
Parallelization Of An Experimental
Multiphase Flow Algorithm

by

Ankit Mittal

in partial fulfilment of the requirements for the degree of

Master of Science

In Applied Mathematics

At the Delft University of Technology,
To be defended publicly on Friday August 12, 2016 at 03:00 PM.

Student number: 4503163

Supervisors: Dr. Martin van Gijzen, TU Delft
Dr. Aris Twerda TNO-Netherlands

Thesis committee: Prof. dr. Arnold Heemink, TU Delft
Dr. Duncan van der Heul TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

ACKNOWLEDGMENT

Firstly, I would like to thank my thesis supervisor Dr. Martin van Gijzen for the
guidance, support, and encouragement that he offered me. I also thank Guido Oud
and Dr. Aris Twerda for their guidance and for the numerous fruitful discussions we
had. Without the above three people this thesis wouldn’t have been possible. I would
also like to thank Prof. dr. Kees Vuik and Dr. Duncan van der Heul for all the
discussions and help that they kindly offered me.
I am grateful to Europe’s Education, Audiovisual and Culture Executive Agency
(EACEA) for providing me with the scholarship to pursue my master’s education.
Further, I am also grateful to TU Delft and TNO Netherlands for providing me with
the resources to complete my master’s thesis.
Above all, I would like to express my sincerest gratitude to God, my family and my
friends for their love and belief in me. The moral support and love that I received from
them made my journey easy and worthwhile.

Ankit Mittal

1

2

Contents

1 INTRODUCTION 8

2 GOVERNING EQUATIONS & SOLUTION TECHNIQUES 10
2.1 FLOW . 10
2.2 INTERFACE . 11

2.2.1 LEVEL SET METHOD . 12
2.2.2 VOLUME OF FLUID METHOD 12

2.3 DISCRETIZATION AND LINEARIZATION 13
2.4 TIME INTEGRATION METHODOLOGY 16

3 SOLVERS 19
3.1 RESTARTED GMRES . 20
3.2 CONJUGATE GRADIENT (CG) . 22
3.3 IDR(s) . 22
3.4 GCR METHOD . 25

4 PRECONDITIONERS 26
4.1 JACOBI PRECONDITIONER . 27
4.2 INCOMPLETE CHOLESKY PRECONDITIONER 27
4.3 DEFLATION PRECONDITONER . 28

5 DESCRIPTION OF THE AVAILABLE CODE 32
5.1 OVERALL ALGORITHM . 32
5.2 FLOW SOLVER . 32
5.3 INTERFACE SOLVER . 33

6 PARALLELIZATION OF THE MODIFIED CODE 35
6.1 DISTRIBUTED SYSTEMS . 35
6.2 DOMAIN DECOMPOSITION . 36

3

7 RESULTS & DISCUSSION 40
7.1 PROFILING & SERIAL IMPROVEMENT 40
7.2 ACCURACY CHECK . 42

7.2.1 Dam Break / Benjamin Bubble Problem 43
7.2.2 The Axisymmetric Rising Bubble Problem 46

7.3 SPEEDUP & SCALABILITY OF PARALLELIZATION 49
7.3.1 Benjamin Bubble Problem . 50
7.3.2 Rising Bubble . 51

7.4 SPEEDUP GIVEN BY SOLVERS AND PRECONDITIONERS 52
7.4.1 Deflation . 53
7.4.2 IDR(s) . 56

8 PRACTICAL CAPABILITIES/USE OF THE MODIFIED PARAL-
LEL CODE 60

9 CONCLUSION 70

A Future Work - Saddle Point Preconditioners 73
A.1 PRESSURE CONVECTION-DIFFUSION PRECONDITIONER 74
A.2 LEAST SQUARES COMMUTATOR PRECONDITIONER 75
A.3 SIMPLE PRECONDITIONER . 76
A.4 SIMPLER PRECONDITIONER . 77
A.5 MSIMPLER PRECONDITIONER . 78

4

List of Figures

2.1 Arrangement of variables in Arakawa C grid. 14

5.1 Overall flow chart of the algorithm. 33
5.2 Brief flowchart of the flow algorithm. 33
5.3 Brief flowchart of the interface advection algorithm. 34

