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Abstract

In this project the problem of determining the inner and outer regions of the computational domain
for an airbag deployment simulation is addressed. One approach to perform such simulation is via
the structural equations of motion for the airbag fabric dynamics, Euler equations of fluid motion for
the fluid inside the airbag and a coupling algorithm which defines the dependence between the two
systems of equations.

The airbag fabric is discretized as triangular finite elements, and the Finite Volume mesh for the
CFD solution inside the airbag is formed by two types of cells: structured cubic cells which have no
interaction with the airbag fabric, and unstructured cells which are cubic cells that intersect with the
airbag triangulation.

The unstructured cells that intersect the triangulation are called cut-cells and a proper description of
their geometry is required to obtain an accurate solution via the finite volume solver. Two geometric
properties of the cut-cells are particularly important: the exact geometry, i.e. the areas of the sec-
tions of the cell faces inside the flow, which is needed for proper calculations of the fluxes, and the
characterization of the regions of the cut-cells as interior or exterior to the flux.

Developing a robust algorithm to determine the inside/outside regions of the cut-cells is the goal of
this project.
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Chapter 1

Introduction

Nowadays, design phase in engineering relies strongly on computer simulation to decrease the cost of
prototyping and testing, asses feasibility of a project, and to improve a developing product.

Vehicle industry is not the exception. Computer simulation is used to design and test performance and
safety of structures and components inside and outside the vehicles. Examples of areas of application
are: design of the tools to be used in manufacturing processes, stress analysis of the car-body or com-
ponent structures, crashworthiness and occupant safety simulation, and fluid simulation of external
aerodynamics.

Computational Fluid Dynamics has a wide area of applications in the automobile industry, some of
them are: external aerodynamics, in-cylinder flow and combustion, coolant flow, engine compartment
and passenger compartment analyses. [10]

A particular use of CFD is in the design process of airbags. This problem has an additional difficulty
compared to all other CFD simulations used in vehicle design: airbags do not posses a fixed geometry.
The shape of the airbag changes as the flow evolves inside of it and the flow reacts accordingly.

In this section the basic structure of a CFD solver for the coupled simulation of the flow and the airbag
structure is presented. The emphasis of this project is on the treatment of the geometric computations
at the moving boundaries of the airbag.

1-1 Literature Review. Euler Equations and Finite Volume Method.

The three basic ingredients of a scientific model are, [11]:

• Basic laws: express properties well established by measurements, theory, and observations, for
a whole class of systems.

• Constitutive relations: express properties in the same way as basic laws but for a particular
system.

Master of Science Thesis Santiago Alagon Carrillo



2 Introduction

• Conservation laws: express the fact that in many systems a particular measurable property of
an isolated physical system does not change as the system evolves.

Euler’s equations, Equation 1-1, follow from the conservation of mass, conservation of momentum
and conservation of energy of inviscid fluids. [12].

d
dt

∫
Ω

qdΩ+
∫

S
Φ(q, n̂)dS = S(q) (1-1)

for

q =


ρ

ρu
ρv
ρw
ρe

 , and Φ =


ρvn

ρvnu+ p ·nx

ρvnv+ p ·ny

ρvnw+ p ·nz

ρvnH

 (1-2)

where n̂ = (nx,ny,nz) is the outward normal of S, v = (u,v,w) is the velocity Cartesian vector and
S(q) denotes a general source term.

One approach to simulate the deployment of an airbag is to approximate the solution of the flow inside
the airbag using Euler’s equations, approximate the solution of the movement of airbag fabric using
the equations derived from elasticity, and a fluid-structure coupling condition.

The structure-fluid coupling for an inviscid fluid, with structure velocity vs and flow velocity v f ,
results in

v f ·n = vs ·n and p f = ps (1-3)

A correction needs to be done at the interface with the airbag due to the movement of it produced by
the flow. The correction results in the modified Euler equation’s for the fluid domain given by

d
dt

∫
Ω(t)

qdΩ+
∫

S(t)
Φ(q,vs) ·ndS = S(q) (1-4)

where the flux function through the control volume boundary and the boundary state vectors are
defined as

qB =



ρ

ρ(v f −vs)
ρeB

ρ1
...

ρN−1


, and Φ(q,vs) =


ρ(v f −vs)

ρu(v f −vs)+ pI
ρv(v f −vs)+ pI
ρw(v f −vs)+ pI

ρH(v f −vs)+ pvs

 (1-5)

where eB = h− p
ρ
+ 1

2 |v|
2

This coupling approach in numerical methods is known as Arbitrary Lagrangian-Eulerian formula-
tion.The discretization of the Euler equations is performed through the Method of Lines. This means
that the spatial derivatives are replaced by algebraic approximations, using Finite Volumes approach
(FVM), to obtain a system of Ordinary Differential Equations where only time remains as a variable.
The next step is to apply an integration algorithm for initial value Ordinary Differential Equations to
compute the approximate solution of the original Partial Differentia Equation. In other words, the
Method of Lines discretizes the spatial and temporal derivatives separately.
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1-1 Literature Review. Euler Equations and Finite Volume Method. 3

The spatial discretization is performed by a Finite Volumes Method over hexahedral cells, the whole
computational domain is divided into hexahedral cells which are classified into: active cells, if they
belong to the flow region, inactive cells, if they belong outside of the flow region, and cut-cells, which
are the cells intersected by the Finite Element triangulation (FE-triangulation) of the air bag. To
obtain a second order space discretization, the state of the cell face is computed from the state at the
cell center assuming a linear variation.

Boundary conditions for the cells are enforced through the specification of the fluxes at the boundary.
For each cell face there are seven possible conditions, [12]

• wall

• subsonic inflow

• sonic inflow

• supersonic inflow

• subsonic outflow

• sonic outflow

• supersonic outflow

The discretization of elasticity equations for the airbag fabric is performed through a Finite Element
Method (FEM) using triangular elements.

Conditions (1-3) are implemented through the definitions of the fluxes in Φ as defined in (1-5). The
structural velocity at each cell center xc is obtained through means of interpolation between the Finite
Element nodes according to

vs(xc) =
3

∑
i=1

Ni(ξ)vN,i

where vN,i is the nodal velocity and Ni(ξ) is the local shape function evaluated in the FE-element
transformed coordinate system.

The pressure in the cut-cells contributes to each of the nodal forces of the FE partition inside the
cut-cell. The FE-elements inside each cut-cell are partitioned into Nsp-number of segment polygons,
which each exert a force

fp, j = p j(xc)n jS j

on the FE-element. The total contribution to node i is computed according to

fN,i =
Nsp

∑
j=1

Ni(ξ)fp, j.

The coupling is obtained by a standard loose-coupling procedure, i.e., at each time step one evaluation
of FE and flow solver are performed.

For known locations of the FE-elements, the fluid solution is advanced over one time step returning
new contributions to the nodal forces fn of the FE solver. The coupling procedure is represented in
Figure1-1, [13]

Master of Science Thesis Santiago Alagon Carrillo



4 Introduction

Figure 1-1: Schematic fluid-structure coupling algorithm.

1-2 Literature Review. Finite Volume Discretization

The space discretization for FVM can be performed in two types of meshes: structured and unstruc-
tured. In structured meshes, every cell can be referenced by a pair of indexes (i, j), or a triplet (i, j,k)
in 3D, and the number of neighbors every cell possess is equal. In unstructured meshes every cell is
referenced by a single index (i), [14]. Further more, structured meshes can be body-fitted rectangular
or Cartesian immersed body, while unstructured meshes are always body-fitted, see Figure 1-2

Figure 1-2: Mesh examples, reprint from [1]

Finite Volume Methods are suitable for equations derived from conservative principles because the
Finite Volume Formulation is conservative by nature. In the FVM, the terms of the integral form
of the equations are evaluated as fluxes at the surface of each grid cell or finite volume. The flux is
defined in a way that the flux entering the volume is identical in growth or decrease to the flux leaving.

Santiago Alagon Carrillo Master of Science Thesis



1-2 Literature Review. Finite Volume Discretization 5

Thus the importance of the precise determination of the geometry of the control volumes into which
the space is discretized, [15].

Nowadays the most used grids are body fitted, both structured and unstructured, but these techniques
cannot be easily implemented in an automatic way and are cumbersome when dealing with complex
geometries. Recently another grid generating technique has received more attention, the Cartesian
grids. These are faster to generate, and have a straightforward implementation for moving boundaries
and are suitable for automatic grid generation [16].

Cartesian grid methods differ from body-fitted methods in that they are non-body fitted. The whole
domain is divided into a hexahedral grid system, a set of right parallelepipeds, extending through solid
walls within the computational domain. The cells are then flagged as inactive cells, if they belong to
the region where no flow computations will take place, active cells, if they belong to the region where
the flow computations take place, and cut-cells for the cells intersected by the solid walls, see Figure
1-3.

a)

b)

Figure 1-3: (a) Cell flagging; reprint from [2]; (b) Cell classification: flow cell, boundary cell, solid cell;
reprint from [3]

This transforms the problem of conforming the mesh to the surface into the problem of characterizing
and computing the intersection between the Cartesian grid and the surface geometry.

What distinguishes one type of Cartesian grid method from the other is the way boundary conditions
are treated, [17] [5]. One approach is to choose a staircase description of the boundary, see Figure 1-
4(c), and impose the boundary conditions using a forcing function and extrapolation of the variables.
With this approach the solution on the boundary is smeared out to the width of the local cell and no
sharp fluid-to-boundary interphase can be guaranteed. The second approach is defining the so called
cut-cells by discarding the inactive region of each boundary cell, and using only the active cell region
for computations, see Figure 1-4(b).

The remainder of this work is based on a cut-cell formulation of the boundary conditions for a Carte-
sian mesh where the surface of the immersed body, the airbag, consists of triangular elements obtained
from a previous triangulation process.
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6 Introduction

Figure 1-4: (a) Standard scheme, (b) Cut-cell scheme; (c) Staircase implementation; reprint from [4]

As it was already mentioned, the first step in generating a Cartesian grid is performing a cell division
of the domain using a uniform hexahedral grid. Once the hexahedral cells have been defined, they are
marked as active cells, inactive cells and cut-cells. Usually the inactive cells are discarded.

The regions of the cut-cells into which they are divided by the intersection with the immersed body,
in this case the FE-triangulation, also have to be classified as active and inactive. Usually the inactive
sections are discarded as well.

The geometry of the immersed boundary is analyzed for each cell and the Cartesian mesh can be
locally refined to capture the geometry of the body in a more precise manner.

