Cartesian Grid Generation

Santiago ALAGON CARRILLO

October 28, 2013

Advisor : Prof.dr.ir. C. Vuik

Abstract

In this report an analysis of the advantages and drawbacks of
Cartesian grids and body-fitted grids is presented. The basic ideas
behind cartesian grid generation are studied aiming for the compre-
hension of the problem in hand, the Point-in-Polyhedron problem,
which results from the need to determine the flow region in the Carte-

sian meshing process.

Contents

1

Introduction: Cartesian Mesh

1.1 Body-fitted grids L

1.2 Cartesian grido
1.2.1 Cartesian mesh with cut cells

Introduction: Point-in-Polyhedron, Point-in-Polygon Prob-
lem

2.1 Definitions
2.2 PIP algorithms

Tracking the Propagating interface: Level set method

3.1 Level Set Method: Despription
3.2 Level Set Method: Technical details
3.3 Level Set Method: Advantages and Disadvantages
3.4 Level Set Method: Application to airbag deployment

MADYMO Gasflow2 Solver

4.1 Flow solver in Gasflow2
4.1.1 Discretization oo
4.1.2 Boundary conditions

4.2 Geometrical Calculations in Gasflow 2

Cut cell construction, problem description

5.1 Global search level

5.2 Euler search level

5.3 Exact Geometryo
5.3.1 Signed Volume of a Simplex
5.3.2 Piercetest Lo oo
5.3.3 Imsidetest L.
5.3.4 Topological Characteristics
5.3.5 Geometrical Characteristics

Problem definition and research questions

Looking for solutions
7.1 Implemented solution method
7.2 Solution Idea 1: Consistency in traversing direction.

14
15
16

23
23
23
27
27

28
29
30
32
34

38
38
40
40
42
43
43
44
47

48

7.3 Solution Idea 2: Consistency in test point selection. 55

1 Introduction: Cartesian Mesh

One of the most critical steps in the numerical solutions of the equations
involved in fluid dynamics is the division of the domain into a discrete grid.
The discretization method for the domain depends on the numerical tech-
nique applied to solve the equations.

Nowadays the most used grids are body fitted, both structured and un-
structured, but these techniques cannot be easily implemented in an au-
tomatic way and are cumbersome when dealing with complex geometries.
Recently another grid generating technique has received more attention, the
Cartesian grids. These are faster to generate, and have a straightforward
implementation for moving boundaries and automatic grid generation [12].

1.1 Body-fitted grids

Body-fitted grids conform to the surface of the body, they are generated tak-
ing into account the geometry of the body inside the flow. In some cases the
geometry of the problem allows the use of structured grids but for more com-
plicated geometries the use of unstructured meshes, or mixed type meshes,
is required, see Figure 1.

The major advantages of this meshing technique are, c.f.[9]:

a. It allows to place the nodes in an optimal way to resolve the geometrical
features of the problem.

b. It allows to increase, in a flexible way, the mesh density towards the
walls to ensure satisfactory near-wall resolution to capture the viscous
layer adequately.

on the other hand, body-fitted grids entails a serious difficulties for complex
geometries, c.f.[1],[9] :

a. Surface meshing is subject to conflicting requirements between local
geometry and flow variations due to the link between the geometry,
and the topology and connectivity of the cells. This implies that tri-
angulation must have a good node distribution and all triangles must
posses an adequate length scale.

b. Complicated geometries require the use of a block-structure grid formed
by several connected curvilinear regions, see Figure 2,

4

f

Fig. 1: Unstructured body-fitted mesh Fig. 2: Structured body-fitted rectangular
mesh

=

A

/ £

Fig. 3: Combination of structured Fig. 4: Structured Cartesian immersed-
Cartesian mesh and hybrid unstructured body mesh
body-fitted mesh near the wall

Figure 1: Mesh examples, reprint from [9]

c. The process requires user intervention, it cannot be turned into an
automatic procedure.

d. Computations based on this grids are not very robust due to secondary
fluxes through the diagonal grid faces.

e. Very sensitive to CAD geometry, requires clean representation of the
surfaces.

f. Requires the transformation of the governing equations to curvilinear
coordinates resulting in complex systems of equations which adversely
impacts the stability, convergence, and number of operations for the
solution.

1.2 Cartesian grid

Cartesian grid methods differ from body-fitted methods in that they are non-
body fitted. The whole domain is divided by a hexahedral grid system, a set
of right parallelepipeds, extending through solid walls within the computa-
tional domain. The cells are then flagged as solid cells, if they belong inside

Figure 2: Block-structure for body-fitted mesh, reprint from [4]

the solid walls of the immersed body where no flow computations will take
place, flow cells, if they belong to the region where the flow computations
take place, and boundary/cut cells for the cells intersected by the solid walls,
see Figure 3.

This transforms the problem from conforming the meshing to the surface
into a characterizing and computing the intersection between the Cartesian
grid and the surface geometry.

What distinguishes one type of cartesian grid method form the other
is the way boundary conditions are treated, [7] [3]. One approach is to
choose a staircase description of the boundary, see Figure 4(c), and impose
the boundary conditions using a forcing function and extrapolation of the
variables. With this approach the solution on the boundary is smeared out
to the width of the local cell and no sharp fluid-to-boundary interphase can
be guaranteed. The second approach is defining the so called cut-cells by
discarding the part of each boundary cell interior to the solid boundary, the
solid cell region, and using only the exterior portion, the fluid cell region, for
computations; see Figure 4(b).

| Coassmeshcelldioos oy

Cells | Tt Yy
aggedfor [| (% 2.2 L8
el lPBmBnL

QOutline of new - ! 1
id parch K
a) £rid pa | 4 - 1 05 (i) 05 Lo

b)

Figure 3: (a) Cell flagging; reprint from [1]; (b) Cell classification: flow cell,
boundary cell, solid cell; reprint from [2]

(a) (b) (c)
//f //f //f
Qﬂm'cl /// Qﬂmd // Qﬂm’d ///
/|
/ // 4 // 4 //
// Qsofid // Qjﬂhd // Qwﬁd
P | PARNN P |
rIB rfB FIB

Figure 4: (a) Standard scheme, (b) Cut-cell scheme; (c¢) Staircase implemen-
tation; reprint from [§]

1.2.1 Cartesian mesh with cut cells

The remainder of this work is based on a cut-cell formulation of the boundary
conditions for a cartesian mesh where the surface of the immersed body con-
sists of triangular elements obtained from a previous triangulation process.

In this section we briefly review the procedure for this approach and list its
advantages and disadvantages.

As it was already mentioned, the first step in generating a Cartesian grid
is performing a cell division of the domain using a uniform hexahedral grid.
Once the hexahedral cells have been defined they are marked, or flagged,
as solid cells, fluid cells and cut-cells. Usually the solid cells are discarded
unless other calculations will take place inside the immersed body.

The cut cells are then treated by dividing them into the region intersecting
the immersed body and the region out side the body; usually the region inside
the body is discarded as well.

The geometry of the immersed boundary is analyzed for each cell and
refined based on criterions to capture the geometry of the body in a more
precise manner.

Boundary-cells are intersected by the boundary in an arbitrary way which
leads to complex intersections between the surface triangulation and the cut-
cells. Both Cartesian cells and the triangles are convex so their intersections
results in a convex polygon referred as triangle-polygon, tp. The edges of the
triangle-polygons are obtained by clipping the edges of the triangles along
the faces of the cartesian cell resulting in the face-segments, fs. The division
of the faces of the cartesian cell by along their intersection with the surface
triangulation result in the face-polygons, fp. This can be seen for an arbitrary
Cut-cell in Figure 5

Because the surface can intersect the Cartesian mesh in an arbitrary way,
the above mentioned process may produce small cut-cells which adversely
affect the stability of the numerical method. To deal with this problems
three procedures can be commonly found in literature,c.f. [10], [3],[6]

a. cell merging, Figure 6
b. cell linking, Figure 7

c. mized approach

The three approaches have advantages and disadvantages and will be
treated and studied if required during the development of the project. In
general cell-linking does not perform very well for moving boundaries, [3].

