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Chapter 1

Introduction

As a result of osteoporosis, osteoarthritis, rheumatoid arthritis or severe trauma
from a shoulder fracture, it is possible that the shoulder joint dysfunctions.
The cartilage is thinner than it is supposed to be or the bones are too weak.
As a result the bones rub together causing pain, swelling and/or loss of motion
of the joint.
To improve the movement of the joint and to relief the pain, a prosthesis to
replace the glenoid of the shoulder joint is an option.

The shoulder is a ball-and socket joint, which means that the end of one
bone has a ball-like surface which is surrounded by a concave socket (the end
of the other bone). The range of motion of the joint is determined by the rate
of coverage of the ball by the socket, see figure 1.1.

Figure 1.1: The shoulder joint is a ball-and-socket joint [1]

The glenoid is the cavity of the scapula (shoulder blade) in which the upper
arm fits.
The prosthesis, often made of stainless steal combined with polyethylene, re-
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places this glenoid cavity and is made of porous material at the bone side. This
way bone can grow into the prosthesis, which leads to a fusion of bone and
prosthesis.
However, it is possible that no bone ingrowth will occur at all, if the mechanical
stress is too low. For this reason it is important to know what the stress distribu-
tion should be and what material is best to be used for the prosthesis, to make
sure the bone ingrowth is optimal. The model to simulate the bone ingrowth
consists of two parts: one part relating to the biophysical stimuli and the other
part relating to the tissue differentiation. In this report the tissue differentia-
tion will be discussed by using two different models. Chapter 2 explains the cell
differentiation process, which is similar to the process of secondary healing of a
bone fracture.
Several models describing this process will be discussed. For two models the
differential equations will be given and boundary conditions will be derived.
The models can be solved using numerical methods. These methods and the
discretisation of the differential equations of the model of Prendergast will be
given in chapter 3. This will be implemented in MATLAB to get a solution.
In chapter 4 the results will be given and also a sensitivity analysis will be
shown. In chapter 5 some conclusions will be drawn and the future goals for
this project are given in chapter 6.
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Chapter 2

Models

The cell differentiation during bone ingrowth in an artificial shoulder is actually
the same process as the cell differentiation during a secondary fracture healing.
Fracture healing begins as undifferentiated mesenchymal cells migrate from
the periosteum and the surroundings (like muscles). They produce initial con-
nective tissue around the fracture side, forming an initial stabilizing callus
[Bailon-Plaza, A. and M. C. H Van der Meulen(2001)]. This callus depends on
the size of the fracture gap and the mechanical stability.
Healing processes can be divided into two groups: primary healing and secondary
healing. Primary healing takes place when the fracture size is very small and
stable. The bone fragments get reattached by direct bone remodelling, forming
a very small or no callus.
In most cases fractures heal by secondary healing. This happens when the frac-
ture size is relatively big or unstable. Secondary healing can be divided into
four stages: Inflammation, callus differentiation, ossification and remodelling,
see figure 2.1.

Figure 2.1: The different stages during the process of bone fracture healing [2]
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During the inflammation stage blood cells, coming from the ruptured blood
vessels, form a fibrin matrix. Mesenchymal cells originate from the broken pe-
riosteum and replace the fibrin matrix to form the external callus.
Depending on the mechanical and biological environment the mesenchymal
cells differentiate into fibroblast (cells forming fibrous tissue), chondrocytes
(cartilage-forming cells) or osteoblast (bone-forming cells). During callus diffe-
rentiation mesenchymal cells along the bone side differentiate into osteoblasts,
which begin to actively synthesize intra-membranous woven bone. In the interior
of the callus mesenchymal cells differentiate into chondrocytes, while mesenchy-
mal cells that reach the fracture gap will differentiate into fibroblasts. During
healing the intra-membranous ossification front advances towards the center of
the callus and the chondrous callus grows due mesenchymal cell differentiation
into chondrocytes and chondrocytic proliferation. As time goes on ossification
of the cartilage callus starts, called endochondral ossification.
During endochondral ossification chondrocytes undergo apoptosis and will be
replaced with osteoblasts. This process continues until all the cartilage is re-
placed with bone and the fracture gap is closed.
The last stage of bone remodelling starts when the fracture gap is ossified and
ends with the restoration of the original form of the bone. This last stage has
not been studies in the models presented here.

2.1 Model of Prendergast

The first model to be dealt with is the model of Prendergast. This models de-
scribes the behavior of the mesenchymal cells, the fibroblasts, the chondrocytes
and the osteoblasts and also the matrix production caused by these various cell
types[Andreykiv, A (2006)].
Since it is assumed that the mesenchymal cells and the fibroblasts migrate
through the callus they are modelled by means of a diffusion-reaction equation.
The chondrocytes and the osteoblasts are assumed not to migrate, so their
equations do not contain diffusion terms.
For all these cell types there is one term that describes the proliferation of
the cell type and one or more terms to describe the differentiation of the
cells (see figure 2.2). For example the mesenchymal cells can differentiate into
fibroblasts, chondrocytes or osteoblasts, so the equations for the mesenchymal
cells contains three differentiation terms. The matrix densities are influenced
by the production and resorption rates of the various tissues and the cellular
densities of the corresponding tissue. The resorption rates are chosen to be
equal to the production rates.

The following symbols will be used:
ci represent the cellular densities, ctot = cm + cc + cb + cf

mi represent the matrix densities, mtot = mc + mb + mf

Di are the diffusion coefficients (depending on m), for i = m, f
Pi are the proliferations rates
Fi are the differentiation rates
Qi the production rates of the tissue(matrix)
Di are the tissue resorption rates (equal to Q), for i = c, b
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Figure 2.2: Mesenchymal cells can differentiate into fibroblasts, chondrocytes
or osteoblasts. Fibroblasts can differentiate into chondrocytes and osteoblasts.
Chondrocytes can differentiate into osteoblasts.

Initially the callus is only filled with granulation tissue and all the cell
concentrations are zero. Thus the initial conditions are given by

ci(x, 0) = mi(x, 0) = 0.

Mesenchymal cells originate from the periosteum layer and the bone marrow,
hence the mesenchymal cell density at those areas is kept constant at the highest
saturation level, thus

cm|periosteum = cmax,∀t.

The change in the cellular densities can be described by the following partial
differential equations:

∂cm

∂t
= Dm∇2cm + Pm(1− ctot)cm − Ff (1− cf )cm − Fc(1− cc)cm(2.1)

−Fb(1− cb)cm.

∂cf

∂t
= Df∇2cf + Pf (1− ctot)cf + Ff (1− cf )cm − Fc(1− cc)cf (2.2)

−Fb(1− cb)cf .