Cut-cells are intersected by the FE-triangulation in an arbitrary way which leads to complex intersec-
tions. Both Cartesian cells and triangles are convex so their intersections results in a convex polygon
referred as triangle-polygon, tp. The edges of the triangle-polygons are obtained by clipping the edges
of the triangles along the faces of the Cartesian cell resulting in the face-segments, fs. The division
of the faces of the Cartesian cell along their intersection with the surface triangulation result in the
face-polygons, fp. This can be seen for an arbitrary Cut-cell in Figure 1-19

Figure 1-5: Anatomy of a cut cell; reprint from [2]
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1-2 Literature Review. Finite Volume Discretization 7

Because the surface can intersect the Cartesian mesh in an arbitrary way, the above mentioned process
may produce small cut-cells which adversely affect the stability of the numerical method. To deal with
this problems three procedures are found commonly in literature,c.f. [18], [5],[19]

1. cell merging, Figure 4-2

2. cell linking, Figure 1-7

3. mixed approach

Figure 1-6: Cell merging for small cut-cells; reprint from [5]

Cartesian Meshes possess some disadvantages, c.f.[5],[2], [1]:

• Some geometrical features such as trailing edges and leading edges, require many levels of
refinement

• Treatment of boundary conditions on irregular cut-cells results in complex coding.

• Cut-cells should not become too small in order to maintain good stability and convergence of
the solution.

• Bodies should not be too close, a minimum of two cells apart.

But in general are well balanced by the advantages they possess, c.f.[5],[2], [1]:

• Easy to convert into an automatic procedure.
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8 Introduction

Figure 1-7: Cell linking for small cut-cells; reprint from [5]

• The meshing difficulties are restricted to lower order manifolds.

• It is possible to accurately impose the boundary conditions in the cut-cells.

• Cut-cell treatment of boundaries results in conservative schemes.

• Cut-cells are decoupled from the surface description.

• Easy implementation with adaptively refined grids.

• Away from the surfaces the good quality of the grid, uniform and orthogonal, imply better
accuracy, lower discretization errors and better efficiency.

• The meshing process is not linked to a particular representation of the boundaries, (NURB,
CAD, triangulation, etcetera). The meshing process may be done using “dirty geometries”,
Figure 1-8

• Motion of the boundaries may be pre-programed and the implementation for moving geometries
quite straight forward.

• Permit the use of high resolution methods.

• Good for iterative methods.

• Good for multiphase/multimaterial flows.

A Cartesian cut-cell method program is comprised of two mayor components, the flow solver and
the geometry calculations. The focus of this work is on the geometry calculation, particularly on
the determination of the active and inactive regions of the cut-cells. In computational geometry this
problem is know as the Point-in-Polyhedron problem, Figure 1-9.
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1-3 Geometrical Calculations for a Cartesian Grid FVM 9

Figure 1-8: Schematics of dirty geometry; reprint from [1]

Figure 1-9: Point-in-Polyhedron Problem in meshing; reprint from [6]

1-3 Geometrical Calculations for a Cartesian Grid FVM

A precise determination of the exact geometry for cut-cells and a robust method to determine the active
and inactive regions of each cut-cell are important for the accuracy of the Finite Volume solver. In
this work the process to obtain the exact geometry of the cut-cells is called the Search Algorithm. The
process which classifies the cells into, active cells, inactive cells and cut cells,is called the Coloring
Algorithm.

To avoid a high computational cost, the whole domain is decomposed into Blocks, which are sets of
neighboring cells, each containing the same number of cells.

Using the Block structure the Search Algorithm is performed in three stages.

• Global search level. This search determines a list of candidate triangular elements form the FE
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triangulation, called the FE-elements, that may intersect each bock.

• Euler search. This search determines a set of FE-elements that may intersect every cell.

• Exact Geometry. This search determines all intersections between Euler cells and FE-elements
using the intersection candidate list. Using this information, the polyhedrons into which a cut-
cell is divided by the FE-triangulation are built.

Performing an exact geometry search for each cell would be too expensive computationally.

In order to describe the how the Search Algorithm determines the exact geometry, the following defi-
nitions based on [20] will be used:

A point is an entity that has a location in space but has no other properties: no volume, or dimension,
Figure 1-10a. An edge is line segment joining two points, called vertices, if an edge has a direction
associated to it, which means that the vertices have an order which defines them as the initial or final
points then the edge is called directed edge, Figure 1-10b,c. A polygonal chain is a curve specified
by a sequence of points, {e1,e2, ...en}, so that the curve consists of the edges between consecutive
vertices, Figure 1-10a , a polygonal chain is said to be closed if the first and last point of the polygonal
chain are linked by and edge. A polygon, denoted by P, is the region enclosed by a single closed
polygonal chain with all its vertices on a single plane, that does not intersect itself, Figure 1-10d,e .
A polygon divides the plane into a bounded region called the interior and an unbounded region. A
weakly simple polygon is polygonal chain embedded in the plane divides it into two regions one of
which is topologically equivalent to a disk, some sides can “touch” but not intersect, Figure 1-10e .

Figure 1-10: Polygon Classification

This work assumes that the polygons are defined in counterclockwise fashion (CCW), that is, the
interior of the polygon is on the left side of each directed edge.

A polygon P2 is said to be contained within another P1 if it lies in the interior region of P1 and their
boundaries do not touch, Figure1-11

A polygon Pq2 is said to be in the n-th level of containment respect to Pq1 if there exist a sequence of
n polygons Pi1 = Pq1 , Pi2 , Pi3 , · · · , Pin−1, Pin = Pq2= where for each j, Pi j is contained in Pi j−1 ,Figure
1-11.
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To be consistent with the counterclockwise description of each general polygon P, where the interior
is always to the left of the boundary, in the case of contained polygons the outer contour is oriented
counterclockwise fashion and the inner contours, in the first level of containment respect to P, are
oriented in clockwise fashion, Figure 1-11

Figure 1-11: Contained polygons, P3 is in the second level of containment respect to P1

A polyhedron, denoted by P , is a solid bounded by polygonal faces, see Figure 1-12. A polyhedron
divides the space into two regions, a bounded region called the interior, and an unbounded region.

A point q is said to be inside P if q belongs to the interior of any polygon P obtained by the intersection
of P and any plane containing q.

Figure 1-12: Examples of polyhedrons; reprint from [7]

To define a CCW description of a polyhedron we make use of what we already know for polygons, as
it is described next.

A set of points in the two dimensional plane, in the case of this work a polygon, is said to be convex
if for every two points, xi and x j, belonging to the set, every point in the straight line joining xi and x j

belongs also to the set.

The convex hull of a polygon P is the smallest convex polygon cP whose vertices are a subset of the
vertices of P and that contains completely P, see Figure 1-13 .

Given a polygon P and its convex hull cP, the outward pointing normal to P is defined as the unitary
vector
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Figure 1-13: Polygon (continuous line) and its convex hull(dashed line).
.

n̂P =
ei+1× ei

||ei+1× ei||
(1-6)

for any two non co-linear neighboring edges ei+1 and ei of cP where the order of the indices is
determined by the CCW description of cP. This vector is orthogonal to the plane where P lies.

A polyhedron P is said to be described in CCW fashion if for all its polygonal faces Pi there exists a
point x in the interior of P arbitrarily close to Pi such that, from the point of view of x, Pi is described
in CCW fashion

A polygon is topologically equivalent to a disk and a polyhedron is topologically equivalent to a
sphere.

1-3-1 Exact Geometry

The algorithm that marks the active and inactive regions of each cut-cell is known as the Coloring
Algorithm.To understand how certain implementations of the Coloring Algorithm can create robust-
ness issues, in this section a review of the Exact Geometry search level of the Search Algorithm is
presented.

As a result of the the Global search and Euler search, each cut-cell has a list containing a set of
candidate FE-elements intersecting it. The purpose of the Exact Geometry search level is to detect
if a certain FE-element of the list of candidates really intersect the cell and, if so, to calculate the
intersection points to construct the geometry of the cut-cell.

To test wether a certain segment intersects a cell, it is straight forward to think of a verification process
in terms of geometry. For example, to calculate the intersection point of a certain FE-element’s edge
with one of the cell’s faces one can think of solving the system for the intersection of the plane
containing the cell’s face and the line containing the FE-elements’s edge. This geometrical analysis
also builds the intersection point in the process. The problem with geometrical methods is that they
require the construction of “new geometry”, called constructors, which have different precision than
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the given data, are subject to round-off errors which at the end result in unknown accuracy for the
intersection points, and are computationally expensive. [2].

Considering the problems that arise from solving the intersection problem in terms of geometrical
descriptions, it is desired to first build topological tools to verify the actual occurrence of an intersec-
tion and if such an intersection really happens then to build the intersection point using geometrical
tools. This way the use of intersection constructors is kept to a minimum and also their effect on
accuracy and on the use of computational resources. After all, the intersection problem is a question
of topology, not of geometry.

To achieve this, two topological tests are used

• Edge test. For each FE edge test wether it intersected by a certain cell’s face, see Figure 1-14b.

• Slice test. For each FE segment test wether it is intersected by a certain cell’s edge, see Figure
1-14c.

Figure 1-14: Exact Tests

In order to understand how these tests work, the concept of the Signed Volume for a tetrahedron,
presented in the next paragraph, needs to be known.

Signed Volume of a Simplex

A simplex is the generalization of a triangle to n-dimensions. The simplex in 3 dimensions is a
tetrahedron.

A known property for simplices is the computation of the volume in determinant form. This property
states that the volume V (T ) of the simplex T with vertices (v0,v1, . . .vd) in d-dimensions is:

V (Tv0v1...vd ) =
1
d!

 v00 v01 . . . v0d−1 1
. . . . . . . . . . . . . . .
vd0 vd1 . . . vdd−1 1

 (1-7)

which, for a tetrahedron T012a reads:

V (T012a) =
1
3!


v00 v01 v02 1
v10 v11 v12 1
v20 v21 v22 1
va0 va1 va2 1

 (1-8)

Master of Science Thesis Santiago Alagon Carrillo



14 Introduction

This volume is positive if the triangle ∆0,1,2 forms a counterclockwise circuit when viewed form a
point located on the side of the plane defined by ∆0,1,2 which is opposite from d, c.f [2], see Figure
1-15

Figure 1-15: Signed Volume Property; reprint form [2]

The half space where the point a is with respect to the plane containing ∆0,1,2 can be determined by
the sign of the volume obtained via the determinant. If this volume is zero the point a is coplanar with
0,1,2.

