
− ∂

∂x

(
(λ+ 2µ)

∂u

∂x
+ λ

∂v

∂y

)
− ∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+
∂p

∂x

]
dΩ = 0,

and apply the Gauss-Green theorem [15]

−
∫

Γ

η

[(
(λ+ 2µ)

∂u

∂x
+ λ

∂v

∂y

)
nx +

(
µ
∂u

∂y
+ µ

∂v

∂x

)
ny

]
dΓ (8.1)

+
∫

Ω

∂η

∂x

(
(λ+ 2µ)

∂u

∂x
+ λ

∂v

∂y

)
+
∂η

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
dΩ +

∫
Ω

η
∂p

∂x
dΩ = 0.

At Γ3 a Dirichlet boundary is prescribed, so η is zero there. At the other boun-
daries forces are applied. On the surface the following equations hold for the
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applied forces [15]

qx = σxxnx + σxyny

=
(

(λ+ 2µ)
∂u

∂x
+ λ

∂v

∂y

)
nx +

(
µ
∂u

∂y
+ µ

∂v

∂x

)
ny,

qy = σxynx + σyyny

=
(
µ
∂v

∂x
+ µ

∂u

∂y

)
nx +

(
(λ+ 2µ)

∂v

∂y
+ λ

∂u

∂x

)
ny.

Apply this to (8.1) and it follows

−
∫

Γ1+Γ2

ηqxdΓ +
∫

Ω

∂η

∂x

(
(λ+ 2µ)

∂u

∂x
+ λ

∂v

∂y

)
+
∂η

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
dΩ +

∫
Ω

η
∂p

∂x
dΩ = 0. (8.2)

Following the same procedure for the second equation leads to

−
∫

Γ1+Γ2

ηqydΓ +
∫

Ω

∂η

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+
∂η

∂y

(
λ
∂u

∂x
+ (λ+ 2µ)

∂v

∂y

)
dΩ +

∫
Ω

η
∂p

∂x
dΩ = 0. (8.3)

For the third equation the weak formulation is derived as follows:

d

dt

∫
Ω

ηnβpdΩ +
d

dt

∫
Ω

(
∂u

∂x
+
∂v

∂y

)
ηdΩ−

∫
Ω

η
κ

ζ
∆pdΩ

=
∫

Ω

ηf(x, t)dΩ.

Substituting Robin boundary conditions
κ

ζ

∂p

∂n
= kB(p− pB) leads to

d

dt

∫
Ω

ηnβpdΩ +
d

dt

∫
Ω

(
∂u

∂x
+
∂v

∂y

)
ηdΩ +

∫
Ω

∇ηκ
ζ
∇pdΩ−

∫
Γ

ηkB(p− pB)dΓ

=
∫

Ω

ηf(x, t)dΩ. (8.4)

8.2 Stabilization

If the FEM is used, choosing the same approximation space for the displacements
and the pressure, can lead to strong oscillations in the approximation for the
pressure [14]. Consider the weak formulations for an incompressible fluid

−
∫

Γ1+Γ2

ηqxdΓ +
∫

Ω

∂η

∂x

(
(λ+ 2µ)

∂u

∂x
+ λ

∂v

∂y

)
+
∂η

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
dΩ +

∫
Ω

η
∂p

∂x
dΩ = 0
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−
∫

Γ1+Γ2

ηqydΓ +
∫

Ω

∂η

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
dΩ +

∂η

∂y

(
λ
∂u

∂x
+ (λ+ 2µ)

∂v

∂y

)
dΩ

+
∫

Ω

η
∂p

∂x
dΩ = 0.

d

dt

∫
Ω

(
∂u

∂x
+
∂v

∂y

)
ηdΩ +

∫
Ω

∇ηκ
ζ
∇pdΩ−

∫
Γ

ηkB(p− pB)dΓ

=
∫

Ω

ηf(x, t)dΩ. (8.5)