∂cc

∂t
= Pc(1− ctot)cc + Fc(1− cc)(cm + cf )− Fb(1− cb)cc, (2.3)

∂cb

∂t
= Pb(1− ctot)cb + Fb(1− cb)(cm + cf + cc). (2.4)
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The first terms on the right hand side of (2.1) and (2.2) represent the diffusion
of the mesenchymal cells and the fibroblasts respectively. The second terms
represent the proliferation of the cells. The last three terms of (2.1) express
the differentiation from mesenchymal cells into fibroblasts, chondrocytes and
osteoblasts. These last terms will come back in the equations for the other cell
types.
The third term of (2.2) represents the cells which differentiated from mes-
enchymal cells into fibroblasts. The fourth and fifth term of (2.2) represent the
differentiation of fibroblasts into chondrocytes and osteoblasts.
The equations for cartilage cellular density (2.3) and bone cellular density (2.4)
only contain terms for proliferation and differentiation.

For the change in the matrix densities the following differential equations
are derived:

∂mf

∂t
= Qf (1−mtot)cf − (Dbcb + Dccc)mfmtot, (2.5)

∂mc

∂t
= Qc(1−mb −mc)cc −Dbcbmcmtot, (2.6)

∂mb

∂t
= Qb(1−mb)cb. (2.7)

The first terms on the right hand side of (2.5), (2.6) and (2.7) express the
production of the tissue. The second terms on the right hand side of (2.5) and
(2.6) represent the resorption of the tissue.

All equations and parameters are non-dimensionalized.
Cell differentiation, proliferation and tissue production are regulated by tissue
shear strain and interstitial fluid velocity, so P , F , Q depend on S. The
following equation holds for S:

S =
γ

a
+

ν

b
, (2.8)

where γ represents the maximum shear strain and ν the fluid/solid velocity.

2.2 Model due to Bailon-Plaza

Another model to investigate is the model by Bailon-Plaza
[Bailon-Plaza, A. and M. C. H Van der Meulen(2001)]. This model leaves
out the fibroblasts and the fibrous tissue and has extra equations for the growth
factors of bone and cartilage .
Growth factors are proteins that are involved in cell differentiation and
growth [3]. So they influence the differentiation rates from mesenchymal cells
into either osteoblasts or chondrocytes and the endochondral replacement
of the chondrocytes. Unlike the previous model, where the growth factors
themselves are not modelled, here their behavior is described by means of a
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convection-diffusion-reaction equation. So they are assumed to migrate and
they are depending on their corresponding cellular densities and the growth
factor production rates.
For the mesenchymal cells, chondrocytes and osteoblasts and the bone and
cartilage matrix densities the same sort of equations are chosen as in the
previous model.
The non-dimensionalized model looks as follows:
The equations for the change in mesenchymal, cartilage and bone cell densities
are

∂cm

∂t
= ∇ · (D∇cm − Ccm∇m) + Amcm(1− αmcm)− F1cm − F2cm, (2.9)

∂cc

∂t
= Accc(1− αccc) + F2cm − F3cc, (2.10)

∂cb

∂t
= Abcb(1− αbcb) + F1cm + F3cc − dbcb, (2.11)

where D and C represent the haptotactic and haptokinetic cell migration speeds.
The proliferation rates are denoted by Am, Ac and Ab, F1 is the mesenchymal
differentiation into osteoblasts, F2 the mesenchymal differentiation into chon-
drocytes and F3 the endochondral replacement of chondrocytes. The symbol db

stands for osteoblasts removal and the αi’s result from non-dimensionalizing the
equations.
The changes in cartilage and bone matrix densities are modelled in the following
way:

∂mc

∂t
= Pcs(1− κcmc)(cm + cc)−Qcdmccb, (2.12)

∂mb

∂t
= Pbs(1− κbmb)cb, (2.13)

where Pcs and Pbs represent constants of cartilage and bone matrix production
and Qcd is a constant of matrix degradation.
The growth factor concentrations gc and gb are modelled in the following way:

∂gc

∂t
=

∂

∂x
(Dgc

∂gc

∂x
) + Egccc − dgcgc, (2.14)

∂gb

∂t
=

∂

∂x
(Dgb

∂gb

∂x
) + Egbcb − dgbgb, (2.15)

where Dgc and Dgb are diffusion coefficients, Egc and Egb are functions relating
growth factor production to growth factor concentration, and dgc and dgb are
constants of decay.
The initial and boundary conditions for the cellular densities and the matrix
densities are given by

cm|periosteum = cmax,
∂cm

∂x

∣∣∣∣
other boundaries

= 0, ∀t
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cm(x, 0) = 0, cc(x, 0) = 0, cb(x, 0) = 0.

mb(x, 0) = 0, mc(x, 0) = 0.1.

The initial and boundary conditions for the growth factors are given by

gi(x, 0) = 0,

where i = c, b.
For t ≤ tK

gc|fracture gap = 20, gb|along bone = 20,
∂gi

∂x

∣∣∣∣
other boundaries

= 0.

For t > tK

∂gi

∂x

∣∣∣∣
all boundaries

= 0,

where i = c, b.
tK is the time whereafter no growth factors will originate anymore from the
fracture gap and along the bone respectively.
At last the functions are defined by:

D =
Dh

(K2
h + m2)

m, (2.16)

C =
Ck

(Kk + m)2
, (2.17)

Am =
Am0

(K2
m + m2)

m, (2.18)

Ac =
Ac0

(K2
c + m2)

m, (2.19)

Ab =
Ab0

(K2
b + m2)

m, (2.20)

F1 =
Y1

(H1 + gb)
gb, (2.21)

F2 =
Y2

(H2 + gc)
gc, (2.22)

F3 = (
m6

c

B6
ec + m6

c

)(
Y3

H3 + gb
)gb, (2.23)
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Egc = (
Ggcgc

Hgc + gc
)(

m

K3
gc + m3

), (2.24)

Egb =
Ggbgb

(Hgb + gb)
, (2.25)

where Dh, Kh,Ck, Kk, Am0, Km, Ac0, Kc, Ab0, Kb, Y1, H1, Y2, H2, Y3, H3,
Bec, Ggc, Hgc, Kgc, Ggb and Hgb are constants.
The functions and constants are not regulated by mechanical stimuli.

2.3 Other Models

2.3.1 Model of Ament and Hofer

Another, totally different, model for fracture healing is the model due to Ament
and Hofer [Ament, Ch. and E. P. Hofer (2000)]. It is an algorithm which also
consist of a mechanical stimuli part and a tissue differentiation part, only here
both should be determined during every time step. The three types of tissues
that are involved here: cartilage, bone and fibrous connective tissue. The latter
contains also granulation tissue in this model. It is assumed that each element
is completely composed by these three types of tissue.