Using the signed volume property, two tests are defined, the Pierce test and the Inside test

Pierce test

This test determines weather a line segment between two points a and b pierces trough the plane
defined by a triangle ∆0,1,2.

Applying the signed volume test to the triangle ∆0,1,2 and the segment ab, see Figure 1-16, ab crosses
the pane if and only if the signed volumes V (T012a) and V (T012b) have opposite signs

Figure 1-16: Pierce test; reprint form [2]

Inside test

Once it has been verified that the segment ab indeed pierces through the plane where the triangle ∆0,1,2
resides, what need to be determined is if the segment pierces inside the triangle.
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According to the signed volume property, piercing occurs inside the triangle if the the volume of the
tetrahedrons connecting the end points of segment ab with the end points of the edges of the triangle
∆0,1,2 have all the same sign, that is if:

[V (Ta,1,2,b)< 0∧V (Ta,0,1,b)< 0∧V (Ta,2,0,b)< 0]

or
[V (Ta,1,2,b)> 0∧V (Ta,0,1,b)> 0∧V (Ta,2,0,b)> 0]

see Figure 1-17 for a graphic representation of this test.

Figure 1-17: Inside test, reprint form [2]

Topological Characteristics

To obtain the topological characteristics of a cut-cell the first step is to apply the Edge test to determine
which cell faces are pierced by which edges of the FE-elements from the candidate list.

For each of the FE-edges and for each of the cell’s faces, the Edge Test is performed in two stages.
First the Pierce Test is used to determine which of the cell face’s planes the edge pierces. Second, the
Inside Test is performed to determine if the segment pierces the plane inside the cell’s face.

Then it needs to be determined is which of the triangular FE-elements of the FE-mesh cut each of the
Euler cell’s edges. This is done using the Slice Test.

The Slice Test is performed in two stages. First the Pierce Test is performed to determine if a certain
Euler cell’s edge pierces trough any of the FE-element’s planes. Second, the Inside Test is performed
to determine if the cell’s edge pierces inside the FE-element.

Degenerate cases There exist six cases where the Pierce Test or Slice Test may fail:

1- FE-node coincides with a face, see Figure 1-18a.

2- FE-node coincides with a cell edge, see Figure 1-18b.

3- FE-node coincides with cell vertex, see Figure 1-18c.

4- FE-edge intersects with a cell edge, see Figure 1-18d.
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5- FE-edge intersects with a cell vertex, see Figure 1-18e.

6- FE-element intersects with a cell vertex, see Figure 1-18f.

Figure 1-18: Degenerate cases

When cases 1, 2 or 3 occur the Edge test concludes no piercing because one of the signed volumes
is zero. When cases 2 and 3 are found also the Slice test fails because one of its components gives a
zero volume.

When cases 4 and 5 occur the Edge test fails because one of the components of the Inside test has a
zero volume.

When case 6 occurs the Edge test fails because one of the components of the Pierce test has zero
volume.

In this cases the computation of the polypoint is performed knowing that the location of the polypoint
will be coplanar with the cell face.
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Geometrical Characteristics

After applying the above mentioned tests, the FE-edges intersecting each cell face it are known, as
well as the FE-elements cutting each of the cells’ edges. The points where an FE-edge pierces a cell’s
face and the points where a cell’s edge intersects a FE-element are known as polypoints, denoted by
ppi. To build the exact geometry of the cut-cells the polypoints have to be calculated.

Geometrical constructors were originally rejected because the problem of wether or not an edge
pierces a plane inside a certain region is a problem of topology and not of geometry, but once the
existence of polypoints has been established geometrical constructors should be used to obtain the
actual location of the polypoints, [2], and the polyhedrons into which the cut-cells are divided by the
airbag.

Figure 1-19: Anatomy of a cut cell; reprint from [2]

To describe the geometry of the cut-cells the following definitions will be employed.

A FE-element is said to slice a cell face if at least one vertex vi of the FE-element is in one half-
space into which the whole space is divided by the cell face’s plane, a second vertex v j of the same
FE-element is on the other half-space, and the intersection between the FE-element and the cell face,
result in a section of straight line called face segment, f s, see Figure 1-20a. To distinguish this type
of face segments from other types which will be mentioned, the prefix s is used, s-face segment, s f s.

Figure 1-20: Classification of face segments and polypoints

A FE-element is said to slice with an edge a cell face if exactly two of its vertices vi and v j are coplanar
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with the cell-face and the intersection of the edge joining vi and v j with the cell face results in a line
segment, which is also a type of face segment. For this type of face segments the prefix t will be used,
t-face segment, t f s, see Figure 1-20b.

A FE-element is coplanar with a cell-face if its three vertices are co-planar with the cell face’s plane.
For a given cell face, Pc f , the intersection of a coplanar FE-element edges with Pc f results in a third
type of face segments for which the prefix p will be employed, p-face segment, p f s, see Figure 1-20c.

The three types of face segments can coincide exactly with a section of a cell face edge.

Inside/Outside Determination

Once the polyhedrons constituting each cut-cell are constructed by the Search Algorithm, it is neces-
sary to determine if they are active or inactive, as well as their volume, and area of the polygonal faces
to make the flux calculations for the Finite Volume Solver.

One way to determine the active polyhedrons in each cut-cell is through the determination of the
active face polygons. This transforms the three dimensional problem of the activity determination for
polyhedrons into a two dimensional problem of the activity determination for their polygonal faces.

The remainder of this work assumes that for each cut-cell’s face all observations are performed
from a point of view of an observer inside the cut-cell, which means that, when speaking of a cell
face and its face polygons, it is assumed that the outward pointing normal of that face, with respect to
the cell polyhedron, points away from the view point. It is assumed also that an order for the vertices
of the cell face is determined, i.e. there is one vertex known as the first vertex, see Figure1-21

Figure 1-21: View point for cut cell

The airbag is a polyhedron Pa. When Pa is sliced by a plane l, the plane slices the polyhedron into a
set of polygons {Pa}i, Figure 1-22.

For a polygon Pa∗ for which each of its edges is the result of a FE-element slicing the plane l, the
outward normal, n̂, of each triangular FE-element is known, so an outward pointing normal to each
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Figure 1-22: Equivalence to two-dimensional problem

face segment, with respect to the airbag, can be determined by projecting n̂ over the plane l. We
identify this projection by

p̂n (1-9)

Figure 1-23: Projected and rotated normal

Rotating p̂n by +90◦ over the plane l, with respect of the interior observer point of view, a direction
is obtained for each s-face segment on the boundary of Pa∗ , this direction is called the normal induced
CCW (niCCW) direction. See Figure 1-23.

The interior points of Pa∗ when its boundary is traversed in the niCCW direction of its face segments
are also iterior points of the airbag polyhedron Pa. In this sense the interior points of the polygon Pa∗

according to the niCCW direction of its face segments are consistent with the interior points of the
polyhedron Pa.

The same occurs for intersections of the FE-triangulation, Pa, and a cell face’s plane lc f . The plane
lc f is divided into four types of regions: interior points to the intersection of the set {Pa}i with the cell
face polygon Pc f ; interior points only to the set {Pa}i; interior point only to the cell face polygon Pc f ,
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and point which do not belong to either {Pa}i or Pc f . To determine the active face polygons, what
needs to be determined is the points that belong to both the interior of Pc f and {Pa}i, see Figure 1-24.

Figure 1-24: Cell face plane regions

If all the edges of the polygons {Pa}i are s-face segments, then each of them has an niCCW direction,
and the same for the edges of the cell face polygon Pc f . In this case, active face polygons will be the
points for which the CCW direction of their boundary is consistent with the niCCW direction of their
edges, see Figure 1-24

This requires the description of all face polygons in CCW fashion for comparison with the niCCW
direction of the edges. This is straigth forward for the Simple polygons, but because the airbag poly-
hedron is in general non-convex, a plane might slice the polyhedron in a set of simple polygons that
can be contained one into the other, see Figure1-25.

For the contained polygons, these are transformed into weakly simple polygons by joining the first
vertex of an internal contour with the first vertex of the polygon containing it using a dummy edge.
The dummy edge is traversed in both directions and each of the simple polygons is described on
counterclockwise fashion. See Figure 1-26.

An extreme geometrical case, known as collapsing FE-segments, occurs when the airbag folds causing
two neighboring triangular FE-segments to become almost co-planar. In this project the problem of
collapsing FE-segments will be ignored, see Figure 1-27.

Unfortunately the inside/outside determination method described above assumes that all face segments
are s-face segments, so a niCCW direction can be assigned to all of them, but this is not always the
case, as it happens when the face polygons contain t-face segments or p-face segments, see Figure1-
28a. This method is also uncapable of determining the activity status of faces flagged as cut faces but
which are cut at a single polypoint, Figure1-28b

The goal of this work is to develop a robust method to determine the inside/outside polyhedrons of
each cut-cell in order to solve the deficiencies of the Signed Volume Test.
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Figure 1-25: Plane slicing a non-convex polyhedron

Figure 1-26: Polygonal decomposition

Figure 1-27: Collapsing triangles
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Figure 1-28: Cases where no niCCW can be determined.

1-4 Research Question

In the previous section an overview of the Search Algorithm was presented. Once the exact geometry
is known, the goal of the Coloring Algorithm is to mark the active and inactive cells as well as the
active and inactive regions of the cut-cells. The goal of this work is to answer the following question:

How to determine which region in a cut-cell belongs to the flow and which out-side in a consistent
way and for cases where no niCCW direction can be chosen for the face segments or where a
cut cell is cut at a single polypoint?

The only known fact about the cut-cells, in general, is their classification as such, but not which
regions in them belong to the flow and which outside.

Thinking of a test to define the inner and outer regions of a cut-cell seems straight forward in terms of
any of the standard tests for the Point in Polyhedron Problem used un computational geometry.

For example the Line Crossing Test, Figure 1-29, which determines if a point is inside a polygon by
counting the number of times a ray emanating from the point being tested to the “infinity” crosses the
boundary of the polygon, could be used taking any test point in any of the two regions of a cut-cell and
the centroid of any of the active cells, tracing a line segment between those two points and counting
the number of intersections would reveal the answer. But soon problems arise, for example:

Figure 1-29: Line crossing principle; reprint from [8]

• How to choose the test point in the cut-cell?
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• How does the choice of the active cell affects the accuracy and what role does connectivity
plays?

• What happens if the test point in the cut-cell is too close to the airbag’s boundary?