6.1 Conceptual design of a distributed memory system. 36
6.2 Domain decomposition for a 2-d channel. 38

7.1 Initial condition for the Benjamin bubble problem. 44
7.2 Movement of the interface. 45
7.3 Difference in Rise velocity obtained by modified serial and parallel codes. 46
7.4 Difference in Rise velocity obtained by using deflation and IDR(s) solver. 47
7.5 Movement of the bubble. 48
7.6 Difference in Rise velocity for the rising bubble. 49
7.7 Normalized Mass obtained by different codes. 50
7.8 Scaling for the Benjamin bubble problem. 51
7.9 Scaling for the rising bubble problem. 52
7.10 Smallest 50 eigenvalues of a typical diagonally scaled system matrix. . 53
7.11 Convergence history of ICCG and deflated ICCG. 55
7.12 Overall simulation time after using Restarted GMRES/IDR(s) to solve

the predictor step. 59

8.1 Geometry and configuration of the simulated pipe. 60
8.2 Convergence history for ICCG and deflated ICCG method. 63
8.3 Movement of the interface with time for the subscale problem. 64
8.4 Convergence history for ICCG and deflated ICCG method for the full

scale model. 65
8.5 Movement of the interface with time for the full scale problem. 67
8.6 Comparison between the shape of the interface head captured by the

current simulation and as reported in [19]. 68

5

List of Tables

7.1 Physical properties used for two different test cases. 41
7.2 Profiling results of the original code for 20 time steps for two different

cases. 42
7.3 Number of iterations and time taken by GMRES method to solve a

single predictor step. 43
7.4 Number of iterations and time taken by the improved GMRES method

to solve a single predictor step with and without preconditioning. . . . 43
7.5 Terminology and specifications of different codes. 44
7.6 Benjamin bubble geometry and properties. 44
7.7 Rising bubble geometry and properties. 47
7.8 Total computational time taken to solve Benjamin bubble for 2 grids on

different number of processors. 51
7.9 Total computational time taken to solve Rising bubble for 2 grids on

different number of processors. 52
7.10 Time and iterations taken by the Poisson solver for a single integration

step (Rising bubble). 54
7.11 Time and iterations taken by the Poisson solver for a single integration

step (Rising bubble), tolerance 1e-4. 55
7.12 Time and iterations taken by the Poisson solver for a single integration

step (Benjamin bubble). 56
7.13 Restarted GMRES versus IDR(s) for solving one predictor step on dif-

ferent number of processors (Benjamin bubble). 56
7.14 Restarted GMRES versus IDR(s) for solving one predictor step on dif-

ferent number of processors (Rising bubble). 57
7.15 Restarted GMRES versus IDR(s) for solving one predictor step on dif-

ferent number of processors (Rising bubble, larger time step(0.5ms)). . 58

8.1 Geometry of the pipe and test case properties. 61
8.2 Time taken for 100 time steps by the first geometry on different number

of processors. 62

6

8.3 No. of Iterations and time taken by (deflated) ICCG to solve the Poisson
equation. 63

8.4 No. of iterations and time taken by (deflated) ICCG to solve the Poisson
equation. 66

8.5 Total time taken by available code and deflated ICCG code on 40 pro-
cessors to integrate 10 time steps. 66

8.6 Profiling results of the original and modified codes for one time step of
the full scale problem. 68

8.7 Interface velocity obtained from experiments and simulations. 69

7

Chapter 1

INTRODUCTION

Multiphase flows are widely occurring in nature. Such flows either have two or more
immiscible fluids separated by an interface or one or more fluids, again separated by
an interface, which are in different phases. They commonly occur in atmosphere (for
example bubbly flows), chemical reactors, turbo-machines, fuel injectors, pipe flows,
etc. Multiphase flows are also of particular interest to the petroleum industry, where
such flows often occur in wells and pipelines during oil and gas production.
In multiphase flows, since the interface also gets advected with the flow, accurate
calculation of the interface location is necessary for accurate prediction of the flow
field. In order to calculate the interface at each time step one can use either the Level
Set (LS) method [1] or the Volume of Fluid (VOF) method [2]. The LS method,
though computationally cheap, is rather inaccurate, while the VOF method though
more accurate, is computationally very expensive. In [3] van der Pijl studied bubbly
flows, and to calculate the interface an approach based on the combination of the
level set and volume of fluid methods (MCLS) was adopted. This approach gave more
accurate results (as compared to the Level Set method) without incurring prohibitively
large computational costs.
A project titled CFD to study instabilities in 3d flows is currently being carried out at
TU Delft jointly with TNO Netherlands, Shell, and Deltares. The aim of the project
is to study multiphase flows in pipes, where those are initially filled with oil, and
water is pumped to flush the oil out or vice-versa. A somewhat similar approach as
in [3] is employed here to predict the interface and a working code is available. The
code extensively uses Krylov subspace methods to iteratively solve the obtained linear
system of equations. The aim of this thesis is to improve the efficiency of the available
code.
In multiphase flows, there is a jump in viscosity and density across the interface due to
the difference in properties of the two fluids. This jump slows down the convergence of