When
κ

ζ
→ 0 the solution of this problem tends to the solution of

−
∫

Γ1+Γ2

ηqxdΓ +
∫

Ω

∂η

∂x

(
(λ+ 2µ)

∂u

∂x
+ λ

∂v

∂y

)
+
∂η

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
dΩ +

∫
Ω

η
∂p

∂x
dΩ = 0, (8.6)

−
∫

Γ1+Γ2

ηqydΓ +
∫

Ω

∂η

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
dΩ +

∂η

∂y

(
λ
∂u

∂x
+ (λ+ 2µ)

∂v

∂y

)
dΩ

+
∫

Ω

η
∂p

∂x
dΩ = 0. (8.7)

d

dt

∫
Ω

(
∂u

∂x
+
∂v

∂y

)
ηdΩ =

∫
Ω

ηf(x, t)dΩ. (8.8)

To derive the Galerkin equations, two types of basis functions are defined: one
for the pressure ψi(x) and one for the velocity components φi(x). Further holds

un =
n∑

j=1

uj(t)φj(x), vn =
n∑

j=1

vj(t)φj(x) and pn =
n∑

j=1

pj(t)ψj(x).

Substitution in 8.6)-(8.8) leads to

−
∫

Γ1+Γ2

φiqxdΓ +
∫

Ω

∂φi

∂x

(
(λ+ 2µ)

∂ujφj

∂x
+ λ

∂vjφj

∂y

)
+
∂φi

∂y

(
µ
∂ujφj

∂y
+ µ

∂vjφj

∂x

)
dΩ +

∫
Ω

φi
∂pjψj

∂x
dΩ = 0, (8.9)

−
∫

Γ1+Γ2

ηqydΓ +
∫

Ω

∂φi

∂x

(
µ
∂ujφj

∂y
+ µ

∂vjφj

∂x

)
dΩ+

∂φi

∂y

(
λ
∂ujφj

∂x
+ (λ+ 2µ)

∂vjφj

∂y

)
dΩ +

∫
Ω

φi
∂pjψi

∂x
dΩ = 0. (8.10)
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d

dt

∫
Ω

(
∂ujφj

∂x
+
∂vjφj

∂y

)
ψidΩ =

∫
Ω

ηf(x, t)dΩ. (8.11)

Equation (8.11) does not contain a pressure term, so a problem arises.
The number of rows is completely determined by the number of pressure un-
knowns [16]. So if the number of pressure unknowns exceeds the number of
velocity unknowns, the matrix of the system to be solved contains more rows
than unknowns so the system is either dependent or inconsistent and the matrix
is singular. So the number of pressure unknowns may never exceed the number
of velocity unknowns.
This should hold on various grid sizes so this should hold independently of
the number of elements. For that reason the number of applicable elements is
reduced. There is an exact admissibility condition, the so called Ladyzenskaya-
Brezzi-Babuska condition. This condition is fulfilled if the following holds [16]:

Given a continuous differentiable vector field u and basis function ψi. If one can
explicitly build a discrete vector field ũ such that∫

Ω

ψidivũdΩ =
∫

Ω

ψidivudΩ, ∀ ψi, (8.12)

then the LBB-condition is satisfied.

Frequently elements are used that do not satisfy this condition, because
it is very difficult to verify if this constraint is satisfied.

An example of admissible elements are the Taylor-Hood elements: when
the velocity is approximated by a polynomial of degree k, then the pressure
will be approximated by a polynomial of degree k− 1. It is proved this element
is admissible if at least three elements are used [16]. However, there are strong
constraints for the discretisation parameters to fulfill [14], otherwise there can
still occur oscillatory behaviour.