This problems become more complicated taking into account the fact that the boundary in the problem
at hand is a moving, flexible boundary.

The above mentioned research question is the research topic that this work will address.
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Chapter 2

Geometrical Modeling and Test problems

2-1 Abstract Geometrical Modeling

A method to determine the active and inactive face polygons of the cut-cells, which we will call the
Consistency Method, was suggested in the previous chapter. This method works by verifying the
consistency between the CCW description of the face polygons and the niCCW traversing direction
of their edges, but it is not applicable in a number of cases. Nonetheless the underlying ideas of that
method can be used to design other strategies.

In what follows of this section, a mathematical formulation for geometric modeling, based on [9],
is used to support and to give a formal proof of the ideas behind the Consistency Method, then, a
classification for the cut cells will be presented, from which the test cases are defined.

For both the airbag polyhedron Pa and each cell polyhedron Pc there is a counter-clock wise descrip-
tion and the outward pointing normals of their faces are known.

As it is depicted in Figures 1-22, Figure 1-25, and Figure 2-1 when one of this polyhedrons is sliced
transversally by an infinite plane, the intersection of the polyhedron with the plane results in a polygon
for which a normal induced counter-clock wise (niCCW) description can be obtained.

In the case of a cut-cell and its cut faces, considering the plane to which one of its faces Pc f belongs,
we know that both the cell face polygon, Pc f , and the polygon Pa resulting from the intersection of the
airbag and the plane, can be described in CCW fashion such that the interior points to these polygons
according to this description are consistent with the interior points of the polyhedrons, Pa and Pc, see
Figure 2-1

In [9] an algebra of simplices is used to represent any solid in n-dimensions in a unique manner. With
this algebra, operations such as intersection and union between solids can be performed obtaining
unique representations for the result.

The set of objects for which this algebra is defined are the simplices. A simplex in n-dimensions is
a generalization of a triangle to the n-dimensional space, in the plane a simplex is a triangle and in
space a simples is a tetrahedron.
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Figure 2-1: Interior points of Pa, Pc, Pc f and Pa

.

On the plane with origin O, for a polygon P on it, we define: the simplices Si obtained for each
edge viv j of P as the region enclosed by the vertices O, vi and v j; the triangles Ti as the oriented
triangle (O,vi,v j) according to the order of the vertices vi, v j in P; and the integer coefficients αi as
αi = sign(Area_sign(Ti)) where sign is the sign function and Area_sign is the signed area of Ti. See
Figure2-2

Figure 2-2: Objects of the algebra of simplices.
.

In [9] it is shown that any polygon P can be associated to a simplicial chain of the form
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χ =
m

∑
i=1

αiSi (2-1)

and, for a point x ∈ Rd , to the characteristic function

fχ : R2→ Z, fχ(x) =
m

∑
i=1

αi (2-2)

That is, in each point in R2 the characteristic function takes the values of the sum of the coefficients
of the simplices containing x.

The association between a given polygon and a polygonal chain is done through the characteristic
function fχ, any point x in the plane is determined to be in P if fχ 6= 0, that is, if the sum of the
coefficients of the simplices that contain the point is different from zero. In [9] it is shown that
this association is unique. Figure 2-3 presents an example of the association of a polygon with its
simplicial chain.

Figure 2-3: Example of simplicial chain association, reprint from [9]
.

In [9] the following theorem is proven
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Theorem 1. Let P1 and P2 be polyhedral solids in Rd , and χ1 and χ2 their associated chains respec-
tively

χ1 =
n

∑
i=1

αiSi , χ2 =
m

∑
j=1

βiTi

Then the associated normal chain to the intersection solid Pχ = P1∩P2 is

χ =
n

∑
i=1

m

∑
j=1

(αi ·β j) ·Sim(Si∩Tj)

where Sim(Si∩Tj) is the simplex obtained by as the intersection of the simplices Si and Tj.

As it was noted in Section 1-3-1, by slicing the airbag polyhedron with the infinite plane lc f of a cell
face polygon Pc f , the intersection results in a polygon PA, know in counterclockwise order. The cell-
face Pc f is also a polygon, contained in lc f , known in counterclockwise order, so, applying Theorem
1, the intersection of the polygons PA and Pc f , is representable by a normal simplicail chain

χAC = PA∩PC =
n

∑
i=1

m

∑
j=1

(αi ·β j) ·Sim(Si∩Tj)

where the coefficient ci j = (αi ·β j) is given by

ci j =

{
1 where the intersection is non-empty

0 where the intersection is empty

the intersection polygon χAC is known in counterclockwise order.

The plane lc f where the cell face Pc f lies, is divided into four types of regions: interior points to the
intersection of the set {Pa}i with the cell face polygon Pc f , interior points only to PA, interior points
only to the cell face polygon Pc f ; and points which do not belong to either PA or Pc f . To determine the
active face polygons, what needs to be determined is the points that belong to both the interior of Pc f

and PA, see Figure 2-4.

Theorem 1 proves that χAC, that is, the active face polygon, is the one whose edges, when traversed
in CCW direction are traversed in the same direction as the niCCW direction.The other three types of
regions can be characterized by how the boundaries of PA and Pc f are traversed relative to arbitrary
points in each region. Analyzing an arbitrary point p totally contained in each region, keeping in mind
the χχAC representation of PA∩Pc f , and given the characterization of the interior points to a polygon
as the points always to the left of the boundary when traversed in counterclockwise direction, the four
regions are characterized as follows, see Figure 2-5.

1- If p ∈ PA∩Pc f , the description of both PA and Pc f , when described in counterclockwise order with
respect to the point of view of q, is consistent with their general counterclockwise description
in the plane.

2- If p /∈ PA and p /∈ Pc f , the description of both PA and Pc f , when described in counterclockwise
order with respect to the point of view of q, is not consistent with their general counterclockwise
description in the plane.
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Figure 2-4: Cell face plane regions

3- If p∈ PA and p /∈ Pc f , the description of PA, when described in counterclockwise order with respect
to the point of view of q, is consistent with the general counterclockwise description in the plane,
but the description of Pc f , when described in counterclockwise order with respect to the point
of view of q, is not consistent with the general counterclockwise description in the plane.

4- If p /∈ PA and p ∈ Pc f , the description of Pc f , when described in counterclockwise order with
respect to the point of view of q, is not consistent with the general counterclockwise description
in the plane, but the description of PA, when described in counterclockwise order with respect to
the point of view of q, is consistent with the general counterclockwise description in the plane.

Figure 2-5: Regions for the airbag polygon and cell faces
.
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The active face polygons of each cut-cell face can be obtained by computing the simplicial chains of
PA and Pc f and then computing the intersection. The disadvantage of this approach is that it requires
the complete simplicial characterization of PA for every cut-cell face plane. Given the number of cells
and the anisotropic nature of the grid, this is not an efficient approach.

For the interior of the cut-cell’s face polygons Pc f , the former approach can be modified to obtain
a local method. The polygonal regions inside Pc f satisfy one of the two characterizations 1 or 4
mentioned above. From the description of the face polygons in CCW fashion, it follows that the
interior regions to the flow are the ones for which, for an arbitrary point p inside such polygonal
region, the CCW description of the boundary from the point of view of p is consistent with the niCCW
description of PA and Pc f . In this way the complete niCCW description of PA is not required, which is
the drawback of a non-local method, because the outward normal to each FE- segment is known, by
projecting the normal into the cell face Pc f and rotating 90◦ the niCCW direction of the segments of
PA inside Pc f is known.

Result 1. The polygonal regions inside each cut cell face Pa belonging to the flow regions are those
for which the CCW description of their boundaries, is completely consistent with the niCCW face
segments directions of the polygons Pa and Pc f .

2-2 Test Problems

To verify that the solution methods work, a set of test problems must be constructed. These test cases
must be representative of all the possible cut-cell cases that may appear in the meshing process.

In order to construct the test cases in a general way in a manner which allows to cover all possibilities
that can occur, the test cases are classified according to the number of zeros in the Signed Volume test
that each FE-element can have for its vertices with respect to a single cell face plane.

Given a cell face polygon Pc f in the plane lc f , and a set of FE-elements, Pei , sharing a vertex v∗ the
following can occur.

• At most one zero and only s-face segments, (Test case 1): All FE-elements Pei slice Pc f into a
s-face segments, which means that at most one zero occurs in the signed volume test between
any of the vertices of a FE-element and any three vertices of Pc f .

This case results into face polygons with edges for which a niCCW can be directly obtained
form the FE-elements outward normal. Contained polygons can be the result of this type of
intersections. See Figure 2-6

• Two zeros and one t-face segment for each FE-element: there exist two vertices vi and v j of an
FE-element with zero Signed Volume with respect to the vertices of Pc f . These two vertices,
vi and v j, are linked by a t-face segment for which a niCCW direction cannot be chosen in a
straight forward manner because it is an edge shared by two FE-elements.

This case must be further divided into cases where: the FE-elements sharing the t-face segment
are on the same side of lc f (Test case 2), see Figure 2-7a; and cases where the FE-elements
sharing the t-face segment are on opposite sides of lc f (Test case 3), see Figure 2-7b.

• Three zeros and p-face segments, (Test case 4): at least one of the FE-elements Pei is coplanar
with the cell face Pc f , with non empty intersection, this results into p-face segments for which
a straight forward choice of niCCW direction does not exists, see Figure 2-8
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Figure 2-6: Test case 1.
.

Figure 2-7: a) Test case 2, b) Test case 3
.

Figure 2-8: Test case 4
.

• Only one zero at v∗ and no FE-element’s edges piercing lc f , (Test case 5): for this case no face
segments exist, the cut face contains one single polypoint. There are no edges to attempt to
define a niCCW direction and apply the Consistency Method, Figure 2-9

Figure 2-9: Test case 5
.
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32 Geometrical Modeling and Test problems

• Only one polypoint at v∗ no face segments inside Pc f with FE vertices on both sides of the plane
lc f : for this case no face segments exist, the cut face contains one single polypoint. There are
no edges to attempt to define a niCCW direction and apply the Consistency Method and FE-
elements are on both sides of lc f , the polypoint can occur either at a vertex of Pc f , (Test case
6), or at an edge of Pc f , (Test case 7), Figure 2-10

Figure 2-10: Test case 6 and Test case 7
.