8

the iterative solvers. The present code as well is plagued by the slow convergence and
hence proper preconditioners to improve the convergence are analyzed in this endeavor.
Also, we consider how to improve the performance of the given code by changing its
structure, and by using less computation and memory intensive solvers.
As size of the system grows, even the best solvers with the most suitable precondi-
tioners take prohibitively large amount of time to generate the numerical results on a
single processor. The way-out is to use parallel programming and to split the whole big
system into smaller more manageable pieces, and distribute them amongst the avail-
able processors. But parallelization is far from straightforward, as explained later, if
the number of processors increases the convergence behavior of the preconditioner de-
teriorates. Hence, techniques like deflation have to be used to restore the performance
of the preconditioner, and therefore in this endeavor we also study the feasibility of
parallelization with the deflation technique.
Furthermore, we acknowledge that the decoupled time integration method used in the
available code is not kinetic energy conserving, which might be of interest in turbulent
flow cases. To preserve the kinetic energy, one has to integrate the flow field in a coupled
manner. The coupled system suffers from a very poor convergence, and therefore we
also consider a few preconditioners to improve the convergence of the coupled solvers.
In this report, Chapter 2 explores in detail the physics of incompressible multiphase
flows, and Chapters 3 and 4 deal with solvers and preconditioners used in the available
code or proposed to be used to improve the efficiency of the available code. Further, in
Chapter 5 the structure of the available code is discussed, while Chapter 6 covers the
parallelization study for the current system. In Chapter 7, we use the modified parallel
code to simulate two physical problems to prove the accuracy of the new code and to
discuss the obtained speedup and scaling results. This is followed by demonstarting the
benefits of the modified parallel code by simulating a full scale engineering problem in
Chapter 8. At the end, we present the conclusion in Chapter 9, and discuss the saddle
point preconditioners in Appendix A.

9

Chapter 2

GOVERNING EQUATIONS &
SOLUTION TECHNIQUES

In the present study, we deal with multiphase flows between two fluids which are sepa-
rated by a sharp interface. The flow is characterized by velocity v(x, y, z, t) and pressure
p(x, y, z, t) (where bold indicates a vector). Due to the assumption of incompressibility,
the fluids on either side have different but constant densities and viscosities, also we
assume the flow to be isothermal and Newtonian.
In this section we present a very brief overview of the governing equations based on
[3], for a more detailed discussion one is referred to [3, 4]. The physics of our problem
is split into two distinct parts, the flow and the interface. In our approach they are
treated separately, hence we present them one after the other. First we shall discuss
the flow part.

2.1 FLOW

The flow is governed by the 3-d unsteady incompressible Navier-Stokes equations. In
this study we are not interested in the thermal energy, and since in incompressible
flows the energy equation is decoupled from the momentum and continuity equations
we do not solve it. Also, since we are essentially dealing with pipe flows, the cylindrical
coordinates system is an obvious choice for the coordinate system in which the Navier-
Stokes equations are solved. The N-S equations in cylindrical coordinates are,

Continuity equation,

1

r

∂rur
∂r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

= 0

10

Radial momentum equation,

∂ur
∂t

+
∂(urur)

∂r
+

1

r

∂(uruθ)

∂θ
+
∂(uruz)

∂z
+

(urur − uθuθ)
r

=

− 1

ρ

∂p

∂r
+ gr +

µ

ρ

[
1

r

∂

∂r

(
r
∂ur
∂r

)
− ur
r2

+
1

r2

∂2ur
∂θ2

− 2

r2

∂uθ
∂θ

+
∂2ur
∂z2

]
Angular momentum equation,

∂uθ
∂t

+
∂(uθur)

∂r
+

1

r

∂(uθuθ)

∂θ
+ 2

uruθ
r

+
∂(uθuz)

∂z
=

− 1

ρr

∂p

∂θ
+ gθ +

µ

ρ

[
1

r

∂

∂r

(
r
∂uθ
∂r

)
− uθ
r2

+
1

r2

∂2uθ
∂θ2

+
2

r2

∂ur
∂θ

+
∂2uθ
∂z2

]
Axial momentum equation,

∂uz
∂t

+
∂(uruz)

∂r
+

1

r

∂(uθuz)