Another way to suppress the wiggles is presented by Aguilar et al [14].
The idea is to reformulate the poro elastic problem in such a way that the
transformed problem only involves Laplace operators. Then finally from
discretising this transformed problem on a collocated grid, a perturbed discrete
variant of the original problem can be derived, leading to

−µ∆u− (λ+ µ)∇ (∇ · u) +∇p = 0 (8.13)

∇ · u̇− κ

ζ
∆p− βs∆ṗ = 0, (8.14)

where βs∆ṗ is the stabilization term. Small perturbations of this stabilization
parameter βs results in excess of the numerical diffusion [14].
In this case a big limitation appears because the strategy requires a good choice
of the stabilization parameter. If the value is too large the problem will be over-
stabilized. The best value for the parameter βs in the one-dimensional case is

βs =
h2

4(λ+ 2µ)
.
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8.3 Galerkin equations

Now the Galerkin equations can be derived. For both the pressure term as for
the displacement terms a linear basis function will be used.

First equation

−
∫

Γ1+Γ2

φiqxdΓ +
n∑

j=1

∫
Ω

∂φi

∂x

(
(λ+ 2µ)

∂φj

∂x
uj + λ

∂φj

∂y
vj

)
(8.15)

+
∂φi

∂y

(
µ
∂φj

∂y
uj + µ

∂φj

∂x
vj

)
dΩ +

n∑
j=1

∫
Ω

φi
∂φj

∂x
pjdΩ = 0.

Next the integrals will be computed elementwisely, following the same proce-
dure as in Section 3.1. An assembly procedure is applied to generate the global
matrices that are involved in the Finite Element discretisation.
Then for the first integral of (8.15), the 2× 1 boundary element vector is given
by

Bfel
u = −|4|

2
qx

For the second integral of (8.15) the 3× 3 element matrix follows

Zel
uu =

|4|
2

((λ+ 2µ)ai
1a

j
1 + µai

2a
j
2),

Zel
uv =

|4|
2

(λai
1a

j
2 + µaj

1a
i
2),

and the last integral leads to the 3× 3 element matrix

Zel
up =

|4|
6
aj
1.

Second equation Following the same procedure, the 3× 3 element matrices,
for the second equation are given by

Zel
vv =

|4|
2

(µai
1a

j
1 + (λ+ 2µ)ai

2a
j
2),

Zel
vu =

|4|
2

(λai
2a

j
1 + µai

1a
j
2),

Zel
vp =

|4|
6
aj
2,



8.3Galerkin equations 52

to be used in the assembly procedure for the stiffnessmatrix Z.
And the 2× 1 boundary element vector

Bfel
v = −|4|

2
qy,

to be used in the assembly procedure for the vector f .

Third equation For now, the slightly compressible term and the stability
term are both present, just to show the discretisation of both. Of course, for an
incompressible fluid βs = 0 holds, and for an incompressible fluid with stabi-
lization term β = 0 holds.
The equation reads

nβṗ+∇ · u̇− κ

ζ
∆p− βs∆ṗ = f(x, t).

The weak formulation is given by

d

dt

∫
Ω

ηnβpdΩ +
d

dt

∫
Ω

(
∂u

∂x
+
∂v

∂y

)
ηdΩ +

∫
Ω

∇ηκ
ζ
∇pdΩ−

∫
Γ

ηkB(p− pB)dΓ

−
∫

Ω

ηβs∆ṗdΩ =
∫

Ω

ηf(x, t)dΩ.

Setting u(x, y, t) =
n∑

j=1

uj(t)φj(x, y) and v(x, y, t) =
n∑

j=1

vj(t)φj(x, y) gives

n∑
j=1

p′j(t)
∫

Ω

nβφiφjdΩ +
n∑

j=1

u′j(t)
∫

Ω

φi
∂φj

∂x
dΩ +

n∑
j=1

v′j(t)
∫

Ω

φi
∂φj

∂y
dΩ

+
n∑

j=1

pj(t)
∫

Ω

κ

ζ
∇φi · ∇φjdΩ−

n∑
j=1

pj(t)
∫

Γ

φikBφjdΓ +
∫

Γ

φikBpBdΓ

+
n∑

j=1

p′j(t)
∫

Ω

βs∇φi · ∇φjdΩ−
n∑

j=1

p′j(t)
∫

Γ

βs
ζ

κ
φikBφj +

∫
Γ

βs
ζ

κ
φikBpB

=
∫

Ω

fφidΩ
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Applying Euler Backward time-discretisation yields