• Only one polypoint at an edge of an FE-element or at the interior of an FE-element: for this
cases no face segment exist, the cut face contains one single polypoint. There are no edges to
attempt to define a niCCW direction and apply the Consistency Method and FE-elements are
on both sides of lc f . This cases will be shown to be treatable as Test cases 6 and 7. Examples
of these cases are shown in Figure 2-11

Figure 2-11: Test case 8 and Test case 9
.
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Chapter 3

Coloring Algorithm, Design

This chapter presents the Coloring Algorithm. Different methods are used depending on the way the
FE triangulation intersects every cut-cell to determine the active and inactive face polygons. The
airbag polyhedron is referred as Pa, and all methods are explained for a particular cut cell Pc. When
no ambiguity exists about the cell face being treated, the cell face polygon is simply referred as Pc f

and its face polygons as Pi, all of which belong to the cell face plane lc f .

3-1 Extended Consistency Method, treatment of Test Cases 1, 2 and 4

According to the Consistency method, the status of a face polygon can be determined by comparing
its CCW description with the niCCW direction of the face segments.

For each cut-cell face, each of its face polygons is traversed in counter-clock wise direction and if the
direction of the face segments on its boundary is contrary to the niCCW direction of the face segments,
then the polygon is determined to belong outside the flow region. Figure3-1 presents an example.

Figure 3-1: Traversing direction consistency.
.

In Figure3-1 a), the cell face is cut into the polygons P1 = p1 p2 p3, P2 = p1 p3 p2 p5 p4 and P3 = p6 p4 p5,
for this case P1 and P3 are consistent with the directions at which the face segments are traversed, while
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P2 is not. It is concluded that the interior of P1 and P3 belong to the flow region while the interior of
P2 belongs outside.

In Figure 3-1 b), the cell face is cut into the polygons P1 = p1 p2 p3, P2 = p1 p3 p2 p5 p4 and P3 = p6 p4 p5,
for this case P2 is consistent with the directions at which the face segments are traversed, while P2 and
P3 are not. It is concluded that the interior of P2 belongs to the flow region while the interior of P1 and
P3 belong outside.

This method works as well for cell faces with contained face polygons. The determination is done
using the description of the contained face polygons as a weakly simple polygons using a dummy
edge which is traversed in both directions in the CCW description. See for example Figure 3-2

Figure 3-2: Non-simple polygon degeneracy.
.

The Consistency Method works for cell faces where all the face segments are s-face segments, such
as in Test case 1, because for this type of face segments a niCCW direction is defined in terms of the
projection of the FE-element’s normal onto the cell face.

When a face polygon has p-face segments or t-face segments on its boundaries, this method fails
because there is no straight forward way to determine a niCCW direction for these face segments,
such as Test cases 2, 3 and 4. This method also fails for cut cell faces marked as cut faces where the
intersection occurs at a single polypoint, in these cases no face segments exist.

A way to extend the Consistency Method so that it works for the problematic test cases 2 and 4, is to
define in a systematic way an outward pointing normal for the FE-element’s edges, and so, a niCCW
direction for the face segments.

Given the airbag polyhedron Pa and an edge e∗ joining the vertices vi and v j, shared by two of its
triangular faces FEk and FEl with outward pointing normals n̂k, n̂l respectively, the edge-outward
pointing normal n̂∗ of e∗ is given by

n̂∗ =
n̂k + n̂l

||n̂k + n̂l||
(3-1)

Figure 3-3 represents the edge-outward normal.

When a face polygon contains on its boundary an edge which happens to be a p-face segment of t-
face segment, its edge-outward pointing normal is determined using 3-1. The edge-outward pointing
normal is then projected onto the cell face and rotated 90◦ to obtain the niCCW direction of the face
polygon’s edge, and the Consistency method can be applied to determine the activity, Figure 3-4

The extension of the Consistency Method using the edge-outward pointing normal is not applicable
for cases where an edge e∗ of the face polygon is a t-face segment for which the FE-elements FEk and
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3-2 Local half-space determination method 1, treatment of Test Case 3 35

Figure 3-3: Edge-outward normal.
.

Figure 3-4: Modification for the Consitency method.
.

FEl sharing it belong to the same half-space with respect to the face polygon’s plane, as in Test case
3 . In this case it can occur that the edge-outward pointing normal n̂∗ has the same direction as the
outward pointing normal of the cell face where the face polygon lies, and the projection of n̂∗ onto the
cell face’s plane results in a vector of magnitude zero, see Figure 3-5

3-2 Local half-space determination method 1, treatment of Test Case 3

In general, when a face polygon, Pi, has an edge e∗ which is a problematic t-face segments, i.e, where
the FE-elements sharing e∗ are on the same half-space defined by lc f , e∗ can be treated as a dummy
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Figure 3-5: projection with magnitude zero.
.

face segment, and the activity of such face polygon is obtained via the Extended Consistency Method
as long as Pi has on its boundary more face segments for which a niCCW direction can be determined,
see Figure 3-6

Figure 3-6: Test Case 2, non-isolated t-face segment.
.
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3-3 Local half-space determination method 2, treatment of Test Case 5 37

For a cell face Pc f where a problematic t-face segment e∗ is the only information available, and the
FE elements FEk and FEl that share e∗, and the set FE elements {FE}i which share edges with FEk
and FEl , all belong to one half-space into which the whole space is divided by lc f , then the cell face
Pc f , whose outward pointing normal is n̂c f , belongs completely inside Pa or completely outside, see
Figure 3-7.

Figure 3-7: Test Case 2.
.

To determine Pc f belongs to the flow region, the edge-outward normal n̂e∗ of e∗ is projected onto n̂c f ,
depending on the sign of the magnitude of the projection and the half-space to which FEk, FEl and
{FE}i belong, the activity of Pc f can be determined.

If FEk, FEl and {FE}i are on the same half-space as the cell polyhedron Pc, with respect to the plane
lc f , and the projection of n̂e∗ onto n̂c f has positive magnitude, then Pc f is inactive, if the magnitude
of the projection is negative, then Pc f is active. On the other hand, if FEk, FEl and {FE}i are on
the complementary half-space to that of the cell polyhedron Pc, with respect to the plane lc f , and the
projection of n̂e∗ onto n̂c f has positive magnitude, then Pc f is active, if the magnitude of the projection
is negative, then Pc f is inactive. See Figure 3-7

3-3 Local half-space determination method 2, treatment of Test Case 5

The way this case it treated follows the same ideas as the Local half-space determination method for
Test case 3. If the cell face Pc f is cut at a single polypoint, p∗, which is also a vertex v∗ of Pa, and no
other information is available for Pc f , then the activity determination of Pc f is based on the magnitude
of the projection of a well chosen outward normal of Pa onto n̂c f .

The number of FE elements that share v∗ is arbitrary, so defining an “averaged” outward normal for all
of them not only is not straight forward but also it can also result on computational robustness issues.

To solve this problem, the information of the normal of a single FE element is used. Based on the
angle αi of the edges emanating from v∗ with respect to the plane lc f , the FE element FE∗ closest
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to Pc f is chosen. The outward pointing normal n̂FE∗ of FE∗ is projected onto n̂c f , and the activity
determination of Pc f follows the same rules as in the previous method for Test case 3, see Figure 3-8.

Figure 3-8: Test Case 5, projected normal.
.
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3-4 Local half-space determination method 3, treatment of Test Cases
6, 7, 8 and 9

Suppose that for a given cell face Pc f the cut point occurs at a single polypoint pp∗ which is also a
vertex of the cell face and a vertex of Pa, see Figure 3-9

Figure 3-9: Test Case 6.
.

The cell face Pc f has a CCW order and thus a first and second edge ordering, cei and cei+1, can be
assigned to its edges sharing pp∗. These edges have outward normals n̂i and n̂i+1 with respect to Pc f

respectively.

Some of the FE elements sharing pp∗ cut through the plane lc f , outside the polygon Pc f , and the edges
of those FE elements intersect lc f at the polypoints pp1, pp2, ... ppn, from which the cut segments
cs1 = (pp∗, pp1), cs2 = (pp∗, pp2), ... csn = (pp∗, ppn) are defined, see Figure 3-10

An ordering of the cut segments csi is defined based on the angle α between each csi and the cell face
edge cei, and thus a first cut segment cs∗ can be chosen. For the cut segment cs∗ an edge-outward
pointing normal, n̂∗, is obtained by projecting the normal of the FE element to which cs∗ belongs onto
the plane lc f , see Figure 3-10

The activity of Pc f is determined by analyzing the sign of the magnitude of the projections n∗i n̂i and
n∗i+1n̂i+1 of n̂∗ onto n̂i and n̂i+1.

The activity of the cell face is determined as follows:

For 0 < α < 90◦

• if n∗i < 0 the cell face is inactive.
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Figure 3-10: Test Case 6, first cut segment and outward normal.
.

• if n∗i > 0 the cell face is active.

For 90◦ < α < 270◦

• if n∗i < 0 the cell face is active.

• if n∗i > 0 the cell face is inactive.

For α = 90◦

• if n∗i+1 < 0 the cell face is active.

• if n∗i+1 > 0 the cell face is inactive.

The same idea is applicable for Test cases 7 and 8, where the application is seen directly by dividing
the FE elements further by dummy edges connecting the polypoint pp∗ with the vertices of the FE
elements, this transforms these cases into Test case 6. In practice it is not necessary to define the
dummy edges, but it helps to visualize the extension of the method.

The method is simplified for Test case 7 where the outward normal information of only one edge of
Pc f is used, see Figure 3-11

The activity of the cell face is determined as follows:

For 0 < α < 90◦
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3-5 Cell faces with no poly points 41

Figure 3-11: Simplification for Test Case 7.
.

• if n∗i < 0 the cell face is inactive.

• if n∗i > 0 the cell face is active.

For 90◦ < α < 180◦

• if n∗i < 0 the cell face is active.

• if n∗i > 0 the cell face is inactive.

Rotating n̂i CCW 90◦ to obtain n̂⊥i and projecting n̂∗ onto n̂⊥i to obtain n∗⊥n̂⊥i then

For α = 90◦

• if n∗⊥ < 0 the cell face is inactive.

• if n∗⊥ > 0 the cell face is active.

3-5 Cell faces with no poly points

The methods developed in the previous sections threat the cell faces which are flagged as cut faces,
that is, faces which contain at least one poly point. To determine the activity status of the faces which
are not cut faces using only local information, it is first noted that these faces’ polygons are formed
completely by cell edges, the determination of the activity of these faces is through the use of an
activity marker for the cell edges as it is explained in the next paragraphs.