For every time step look for each element at the tissue composition and
the dominating part of it, to figure out if it is fibrous tissue, cartilage or bone.
The strain energy density can be determined using the modulus of elasticity
and the Poisson’s ratio. The tissue differentiation is determined by the spatial
change of the bone matrix density. This is called the osteogenic factor. This
will be calculated for every element.
Finally, when both the strain energy density and the osteogenic factor are
determined, one can calculate the tissue differentiation rates per element, which
leads to the new tissue composition.

2.3.2 Model of Adam

The model due to Adam[Adam, J. A. (1999)] examines the conditions under
which wound healing will occur.

A thin layer of bone at the wound edges manufactures growth factors. In 1D
these layers lie at −L/2 ≤ x ≤ −L/2 − δ and L/2 ≤ x ≤ L/2 + δ. The wound
width lies at −L/2 ≤ x ≤ L/2.
Since this problem is symmetric from now on only the domain [0,∞) will be
considered. The goal is to find a value for δ, so healing will occur.
The fundamental equation for the growth factor concentration is described by

∂C

∂t
= D

∂2C

∂x2
− λC + PS(x), (2.26)

where D is the diffusion coefficient of the growth factor, λ the decay of the
growth factor and P the production rate of the growth factor. These are all
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constants. S(x) is the source term, describing the distribution of the growth
factors, which is chosen to be uniform (so S(x) = 1 at L/2 ≤ x ≤ L/2 + δ and
S(x) = 0 elsewhere).
It is assumed that the distribution is independent of time, so ∂C

∂t = 0. Fur-
thermore the assumption has been made that the growth factors regulate the
growth of bone. Also it is presumed that there are no mechanical constraints,
so the bone is free to grow into the wound.

Now the equation can be written as

d2C

dx2
− λ

D
C = −P

D
,

L

2
≤ x ≤ L

2
+ δ (2.27)

and

d2C

dx2
− λ

D
C = 0, (2.28)

elsewhere.
Two models are investigated. In the first model it is assumed there is no tissue
in the wound interior −L/2 ≤ x ≤ L/2, in the second model it is assumed there
is still some tissue in the wound interior.

The boundary conditions for model 1 are given by
(i) C(x), dC

dx are continuous at x = L/2 + δ
(ii)limx→∞ C(x) = 0
(iii)dC

dx = 0 at x = L/2

and the boundary condition for model 2 are given by
(i) C(x), dC

dx are continuous at x = L/2 and x = L/2 + δ
(ii)limx→∞ C(x) = 0
(iii)dC

dx = 0 at x = 0

Solving these models values for δ are obtained for which healing will oc-
cur.
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Chapter 3

Numerical Methods

To solve these differential equations numerical methods will be used. First a
discretisation in space should be performed and then a discretisation in time.
There are several methods to this purpose.

3.1 Discretisation in space

For the first derivative in space a very commonly used method is the central-
scheme. The equidistant grid is divided in Nx parts. The scheme looks as follows:

∂u

∂x
' uj+1 − uj−1

2h
, (3.1)

where j are the data points and h = 1/Nx is the spatial step size. For the second
derivative the three-point-method is often used:

∂2u

∂x2
' uj+1 − 2uj + uj−1

h2
. (3.2)

Both schemes are of order h2.

Another possible scheme is upwind discretisation:

∂u

∂x
' uj − uj−1

h
. (3.3)

This method is of order h.

Another method also very often used is the Finite Volume method. Very
briefly this method works as follows:
(1) The domain is subdivided segments,also called control volumes, with length
hj , j = 1, ..., N .
(2) In a vertex-centered grid the nodes j are distributed over the domain and
also at the boundaries nodes are put. The boundaries of the control volumes
are centered between the nodes.
(3) The equation will be integrated over the control volumes to obtain the
scheme.
For further details see [Wesseling, P. (2002)].
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3.2 Discretisation in time

For discretisation in time the most commonly used scheme is the backward
Euler scheme. Consider the equation

∂u

∂t
= f(t, u), (3.4)

where f is a function. Then the backward Euler scheme leads to

un+1 − un

τ
= f(tn+1, un+1), (3.5)

where τ is the step size in time. This is an implicit method.
Also the ω-scheme can be used, which is a combination of the forward and the
backward Euler scheme(0 ≤ ω ≤ 1):

un+1 − un

τ
= (1− ω)f(tn, un) + ωf(tn+1, un+1) (3.6)

Another possible method is the Runge-Kutta-4 method
[Burden, R. L. and J. D. Faires (2001)]. This is an explicit method and
works as follows:
Calculate

K1 = τf(tn, un)

K2 = τf(tn +
τ

2
, un +

K1

2
)

K3 = τf(tn +
τ

2
, un +

K2

2
)

K4 = τf(tn + τ, un + K3)

and set

un+1 = un +
1
6
(K1 + 2K2 + 2K3 + K4) (3.7)

3.3 Application to the model of Prendergast

For the 1D discretisation of the model of Prendergast the central scheme and
the three-point method are used for discretisation in space. An equidistant grid
is used. The backward Euler method is used for discretisation in time.
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3.3.1 Mesenchymal cellular density

For the first equation, the one for the mesenchymal cellular density, the equation
in 1D is:

∂cm

∂t
= Dm

∂2cm

∂x2
+ Pm(1− ctot)cm − Ff (1− cf )cm (3.8)

−Fc(1− cc)cm − Fb(1− cb)cm.

After discretisation in space it follows for an interior point j = 2, .., Nx − 1

∂cm(j)

∂t
= Dm(j)

cm(j−1) − 2cm(j) + cm(j+1)

h2
+ Pm(j)(1− ctot(j))cm(j) (3.9)

−Ff (1− cf(j))cm(j) − Fc(1− cc(j))cm(j) − Fb(1− cb(j))cm(j).

For j = 1 holds:

∂cm(1)

∂t
= Dm(1)

cmax − 2cm(1) + cm(2)

h2
+ Pm(1)(1− ctot(1))cm(1) (3.10)

−Ff (1− cf(1))cm(1) − Fc(1− cc(1))cm(1) − Fb(1− cb(1))cm(1),

and for j = Nx, using a virtual point and the Neumann boundary condition:

∂cm(Nx)

∂t
= Dm(Nx)

2cm(Nx−1) − 2cm(Nx)

h2
(3.11)

+Pm(Nx)(1− ctot(Nx))cm(Nx)

−Ff (1− cf(Nx))cm(Nx) − Fc(1− cc(Nx))cm(Nx)

−Fb(1− cb(Nx))cm(Nx).