After obtaining the cut-cells the grid may be refined if it is required. As-
sessment for the need of refinement is based on the curvature of the boundary

— Hex cell faces ;
fpiface#ipoty#] — Face polygons <
X,

s [face#](seg#t] — Face segments 2
Tip_n) — Intersected Triangles
Ip[0-n] — Intersected Triangle polygons

Figure 5: Anatomy of a cut cell; reprint from [1]

inside each cut-cell, the curvature difference between neighboring cells, Fig-
ure 8, and geometrical features of the problem such as small solids and narrow
channels, Figures 9 and 10.

Refinement is based on thresholds for the acceptable curvature and the
capacity of the mesh to capture enough detail of the geometry. The refine-
ment process is performed by splitting each cell into two equal cells, cell
splitting can take into account the flow direction for anisotropic refinement.
Each time a cell is divided for refinement it is said that its refinement level
has increased by one unit. The goal is to obtain a mesh not containing any
of the following features, c.f. [13], see figure(11):

o Cell refinement level differences greater than 1 between two neighboring
cells.

o Cell refinement level differences greater than 0 normal to body cut-cells.

e Cell refinement level differences greater than 0 through outer flow
boundaries.

o (ell refinement level differences greater than 0 between three-sided cells
and their neighbors.

- a

=
1=
[
§-4---
"
.
-‘.- -
W
T
i
F
=
'
e o
'
4%
o
[

3%

1=
2

(a) (b)

Figure 6: Cell merging for small cut-cells; reprint from [3]

.
)

e] =

N

[

'5‘\(

Figure 7: Cell linking for small cut-cells; reprint from [3]

10

. Cell r Cells

Di_p Cell i ﬁrt w
¢])Rq) r 7 /// /;/ ﬂs/‘

p Tl . T |

Figure 8: Measurement for the curvature inside each cut cell and between
neighboring cells; reprint from [1]

Refinement due 1o
Sriall Solld Featuire oiienon
L~ Lival=2

% -

%)

Induced refs due
1 CONBON that

=" mnieighbor level differance
,_...---"'""—H-r must pot ke mare then 1

Figure 9: small geometrical features; reprint from [9]

e “Holes” in the mesh

e More than two cuts on a cell

o Cell refinement level differences greater than 0 on trailing edge of body.
e Bodies too close, only two cells apart.

With all the above process each Cut-cell is obtained, and thus the final
grid.
Cartesian Meshes possess some disadvantages, c.f.[3],[1], [9]:

e Some geometrical features such as trailing edges and leading edges,
require many levels of refinement

11

Figure 10: Narrow channels; reprint from [9]

fy .~

L] n 8)

Figure 11: Undesired mesh features; reprint from [13]

e Treatment of boundary conditions on irregular cut-cells result in com-
plex coding.

e Cut-cells should not become too small in order to maintain goos sta-

12

bility and convergence of the solution.

Bodies too close, only two cells apart.

But in general are well balanced by the advantages the possess, c.f.[3],[1], [9]:

Easy to convert into an automatic procedure.
The meshing difficulties are restricted to lower order manifolds.

It is possible to accurately impose the boundary conditions in the cut-
cells.

Cut-cell treatment of boundaries result in conservative schemes.
Cut-cells are decoupled from the surface description.
Easy implementation with adaptively refined grids.

Away from the surfaces the good quality of the grid, uniform and or-
thogonal, imply better accuracy, lower discretization error and more
efficiency.

The meshing process is not linked to a particular representation of
the boundaries, (NURB, CAD, triangulation, etcetera). The meshing
process may be done using “dirty geometries”, Figure 12

Motion of the boundaries may be pre-programed and the implementa-
tion for moving geometries y quite straight forward.

Permit the use of high resolution methods.
Good for iterative methods.

Good for multiphase/multimaterial flows.

13

Gap or
Crack

,
x“‘——L

Overap 1 //
7|

Al

Invalicl
manifold

Figure 12: Schematics of dirty geometry; reprint from [9]

2 Introduction: Point-in-Polyhedron, Point-
in-Polygon Problem

The Point-in-Polygon Problem, PIP, is one of the most elementary problems
in computational geometry, it refers to the problem of determining wether a
point R lies inside a polygon P, [16]. The Point-in-Polyhedron Problem is
the extension to three dimensional space.

This problem arises naturally when constructing cartesian meshes due to
the need to determine the sections of the cut cells inside and outside the flow,
Figure(13). Accurate determination of the inner and outer regions of each
cut-cell is important in order to preserve the conservative properties of the
numerical method.

In this section the most common solutions to this problem will be re-
viewed.

14

outside

- inside

Figure 13: Point-in-Polyhedron Problem in meshing; reprint from [11]

2.1 Definitions

A polygon P is a set of n-points pg, p1, ..., p, in the plane, called vertices,
and n-line segments eqg = pop1, €1 = p1p2, -- -, €n = Pupo called edges, where
the union of all edges divides the plane into two regions, one bounded and
one unbounded, see Figure(14), [21].

Figure 14: Point-in-Polyhedron Problem; reprint from [22]

A polygon is called simple if it satisfies two conditions, [16]:
e neighboring line segments meet at only one point

e non-neighboring line segments do not have any point in common.

15

these conditions imply that in a simple polygon non of its edges intersect or
touch.

A vertex is called conver if less than half a small circe, centered at the
vertex, is occupied by the polygon. Equivalently a polygon is convez if a
straight line intersects the polygon’s boundary at most twice, [16], [15], see
Figure(15) .

(B)

Figure 15: Convex vertex a, non-convex vertex b, ; reprint from [16]

A polyhedron is a set of piecewise planar polygons that bound a solid in
R3, its faces are the planar polygons, see Figure(16), [21]. This definition is
vague, but it is a difficult task to define properly this class of objects properly
and it is beyond the scope of this work. A polyhedron is called simple if its
faces do not intersect and it is called convex if any straight line intersect its
faces at most two times, [15].

2.2 PIP algorithms

Many solution to the PIP problem can be found in the literature. The
principles upon which these algorithms are based are, [15]:

e line crossing
e angle-sum

® area-suim

16

bW O
vTOoW
R R

Figure 16: Examples of polyhedrons; reprint from [23]

e orientation method

these principles will be explained latter when the way they are implemented
in the PIP strategies is described.

The algorithms based on the line crossing principles have been shown
to be the most time and memory efficient, [15]. To better understand this
principle we need to know the following theorem

Jordan Curve Theorem
Any simple closed curve divides the plane into exactly two regions, one
bounded and one unbounded.[21]

Jordan’s curve theorem implies that a point R is inside a simple polygon
G if the parity of the number of intersections between GG and a line extending
from R to infinity is odd, see Figure(17).

Based on these principles the following algorithms have been suggested
to solve the PIP problem for general polygons, [16]:

e Ray crossing method. a ray is shot from the test point to infinity and
the number of intersections of the ray and the polygonal boundary is
computed. In practice the point to infinity is determined to be a point
far away in the domain, most of the times belongoing to the bounding
box of the polygon. The line crossing principle is then used to determine

17

e

Number of

crossings is odd

Figure 17: Line crossing principle; reprint from [14]

if the point is interior or exterior to the polygon, see Figures(17),(14).
Works in O(n) time and solves for any polygon.