During the construction of the cut cells the cell edges must be flagged as either neutral, if a cell edge
contains a polypoint or section of face segment, or inactive, if the cell edge does not intersect the FE
triangulation in anyway. For a cut cell, the Coloring Algorithm first evaluates the activity of the cell
faces flagged as cut. Whenever a cut face has a face polygon with a complete cell edge, ie, an uncut
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cell edge, on its boundary, the cell edge activity flag is left as inactive if the face polygon is determined
to be inactive, or it is switched to active if the face polygon is determined to be active.

After determining the face polygon’s activity for all cut faces, all the uncut cell edges of these cell
faces are also flagged as either active or inactive, based on this information the activity status for the
neighboring uncut cell faces is determined. If an uncut cell face contains at least one cell edge flagged
as active then this cell face polygon is flagged as active.
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Chapter 4

Coloring Algorithm Implementation

4-1 Exact Geometry Requirements

In order to present the implementation of the methods of the previous chapter, first we have to go back
one step and analyze what these methods require that the Exact Geometry Algorithm provide.

In Chapter 1 we described how the Exact Geometry algorithm works based on topological tests and
geometrical constructors in order to calculate the polypoints and to build the face polygons.

Here we briefly describe the requirements on information that the Coloring Algorithm requires from
the Exact Geometry Algorithm.

For the active and inactive cells, the exact geometry information consists of two of their vertices, the
first and the last one, from which the faces can be obtained.

For the cut cells the following information is required:

• two diagonally opposing vertices, v1 and v7 as in Figure 1-21

• a list of FE elements which intersect the faces or are inside the cut cell.

• a list of (six) cell faces, each containing its own geometrical information

The cell faces are divided into types according to the method of the Coloring Algorithm that needs to
be used to analyze the activity of its face polygons. Faces as in Test cases 1,2 and 4 are the first type,
faces as in Test Case 3 are the second type, faces as in Test Case 5 are the third type, and faces as in
Test Cases 6,7,8 and 9 are the fourth type. As it was described in Chapter 2, the classification of the
Test Cases depends on the number of zeros of the Signed Volume, which is information that can be
obtained from the Exact Geometry Algorithm.

For the cut cell faces the following information is required:

• a marker to know if it is a cut face or not.
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• a list of cell edges each with an activity flag which can be either active, inactive or indeterminate.

• Two diagonally opposing vertices, which could be the first and third vertex of each cell accord-
ing to the cell face CCW description starting at the vertex with the lowest global index of a
particular face, as it is shown in Figure 1-21.

• A list of FE-elements which intersect the face.

• A list of polypoints.

• A list of the face segments obtained from the intersection with the FE-triangulation.

• A list of the face edges with a marker to flag them as cut edge, active or inactive.

• A list of the face polygons in CCW fashion

• The type of cut cell face.

For the face segments the following information is required:

• The type of face segment, according to the classification given in Chapter 1.

• If the face segment is a s-face segment, then also its niCCW orientation.

• The FE-elements to which they belong.

For the polypoints the following information is required:

• The FE-Elements to which it belongs. It can be one FE-element if it is the result of a cell edge
piercing a FE-element, two if it is the result of a FE-edge piercing a cell face, or three or more
if it coincides with a FE vertex.

• The number of the edges of the FE elements to which it belongs.

For the face polygons the following information is required:

• An indicator of its activity.

• The vertices.

• The edges in CCW fashion.

4-2 Implementation

In this section the algorithms for each method described in Chapter 3 are presented. The algorithms
are described separately although the implementation of the Coloring Algorithm would contain the
four methods together and the application of each would follow from the type of face being treated.

To show the application of each algorithm a single cut cell is used. In each case the cut cell has a
geometry representative of the test case for which the algorithm is designed.

Prior to the application of the Coloring Algorithm, the faces of the cut cells are colored in blue, and
the FE triangulation is represented in green. After the application of the Coloring Algorithm, the face
polygons interior to the airbag are colored in blue and the face polygons exterior are colored in red.
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4-2-1 Implementation: Extended Consistency Method.

In this subsection the application of the Extended Consistency Method is shown. For this purpose a
test cell and a set of elements of the FE triangulation are chosen such that one of the FE-elements is
coplanar with one of the cell faces, see Figure 4-1.

The pseudocode of the coloring routine is in Algorithm 1.

Figure 4-1: Test case for Extended Consistency Method.

Algorithm 1: Extended Consistency Method.
Input: CellFace(k)→ Pc f = (vc1,vc2,vc3,vc4)
Output: Status of face polygons

1 read: face segments.
2 read: face polygons.
3 n =number of face polygons
4 for i: 1 to n do
5 read: polygon(i)
6 set polygon(i) activity = active
7 m =number of edges polygon(i)
8 for j: 1 to m do
9 if edge( j) is face segment then

10 read: type of face segment.
11 if edge( j) is s-face segment then
12 if edge( j) traversing direction 6= niCCW then
13 set polygon(i) activity = inactive

14 if (edge( j) is t-face segment)
∨

(edge( j) is p-face segment) then
15 read: FE-elements of edge( j)→ {FE1,FE2 }
16 read: normals of {FE1,FE2 }→ {n̂1, n̂2 }
17 compute:edge-outward normal n̂∗
18 project: n̂∗ onto CellFace(k)→ n∗k
19 normalize: n∗k → n̂∗k
20 rotate: n̂∗k → n̂∗⊥CCW

k

21 set: edge( j) niCCW direction→ n̂∗⊥CCW
k

22 if edge( j) traversing direction 6= niCCW then
23 set polygon(i) activity = inactive
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The result is can be seen in Figure 4-2, which shows the FE-elements and their outward pointing
normals and rotated images of the resulting cut-cell.

Figure 4-2: Results for Extended Consistency Method

4-2-2 Implementation: Half-space Determination Method 1.

This subsection presents the pseudocode of the Half-space Determination Method 1, see Algorithm 2.
The notation signVol(a,b,c,d) is used for signed volume of a tetrahedron with triangular base (a,b,c)
and fourth vertex d, where (a,b,c) is in CCW order with respect to d.

Algorithm 2: Half-space Determination Method 1.
Input: CellFace(k)→ Pc f = (vc1,vc2,vc3,vc4)
Output: Status of face polygons

1 read: face segments.
2 read: face polygons.
3 n =number of face polygons // n=1
4 for i: 1 to n do
5 read: polygon(i)
6 set polygon(i) activity = 1
7 get polygon(i) face segment→ e∗ = (ve∗1,ve∗2)
8 read: FE-elements of e∗→ {FEl = (ve∗1,ve∗2,v3),FEk(ve∗1,ve∗2,v4) }
9 read: normals of {FEl,FEk }→ {n̂l, n̂k }

10 compute:edge-outward normal n̂∗
11 project: n̂∗ onto CellFace(k) normal n̂c f → n∗k
12 normalize: n∗k → n̂∗k
13 if signVol(vc1,vc2,vc3,v3)> 0 then
14 if ||n̂∗k + n̂c f ||=2 then
15 set polygon(i) activity = 0

16 if signVol(vc1,vc2,vc3,v3)< 0 then
17 if ||n̂∗k + n̂c f ||=0 then
18 set polygon(i) activity = 0
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4-2-3 Implementation: Half-space Determination Method 2.

In this subsection the application of the Half-space Determination Method 2 is shown. For this purpose
a test cell and a set of elements of the FE triangulation are chosen such that the vertex shared by all
the FE-elements is the only polypoint at one of the cell faces, see Figure 4-3

The pseudocode of the coloring routine is in Algorithm 3.

Figure 4-3: Test case for Half-space Determination Method 2.

The result is can be seen in Figure 4-4, which shows the FE-elements and their outward pointing
normals and rotated images of the resulting cut cell.

Figure 4-4: Results for Half-space Determination Method 2.
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Algorithm 3: Half-space Determination Method 2.
Input: CellFace(k)→ Pc f = (vc1,vc2,vc3,vc4)
Output: Status of face polygons

1 read: face polypoint→ p∗

2 read: FE edges at p∗→ (e1 = (p∗,v1),e2 = (p∗,v2), · · · ,e j = (p∗,v j))
3 read: cell face normal→ n̂c f

4 set face polygon activity = 1
5 α← 1
6 FE∗1 ←null
7 FE∗2 ←null
8 FE∗←null
9 e∗←null

10 βmin← 1
11 //Loop to obtain the FE-element closes to the the cell face
12 for i: 1 to j do
13 β = n̂c f · ei

||ei||
14 if β < α then
15 α = β

16 e∗→ ei = (p∗,vi)
17 read: FE-elements sharing ei→ {FEl,FEk }

18 get: eges eFEl ,eFEk of (FEl,FEk) at p∗ different from e∗

19 compute: angle between eFEl and n̂c f → βl
20 compute: angle between eFEk and n̂c f → βk
21 if βk < βl then
22 set: FE∗← FEk

23 if βl < βk then
24 set: FE∗← FEl

25 read: FE∗ normal→ n̂FE∗

26 n̂test = n̂∗+ vc1
27 if signVol(vc1,vc2,vc3,vi)> 0 then
28 if signVol(vc1,vc2,vc3, n̂test)< 0 then
29 set face polygon activity = 0

30 if signVol(vc1,vc2,vc3,vi)< 0 then
31 if signVol(vc1,vc2,vc3, n̂test)> 0 then
32 set face polygon activity = 0

4-2-4 Implementation: Half-space Determination Method 3.

In this subsection the application of the Half-space Determination Method 3 is shown. For this purpose
a test cell and a set of elements of the FE triangulation are chosen such that the vertex at which the
FE-elements join is the only polypoint at one of the cell faces and the FE elements do not slice the
cell face but some slice through the cell face plane, see Figure 4-5
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The pseudocode of the coloring routine is in Algorithm 4.

Figure 4-5: Test case for Half-space Determination Method 3.