So at the end it becomes a time-dependent vector-differential equation:

∂cm

∂t
= Zcmcm + f

m
. (3.12)

Here Zcm is an Nx ×Nx tridiagonal matrix, represented by

B1 A1 .. .. .. ..
A2 B2 A2 .. .. ..

.. A3 B3
. . . .. ..

.. ..
. . . . . . . . . ..

.. .. . ANx−1 BNx−1 ANx−1

.. .. .. .. 2ANx
BNx


,

where

Ai =
Dm(i)

h2

and

Bi =
−2Dm(i)

h2
+ Pm(i)(1− ctot(i))− Ff (1− cf(i))− Fc(1− cc(i))− Fb(1− cb(i))
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Further the following functions are defined:

Pm = Pm0(1−mc −mb), Dm = Dm0(1−mc −mb)

and cm and f
m

are represented by:

cm =


cm(1)

cm(2)

..

..
cm(Nx−1)

cm(Nx)


and

f
m

=


A(1)cmax

0
..
..
..
0

 ,

where the first entry of the vector fm follows from the Dirichlet-boundary
condition given on the periosteum.

Now discretisation in time can be applied. The values for cm will be
taken implicit and the other variables will be taken explicit. However, the
equation contains a non-linear term c2

m, so a problem arises. This will be solved
by using Picard linearization, which means (cn+1

m )2 will be replaced by cn
mcn+1

m .
So the discretisation in time becomes semi-implicit method. This will also be
done for other non-linear terms in this report. It follows(for simplicity the
underlining is left behind):

cn+1
m − cn

m

τ
= Zn

cmcn+1
m cn+1

m + fn
m. (3.13)

Collecting terms gives:

cn+1
m = cn

m + τ(Zn
cmcn+1

m + fn
m) (3.14)

and finally

(I − τ(Zn
cm − Pn

mcn
m))cn+1

m = cn
m + τfn

m. (3.15)

3.3.2 Fibrous cellular density

The discretisation of the differential equation for the fibrous cellular density fol-
lows the same procedure as for the mesenchymal cellular density. So the equation

∂cf

∂t
= Df

∂2cf

∂x2
+ Pf (1− ctot)cf + Ff (1− cf )cm (3.16)

−Fc(1− cc)cf − Fb(1− cb)cf
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becomes
∂cf(j)

∂t
= Df(j)

cf(j−1) − 2cf(j) + cf(j+1)

h2
+ Pf(j)(1− ctot(j))cf(j) (3.17)

+Ff (1− cf(j))cm(j) − Fc(1− cc(j))cf(j) − Fb(1− cb(j))cf(j),

for j = 2, ..., Nx − 1.

For j = 0, using a virtual point and the fact that it is Neumann bound-
ary, it holds:

∂cf(0)

∂t
= Df(0)

−2cf(0) + 2cf(j+1)

h2
+ Pf(0)(1− ctot(0))cf(0) (3.18)

+Ff (1− cf(0))cm(0) − Fc(1− cc(0))cf(0) − Fb(1− cb(0))cf(0),

and for j = Nx, which is also a Neumann boundary:

∂cf(Nx)

∂t
= Df(Nx)

2cf(Nx−1) − 2cf(Nx)

h2
+ Pf(Nx)(1− ctot(Nx))cf(Nx) (3.19)

+Ff (1− cf(Nx))cm(Nx) − Fc(1− cc(Nx))cf(Nx) − Fb(1− cb(Nx))cf(Nx),

So at the end a time-dependent vector-differential equation is obtained:

∂cf

∂t
= Zcfcf + f

f
, (3.20)

where Zcf is the tridiagonal (Nx + 1)× (Nx + 1) matrix

B0 2A0 .. .. .. ..
A1 B1 A1 .. .. ..

.. A2 B2
. . . .. ..

.. ..
. . . . . . . . . ..

.. .. . ANx−1 BNx−1 ANx−1

.. .. .. .. 2ANx BNx


,

and

Ai =
Df(i)

h2

and

Bi =
−2Df(i)

h2
+ Pf(i)(1− ctot(i)) + Ff (1− cf(i))− Fc(1− cc(i))− Fb(1− cb(i))

Further

Pf = Pf0(1−mc −mb), Df = Df0(1−mc −mb), f
f

= Ffcm

and cf is represented by:

cf =


cf(0)

cf(1)

..

..
cf(Nx−1)

cf(Nx)

 .
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For the discretisation in time again a semi-implicit method is used, because of
the non-linear term in the equation. It follows (again for simplicity the under-
lining is left behind):

cn+1
f − cn

f

τ
= Zn

cfcn+1
f + fn

f . (3.21)

Collecting terms gives:

cn+1
f = cn

f + τ(Zn
cfcn+1

f + fn
f ), (3.22)

and finally

(I − τ(Zn
cf − Pn

f cn
f ))cn+1

f = cn
f + τfn

f . (3.23)

3.3.3 Cartilage cellular density

For the differential equation for chondrocytes no discretisation in space is
needed, only a discretisation in time.
First collect terms:

∂cc

∂t
= Pc(1− ctot)cc + Fc(cm + cf )− Fc(cm + cf )cc (3.24)

−Fb(1− cb)cc

= (Pc(1− cf − cm − cb)− Fc(cm + cf )− Fb(1− cb))cc

+Fc(cm + cf )
= Zcccc + fc,

where the rows of Zcc are represented by

Zcc =
[

0 Pc(1− ctot)− Fc(cm + cf )− Fb(1− cb) 0
]

and

Pc = Pc0(1−mc −mb), fc = Fc(cm + cf ). (3.25)

Now discretisation in time can be applied. It follows:

(I − τZn
cc)c

n+1
c = cn

c + τfn
c . (3.26)

3.3.4 Bone cellular density

Also the differential equation for osteoblasts only needs time-discretisation, be-
cause there are no derivatives in space.