Sum of angles The polygon is treated as a fan of triangles emanating
from the test point where one of the edges of each triangle is an edge of
the original polygon and the other two edges are the segments joining
the test point with the edge of the polygon. The angle at the vertex of
each triangle at the test point is summed and if it is equal to 360° the
test point is determined to be inside, see Figure(18). Works in O(n)
time and solves for any polygon but is sensitive to the problems of finite
arithmetic, see also [1] p.60.

Swath method This method requires pre-processing. The Polygon is
firstly divided into swaths (trapezoids) in time O(nlogn). The swath
where the point is located is determined and the Ray crossing test is
applied, see Figure(19)

Grid method A look up grid is placed over the polygon, each of the grid
cells” is categorized as either internal, external or boundary using the
line crossing principle.

Triangle-based method The polygon is decomposed into a set of trian-
gles in linear time. Each triangle is defined by a fixed vertex arbitrarily
determined to be the origin, whereas the other two vertices are de-
termined by a polygon edge. The triangles obtained are classified as

18

positively of negatively oriented. A line starting at the origin and con-
taining the test point is matched with all triangles. The test point is
determined to be interior or exterior based on the intersections of this
line with the positive and negative triangles, see Figure(20)

Other methods are mentioned in the literature but they work only for
convex polygons and will not be treated in this work.

Sum of angles

is 360 degrees

Figure 18: Sum of angles test; reprint from [14]

Due to the nature of the Cartesin Meshing process it is natural to have
a deeper look into the Grid Method as a first option to determine the inner
and outer regions, relative to the flow, of the object immersed in the flow.

The Cartesian mesh can be used as the look up grid where the line cross-
ing criterion is applied, see Figure(21).

In the Grid Method the boundary cells must contain a list of edges of the
polygon that overlap their boundaries. In the cell one corner or more are
determined to be either inside or outside the polygon. A line segment is then
traced between the test point and the corner of the cell for which the state is
known, and the state of the test point is obtained applying the line crossing
principle, see Figure(22)

Singular conditions can occur when applying the Ray crossing method,
and any other of the other method which apply the ray crossing principle.
This singular conditions happen when one or more vertices of the polygon
lie on the test line or when an edge of the polygon is co-linear with the test

19

Figure 19: Swath method; reprint from [19]

line. The correctness of the Grid Method can be impaired by the singular
conditions which also affect the Ray crossing method,

Usually for computational geometry a uniform grid is placed as a look
up grid, but refinement can be used to obtain better accuracy and to treat
singularities.

When refinement is used it is performed in each cell until one of the
following occur, [17]:

e There are no more edges of the polygonal interface inside the cell.

e There is at most one vertex of the polygonal interface inside the cell
with at most two edges of the polygonal interface crossing the bound-
aries of the cell.

20

23 Inside odd number

of triangles

Figure 20: Triangle-based method; reprint from [14]

08 il P

04

02

| - i L
]
|

02

i
G

0.4

46

08 il |] [l

Figure 21: Example of refined Cartesian mesh used as look up grid; reprint
from [17]

e There are no vertex of the polygonal interface inside the cell and there
is at most one edge of the polygonal interface crossing the boundaries.

Refinement criterions for the look up grid might not be compatible with
the refinement criterions for the Cartesian Mesh, this will be part of the

21

Figure 22: Grid method representation; reprint from [17]

research focus of this work.

Additional difficulties arise when a polygonal edge crosses exactly or close
to a grid corner, in this case the state of corner is not classifiable and cannot
be used to perform the Ray crossing method in the local cell. The accuracy
of the flow solver might get impaired if the unclassifiable cell was the one
used to determine the inner and outer parts of the polyhedron, the solution
to this problem is the goal of this work.

22

3 Tracking the Propagating interface: Level
set method

Once the numerical methods to solve the flow and the mechanics of the airbag
have been defined, a way to obtain the evolution of the moving interface,
airbag, needs to be developed. Accurate tracking of the interface is essential
to keep the conservative properties of the Finite Volume solver.

In this section a review of the Level-set method is reviewed. This approach
to the airbag deployment tracking has been shown in [5] to be both efficient
and robust. The advantage of this method is that the inside and outside
of the moving interface can be determined by the use of a signed distance
function, which avoids the Point-in-polyhedron problem.

3.1 Level Set Method: Despription

The Level Set Method is a technique to track the movement of an interface
and shapes when the velocity for each point of the interface is known. The
Level Set approach allows to perform computations involving curves and sur-
faces on a fixed Cartesian grid without having to parametrize the objects.
This makes it suitable to study the evolution of objects that change in topol-
ogy, that is, when the interface splits or merges as well as when holes form
in it.

The core idea of the Level Set method is to embed the surface that needs
to be tracked, in a one higher-dimensional geometric manifold given by the
so-called Level Set Function . The interface is embedded into ¢ in such a
way that it is obtained as the zero level set, ¢ = 0, see Figure(23).

The goal of the Level Set method is to determine the initial level set
function ¢ at time t = 0 and to appropriately evolve this funtion in time to
match the evolution of the interface. Once this is achieved, at each time step
the interface is given always by the zero level set o(z,t) = 0.

In such way, the Level Set Method exchanges a geometric problem in
moving coordinate representation for a fixed coordinate representation.

3.2 Level Set Method: Technical details

Suppose that we are given an initial interface separating the space into two
regions. Together with the interface we are given also the speed F' of each

23

Figure 23: Representation of Level Set method; reprint from [24]

point in the interface in the normal direction to it.

The initial Level set function, o(z,t = 0), is built using the signed dis-
tance function d from each point Z in the Cartesian Grid to the interface.
This way the points interior to the interface are such that ¢ < 0 while the
points exterior to the interface are such that ¢ > 0, see Figure(24)

The only thing that remains is to determine how to adjust the value of
© in time to match the evolving interface. We want the Level Set Function
to contain the interface, for any time, as the zero level set. So the interface
is given always by

p(z(t),t) =0

To obtain the evolution of the interface in time we differentiate using the
chain rule
o+ V(z(t),t) - 2 =0

where the similarity with the so-called material derivative, used in elasticity

24

=x’-1

By L".! £
¢=>0 ¢>0 -
outside / k y \ outside
q‘,?} = [] ;?.5 = U
interface interface

Figure 24: Decomposition of space into interior and exterior according to
sign of ; reprint from [26]

and fluid mechanics to describe the temporal change of a property due to
both its change in position and time.

Only the normal speed F' = z’ - n to the interface results in variations on
its shape, so the last equation can be written as

pr+ FIVp| =0 (1)

where we used n = Vp/|Vyl|. Equation(1) is know as the level set equation.
Thus, an initial value problem is obtained.

o + F|Vp|=0
I@t) = {(zy)le(z,t) =0}

Stated as it is, and thinking of the solution in purely geometric terms,
problems with uniqueness of the solution are encountered. The purely geo-
metric approach to the solution is to move all the points with speed F' in the

25

direction normal to the initial front. A second approach is to think of the
front moving as if it were a wave front moving. The solution is given by the
envelope of the waves emanating form each point, which satisfies uniqueness
requirements. Both approaches are represented in Figure(25).

- Ty

Points a “local distance” from the Boundary Data Globally Closest Points to Boundary Data
Fig. bSa Fig. 5b

Figure 25: Moving interface. a) moving each point normal to the curve; b)
using the envelope of the wave fronts emanating from each point; reprint
from [24]

It can be shown that the solution obtained from the envelope of the wave
front envelope is the same as the solution of the associate viscous problem
o1 + F|Ve| = eV%p in the limit as € — 0, see Figure(26)

>
%
%

Smoothed Solution: € = .005 Swallowtail Solution Smoothed Viscous Limit: € = 0.