n∑
j=1

pk+1
j

∫
Ω

nβφiφjdΩ +
n∑

j=1

uk+1
j

∫
Ω

φi
∂φj

∂x
dΩ +

n∑
j=1

vk+1
j

∫
Ω

φi
∂φj

∂y
dΩ

+
n∑

j=1

∆tpk+1
j

∫
Ω

κ

η
∇φi∇φjdΩ−

n∑
j=1

∆tpk+1
j

∫
Γ

φikBφjdΓ

+
n∑

j=1

pk+1
j

∫
Ω

βs∇φi · ∇φjdΩ−
n∑

j=1

pk+1
j

∫
Γ

βs
ζ

κ
φikBφjdΓ

=
n∑

j=1

pk
j

∫
Ω

nβφiφjdΩ +
n∑

j=1

uk
j

∫
Ω

φi
∂φj

∂x
dΩ +

n∑
j=1

vk
j

∫
Ω

φi
∂φj

∂y
dΩ

+
n∑

j=1

pk
j

∫
Ω

βs∇φi · ∇φjdΩ−
n∑

j=1

pk
j

∫
Γ

βs
ζ

κ
φikBφjdΓ + ∆t

∫
Ω

fφidΩ

−
∫

Γ

φikBpBdΓ. (8.16)

So in vector notation the final system for (8.2), (8.3), (8.4) looks like Zuu Zuv Zup

Zvu Zvv Zvp

Zpu Zpv Zpp

 uk+1

vk+1

pk+1

 =

 0
0

Zpuu
k + Zpvv

k + Zppp
k + ∆tfk


=

 0 0 0
0 0 0
Zpu Zpv Zpp

 uk

vk

pk

 +

 0
0

fk∆t

 .
Next, the above integrals still have to be computed. This will be done following
the same procedure as in Section 7.1. So applying Newton-Cotes to the integrals
on the left-hand-side of (8.16), the 3× 3 element matrix for the second integral,
which contributes to Zpu, looks like

Zel
pu(ij) =

∫
Ω

φi
∂φj

∂x
dΩ =

|4|
6
aj
1.

For the third integral, contributing to Zpv, the 3× 3 element matrix is

Zel
pv(ij) =

|4|
6
aj
2,

The first, fourth and fifth integral, which contribute to Zpp, lead to the 3 × 3
element matrix

Zel
pp(ij) =

|4|
2

(ai
1a

j
1 + ai

2a
j
2)(∆t

κ

ζ
+ βs) +

|4|
6
nβδij ,

The boundary integrals, which also contribute to Zpp, lead to the 2× 2 element
matrix

BMel
ij −

|4|
2
kB(∆t+ βs

ζ

κ
)δij . (8.17)
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The integrals on the right hand side can be computed following the same pro-
cedure. For the second and third integral this leads again to the 3× 3 element
matrices

Zel
pu(ij) =

|4|
6
aj
1,

and

Zel
pv(ij) =

|4|
6
aj
2,

The first and fourth integral lead to 3× 3 element matrix

Zel
pp(ij) =

|4|
2

(ai
1a

j
1 + ai

2a
j
2)βs +

|4|
6
nβδij ,

The fifth integral is a boundary integral, contributing to Zpp, leading to the
2× 2 element matrix

BMel
ij = −|4|

2
βs
ζ

κ
kBδij . (8.18)

The other integrals contribute to the element vector and give the 3× 1 vector

fel
ij =

|4|
2
fi∆t,

and the 2× 1 boundary element vector

Bfel
ij = −|4|

2
kBpB∆t.
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Chapter 9

Results

Now the whole model due to Prendergast can be simulated. The parameters
used in the mechanical part of the model are stated in Section 7.2. Further
holds Smin = 1 and Smax = 3. For the biological part the parameter values are:

Pmmin = 0.5, Pmmax = 1.2, Pfmin = 0.1, Pfmax = 0.6, Pcmin = 0.75,
Pcmax = 0.925, Pbmin = 0.5, Pbmax = 1.5 ∗ Pbmin, Ffmin = 0, Ffmax = 0.01,
Fcmin = 0;, Fcmax = 0.3, Fbmin = 0.005, Fbmax = 0.15, Q)fmin = 0,
Qfmax = 0.06, Qcmin = 0, Qcmax = 0.2, Qbmin = 0.001, Qbmax = 0.1.

First some figures will be shown for the mechanical part.
Every iteration contains one update for the biological properties and one
update for the mechanical properties. The process of cell-differentiation is a lot
slower then the process of an arm abduction, which only lasts two seconds.
In Figure 9.1 the shear strain, fluid velocity and stimulus are shown under an
arm abduction of 30 degrees after 1 iteration. The value of the fluid velocity
will tends to zero if the applied load works at the same area with the same
force. In that case the stimulus will be determined only by the shear strain
and, as shown in Figure 9.1, will not be higher than 0.25. So, keeping the arm
abduction the same under an angle of 30 degrees, during the whole simulation
of 200 days, no cartilage or fibrous tissue will appear. Bone grows very slowly
and only in the lower left corner, where the stimulus is highest, see Figure 9.2.

Under an arm abduction of 90 degrees, where the applied force is 392.95 N, the
shearstrain, fluid velocity and stimulus after 1 iteration are shown in Figure
9.3. For the next simulation the following is assumptions are made: Every 3
days an arm abduction of 90 degrees is made, during the first 100 days. The
stimulus that follows from this, is assumed to hold throughout the whole day.
The rest of the time the arm abduction is kept at 30 degrees.
So, with dt = 1 day every third iteration the applied force is 392.95 N under an
angle of 90 degrees, and for the other iterations the applied force is 165.84 N,
under an angle of 30 degrees.
This way the fluid velocity will not drop to zero during the first 100 days and
this gives an idea how the model works.
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Figure 9.1: The maximal distortional strain (upper right picture), the fluid ve-
locity (lower left picture) and the resulting stimulus (upper left picture), under
an arm abduction of 30 degrees.

In Figure 9.4 bone appears only at the right and cartilage is formed in
the middle. Fibrous tissue only appears at the right side of the implant
interface. After 200 days the pattern looks pretty much the same. Only at the
lower right corner the cartilage density decreased and a small concentration
of bone has appeared. This is not very strange, since the arm abduction was
kept at 30 degrees from day 100. It is known from Figures 9.1 and 9.2, that the
stimulus is very low in that case and has the biggest contribution at the lower
right corner of the grid.

The results seem to be determined mainly by the mechanical stimulus and the
influence of the cell differentiation process seems almost neglectable. This is the
case, because the cell differentiation becomes most important when the value
for the stimulus is in the neighbourhood of S = 1 or S = 3, see Appendix A.
Here however, the value of the stimulus at most areas is not close enough to
S = 1 or S = 3 to let the differentiation process become important.
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Figure 9.2: Mesenchymal cellular density (upper left picture) and matrix densi-
ties of cartilage (upper right picture), bone(lower left picture) and fibrous tissue
(lower right picture).

Figure 9.3: The maximal distortional strain (upper right picture), the fluid ve-
locity (lower left picture) and the resulting stimulus (upper left picture), under
an arm abduction of 90 degrees.
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Figure 9.4: The mesenchymal cellular density (upper left picture) and the matrix
densities after 100 days. In the upper right picture the cartilage density is shown,
the lower left picture shows bone and the lower right picture represents fibrous
tissue.