∂θ
+
∂uzuz
∂z

+
(uruz)

r
=

− 1

ρ

∂p

∂z
+ ρgz +

µ

ρ

[
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2

∂2uz
∂θ2

+
∂2uz
∂z2

]
where ρ is the density, p is the pressure, g is the gravitational constant, r, θ, z are the
space variables, and ur, uθ, uz are the velocity components in respective r, θ, z direc-
tions. If we mark the two fluids as 0 and 1, then to separate the two fluid regimes, we
introduce a so-called color function χ defined as

χ(x)) =

{
0, x ∈ fluid 0
1, x ∈ fluid 1

, where x is the position vector. Then the density and viscosity

can be expressed as

ρ = ρ0 + (ρ1 − ρ0)Ψ & µ = µ0 + (µ1 − µ0)χ

where subscripts 0 and 1 indicate the respective fluids, and Ψ is the VOF function
(discussed in the next subsection). To get a smooth pressure and gradient of velocity
across the interface we regularize the color function, i.e., smear it out over a small but
finite distance.

2.2 INTERFACE

For the interface convection we follow the Eulerian approach and only look at a fixed
space with a fixed grid. For numerical treatment of the interface we use the Volume

11

Tracking methods. In these methods we assign a color to each of the fluid regimes,
and the region where the color function changes implicitly defines the interface. The
benefit of such a method is that the changes in the interface topology and coalescence
are automatically taken care of.
The volume tracking methods can be sub-categorized into two subcategories viz. the
Level Set (LS) method [1] and the Volume of Fluid (VOF) method [2]. In both the LS
and VOF methods the fluid interface is identified by some coloring function, and that
function is advected in an Eulerian way as,

∂Φ

∂t
+ u · ∇(Φ) = 0. (2.1)

We further discuss each of the above two techniques in some detail.

2.2.1 LEVEL SET METHOD

In the Level Set method [1], the interface is defined by a marker function Φ. The marker
function is defined to be positive in one fluid and negative in the second fluid. Hence,
the locations where the marker function is zero marks the location of the interface, i.e.,

Interface = {x | Φ(x, t) = 0}.
The signed distance function d(x, t) is a well suited marker function. The level set
function is advected according to

∂Φ

∂t
+ u · ∇Φ = 0.

The level set function Φ is a smooth function that, unlike VOF, allows for a straight-
forward calculation of the interface curvature. The main disadvantage is that if the
interface is advected using this approach, the mass is not conserved due to the viscous
and convective smoothing. Another disadvantage of LS is that when it is advected
through a non-uniform flow it may no longer correspond to a distance function. To
remedy this one has to reinitialize the level set function after some, or every, numerical
integration step(s) depending on some criterion.

2.2.2 VOLUME OF FLUID METHOD

In the VOF method [2], we use the volume of fluid function Ψ to implicitly define the
location of the interface. This function measures the fractional volume of a certain fluid

12

in a computational cell. Ψ can be 0 or 1 or somewhere in between if the computational
cell is filled with both the fluids, i.e., it contains an interface. The cells which contain
the interface are called mixed cells. We mathematically define Ψ for each cell as

Ψ(xk) =
1

|Ωk|

∫
Ωk

χdΩ,

where χ is the color function which is 0 in one fluid and 1 in the second fluid, xk is the
node and |Ωk| is the volume of the corresponding computational cell k. The interface
is advected using

∂χ

∂t
+ u · ∇(χ) = 0.

The advantage of the VOF technique is that it is mass conserving, unlike the LS
method. The main disadvantage is that the evaluation of normals and curvatures, and
the interface reconstruction are much more tedious and computationally expensive.
Because of the advantages and disadvantages of both the methods, there is no clear
choice amongst them. In the given code a hybrid of both is used which, while being
mass conserving, is relatively easy to evaluate. The details of this hybrid model are
not discussed here and one is referred to [3] for more information.

2.3 DISCRETIZATION AND LINEARIZATION

In the present study, we use the Finite Difference Method (FDM) to discretise the
continuous Navier-Stokes equations, and since the collocated storage of variables give
rise to an odd-even decoupling which introduces spurious oscillations into the solution
called the Checkerboard modes, the variables are stored in the Arakawa C grid [5], also
known as staggered grid. In the Arakawa C grid, the pressure is stored at the center
while various velocity components are stored at the respective cell faces. Figure 2.1
shows the locations where the variables are defined for each cell in a 2d domain.
In such a description we solve the continuity equation at the center of each cell, while
the momentum equation is solved at the cell boundaries.
The methodology for the space discretization is similar to the one used by Morinishi
et al. [4]. Discretization of the viscous terms is done using the standard second order
scheme employing a three point stencil (in 1-d), similarly for the convective terms a
second order central scheme is employed. If we require variables at locations where
they are not defined, we approximate them by averaging the variables at the known
locations, for example, if we require ui,j (Figure 2.1) we approximate it as

13

Figure 2.1: Arrangement of variables in Arakawa C grid.

ui,j =
ui− 1

2
,j + ui+ 1

2
,j

2
.