Figure 26: Solution to viscous problem; reprint from [24]

26

3.3 Level Set Method: Advantages and Disadvantages

For the interface tracking problem, the Level Set Method possesses certain
advantages over other approaches, [26], [24], [25]:

e The general procedure is unchanged for any number of dimensions.
e Topological changes in the front are handled naturally.

e Rely on the viscosity solution of the associate partial differential equa-
tion.

e Can be converted into a computational scheme by using the already
known schemes from hyperbolic conservation laws.

e There exist computational strategies to make it a more efficient proce-
dure.

The only point of precaution when turning it into a computational scheme
is the dependence on the CFL condition.

3.4 Level Set Method: Application to airbag deploy-
ment

The Level Set Method can be applied as a coupling algorithm for Eulerian-
Lagrangian shell-fluid interaction as shown in [5] and [27], see Figure(27).

The arbitrary boundary of the airbag is immersed in the Cartesian Mesh
creating cut-cells. By filling this cut-cells and a small layer of neighboring
regular cells with an appropriate ghost fluid, cell updates is performed in the
same way as the bulk cells in the computational domain. The discontinuities
in the flow field resulting form the interface are directly embedded in the
solution through appropriately populated ghost cells, [5], [27]. This approach
is known as the ghost flutd method.

At each time step the signed distance from the deformed shell to the grid
points in the Cartesian Mesh is computed resulting in an implicit represen-
tation of the fluid-shell boundary.

Because this approach avoids the generation of small cells, derived form
the conformity requirement of the mesh at the interface and thus the use
of cut cells, it has also the advantage of having less restrictive time step
constrains.

27

Figure 27: Airbag deployment simulation using level set method; reprint
from [5]

4 MADYMO Gasflow2 Solver

Gasflow2 is a numerical solver for fluid-structure interaction, developed to
solve the flow during the deployment phase of airbags. Gasflow?2 imple-
ments an Arbitrary Lagrangian-Eulerian solver based on a Cartesian cut-cell
method.

A Cartesian cutcell method program is comprised of two mayor compo-
nents, the flow solver and the geometry calculations. This section contains a
short review of the actual implementation of these two components in Gas-
flow 2.

The information on these sections is based on the information in the
technical reports provided by TASS, [28], [29], [30], [31], [32], [33], [34], [35],

28

36], [37]

4.1 Flow solver in Gasflow2

Gasflow?2 approximates the flow solution based on Fuler’s equations in 3-
dimensional space. The flow is assumed to be a single component calorically
perfect gas, i.e. the specific heat for both constant pressure and volume,
denoted by ¢, and ¢,, are assumed to be constant.

For a bounded region in R3, with boundary S, Euler’s equations read

4 / qd) + / ®(q,n)dS = S(q) (2)
dt Jo s
where
P PUn
puU PURU + D Ny
q=|pv|,and = | pv,v+p-ny (3)
pw PUW + PNy
pe pun H

where . = (ng, ny, n,) is the outward normal of S, v = (u, v, w) is the velocity
Cartesian vector and S(q) denotes a general source term.

The total energy per unit volume is pe = pu;,; + % p(v-v) but during the
simulation it is computed from p = ((¢,/c,) — 1) (pe — 3p(v - v)).

A correction needs to be done at the interface with the airbag due to the
movement of it produced by the flow. To apply the interface conditions an
Arbitrary Lagrangian-Eulerian (ALE) formulation is used.

The airbag edge is described though a set of triangular segments whose
position is approximated using a Finite Element solver.

For the fluid-structure interface the the two interface conditions that
needs to be satisfied are the kinematic condition

Vy = Vs

and the dynamic condition
Of = 0g

where o is the stress tensor o = pI + 7.
For an inviscid fluid the structure-fluid coupling, with structure velocity
vs and flow velocity vy, conditions result in

vi-n=v,-nand p; = p, (4)

29

In the ALE formulation Fuler equation’s for the fluid domain are given
by

d
T qaa / &(q,v.) -ndS = S(q) (5)
dt Jaw S(t)

where the flux function through the control volume boundary and the bound-
ary state vectors are defined as

p

p(Vi—vy) p(vy—Vs)
pes pu(vy —vs) +pl
aB — 01 y and (I)(q7 Vs) = IOU(Vf - Vs) +pI (6>
pw(ve —vs) +pl
pH(vy — V) + pvs
PN-1

where ep = h — £ + J|v|?

4.1.1 Discretization

The discretization of the Fuler equations is performed through the Method
of Lines. The spatial derivatives are replaced by algebraic approximations,
using Finite Volumes approach, to obtain a system of Ordinary Differential
Equations where only time remains as a variable. The next step is to apply
an integration algorithm for initial value Ordinary Differential Equations to
compute the approximate solution of the original Partial Differentia Equa-
tion. In other words, the Method of Lines discretizes the spatial and temporal
derivatives separately.

The spatial discretization is performed by a Finite Volumes method over
hexahedral cells. The finite Volumes used in Gasflow?2 is based on a Roe
scheme where the flux derivatives are approximated using a flow-differencing
splitting scheme. This formulation does not allow discontinuous expansion
fans.

To obtain a second order space discretization, the state of the cell face is
computed from the state at the cell center assuming a linear variation of the
form

ar(x) = qr(xe) + (Ve (Vae)" - (x —x,).

30

The gradient reconstruction for a component q; in cell 2, follows form
the minimization of the functional

1
J = §Z||VCII<:'AXJ' — Agj?

JEN

where N is the set of all faces of cell m and j is the index of the face which
separates cell m and the neighbor n. Here Ax; = x,, — x,, is the distance
between the cell centers and Ag; = g, —¢,. This leads to a non-square linear
problem which is equivalent to the solution of the system of normal equation.
The system of normal equations is SPD and can be solved by direct methods.

The task of the limiter ¥ is to enforce the monotonicity principle, which
requires that the reconstructed values does not exceed teh maximum and
minimum of the neighboring centroid values and its own cell center value.
The limiter acts in each component of q. For a uniform mesh with cubic cells
of length h, where ¥ = 1 the reconstruction has truncation error O(h?) and
in regions where W = 0 the reconstruction has truncation error O(h').

The two limiters implemented are the Venkatakrishnan-limiter and the
Barth-Jespersen limiter. Both are applied through directional limiting.

The temporal integration is performed via a Runge-Kutta method. The
volumes are not assumed to be constant so the Runge-Kutta as applied in
the discretization is also valid for changing cells, as is the case with Adaptive
Mesh Refinement.

In general for a Cartesian Mesh without cutcells the time step restriction
for the Runge-Kutta method follows from

oA,

T = Minjen, , with 7; = ——
max

where N, is the set of cells, A, is the cell size of cell j, o is the Courant
number, and A, is the maximum wave speed of the system, [31].

As mentioned before, the volume of the cut-cells can be smaller than the
smallest Cartesian cell which leads to stability problems. To avoid stability
problems, cut-cells whose volume is smaller than that of the smallest Carte-
sian cells, are merged into clusters used to update the state vectors in the
next time step. The stability criterion for the time step for the clustered cells
follows from

31

where Uy = (a + v,)rSk. The merging partner is selected based on the
direction most normal to the boundary face.
4.1.2 Boundary conditions

In order to have a well posed problem, initial conditions and boundary con-
ditions must be specified.

Initial conditions should satisfy (2) inside the domain and the boundary
conditions should specify the state vector completely and conditions (4) have
to be satisfied in the boundary and implemented on the discretization.

Boundary conditions for the cells are enforced through the specification
of the fluxes at the boundary. For each cell face there are seven possible
conditions

o wall

e subsonic inflow

e sonic inflow

e supersonic inflow
e subsonic outflow
e sonic outflow

e supersonic outflow

The specification of each of these boundary conditions depends on the
eigenvalues of the flur Jacobi matriz ®.