Algorithm 4: Half-space Determination Method 3.
Input: CellFace(k)→ Pc f = (vc1,vc2,vc3,vc4)
Output: Status of face polygons

1 set face polygon activity = 1
2 read: face polypoint→ p∗

3 read: cell face edges cei = (vci,vci+1), cei+1 = (vci+1,vci+2)
4 read: cell face edges normals n̂i, n̂i+1
5 read: FE-elements at p∗→ (FE1,FE2, · · · ,FE j)
6 read: polypoints of FE-elements on lc f plane→{z1,z2, · · ·zk}
7 create: face segments csi = (p∗,zi)i∈(1,2,···k)
8 β← 3π

2
9 FE∗←null

10 //Loop to obtain the FE-element closes to the the cell face
11 for i: 1 to k do
12 compute: angle between csi and n̂i→ βi

13 if βi < β then
14 β = βi

15 FE∗← FEi

16 read: FE∗ normal→ n̂FE∗

17 project: n̂FE∗ onto n̂i and normalize→ n̂i
FE∗

18 project: n̂FE∗ onto n̂i+1 and normalize→ n̂i+1
FE∗

19 if 0 < βi <
π

4 then
20 if ||n̂i + n̂i

FE∗ ||=0 then
21 set polygon(i) activity = 0

22 if π

4 < βi <
3π

4 then
23 if ||n̂i+1 + n̂i+1

FE∗ ||=0 then
24 set polygon(i) activity = 0

25 if 3π

4 < βi <
3π

2 then
26 if ||n̂i + n̂i

FE∗ ||=2 then
27 set polygon(i) activity = 0

The result is can be seen in Figure 4-6, which shows the FE-elements and their outward pointing
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normals and rotated images of the resulting cut cell.

Figure 4-6: Results for Half-space Determination Method 2.

4-3 Implementation Results

The application of the different coloring routines that comprise the Coloring Algorithm successfully
determines the active and inactive polygonal faces of the test cut cells.

The test cut cells chosen are representative of the different types of cut cells that can occur according
to the classification presented in Chapter 2.

The Coloring Algorithm presented is capable of correctly determining the active and inactive regions
of the different types of cut cells that can occur.
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Chapter 5

Conclusions and Future Work

5-1 Contributions

In this project an algorithm, known as the Coloring Algorithm, was developed to determine the active
and inactive polygonal faces of the cut cell for a Cartesian cut-cell method.

The complete Coloring Algorithm comprises of four routines that determine the activity of the face
polygons for different types of cell faces. The classification of the cell faces depends on topological
characteristics which are all verified via the Signed Volume Test.

The proposed Coloring Algorithm presents three qualities which makes it adequate for implementation
for a Cartesian cut cell method:

• A classification of the cut cells was presented based on topological characteristics. Based on
this classification the Coloring Algorithm was designed to be able to treat all the types of cell
faces.

• The determination of the activity of the face polygons depends only on local information avail-
able for each cell. This makes it suitable also for parallel implementations.

• The determination of the activity of the polygonal faces utilizes only topological tests. This
implementation avoids problems derived from machine precision and truncation errors.

The proposed Coloring Algorithm was implemented in Matlab and it was shown to be able to handle
the test problems correctly.

5-2 Conclusions

Although many methods to determine the inside and outside regions of polygons and polyhedra can be
found in the literature, these are in general not suitable for the problem treated in this work. All these
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methods correspond to the solution of the so-called Point in Polyhedron problem, which generally
deals with single objects in space, and most of them rely on a proper selection of a test point and the
use of geometrical constructors.

Due to the large number of cells of a Cartesian mesh and the need to maintain computational efficiency
and accuracy, the usual approaches for the solution for the Point in Polyhedron problem is not suitable.

The Coloring Algorithm designed in this work addresses and solves the deficiencies of the usual
solutions to the Point in Polyhedron problem. Based on the classification for the cut-cells presented in
this work and the choice of the test problems, it is concluded that the Coloring Algorithm designed,
presumably determines correctly the active and inactive regions for all possible geometries of cut-
cells.
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Appendix A

Matlab code

This appendix contains the Matlab implementation of the Coloring Algorithm comprised of the dif-
ferent routines developed in this work. Topological tests, on the FE-elements and cell faces, are
performed during the execution of the Coloring Algorithm in order to define the type of cell faces and
the coloring routines that must be used.

As an input this algorithm receives a cut cell and all it geometrical information.

A-1 Coloring Algorithm

1 %This s c r i t c o n t i a n s t h e methods : Extended c o n c i s t e n c y method , Loca l h a l f
2 %s p a c e d e t e r m i n a t i o n method 2 and Loca l Ha l f s p a c e d e t e r m i n a t i o n method 3
3 %p r e s e n t e d t h e t h e s i s
4

5 %i t r e c e i v e s an o b j e c t o f t h e c l a s s myCell , which c o n t a i n s a l t h e
g e o m e t r i c

6 %i n f o r m a t i o n o f t h e c u t c e l l .
7

8 %t h e r e a r e t h r e e t y p e s o f c e l l f a c e s : f a c e t y p e 1 a r e f a c e s t r e a t e d wi th
9 %t h e Extended c o n c i s t e n c y method , t h i s f a c e s a r e examples o f t e s t c a s e s

1 ,2
10 %and 4 ; f a c e t y p e 3 a r e f a c e s t r e a t e d wi th t h e Loca l h a l f s p a c e
11 %d e t e r m i n a t i o n method 2 , t h e s e f a c e s a r e examples o f t e s t c a s e s 5 ; f a c e
12 %t y p e 3 a r e f a c e s t r e a t e d wi th t h e Loca l h a l f s p a c e d e t e r m i n a t i o n method

2 ,
13 %t h e s e f a c e s a r e examples o f t e s t c a s e s 6 , 7 , 8 and 9 ;
14

15 f u n c t i o n c o l o r C e l l ( myCell )
16

17

18 v1 = [ 0 , 0 , 0 ] ;
19 v2 = [ 1 , 0 , 0 ] ;
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20 v3 = [ 1 , 1 , 0 ] ;
21 v4 = [ 0 , 1 , 0 ] ;
22 v5 = [ 0 , 0 , 1 ] ;
23 v6 = [ 1 , 0 , 1 ] ;
24 v7 = [ 1 , 1 , 1 ] ;
25 v8 = [ 0 , 1 , 1 ] ;
26

27 a c t = myCell . A c t i v i t y ;
28

29 %i f t h e c e l l i s a c t i v e
30 i f ( a c t == 1)
31 %loop ove r f a c e s o f t h e c e l l t o c o l o r each po lygon
32 f o r f = 1 : 6 ;
33

34

35 %r e a d t h e t y p e o f c e l l f a c e
36 faType = myCell . Faces { f } . Type ;
37

38 s w i t c h faType
39

40

41

42

43 c a s e 1 %t e s t c a s e s 1 ,2 ,4
44 segmen t s =myCell . Faces { f } . Segments ;
45

46 numPol=myCell . Faces { f } . NumPol ;
47

48 numSeg=myCell . Faces { f } . NumSeg ;
49

50 %loop ove r t h e o p l y g o n s t o a n a l i z e t h i r a c t i v i t y
51 i f ( numSeg >0)
52 f o r p =1: numPol
53

54 %g e t t h e po lygon p of t h e l i s t o f p o l y g o n s
55 polygon =myCell . Faces { f } . Po lygons {p } ;
56

57 edges = polygon . Edges ;
58 numEdges=myCell . Faces { f } . Po lygons {p } . NumEdge ;
59

60 %loop t o t r a v e r s e t h e po lygon
61 f o r e =1: numEdges
62

63 %loop t o v e r i f y each edge e a g a i n s t t h e
segment s

64 f o r s =1: numSeg
65 %v e r i i c a t i o n on ly t o look f o r i n c o r r e c t
66 %d i r e c t i o n s , by d e a u l t po l y g o n s a r e

a c t i v e
67

68 %t h i s i f v e r i f i e s i f t h e f i r s t p o i n t o f
t h e
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69 %edge e i s t h e same as t h e second p o i n t
o f t h e

70 %segment s .
71 i f ( edges { e } ( 1 ) == segmen t s { s } ( 4 ) )&&(edges {

e } ( 2 ) . . .
72 == segmen t s { s } ( 5 ) )&&(edges { e } ( 3 )

= = . . .
73 segmen t s { s } ( 6 ) )
74

75 %i f t h e above c o n d i t i o n was s a t i f f i e d
, t h e n

76 %t h i s v e r i f i e s i f t h e second p o i n t
t h e edge

77 %e i s t h e same as t h e f i r s t p o i n t o f
t h e

78 %segment s
79 i f ( edges { e } ( 4 ) == segment s { s } ( 1 ) ) &&. . .
80 ( edges { e } ( 5 ) == segmen t s { s } ( 2 ) )

&&. . .
81 ( edges { e } ( 6 ) == segmen t s { s } ( 3 ) )
82

83 %t h i s changes t h e a c t i v i t y o f
po lygon p

84 %t o i n a c t i v e ==0.
85 myCell . Faces { f } . Po lygons {p } .

A c t i v i t y =0;
86 end
87 end
88

89 end
90 end
91 myCell . Faces { f } . Po lygons {p } . A c t i v i t y ;
92 end
93 end
94

95

96

97

98 c a s e {3 ,4} %t e s t c a s e s 5 , 6 , 7 , 8 and 9
99 P p o i n t =myCell . Faces { f } . Po lygons { 2 } . Polygon { : }

100 i n n e r V e r t e x =myCell . Faces { f } . I n n e r V e r t e x
101 ou tVer =myCell . Faces { f } . O u t e r V e r t e x
102 %i n n e r V e r t e x . P p C o o r d i n a t e
103

104 s i g Z e r o =0;
105 s i g P o s =0;
106 s igNeg =0;
107 ang =1;
108 edge =0;
109

110 %e x t r a c t t h e v e r t i c e s o f t h e c e l l f a c e
111 c e l l v e r t =myCell . C e l l v e r t i c e s ;%m a t r i x 8X3 of v e r t i c e s

whole c e l l
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112 c e l l f a c e =myCell . C e l l f a c e s ( f , : ) ; %v e r t i c e s o f c e l l f
113

114 %g e t t h e f i r s t t h r e e v e r t i c e s ( d o e s n t m a t t e r which )
115 v e r t 1 = c e l l v e r t ( c e l l f a c e ( 1 ) , : ) ;
116 v e r t 2 = c e l l v e r t ( c e l l f a c e ( 2 ) , : ) ;
117 v e r t 3 = c e l l v e r t ( c e l l f a c e ( 3 ) , : ) ;
118

119 %e x t r a c t FE e l e m e n t s t o a n a l i z e s i d e o f p l a n e
120 f e v e r t =myCell . FEVert ;
121 f e e l e m s =myCell . FEElems ;
122

123 [ numVert , dummy1]= s i z e ( f e v e r t ) ;
124

125 %loop ove r v e r t i c e s t o o b t a i n s i g n e d volume of t h e
v e r t i c e s

126 %of t h e FE e l e m e n t s w. r . t . t e c e l l f ace , t h i s i s used t o
127 %d e t e r m i n e i f t h e p o l y p o i n t c o r r e s p o n d s t o a problem of

t h e
128 %t y p e t e s t c a s e 5 or t e s t c a s e s 6 , 7 , 8 , o r 9
129 f o r f e v =1: numVert
130 %f e v
131 t e s t V e r t e x = f e v e r t ( fev , : ) ;
132