∂cb

∂t
= Pb(1− ctotcb + Fb(cm + cf + cc) (3.27)

−Fb(cm + cf + cc)cb

= (Pb(1− ctot)− Fb(cm + cf + cc))cb

+Fc(cm + cf + cc)
= Zcbcb + fb,
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with
Zcb =

[
0 Pb(1− ctot)− Fb(cm + cf + cc) 0

]
,

Pb = Pb0(1−mc −mb), fb = Fb(cm + cf + cc). (3.28)

Applying time-discretisation:

(I − τZn
cb)c

n+1
b = cn

b + τfn
b . (3.29)

3.3.5 Discretisation fibrous matrix density

For the three matrix densities the same holds as for the chondrocyte and os-
teoblast densities: Only discretisation in time is needed. For fibrous matrix tissue
it follows:

∂mf

∂t
= Qf (1−mtot)cf − (Dbcb + Dccc)mf (mf + mc + mb) (3.30)

= Qf (1− (mc + mb))cf −Qfcfmf − (Dbcb + Dccc)(mc + mb)mf

−(Dbcb + Dccc)m2
f

= Zmfmf − (Dbcb + Dccc)m2
f + fmf ,

where
Zmf =

[
0 −Qfcf − (Dbcb + Dccc)(mc + mb) 0

]
and

fmf = Qf (1− (mc + mb))cf . (3.31)

Applying time-discretisation:

mn+1
f −mn

f

τ
= fn

mf + Zn
mfmn+1

f − (Dbcb + Dccc)mn
f mn+1

f (3.32)

gives

(I − τ(Zn
mf − (Dbcb + Dccc)mn

f ))mn+1
f = mn

f + τfn
mf . (3.33)

3.3.6 Cartilage matrix density

For cartilage matrix the discretisation is as follows:

∂mc

∂t
= Qc(1−mc −mb)cc −Dbcbmc(mf + mc + mb) (3.34)

= Qc(1−mb)cc −Qcccmc −Dbcb(mf + mb)mc −Dbcbm
2
c

= Zmcmc −Dbcbm
2
c + fmc,

where
Zmf =

[
0 −Qccc −Dbcb(mf + mb) 0

]
and

fmc = Qc(1−mb)cc. (3.35)
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Applying time-discretisation:

mn+1
c −mn

c

τ
= fn

mc + Zn
mcm

n+1
c −Dbcbm

n
c mn+1

c (3.36)

gives

(I − τ(Zn
mc −Dbcbm

n
c ))mn+1

c = mn
c + τfn

mc (3.37)

3.3.7 Bone matrix density

Finally, for bone matrix tissue, discretisation is done in the same way as above:

∂mb

∂t
= Qbcb −Qbcbmb (3.38)

mn+1
b −mn

b

τ
= Qbc

n
b −Qbc

n
b mn+1

b (3.39)

(I + τQbc
n
b )mn+1

b = mn
b + τQbc

n
b (3.40)

3.4 Application to the model of Bailon-Plaza

3.4.1 Mesenchymal cellular density

The 1D equation for the mesenchymal cellular density is represented by

∂cm

∂t
=

∂

∂x

(
D

∂cm

∂x
− Ccm

∂m

∂x

)
+ Amcm(1− αmcm)− F1cm − F2cm. (3.41)

3.4.2 Discretisation in space

For this model the Finite Volume Method will be used for discretisation in space.
This because of the derivative of m in the convection term. An equidistant
vertex-centered grid will be used.
For a point in the interior this method leads to the following:∫ xj+1/2

xj−1/2

∂cm

∂t
dx =

∫ xj+1/2

xj−1/2

∂

∂x

(
D

∂cm

∂x

)
dx (3.42)

−
∫ xj+1/2

xj−1/2

∂

∂x

(
Ccm

∂m

∂x

)
dx

+
∫ xj+1/2

xj−1/2

Amcm(1− αmcm)dx−
∫ xj+1/2

xj−1/2

(F1 + F2)cmdx.

The first two integrals of the right hand side can immediately be determined:∫ xj+1/2

xj−1/2

∂cm

∂t
dx =

[
D

∂cm

∂x

]xj+1/2

xj−1/2

−
[
Ccm

∂m

∂x

]xj+1/2

xj−1/2

(3.43)

+
∫ xj+1/2

xj−1/2

Amcm(1− αmcm)dx−
∫ xj+1/2

xj−1/2

(F1 + F2)cmdx.
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Assuming an equidistant grid, this leads to the following equation

∂cm(j)

∂t
h = Dj+1/2

cm(j+1) − cm(j)

h
−Dj−1/2

cm(j) − cm(j−1)

h
(3.44)

−Cj+1/2cm(j+1/2)
mj+1 −mj

h
+ Cj−1/2cm(j−1/2)

mj −mj−1

h
+

(
Am(j)cm(j)(1− αmcm(j))− (F1(j) + F2(j))cm(j)

)
h

and dividing by h

∂cm(j)

∂t
=

1
h

Dj+1/2

cm(j+1) − cm(j)

h
− 1

h
Dj−1/2

cm(j) − cm(j−1)

h
(3.45)

− 1
h

Cj+1/2cm(j+1/2)
mj+1 −mj

h
+

1
h

Cj−1/2cm(j−1/2)
mj −mj−1

h
+(Am(j)cm(j)(1− αmcm(j))− (F1(j) + F2(j))cm(j)

= Dj+1/2

cm(j+1) − cm(j)

h2
−Dj−1/2

cm(j) − cm(j−1)

h2

−Cj+1/2

cm(j+1) + cm(j)

2
mj+1 −mj

h2

+Cj−1/2

cm(j) + cm(j−1)

2
mj −mj−1

h2

+Am(j)cm(j)(1− αmcm(j))− (F1(j) + F2(j))cm(j).

At the Dirichlet boundary x = 0 there is no need to derive an equation for
cm(0) because it is prescribed: cm(0) = cmax.

At the Neumann boundary x = L the control volume has length h/2
and applying the Finite Volume Method leads to:∫ xN

xN−1/2

∂cm

∂t
dx =

∫ xN

xN−1/2

∂

∂x

(
D

∂cm

∂x

)
dx (3.46)

−
∫ xN

xN−1/2

∂

∂x

(
Ccm

∂m

∂x

)
dx

+
∫ xN

xN−1/2

Amcm(1− αmcm)dx−
∫ xN

xN−1/2

(F1 + F2)cmdx.

This leads to the following equation

∂cm(Nx)

∂t
(
h

2
) =

[
D

∂cm

∂x

]xN

xN−1/2

−
[
Ccm

∂m

∂x

]xN

xN−1/2

(3.47)

+
(
Am(Nx)cm(Nx)(1− αmcm(Nx))− (F1(Nx) + F2(Nx))cm(Nx)

) h

2
.

Dividing by h
2 and using the Neumann condition

∂cm(Nx)

∂t
= − 2

h
D(Nx−1/2)

cm(Nx) − cm(Nx−1)

h
(3.48)

+
2
h

C(Nx−1/2)cm(Nx−1/2)

m(Nx) −m(Nx−1)

h
+(Am(Nx)cm(Nx)(1− αmcm(Nx))− (F1(Nx) + F2(Nx))cm(Nx)
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= −D(Nx−1/2)

cm(Nx) − cm(Nx−1)

h2

+C(Nx−1/2)

cm(Nx) + cm(Nx−1)

2
mNx

−mNx−1

h2

+Am(Nx)cm(Nx)(1− αmcm(Nx))− (F1(Nx) + F2(Nx))cm(Nx).