For the non-stationary boundary created by the airbag the velocity of the
flow prescribes the normal velocity component of the airbag

'Un:Vn

and the boundary flux density ®p is computed using the relative velocities

p(vn — Vi)
p(v, — Vi)u + pn,
Pp(qp,ng) = | p(v, — Vi)v + pn,
p(v, — Vi)w + pn,
p(vn — Vo) H + pV,

32

Conditions (4) are implemented through the definitions of the fluxes in
¢ as defined in (6). The structural velocity at each cell center x.. is obtained
through means of interpolation between the Finite Element nodes according
to

Vi(xc) = Z Ni(f)"N,i

where vy ; is the nodal velocity and N;(€) is the local shape function evalu-
ated in the FE-segment transformed coordinate system.

The pressure in the cutcells contributes to each of the nodal forces of
the FE partition inside the cutcell. The FE segments inside each cutcell are
partitioned into Ny,-number of segment polygons, which each exert a force

£, = pj(xe)n;S;
on the FE segment. The total contribution to node ¢ is computed according

to
Nep

fN,z' = Z Ni(g)fp,j-
j=1

The coupling is obtained by a standard loose-coupling procedure, i.e., at
each time step one evaluation of FE and flow solver are performed.

For known locations of the FE elements, the fluid solution is advanced
over one time step returning new contributions to the nodal forces f,, to the
FE solver. The coupling procedure is represented in Figure(28)

33

q 2 @ q n+l q n+2

FLUID o te

STRUCTURE AV t

Figure 28: Schematic fluid-structure coupling algorithm; reprint from [28§]

4.2 Geometrical Calculations in Gasflow 2

As mentioned before, the second mayor component of a Cartesian cut-cell
program is the geometry calculations module.

To capture good detail of the geometry, Gasflow?2 implements Hybrid
Adaptive Mesh Refinement (HAMR). An introduction to the Cartesian Mesh
generation was already given in Section(1l), along with some of the often
used refinement criterions. In this section a brief overview of the actual
implementation of the meshing process used in Gasflow2 is presented.

The final result of the HAMR is the total division of the computational
domain into cells. The cells in general are not of the same size due to the
adaptive refinement process. The cells are stored in a linear-octree, a tree
structure with eight children per node, which makes hierarchical data pro-
cessing efficient.

During the whole refinement process a curve that goes through all the
cells is constructed, this curve is called the Space Filling Curve (SFC), see
Figure(29).

Based on the SFC each cell can be identified by a unique binary code
associated to it called the Morton key. Vice versa, given the Morton key of
a certain cell, its location in the computational domain can be known.

The total number of cells is constantly changing due to the HAMR pro-
cess. This leads to an implementation that needs to be capable of dynamically
providing or releasing memory according to the creation or removal of cells

34

Figure 29: Space Filling Curve; reprint from [37]

during the process.

To satisfy such memory needs the whole octree structure of the cells is
stored as a linked list forming a linear-octree. The one dimensional list of cells
follows the order of the SFC, see Figure(30) for a bi-dimensional example.

2-D physical space —— - -— part2

@
>18 | ¥~
i | .

part] . - g e | pant3

1-D hyperspace
parti part2 part3

a b ¢ d e f g hijkilmop q r s

Figure 30: Space Filling Curve and octree representation; reprint from [37]

Sets of new cells can be added or removed at arbitrarily positions to the
linked list to allow for dynamic memory management.

As it can be seen from Figure(30), the whole domain can be divided into
subdomains, following the order of the SFC, containing the same number
of cells, these subdomains are called blocks. The purpose of the block is to

35

define regions with equal distribution of computation workloads which can
be later used for parallel computing and to treat regions of the whole domain
separately according to their refinement needs. To manage efficient computa-
tion, each block contains relevant information about the connectivity of the
cells in it, and each cell contains relevant informations about its neighbors
as well as access to information regarding the flow solution in its centroid,
and relevant geometric information about itself.

The HAMR process is performed in two main steps. The first step of
the HAMR is build an initial Block Frame Work (BFW) based on the initial
geometry and solution at each time step.

Building the BFW is achieved in five steps

1- Generation of a uniform mesh of empty blocks for the whole domain.
Blocks are said to be empty because at this point they contain no
geometrical or flow information.

2- Use of a search algorithm to identify and tag the blocks that intersect the
flow domain.

3- Create an internal cell mesh in each tagged block. At these point the
mesh is uniform inside all blocks.

4- Set initial flow solution in the obtained mesh.

5- Set boundary conditions for the cell faces.

The generation of the BEFW is a simplified version of the whole HAMR
process where refinement occurs only once in the tagged blocks and the final
mesh, internal to each block, is uniform in size.

Once the BFW is defined the second step of the HAMR takes place.
Using a search algorithm blocks are tagged for further refinement based on
two criterions

1- A block is tagged as a result of intersecting with at least one segment of
the FE partition.

2- A block is tagged as a result of having a more than one refinement level
less than any of its neighboring blocks.

36

Because each cell is identified by a Morton key, the availablility width of
the key determines the achievable resolution for refinement.

After each refinement, the second step of the HAMR process starts. This
is performed until no further refinement can be performed based on the
achievable resolution defined by the length of the Morton key.

After the refinement process is completed, the cells that intersect any
segment of the FE triangulation of the airbag are tagged by the search al-
gorithm and the exact geometry of the cut-cells is computed, obtaining a
representation of each cut-cell as shown in Figure(5)

In practice the search algorithm is performed in three stages, each with
different levels of accuracy. The accuracy of the stages of the search algorithm
vary from finding list of possible FE segment intersecting each block, to
finding the actual FE segment intersection with each cell.

To avoid making the HAMR a too intense computational process, not
all three stages of the search algorithm are performed at each time step and
refinement loop. For instance to build the initial BFW only the first level of
accuracy of the search algorithm is used.

37

5 Cut cell construction, problem description

In this section an in-depth description of the search algorithm is presented
with emphasis in the last stage where the exact geometry of the cut-cells is
obtained.

The process to obtain the final cut-cells, as shown in Figure(5), is drafted
in [29] and its implementations is presented in [34].

This section is based on the before mentioned [29] and [34], as well as in
communications with Ir. E.H. Tazammourti.

The purpose of the search algorithm is to classify the cells into, active
cells, inactive cells and cut cells, as well as to build the exact geometry of the
cut-cells for the FV solver. The search algorithm is divided into three stages

e Global search level. This search determines a list of candidate segments
that may intersect each bock, see Section(4.2) .

e Fuler search. This search determines a set of segments that may inter-
sect every cell.

e Fzxact Geometry. This search determines all intersections between Euler
cells and FE-segments using the intersection candidate list. After that
the face polygons, boundary faces and polyhedrons of each cut cell are
obtained.

5.1 Global search level

The Cartesian cut-cell methodology used in MADYMO, along with the Ar-
bitrary Lagragian-Fulerian formulation for the coupling between the airbag
interface and the flux, results in the use of two different meshes, the Euler
mesh, used for the flow calculations and the FE-mesh, used for tracking the
structure of the airbag. The Euler mesh is formed by the hexahedral cells
that divide the whole domain and the FE mesh is formed by the triangular
segments which represent the airbag surface.

During the solution process these two meshes share information. The
Euler mesh sends forces resulting from the flow to the FE-segments, and the
FE-mesh sends geometric information to the Euler mesh to build the fluxes
required by the FV solver.

During the Global search level, the FE-mesh uses the bounding box of the
FE-segments to analyze the intersection of the bonding box with the Block

38

Frame Work (BFW), see Section(4.2), of the Euler mesh. During this step
the bounding box of the FE-segments if defined with an off-set. As a result,
the final list of segments intersecting the BFW is constituted by candidate
segments, not the final ones. The off-set is used so that this stage of the
search algorithm does not have to be repeated at every time step, it is only
performed every time the displacement of the FE-segments is larger than the
off-set.