Figure 9.5: The mesenchymal cellular density (upper left) and the matrix den-
sities after 200 days. In the upper right picture is the cartilage density shown,
the lower left picture shows bone and lower right represents fibrous tissue.
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Chapter 10

Conclusion

In this report the process of tissue differentiation during bone ingrowth into an
shoulder prosthesis has been described. A comparison to the process of fracture
healing has been made and two models to describe this process have been
explained: the model due to Prendergast and the model due to Bailon-Plaza.
A third model is briefly mentioned.
The model of Prendergast also contains of a mechanical part. The derivation
of this part is shown. The mechanical part calculates the stimulus S, which
influences the process of tissue differentiation. For S < 1 bone will appear, for
1 < S < 3 cartilage and for S > 3 fibrous tissue will appear.
The biological part of the model due to Prendergast in 2-D has been imple-
mented in MATLAB using the Finite Element Method and the (semi-implicit)
Euler backward scheme. The result show how the tissue differentiation works
when the stimulus, which comes from the mechanical part of the model, is
constantly kept at 1. No fibrous tissue is made during the whole process.
Cartilage appears first and after 30 days is decays and bone will grow into the
prosthesis.
After that the fracture healing model of Bailon-Plaza has been implemented. In
this model also growth factors have been taken into account. The parameters
that seem to be of most influence on the bone growth process, are the decay
factor of the bone growth factor and the production rate of bone matrix.
Then the mechanical part of the model of Prendergast was implemented. This
showed that under an arm abduction of 30 degrees bone grows in is really
slowly and no cartilage or fibrous tissue will be made. This is the case because
the stimulus is very low. If cycles of arm abductions of both 30 degrees and 90
degrees are simulated, also cartilage and fibrous tissue will appear. The results
seem to be determined mainly by the mechanical stimulus and less by the
cell differentiation process. This can be explained by the fact that the tissue
differentiation process only has a real influence when the value of the stimulus
is close to either 1 or 3.

It would be nice to add equations for the growth factors, like seen in the
model due to Bailon-Plaza, to the model due to Prendergast, since an abnormal
distribution of growth factors might give other results of the bone growth into
the prosthesis.
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Also, since the process of tissue differentiation is a lot slower than the arm
abduction from the mechanical part, which only lasts two seconds, smaller time
steps could be chosen for improvement of the results.
Further in this report it is assumed that mesenchymal cells originate from the
bone-implant interface, and this is kept at a maximal value cmax. However, if
the interface micromotions [6] do not exceed a certain threshold, there will be
no interface bonding and no mesenchymal cells will ’jump’ into the prosthesis.
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Appendix A

The proliferation rates Pm0, Pf0, Pc0, Pb0, differentiation rates Ff , Fc, Fb and
production rates Qf , Qc, Qb depend on the stimulus S in the following way,
with Smin = 1 and Smax = 3:

Figure A.1: The mesenchymal cell proliferation rate as a function of the stimulus
S. The higher the stimulus, the lower the proliferation rate.

The production rates Qf , Qc, Qb depend on the stimulus S in the same way
that the differentiation rates Ff , Fc and Fb do.
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Figure A.2: The proliferation rate of fibroblasts as a function of the stimulus S.
If S increases, then also Pf0 increases.

Figure A.3: The proliferation rate of chondrocytes as a function of the stimulus
S. If S exceeds Smax, then Pc0 becomes zero.
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Figure A.4: The proliferation rate of osteoblasts as a function of the stimulus
S. When S exceeds Smin, Pb0 tends to zero.

Figure A.5: The differentiation rate of fibroblasts as function of the stimulus S.
If the stimulus does not exceed a threshold, Ff stays zero.
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Figure A.6: The differentiation rate of chondrocytes as function of the stimulus
S. Fc reached the value Fcmax when Smin < S < Smax.

Figure A.7: The differentiation rate of osteoblasts as function of the stimulus S.
Until the threshold Smin is reached by S, Fb increases when S does. After that
Fb tends to zero.
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