With (3.45) and (3.48) a vector differential equation is obtained:

∂cm

∂t
= Zcmcm + f

cm
, (3.49)

where the rows j = 1 : Nx − 1 of the Nx ×Nx matrix Zcm are represented by[
Xj Yj Wj

]
,

and the row j = Nx by[
2Xj 2(Yj −Wj) 0

]
, with

Xj =
Dj−1/2

h2
+

Cj−1/2(mj −mj−1)
2h2

,

Yj =
−Dj+1/2

h2
−

Dj−1/2

h2
−

Cj+1/2(mj+1 −mj)
2h2

+
Cj−1/2(mj −mj−1)

2h2

+Am(j)(1− αmcm(j))− (F1(j) + F2(j)),

Wj =
Dj+1/2

h2
−

Cj+1/2(mj+1 −mj)
2h2

.

Dj+1/2 and Cj+1/2 will be approximated by

Dj+1/2 ' D(
mj+1 + mj

2
),

Cj+1/2 ' C(
mj+1 + mj

2
).

The vector f
cm

looks as follows:

f
cm

=



X1c0

0
...
...
0
0


.

Discretisation in time

Now discretisation in time will be applied. Again the non-linear term (cn+1
m )2

will be approximated by cn+1
m cn

m and ,using the same semi-implicit scheme as
seen before, it follows:

cn+1
m − cn

m

τ
= Zn

cmcn+1
m − αmAmcn

mcn+1
m + fn

cm, (3.50)
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which leads to

(I − τZn
cm + ταmAmcn

m)cn+1
m = cn

m + τfn
cm. (3.51)

3.4.3 Cartilage cellular density

Only discretising in time is necessary because there is only a derivative with
respect to time. With the semi-implicit method it becomes:

∂cc

∂t
= Accc[1− αccc] + F2cm − F3cc, (3.52)

cn+1
c − cn

c

τ
= Acc

n+1
c (1− αcc

n
c ) + F2c

n
m − F3c

n+1
c (3.53)

= (Ac − αcAcc
n
c − F3)cn+1

c + F2c
n
m,

(I − τAc + ταcAcc
n
c + τF3)cn+1

c = cn
c + τF2c

n
m. (3.54)

3.4.4 Bone cellular density

Again like with the equation for the chondrocytes, only discretising in time
is necessary because there is only a derivative with respect to time. With the
semi-implicit method it becomes:

∂cb

∂t
= Abcb[1− αbcb] + F1cm + F3cc − dbcb, (3.55)

cn+1
b − cn

b

τ
= Abc

n+1
b (1− αbc

n
b ) + F1c

n
m + F3c

n
c − dbc

n+1
b (3.56)

= (Ab − αbAbc
n
b − db)cn+1

b + F1c
n
m + F3c

n
c ,

(I − τAb + ταbAbc
n
b + τdb)cn+1

b = cn
b + τF1c

n
m + τF3c

n
c . (3.57)

3.4.5 Cartilage matrix density

Discretising in time using the backward Euler scheme gives:

∂mc

∂t
= Pcs(cm + cc)− Pcsκc(cm + cc)mc −Qcdcbmc (3.58)

= (−Pcsκc(cm + cc)−Qcdcb)mc + Pcs(cm + cc),

mn+1
c −mn

c

τ
= (−Pcsκc(cn

m + cn
c )−Qcdc

n
b )mn+1

c + Pcs(cn
m + cn

c ), (3.59)

(I + τPcsκc(cn
m + cn

c ) + τQcdc
n
b )mn+1

c = (mn
c + τPcs(cn

m + cn
c )). (3.60)
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3.4.6 Bone matrix density

Again the backward Euler scheme is used here:

∂mb

∂t
= Pbs(1− κbmb)cb (3.61)

= Pbscb − Pbsκbcbmb,

mn+1
b −mn

b

τ
= Pbsc

n
b − Pbsκbc

n
b mn+1

b , (3.62)

(I + τPbsκbc
n
b )mn+1

b = mn
b + τPbsc

n
b . (3.63)

3.4.7 Cartilage growth factor concentration

The differential equations for the growth factors contain derivatives in space, so
here the Finite Volume Method will be applied again. The equation was

∂gc

∂t
=

∂

∂x
(Dgc

∂gc

∂x
) + Egccc − dgcgc. (3.64)

Using Finite Volume Method leads to∫ xj+1/2

xj−1/2

∂gc

∂t
dx =

∫ xj+1/2

xj−1/2

∂

∂x

(
Dgc

∂gc

∂x

)
dx (3.65)

+
∫ xj+1/2

xj−1/2

Egcccdx−
∫ xj+1/2

xj−1/2

dgcgcdx,

∫ xj+1/2

xj−1/2

∂gc

∂t
dx =

[
Dgc

∂gc

∂x

]xj+1/2

xj−1/2

(3.66)

+
∫ xj+1/2

xj−1/2

Egcccdx−
∫ xj+1/2

xj−1/2

dgcgcdx.

Integrate all terms:

∂gc(j)

∂t
h = Dgc(j+1/2)

gc(j+1) − gc(j)

h
−Dgc(j−1/2)

gc(j) − gc(j−1)

h
(3.67)

+Egc(j)cc(j)h− dgc(j)gc(j)h,

and dividing by h

∂gc(j)

∂t
= Dgc(j+1/2)

gc(j+1) − gc(j)

h2
−Dgc(j−1/2)

gc(j) − gc(j−1)

h2
(3.68)

+Egc(j)cc(j) − dgc(j)gc(j).

Since Dgc and dgc are constant

∂gc(j)

∂t
= Dgc

gc(j+1) − 2gc(j) + gc(j−1)

h2
+ Egc(j)cc(j) − dgcgc(j), (3.69)
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so the vector differential equation becomes

∂g
c

∂t
= Zgcgc

+ Egccc, (3.70)

where the rows of Zgc are given by

Zgc =
[

Dgc

h2 −2Dgc

h2 − dgc
Dgc

h2

]
.

Applying the semi-implicit method and losing the underlines gives

gn+1
c − gn

c

τ
= Zn

gcg
n+1
c + Egcc

n
c (3.71)

and finally

(I − τZn
gc)g

n+1
c = gn

c + τEgcc
n
c . (3.72)

3.4.8 Bone growth factor concentration

The equation for gb is the same as the one for gc with changing the subscript c
to subscript b, which leaves

(I − τZn
gb)g

n+1
b = gn

b + τEgbc
n
b , (3.73)

where the rows of Zgb are represented by

Zgb =
[

Dgb

h2 −2Dgb

h2 − dgb
Dgb

h2

]
.

3.5 Model of Prendergast in 2D

In 2D only the discretisation for the equations for the cellular mesenchymal
cell density and the fibrous cellular density have to be extended. The three-
point method and the central scheme is used for discretisation in space and the
backward Euler scheme for discretisation in time.