The main topological tool used at this stage is verifying the intersection
of two boxes. As a result of this Global search a list of possible segments
intersecting each block is creates and stored in a list called sblock. For each
block on the Euler mesh an sblock is created. Each block receives its own
sblock to perform the next level of search. The process is represented in
Figure(31a)

Pt PR =
@ =—=x (s 1
Geometr A
@% @m«\ -71:;’-%{

I°‘k S"vur_-‘l‘uf"' T 1L
"C"D\M',l ble ——l %hck.

‘o FE-Mesh Trameulavic
&

'] ‘ :io aseved
o 1 /o Ulac.'r.
“O |'

!.'

- 1
—_—t 3_- LV r
Using ofC-setr
crcate |polock.|

UBM:) o—??-sg{'

arcate

cblack. |

Figure 31: global search level

39

At the end of the global search each block which intersects the flow region,
active block, is tagged and each block receives a list of possible segments
intersecting it, which is called sblock

5.2 Euler search level

The Euler search level is performed in the same way as the Global search but
at block level.

For each block in the Euler mesh, the bounding box of each segment in
its corresponding list sblock is verified for intersection with each one of the
cells in the block.

To reduce computational cost, this search level is performed using an
off set in the bounding box of the segments. This result in a list called
cblock of possible segments intersecting each cell in the block. The process
is represented in Figure(31b).

At the end of the Euler search, each cell contains a list cblock of possible
segments that might intersect it. At this stage the active blocks and cut-
block are known as well as the active cells and cut-cells. For the cells also
the totally immersed boundary faces are known, but the cell faces neighboring
cut-cells still need to be classified. The cblock for each cut-cell contains the
necessary information to perform the Exact Geometry search level.

5.3 Exact Geometry

As a result of the the two previous levels of search, each cut-cell has a list,
cblock, containing a set of candidate segments intersecting it. The purpose
of the Eract Geometry search level is to detect if a certain segment of the list
of candidates really intersect the cell and, if so, to calculate the intersection
points to construct the geometry of the cut-cell.

To test wether a certain segment intersects a cell, it is quite straight
forward to think of a verification process in terms of geometry. For example,
to calculate the intersection point of a certain segment’s edge with one of
the cell’s faces one can think of solving the system for the intersection of the
plane containing the cell’s face and the line containing the segment’s edge.
These geometrical analysis also builds the intersection point in the process.
The problem with geometrical methods is that they require the construction
of “new geometry”, called constructors, which have different precision than

40

the given data, and are subject to round off errors which at the end result in
an unknown accuracy for the intersection points. [1].

Considering the problems that arise from solving the intersection problem
in terms of geometrical descriptions, it is desired to first build topological
tools to verify the actual occurrence of an intersection and if such intersection
really happens then to build the intersection point using geometrical tools.
This way the use of intersection constructors is kept to a minimum and so
their effect on accuracy and use of computational resources. After all the
intersection problem is a question of topology, not of geometry.

To achieve this, three topological tests are used

e Point test. For each FE node find in which cell it resides, see Figure(32a).

e Fdge test. For each FE edge test wether it intersected by a certain
cell’s face, see Figure(32b).

e Slice test. For each FE segment test wether it is intersected by a certain
cell’s edge, see Figure(32c).

o

isrc <

Figure 32: Exact Tests

In order to understand how these tests work, the concept of the signed
volume for a tetrahedron needs to be known.

41

5.3.1 Signed Volume of a Simplex

A simplex is the generalization of a triangle to n-dimensions. The simplex
in 3 dimensions is the tetrahedron.

A known property for the simplex is the computation of its volume in
determinant form. This property states that the volume V' (T") of the simplex
T with vertices (vg, vy, ...v4) in d-dimensions is:

1 VYoo Vo, --- Vo,u_4 1

V<TUOU1--~vd) - E

(7)

Vdy UVdy -+ Udy_y 1

which, for a tetrahedron 7} . 4 reads:

1 v, v, v
T bo b1 ba
V (UO'UI---Ud) =

3! Ve Vey Ve

(8)

—_ = = =

This volume is positive if the triangle A,;. forms a counterclockwise
circuit when viewed form a point located on the side of the plane defined by
Agp which is opposite from d, c.f [1], see Figure(33)

4 .c
'_.
o & *b
ac
aL. 'b “A
IO Vaphle)

Figure 33: Signed Volume Property

The side of the point d with respect to the plane defined by A, ;. can be
determined by the sign of the volume obtained vis the determinant. If this
volume is zero the point d is coplanar with a, b, c.

42

Using the signed volume property, two tests can be defined, the pierce
test and the Inside test

5.3.2 Pierce test

This test determines weather a line segment between two points a and b
pierces trough the plane defined by a triangle Ag ;5.

Applying the signed volume test to the triangle Ag ;2 and the segment ab,
see Figure(34), ab crosses the pane if and only if the signed volumes V (Tp24)
and V (Tp19) have opposite signs

b
G V(T 1,2.4) <0 b” V(Ty,1,2,)>0

Figure 34: Pierce test, reprint form [1]

5.3.3 Imnside test

Once it has been verified that the segment ab indeed pierces through the
plane where the triangle Ag o resides, what need to be determined is if the
segment pierces inside the triangle.

According to the signed volume property, piercing occurs inside the tri-
angle if the the volume of the tetrahedrons connecting the end points of
segment ab with the end points of the edges of the triangle Ap,1,2 have all the
same sign, that is if:

[V(Ta71727b> <0OA V(Ta7071,b) <0OA V<Ta,2,0,b) < 0]

or
[V(Ta71727b> >0A V(Ta70717b) >0 A V(Ta72707b) > 0]

see Figure(35) for a graphic representation of this test.

43

Figure 35: Pierce test, reprint form [1]

5.3.4 Topological Characteristics

To obtain the topological characteristics of a cut-cell the first step is to apply
the Point tests to determine which of the candidate nodes resides inside it.

The Point test transfers the point coordinates in terms of the SPF index,
using this information the cell where the edge resides can be known, see
Figure(32a).

Once it is known the cell inside which a node resides, the FEdge test is
applied to determine which cell face is pierced by the edges containing such
node as an end point.

For each of the edges containing the node and for each of the cell’s faces,
the Edge Test is performed in two stages. First the pierce test is used to
determine which of the cell face’s planes the edge pierces, see Figure(36a).
Second, the (inside test) is performed to determine if the segment pierces
the plane inside the cell’s face, see Figure(36b).

The last thing that needs to be determined is which of the triangular
segments of the FE-mesh cut each of the Euler cell’s edges. This is determined
using the Slice test.

The Slice test is performed in two stages. First the pierce test is performed
to determine if a certain Euler cell’s edge pierces trough any of the segment’s
planes, see Figure(37a). Second, the inside test is performed to determine if
the cell’s edge pierces inside the segment, see Figure(37b).

Degenerate cases There exist six cases where the Point test, Pierce Test
or Slice test may fail, [29]

44

\nsrde Test (only ove
@ Freree Tt ® “:;mwweﬁ"““‘\“b

= Aae. Te be

Figure 36: Edge test,

7“! vee Test ®) \wside 'Tc,'b"c
<lice Tedt

Figure 37: Slice test,

1- FE-node coincides with a face, see Figure(38a).

2- FE-node coincides with a cell edge, see Figure(38b).

45

3- FE-node coincides with cell vertex, see Figure(38c).

N
1

FE-edge intersects with a cell edge, see Figure(38d).

5- FE-edge intersects with a cell vertex, see Figure(38e).

=]
T

FE-segment intersects with a cell vertex, see Figure(38f).