133 e1= v e r t 1−t e s t V e r t e x ;
134 e2= v e r t 2−t e s t V e r t e x ;
135 e3= v e r t 3−t e s t V e r t e x ;
136

137 v o l = s i g n ( 1 / 6 ∗ d e t ( [ e1 ; e2 ; e3 ] ) ) ;
138

139 %n e x t two i f ’ s c o u n t t h e p o s s i t i v e and n e g a t i v e
140 i f v o l ==1
141 s i g P o s = s i g P o s +1;
142 end
143

144 i f v o l ==−1
145 s igNeg = sigNeg +1;
146 end
147

148 end
149

150 s i g P o s
151 s igNeg
152

153 %
−%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

154 %c o n d i t i o n f o r t e s t c a s e 5
155 i f ( s i g P o s ==0 | | s igNeg ==0)
156 s i g Z e r o =56;
157 normal =myCell . C e l l n o r m a l s ( f , : )
158 i n c i d e n t E d g e s = i n n e r V e r t e x . EdgesPp ;
159

160 [ numEdges , n ]= s i z e ( i n c i d e n t E d g e s ) ;
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161

162 %compute t h e a n g l e between each edge and t h e f i x e d
163 %normal f i x E d g e
164 f o r inED =1: numEdges
165 insED= i n c i d e n t E d g e s ( inED , 4 : 6 )−P p o i n t ;
166 insED=insED / norm ( insED ) ;
167 a n g t = d o t ( normal , insED ) ;
168

169 %loop t o save t h e c l o s e s t edge t o c e l l f a c e and
t o

170 %g e t t h e FE e l e m e n t t o which i t b e l o n g s
171 i f ( abs ( a n g t ) <= ang )
172 ang= abs ( a n g t ) ;
173 edge=inED ;
174 FE1ind= i n c i d e n t E d g e s ( inED , 7 ) ;
175 FE2ind= i n c i d e n t E d g e s ( inED , 8 ) ;
176 end
177

178 %g e t t h e FE e l e m e n t t o which i t b e l o n g s
179 FE1= i n n e r V e r t e x . FEelems ( FE1ind ) ;
180 FE2= i n n e r V e r t e x . FEelems ( FE2ind ) ;
181

182

183 end
184

185 %g e t edges o f e l e m e n t s s h a r i n g edge c l o s e s t o c e l l
f a c e

186 edgesFE1=FE1 . Edges
187 edgesFE2=FE2 . Edges
188

189 %i n i t i a l i z e v a r i a b l e f o r sum of a n g l e s
190 angFE1 =0;
191 angFE2 =0;
192 %i n i t i a l z e working FE e l e m e n t
193 FEdef =0;
194

195 %loop t o v e r i f y a n g l e o f a l l edges o f FE1 and FE2
t h a t

196 %have P p p o i n t and o b t a i n t h e c l o s e s t
197 f o r i =1:3
198 angFE1 =0;
199 angFE2 =0;
200 i f ( i s e q u a l ( edgesFE1 ( i , 1 : 3 ) , P p o i n t ) )
201 FE1E1=edgesFE1 ( i , 4 : 6 )−P p o i n t ;
202 FE1E1=FE1E1 / norm ( FE1E1 ) ;
203 angFE1= d o t ( normal , FE1E1 ) ;
204 end
205

206 i f ( i s e q u a l ( edgesFE2 ( i , 1 : 3 ) , P p o i n t ) )
207 FE2E1=edgesFE2 ( i , 4 : 6 )−P p o i n t ;
208 FE2E1=FE2E1 / norm ( FE2E1 ) ;
209 angFE2= d o t ( normal , FE2E1 ) ;
210 end
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211

212 i f ( i s e q u a l ( edgesFE1 ( i , 4 : 6 ) , P p o i n t ) )
213 FE1E2=edgesFE1 ( i , 1 : 3 )−P p o i n t ;
214 FE1E2=FE1E2 / norm ( FE1E2 ) ;
215 angFE1=angFE1+ d o t ( normal , FE1E2 ) ;
216 end
217

218 i f ( i s e q u a l ( edgesFE2 ( i , 4 : 6 ) , P p o i n t ) )
219 FE2E2=edgesFE2 ( i , 1 : 3 )−P p o i n t ;
220 FE2E2=FE2E2 / norm ( FE2E2 ) ;
221 angFE2=angFE2+ d o t ( normal , FE2E2 ) ;
222 end
223

224 i f ( abs ( angFE1 ) <= abs ( angFE2 ) && abs ( angFE1 ) >0)
225 FEdef=FE1 ;
226 end
227

228 i f ( abs ( angFE2 ) <= abs ( angFE1 ) && abs ( angFE2 ) >0)
229 FEdef=FE2 ;
230 end
231

232 end
233

234 %compute a n g l e between f a c e normal and FE normal
235 FENor=FEdef . OutNormal ;
236 angNorFaNorFE= d o t ( normal , FENor ) ;
237

238

239 %c o n s i t i o n s t o d e t e r m i n e t h e a c t i v i t y o f t h e c e l l
f a c e

240 i f ( angNorFaNorFE > 0)
241 i f ( s igNeg >0)
242 myCell . Faces { f } . Po lygons { 1 } . A c t i v i t y =0;
243 end
244 i f ( s i g P o s >0)
245 myCell . Faces { f } . Po lygons { 1 } . A c t i v i t y =1;
246 end
247 end
248

249 i f ( angNorFaNorFE < 0)
250 i f ( s igNeg >0)
251 myCell . Faces { f } . Po lygons { 1 } . A c t i v i t y =1;
252 end
253 i f ( s i g P o s >0)
254 myCell . Faces { f } . Po lygons { 1 } . A c t i v i t y =0;
255 end
256 end
257 end
258

259

260 %
−%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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261 %c o n d i t i o n f o r t e s t c a s e 6 ,7 ,8 o r 9
262 i f ( s i gPos >0 && sigNeg >0)
263 fT= faType ;
264 FEelements = ou tVer . FEelems ;
265 numElemMin =1;
266 normal = ou tVer . FaceEdgeNormal
267 c s L i s t = ou tVer . CSedges
268

269 [m, n ]= s i z e ( c s L i s t ) ;
270

271 t e P p o i n t =[ Ppo in t , Ppo in t , 0 ] ;
272

273 %loop ove r c s segmen t s t o d e t e r n m i n e t h e c l o s e s t t o
t h e

274 %edge
275 f o r i c s =1:m
276 c s L i s t ( i c s , : ) = c s L i s t ( i c s , : )− t e P p o i n t ;
277

278 t c s = c s L i s t ( i c s , 4 : 6 ) / norm ( c s L i s t ( i c s , 4 : 6 ) ) ;
279

280 angTemp= d o t ( normal , ( [ − 1 , . 1 , 0 ] / norm ( [ −1 , . 1 , 0 ] ) ) )
281

282 %keeps t h e number o f FE e l e m e n t c l o s e s t t o c e l l
283 %f a c e
284 i f ( angTemp <= numElemMin )
285 numElemMin= c s L i s t ( i c s , 7 )
286 end
287 end
288

289 e lementNormal = FEelements ( 3 ) . OutNormal
290

291 %p r o j e c t i o n o f t h e ou tward normal o f t h e FE−e l e m e n t
292 %onto t h e c e l l edge normal
293 s i g n O f P r o j e c t i o n = s i g n ( d o t ( normal , e lementNormal ) )
294

295 i f ( s i g n O f P r o j e c t i o n ==−1)
296 myCell . Faces { f } . Po lygons { 1 } . A c t i v i t y =0;
297

298 end
299

300 i f ( s i g n O f P r o j e c t i o n ==1)
301 myCell . Faces { f } . Po lygons { 1 } . A c t i v i t y =0;
302 end
303

304

305 end
306

307

308

309 end
310

311

312
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313

314 %s e c t i o n which c o l o r s t h e po l y g o n s and r e t u r n s a g r a p h i c o u t p u t
o f

315 %t h e c u t c e l l
316 numPol=myCell . Faces { f } . NumPol ;
317 f o r p =1: numPol
318 p o l = [ ] ;
319 t emPol =myCell . Faces { f } . Po lygons {p } ;
320

321 numVert= temPol . NumVert ;
322 %t h i s b u i l d s a m a t r i x p o l w i th t h e v e r t i c e s i n column form

f o r
323 %t h e polygon p on f a c e f
324 f o r v =1: numVert
325 p o l =[ p o l ; temPol . Polygon {v } ] ;
326 end
327

328 p1= p o l ( : , 1 ) ;
329 p2= p o l ( : , 2 ) ;
330 p3= p o l ( : , 3 ) ;
331

332 i f ( temPol . A c t i v i t y ==1)
333 f i l l 3 ( p1 , p2 , p3 , ’ b ’ ) ;
334 ho ld on ,
335 end
336

337 i f ( temPol . A c t i v i t y ==0)
338 f i l l 3 ( p1 , p2 , p3 , ’ r ’ ) ;
339 ho ld on ,
340 end
341

342 end
343

344

345 %
346 %
347 %h e r e ends t h e c o l o r s e c t i o n
348

349 end
350

351 %s e c t i o n t o g raph t h e FE e l e m e n t s
352 FE ve r t =myCell . FEVert ;
353 FEelems=myCell . FEElems ;
354

355 [m, n ]= s i z e ( FEelems ) ;
356 %
357 p1 = [ ] ;
358 p2 = [ ] ;
359 p3 = [ ] ;
360

361 elem = [ ] ;
362

363 f o r k =1:m
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364 FE ve r t ( FEelems ( k , 1 ) , : ) ;
365 FE ve r t ( FEelems ( k , 2 ) , : ) ;
366 FE ve r t ( FEelems ( k , 3 ) , : ) ;
367 elem =[ F Ev e r t ( FEelems ( k , 1 ) , : ) ; F Ev e r t ( FEelems ( k , 2 ) , : ) ; . . .
368 FE ve r t ( FEelems ( k , 3 ) , : ) ] ;
369

370 p1=elem ( : , 1 ) ;
371 p2=elem ( : , 2 ) ;
372 p3=elem ( : , 3 ) ;
373

374 f i l l 3 ( p1 , p2 , p3 , ’ g ’ ) ;
375 ho ld on ,
376 end
377 %end g r a p h i n g FE elems
378

379

380 end
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