3.5.1 Mesenchymal cellular density

∂cm

∂t
= Dm∇2cm + Pm(1− ctot)cm − Ff (1− cf )cm (3.74)

−Fc(1− cc)cm − Fb(1− cb)cm,

∂cf

∂t
= Df∇2cf + Pf (1− ctot)cf + Ff (1− cf )cm − Fc(1− cc)cf (3.75)

−Fb(1− cb)cf .
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Discretising gives:

∂cm

∂t
= Dm∇2cm + Pm(1− cc − cf − cb)cm − Pmc2

m (3.76)

−Ff (1− cf )cm − Fc(1− cc)cm − Fb(1− cb)cm

∂cm(i,j)

∂t
= Dm(i,j)

cm(i−1,j) − 2cm(i,j) + cm(i+1,j)

h2
(3.77)

+Dm(i,j)

cm(i,j−1) − 2cm(i,j) + cm(i,j+1)

h2

+Pm(i,j)(1− cc(i,j) − cf(i,j) − cb(i,j))cm(i,j) − Pm(i,j)c
2
m(i,j)

−Ff (1− cf(i,j))cm(i,j) − Fc(1− cc(i,j))cm(i,j) − Fb(1− cb(i,j))cm(i,j)

= (
Dm(i,j)

h2
)(cm(i−1),j + cm(i+1),j + cm(i,j−1) + cm(i,j+1))

+(
−4Dm(i,j)

h2
+ Pm(i,j)(1− cc(i,j) − cf(i,j) − cb(i,j))− Ff (1− cf(i,j))

−Fc(1− cc(i,j))− Fb(1− cb(i,j)))cm(i,j).

So at the end it becomes a time-dependent vector-differential equation:

∂cm

∂t
= Zcmcm − Pmc2

m + f
m

, (3.78)

where the rows of Zcm are represented by
Dm

h2

Dm

h2
−4Dm

h2 + Pm(1− cc − cf − cb)− Ff (1− cf )− Fc(1− cc)− Fb(1− cb) Dm

h2

Dm

h2


and

Pm = Pm0(1−mc −mb), Dm = Dm0(1−mc −mb). (3.79)
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The Nx(Nx + 1)×Nx(Nx + 1) matrix Zcm has the form:

B 2A A

A
. . . A

. . .
. . . . . . . . . . . .

A
. . . A

. . .
2A B A

A B 2A A
. . . A

. . . A
. . .

. . . . . . . . . . . . . . .
. . . A

. . . A
. . .

A 2A B A
2A B 2A

. . . A
. . . A

. . . . . . . . . . . .
. . . A

. . . A
2A 2A B



,

where

A =
Dm

h2

and

B =
−4Dm

h2
+ Pm(1− cc − cf − cb)− Ff (1− cf )− Fc(1− cc)− Fb(1− cb),

both dependent of the spatial coordinates (i, j). The 2’s result from the
Neumann boundary conditions.

The vectors cm and f
m

are represented by:

cm =



cm(0,1)

cm(1,1)

...
cm(Nx,1)

cm(0,2)

cm(1,2)

...
cm(Nx,2)

...
cm(0,Nx)

...
cm(Nx,Nx)



,
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f
m

=



Acmax

...
Acmax

0

...

0


,

where the first entries of the vector fm follow from the Dirichlet-boundary
condition given on the periosteum.

For the discretisation in time the semi-implicit method is used, because
of the non-linear term in the equation. It follows (for simplicity the underlining
is left behind):

cn+1
m − cn

m

τ
= Zn

cmcn+1
m − Pn

mcn
mcn+1

m + fn
m (3.80)

Collecting terms gives:

cn+1
m = cn

m + τ(Zn
cmcn+1

m − Pn
mcn

mcn+1
m + fn

m) (3.81)

and finally

cn+1
m = (I − τ(Zn

cm − Pn
mcn

m))−1(cn
m + τfn

m) (3.82)

3.5.2 Fibrous cellular density

For the fibrous cellular density the same procedure will be followed. Now all the
boundaries have Neumann boundary conditions.



3.5Model of Prendergast in 2D 29

This results in a (Nx + 1)2 × (Nx + 1)2 matrix Zcf :

B 2A 2A

A
. . . A

. . .
. . . . . . . . . . . .

A
. . . A

. . .
2A B 2A

A B 2A A
. . . A

. . . A
. . .

. . . . . . . . . . . . . . .
. . . A

. . . A
. . .

A 2A B A
2A B 2A

. . . A
. . . A

. . . . . . . . . . . .
. . . A

. . . A
2A 2A B



,

where

A =
Df

h2

and

B =
−4Df

h2
+ Pf (1− cc − cf − cb) + Ff (1− cf )− Fc(1− cc)− Fb(1− cb),

both depending on the spatial coordinates (i, j). Again the 2’s result from the
Neumann boundary conditions.

The vectors cf and f
f

are given by

cf =



cf(0,0)

cf(1,0)

...
cf(Nx,0)

cf(0,1)

cf(1,1)

...
cf(Nx,1)

...
cf(0,Nx)

...
cf(Nx,Nx)



and f
f

=



0
0

...

0


.
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Chapter 4

Numerical Results

Before running the model due to Prendergast to simulate the bone-ingrowth
process in 1D, the following values are chosen for the non-dimensionalized pa-
rameters:
Dm0 = 0.3456, Df0 = 0.1152, Pb0 = 0.5, Pc0 = 0.75, Pm0 = 1.2, Pf0 = 0.1,
Ff = 0.01, Fc = 0.3, Fb = 0.15, Qf = 0.06, Qb = 0.1, Qc = 0.2, Db = Qb,
Dc = Qc, cmax = 1;
Time t is in days and the thickness of the prosthesis L, where the bone has to
grow into, is chosen to be 10mm.

4.1 Cellular and matrix densities

4.1.1 Results in 1D

Figure 4.1 represents the cellular densities of the four tissues after 3, 9, 30 and
60 days. The red line represents the mesenchymal cellular density, the blue
line the fibrous cellular density. The cartilage and bone cellular densities are
represented by respectively the cyan line and the green line.
The migration of the mesenchymal cells becomes clear in the plots for t = 3
and t = 9. At t = 3 the closer to the periosteum, the higher the density of
mesenchymal cells and at t = 9 you can see a kind of wave pattern where the
densities between l = 4 and l = 8 are higher then at l = 3.
As expected the level of chondrocytes is higher than the level of osteoblasts at
the beginning of the process, but as time progresses the osteoblasts take over
and keep growing, while the density of chondrocytes decreases.
The fibroblasts level stays very low during the whole process except very near
the periosteum, where the density seems to grow a little.