—— g A A
1 v /|) . /
! v i DO 4_1_ " 4
P o » < ’
et e LT /6 _) '?:"\‘.:5 : el
N b -] <l \|/22 ~
o i ‘a / \ ° |/
/ ; \/ i
e e a
@ ® ®
" e
P o | H /
jr— i 1 &
' “— =11
ey e 3 \ \ \ -
1| AT A | 7= 3
L G b o e = T P el
& 1”-) | 2./
. kr;:.;f L '&_’/_ el
| s g 4 /7 /
/s \
\/
7 |
d ¢
) ; :
@ @ ®

Figure 38: Degenerate cases

The first three degenerate cases cause trouble with the point test. The
test is unable to determine the cell to which the problematic point belongs.
To solve this problem a Tie breaking algorithm can be used, [1], [29].

Additionally, when cases 1, 2 or 3 occur the Edge test concludes no in-
tersection because one of the signed volumes is zero. When cases 2 and 3
are found also the Slice test fails because one of its components gives a zero
volume.

When cases 4 and 5 occur the Edge test fails because one of the compo-
nents of the Inside test has a zero volume.

When case 6 occurs the Edge test fails because one of the components of
the pierce test has zero volume, [29].

46

5.3.5 Geometrical Characteristics

After applying the above mentioned tests, for each cell face the FE-edges
intersecting it are known, as well as the FE-segments cutting each of the
cells” edges. The points where an FE-edge pierces a cell’s face and the points
where a cell’s edge intersects a segments are known as pierce points. To build
the exact geometry of the cut-cells the pierce points need to calculated.

Geometrical constructors were originally rejected because the problem of
wether or not an edge pierces a plane inside a certain region is a problem of
topology and not of geometry. Once the existence of pierce points have been
established geometrical constructors should be used to generate the actual
geometry of the pierce pierce points, [1].

47

6 Problem definition and research questions

As a result of the search algorithm, described in detail in the last section, all
blocks of the Euler-mesh are classified as active, if they belong completely
to the flow region, inactive if they are outside the flow region, or cut-block if
the interface of the airbag intersects any of the cells belonging to the block.

In the same way, each cell is classified as active, inactive or cut-cell. The
cell faces are also classified, the cell faces connecting two active cells are
classified as flow faces. The faces connecting an active cell and a cut cell
are classified as cut faces but this classification takes place when the cut-
cell’s exact geometry is obtained. As a result of the unresolved geometric
degeneracies the faces connecting active cells to cut-cells can not be classified
entirely.

In the actual cut-cells implementation used in MADYMO two issues need
to be addressed

1- How to solve the degenerate cases? The aim of this question is
to define an algorithm capable of determining consistently the existence of a
pierce point for the degenerate geometries.

2- How to determine which region in a cut-cell belongs to the
flow and which out-side? The only known fact about the cut-cells, in
general, is their classification as such, but not which regions in them belong
to the flow and which outside.

Thinking of a test to define the inner and outer regions of a cut-cell
seems easy in terms of any of the already mentioned tests for the Point in
Polyhedron Problem. For example the line crossing test could be used taking
any test point in any of the two regions of a cut-cell and the centroid of
any of the active cells, tracing a line segment between those two points and
counting the number of intersections would reveal the answer. But soon
problems arise, for example:

e How to chose the test point in the cut-cell?

e How does the choice of the active cell affects the accuracy and what
role does connectivity plays?

e What happen if the test point in the cut-cell is too close to the airbag’s
boundary?

This problems become more complicated taking into account the fact that
the boundary in the problem at hand is a moving, flexible boundary.

48

The two above mentioned questions and the derived subquestions are the
research topic that this work will address.

49

7 Looking for solutions

In this section a description of various methods to solve the problem is pre-
sented. In the first part a brief explanation on the actual solution method
implemented in MADYMO is presented along with an example of a degen-
erate geometry for which it fails.

The notation in this section follows the notation used in [1], see Figure(39).

Fio-3) — Hex cell faces N
fi’[facc#][poly#| — Face polygons k:f_ %o
fs [face#|[scg#] — Face segments x>
Tip-nj — Intersected Triangles

Ip[0-n] — Intersected Triangle polygons

Figure 39: Anatomy of a cut cell; reprint from [1]

The implementation in MADYMO is already capable of determining each
of the polyhedrons obtained after the cutting process for each cut-cell. The
aim of the process to obtain the exact geometry is to determine accurately
the area of the face polygons inside the airbag to make accurate calculations
of the flows.

For the cut-cells, the face polygons are known as a list of their vertices in
a counter-clockwise direction. An extreme geometrical case, known as col-
lapsing FE-segments, occurs when the airbag folds causing two neighboring
triangular FE-segments to become almost co-planar. For now the problem
of collapsing FE-segments will be ignored, see Figure(40).

50

Figure 40: Collapsing triangles

7.1 Implemented solution method

The airbag is a simple polyhedron, which means that it is topologically equiv-
alent to a sphere. The normal to each triangular FE-segment is known, thus,
if a transversal cut of the airbag is performed by a plane, a simple polygon,
topologically equivalent to a circle, is obtained. The normal to each of the
polygon’s edges is known, by projection of the triangular segments normal
to the cutting plane, and also the counter-clock wise tangent direction to
traverse the polygon.

Figure 41: Equivalence to two-dimensional problem

o1

The implemented method in MADYMO is based on the signed volume
test for the simplex, described in Section(5.3.1). The assumption made for
this method is that a point ¢ is inside a simple polyhedron if the polygon,
obtained by cutting the polyhedron by any plane containing the point ¢, is
entirely traversed in counter-clockwise direction viewed as standing in ¢, see
Figure(42).

n 1 f} ‘\f

. ?‘
~ T A
v i
0l -
i 3
%

Figure 42: Point ¢ inside polygon

For each cut-cell the problem can be stated equivalently: the normal to
each triangular FE-segment is known and thus, by projection, the normal to
the face segments in each cell’s face is know. The problem of determining
the inside/outside polyhedron for the cut-cells can be equivalently solved
by determining the inside/outside polygons to each cell face, this turns the
three-dimensional problem into a two-dimensional problem.

The traversing direction of the face segments is important for consistency
in the signed volume test. For each cut-cell face, a vertex v is determined to be
inside or outside based on the sign of the simplex formed by the vertex being
tested and two of the face segments edges, p; and py, always preserving the
direction of the face segment pips according to the counterclockwise tangent
defined by the normal.

If the signed area of the triangle is positive then the vertex v is in-
side because the triangle is defined counter-clock wise direction, and if the

signed area is negative, the vertex v is outside. An example is presented in
Figure(43)

52

- a T,
v % A
By 3
L
~ A
!?:.

Figure 43: Point ¢; is inside with respect of the triangle ¢; P, P, point g3 is
out with respect to triangle g3 P4 Ps

In order to determine the inside/outside status of each face polygon,
MADYMO needs to determine the inside/outside status of at least one test
point belonging to such polygon. The test point is chosen systematically to
be a cell-face vertex belonging to the face polygon that does not coincide
with a face segment edge, see Figure(43)

The signed volume test fails for a face polygon when no vertices of the
cut-cell face belong to such polygon. In such cases no test point can be
chosen or the status of the coinciding cell vertex and face segment edge is
undetermined, see Figure(44)

7.2 Solution Idea 1: Consistency in traversing direc-
tion.

The key point behind this method is that if two simple polygons sharing an
edge are both traversed in a counter-clock wise direction from the point of
view of a point inside each polygon, then the direction at which the shared
edge will be traversed will be contrary for each polygon, see Figure(45).
Based on this, and because for now the problem of collapsing FE-segments
is being ignored, the status of a face polygon can be determined by consis-
tency of the traversing direction. Each face polygon is traversed in counter-
clock wise direction and if the direction is contrary to the traversing direction

53

i

@ ®| |
K »
N | - -
?‘5' o 1 12 *

?‘\R —iann Yy
. {
©| =
» P
|

[s

% 5
.
v, W ‘:f" K
P d : w
O ‘V O e
4 A

Figure 45: Simple polygons with coinciding edge.

of the face segments, dictated by the counter-clock wise orthogonal vector to
the normal, then the polygon is determined to belong outside the flow region.
Figure(46) presents an example.

In Figure(46 a) the cell face is cut into the polygons Py = pipaps, Py =
P1P3Papsps and Py = pgpaps, for this case P; and P3 are consistent with the
directions at which the face segments are traversed, while P, is not. It is
concluded that the interior of P, and P; belong to the flow region while the
interior of P, belongs outside.

In Figure(46 b) the cell face is cut into the polygons P, = pipaps, Py =

o4

?: ._.75 %&\\ = y‘?ﬁ
Py
® o ® v
_’,73 A,
L LS " -
T ?z, T 7z

Figure 46: Traversing direction consistency.

P1P3p2psps and Py = pgpaps, for this case P, is consistent with the directions
at which the face segments are traversed, while P, and P; are not. It is
concluded that the interior of P, belongs to the flow region while the interior
of P, and P; belong outside.

A case which cannot be treated directly by this method is the case of a
cell face where the face segments divide the face into non-simple polygons,
see Figure(47 a). To solve this case an auxiliary “double”-edge can be defined
between one of the interior-polygon’s edges and a cell face vertex, this trans-
forms the non-simple polygon into a simple one allowing to use the proposed
method, see Figure(47 b).

This case is not only problematic for this method, it is problematic also
for the actual implementation used in MADYMO and is treated separately.

The Consistency in traversing direction method requires that the poly-
gons into which each cut-cell face is divided are known in counter-clock wise
direction, the traverse direction for each face segment in the counter-clock
wise orthogonal direction to the normal, and a way to verify the equality
between the directions in which polygon is traversed and the direction at
which the face segments are traversed.

7.3 Solution Idea 2: Consistency in test point selec-
tion.

Other methods more geometric in nature can be though where the problem
lies on achieving a systematic and consistent way of choosing a test point.

95

— 1 . 2 ?3

fa g
. ¥ @ ?ial X
@ 'ﬂ:‘-} » 2 - "
L Y ._'1 !';"r‘ﬁ
T, e -
i o Tﬁ

Figure 47: Non-simple polygon degeneracy.

Those methods will be discussed in this subsection.

References

1]

M. J. Aftosmis, Solution Adaptive Cartesian Grid Methods for Aerody-
namic Flows with Complex Geometries. von Karman Institute for Fluid
Dynamics Lecture Series 1997-02 March, 1997

G. Yang, D. M. Causon, D. M. Ingram, Calculation of compressible flows
about complex moving geometries using a three-dimensional Cartesian cut
cell method. Int. J. Numer. Meth. Fluids 2000; 33: 11211151

H. Bandringa, Immersed boundary method. Master Thesis in applied
mathematics, University of Groningen, August 2010

L. Dubuc, F. Cantariti, M. Woodgate, B. Gribben, K. J. Badcock and
B. E. Richards, A grid deformation technique for unsteady flow compu-
tations. Int. J. Numer. Meth. Fluids 2000; 32: 285311

F. Cirak, R. Radovitzky, A Lagrangian-FEulerian shell-fluid coupling al-
gorithm based on level set methods. Computers and structures, Elesevier
2005, 83

56

(6] D. Hartmann, M. Meinke, W. Schrder A strictly conservative Cartesian
cut-cell method for compressible viscous flows on adaptive grids. Comput.
Methods Appl. Mech. Engrg. 200 (2011) 10381052

(7] R. Mittal, G. Iccarino, Immersed boundary method. Annu. Rev. Fluid
Mech. 2005. 37:23961

8] S. Kang, G. laccarino, F. Ham, P. Moin, Prediction of wall-pressure fluc-
tuation in turbulent flows with an immersed boundary method. Journal of
Computational Physics 228 (2009) 67536772

9] Advanced immersed boundary cartesian meshing technology in FloEFD.
Mentor Graphics Whitepaper 2011, www.mentor.com

[10] M. Meyer, A. Devesa, S. Hickel, X.Y. Hu, N.A. Adams A conservative
immersed interface method for Large-Eddy Simulation of incompressible
flows. Journal of Computational Physics, 229 (2010) 63006317

[11] J. Peteker Point-in-Polygon Detection. Bachelor Thesis University of
California, Merced, April 2010

[12] P.G. Tucker, Z. Pan, A Cartesian cut cell method for incompressible
viscous flow. Applied mathematics modeling, 24, 2000, 591-606

[13] D. De Zeeuw, K. Powell An adptive refined cartesian mesh solver for
Euler equations. J. of Comp. Physics, 104, 56-69, 1993

[14] E. Haines Poin-in-Polygon strategies. Graphics Gems IV, ed. Paul Heck-
bert, Academic Press, 1994, p. 24-46.

[15] D. De Zeeuw, K. Powell Efficient and consitent algorithms for deter-
mining the containment of point in polygons and polyhedra. Eurographics
Association, Elsevier Science Publications, 1987, 423-437

[16] B. Zalik, I. Kolingerova A cell-based point-in-polygon algorithm suitable
for large sets of points. Computers & Geosciences 27 2001, 11351145

[17] J. Petker, Point-in-Polygon Detection. Batchelor of science Thesis, The
University of California, Merced, April 2010

[18] M. Galetzka, P. O. Glauner A correct even-odd algorithm for the point-
in-polygon (PIP) problem for complex polygons.

o7

[19] K. B. Salomon An efficient point-in-polygon algorithm. Computers &
Geosciences 4 1978, 173-178

[20] G. Taylor Point-in-polygon test. survey review 32, Department of Sur-
veying, University of Newcastle upon Tyne October 1994, 479-484

[21] J. O’Rourke Computational geometry in C. Cambridge university press
second edition

[22] K. Hornmann, A. Agathos, The point in polygon problem for arbitrary
polygons. Computational Geometry 20 (2001), 131144

(23] Cundy, H. and Rollett, Mathematical Models. Tarquin Pub. 3rd ed.,
Stradbroke, England, 1989

[24] J.A. Sethian, Fast marching methods and level set methods for propa-
gating interfaces. von Karman Institute Lecture Series, Computational
Fluid Dynamics (1998)

[25] J.A. Sethian, Level Set Methods: An Act of Violence.

[26] S. Osher, R. Fedkiw Level Set Methods and Dynamic Implicit Surfaces.
Springer, (2003)

[27) M. Arienti, P. Hung, E. Morano, J. E. Sheperd A level set approach to
FEulerian-Lagrangian coupling. Journal of Computational physics, (2003),
Number 185, pages 213-251

28] BMN, System Requirements, Global search. TASS technical reports May
15, 2008

[29] M.R. Lewis, B.M. Neelis, System Requirements - Exact Geometry. TASS
technical reports May 15, 2008

[30] H. Tazammourti, System Requirements - MPP. TASS technical reports
September 4, 2006

[31] M.R. Lewis, System Requirements - Euler flow solver. TASS technical
reports October 7, 2008

[32] H. Tazammourti, System Requirements - cell merging. TASS technical
reports September 4, 2004

58

[33] M.R. Lewis, System Requirements - Fluid Structure Coupling. TASS
technical reports November 25, 2008

[34] M.R. Lewis, Design-Ezact Geometry. TASS technical reports July 3,
2007

[35] H. Tazammourti, Design Document- Gasflow2-AMR and DataStructure.
TASS technical reports November 9, 2006

[36) M.R. Lewis, System Requirements - Multiple species. TASS technical
reports April 23, 2008

[37] R. Schmehl, Theory- AMR concepts and data structure. TASS technical
reports December 19, 2006

59