Figure 4.2 represents the matrix densities of the different tissues. The
level of fibrous tissue is very low and a closer look at the densities learns that
its highest value is mf = 0.0039. This value is reached after 15 days, whereafter
it decreases again.
At time t = 3 already a little cartilage is formed and very little bone. At time
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Figure 4.1: Cellular densities after 3, 9, 30 and 60 days. The red line represents
the mesenchymal cells, the blue line the fibroblasts, chondrocytes are given in
cyan and osteoblasts in green.

t = 9 the cartilage and bone tissues both increased, but there is still more
cartilage than there is bone. Between t = 9 and t = 30 endochondral ossification
takes place, because at t = 30 the cartilage level has decreased, while the bone
tissue has grown. Around t = 60 almost all cartilage has disappeared and the
whole tissue consist of bone.
It is interesting to find out when the endochondral ossification will take place.
In figure 4.3 the matrix density at the periosteum is plotted against the time.
It turns out that around t = 15 the endochondral ossification starts and the
cartilage will be replaced by bone.

4.1.2 Results in 2D

Running the model in two dimensions gives comparable results. In figure 4.4 the
density of the mesenchymal cells at t = 9 is shown and like in one dimension a
wave pattern is observed. At the right the osteoblast density is plotted, which
has the same pattern as in one dimension.
At the bottom the matrix densities of cartilage and bone are shown at t = 15,
which is around the time that the endochondral ossification starts. At t = 15
the level of cartilage is still higher than the level of bone.
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Figure 4.2: Matrix densities after 3, 9, 30 and 60 days. The blue line represents
fibrous tissue, cartilage is given in cyan and bone in green.

Figure 4.3: Matrix densities at the periosteum during time of healing. The blue
line represents fibrous tissue, cartilage is given in cyan and bone in green.

4.2 Influence of parameters

It is assumed the bone is strong enough if the matrix density has reached
level mb = 0.95. Figure 4.5 shows the bone ingrowth in the whole length as a
function of the time (in 1D). As mentioned the matrix density level is 0.95.
Simulation of the model gives that at t = 42.3 the bone growth starts near
the periosteum and has grown into the whole length at time t = 53.7. It is
interesting now to find out which parameters have the most influence on the
rate of the bone ingrowth. To this purpose T is assumed to be the time the bone
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Figure 4.4: At the top left the mesenchymal cellular density is shown at t = 9.
At the top right the density of the osteoblasts is given at t = 9. The plot at the
bottom left represents the matrix density of cartilage at t = 15 and the plot at
the bottom right the matrix density of bone at t = 15.

Figure 4.5: The bone ingrowth process starts at t = 42.3 and is finished at
t = 53.7

is fully grown in. This T depends on the different parameters. The gradient
vector of T around the given data for the parameters will be approximated and
from this an estimate can be made for a measure of the sensitivity of the model
to the different parameters. This will be done for the 1D model.

Using the central scheme and setting

T = T (Dm0, Df0, Pm0, Pf0, Pc0, Pb0, Qc, Qb, Ff , Fc, Fb)
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gives a gradient vector

∇T =



∂T/∂Dm0

∂T/∂Df0

∂T/∂Pm0

∂T/∂Pf0

∂T/∂Pc0

∂T/∂Pb0

∂T/∂Qc

∂T/∂Qb

∂T/∂Ff

∂T/∂Fc

∂T/∂Fb



=



−12
0

−6.75
0
0

−4.5
1.5
−450

0
7.5
−80.5



It is obvious that the parameters with the strongest influence are the
bone production rate Qb and the differentiation rate Fb. Also the mesenchymal
diffusion coefficient Dm0 and the proliferation rate of mesenchymal cells Pm0

and osteoblasts Pb0 have an impact, although much smaller. These parameters
have the property that when their value increases, the bone growth will go
faster.
The opposite holds for the proliferation rate Pc0 and the differentiation rate Fc

of the chondrocytes. When they increase the growth of the bone will go slower.
Further the parameters relating to the fibroblasts and the fibrous tissue seem
to have no effect at all.

Figure 4.6 shows the growth into the bone as a function of time for dif-
ferent values of Qb and Fb. The red line represents the bone growth using the
parameter values as used before. The green line shows the growth when the
parameter values are increased and the black line when the value is decreased.
It is clear Qb has the greatest impact. When Qb = 0.05 the growth has not even
started at t = 60. Study learns it starts at t = 75 and at t = 87 the bone has
fully grown in. For Qb = 1.5 the bone ingrowth is finished considerably faster.
For Fb the same can be concluded from the pictures, although the times of full
ingrowth lie closer to each other.
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Figure 4.6: Values Qb = 0.05, 0.1, 0.15 lead to full ingrowth at T =
87, 53.5, 32.5resp. and values Fb = 0.05, 0.15, 0.25 lead to full ingrowth at
T = 66.5, 53.5, 50.4 resp.
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Chapter 5

Conclusion

In this report the process of tissue differentiation during bone ingrowth into an
shoulder prosthesis has been described. A comparison to the process of fracture
healing has been made and two models to describe this process have been
explained: the model due to Prendergast and the model due to Bailon-Plaza.
A third model is briefly mentioned.

The model due to Prendergast in 1D has been implemented in MAT-
LAB using the central scheme for discretisation in space and the (semi-implicit)
Euler backward scheme for discretisation in time. After this the model is also
simulated in 2D.
To determine the most influential parameters of the model the time T , where
the bone has fully grown in, has been defined as a function of the parameters.
The gradient vector of T has been approximated to find the most important
parameters.

The results show that the values of the initial production rate of bone
tissue Qb and the differentiation rate to osteoblasts Fb have the biggest effect
on the time where full bone ingrowth has been accomplished.
Also it has been shown that a change of parameters relating to fibrous tissue
and the fibroblasts do not change the process of bone tissue production. This
also holds for the initial proliferation rate of cartilage.
The production rate of cartilage tissue and the differentiation rate of chondro-
cytes have a inverse relation with the growth of bone. If their values increase,
the process of bone growth will go slower.
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Chapter 6

Future goals

In this paper it is assumed the mechanical stimuli is constant during the whole
process, for the model of Prendergast. The next step is to add a tension field.
This would be hypothetical, but should be taken as realistic as possible.
Then the model of Prendergast and the model of Bailon-Plaza will be compared.
Since Bailon-Plaza models the growth factors and leaves out the fibroblasts and
the mechanical stimuli, in comparison to the model of Prendergast, a combina-
tion of both models will be constructed.
Further, there exist a 3D implementation of the Prendergast model on an area
of 1 mm3, using Finite Elements. On this model, including the mechanics, a
sensitivity analysis will be performed.
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