For the time integration of the momentum equation, the second order implicit mid-
point method is used, while for the interface advection a first order explicit method is
employed. One important aspect of the implicit time integration is the linearization
of the convective terms. In the present scheme Newton linearization [6] is used, which
can be described as follows.
Let u and v be any two variables which are function of some variable. Then by Taylor
series

(uv)n+1 = (uv)n +

(
∂uv

∂s

)n
∆s+O(∆s2) = (uv)n +

(
u
∂v

∂s
+ v

∂u

∂s

)n
∆s+O(∆s2),

which can be further expressed as

(uv)n+1 = (uv)n +

(
vn

(un+1 − un)

∆s
+ un

(vn+1 − vn)

∆s

)
∆s+O(∆s2).

Neglecting O(∆s2) terms gives the Newton linearization

(uv)n+1 = − (uv)n + vnun+1 + unvn+1.

After the space-time discretization of the Navier-Stokes equations, we get a system of
non-linear equations, i.e., the discrete continuity and momentum equations which are
defined as follows:

Discrete continuity equation

Bun+1 = g,

where g contains the discrete velocity boundary conditions and B is defined as

B = [Br Bθ Bz] ,

14

where Br, Bθ, Bz the discrete divergence operators corresponding to the discrete ve-
locities in the radial, angular and axial directions.

Discrete momentum equation

un+1 − un

∆t
+

¯̂
F
(
un+1

)
= − 1

ρn+ 1
2

Gpn+ 1
2 +

(
1

ρ
f s

)n+ 1
2

+ hn+ 1
2 , (2.2)

where
¯̂
F (un+1) contains only the diffusion and non-linear convection terms.

After linearizing the convective terms as indicated above we get

un+1 − un

∆t
+ F̂un+1 = − 1

ρn+ 1
2

Gpn+ 1
2 + τ n +

(
1

ρ
f s

)n+ 1
2

+ hn+ 1
2 . (2.3)

The matrix F̂ is of the form

F̂ =

F̂r 0 0

0 F̂θ 0

0 0 F̂z

,

where F̂r, F̂θ, F̂z are derived from the linearized implicit time discretization of the
radial, angular and axial momentum equations respectively and contain only the con-
vective and diffusive terms. G is the discrete gradient operator of the form

G =

Gr

Gθ

Gz

.

As aboveGr, Gθ, Gz are the discrete gradient operators obtained from the discretization

of the radial, angular and axial momentum equations respectively. Finally, ρn+ 1
2 , f

n+ 1
2

s ,

hn+ 1
2 in equations (2.2) and (2.3) are the discrete density, surface tension, and body

force respectively calculated based on the known location of the interface at n+ 1
2

time
level, and τ n in equation (2.3) contains all the terms which appear due to linearization.

Moreover pn+ 1
2 = pn+1, the reason for writing pressure at n + 1

2
will be clear in the

following section. Further, it is to be noted that for our discretization the discrete
gradient operator G is equal to the transpose of the discrete divergence operator B,
hence we can replace G by BT in the above equations.
Clubbing the above mentioned linearized discrete momentum and discrete continuity
equations together we get

Ax =

[
F BT

B 0

] [
u
p

]
=

[
f
g

]
= b, (2.4)

15

where F contains the contributions from F̂ and 1
∆t
I. We must solve the above system

(2.4) at each time step to obtain a time dependent solution.

2.4 TIME INTEGRATION METHODOLOGY

We now discuss the methodology for the time integration which until now we assumed
to be given. The time integration is split into two decoupled parts, the flow integration
and the interface advection. The calculations of flow and interface are staggered in
time, i.e., we first calculate the flow field at the new time step based on the current
interface position and then calculate the new position of the interface based on the
current flow field; Chapter 5 discusses the algorithm in detail.
What is to be stressed at this junction is the time integration technique for the flow
field used in the available code. Although an algorithm is presented later, here we
present the mathematical motivation, disadvantages and remedies of the used integra-
tion methodology. As discussed above, the interface is assumed to be given for the flow
field time integration. To obtain the velocity and pressure at the new time step one
has to solve the discrete system (2.4). The system can be solved either in a decoupled
manner (solve for the velocity and pressure separately) or in a coupled fashion. We
further discuss the decoupled (pressure-correction/projection) scheme implemented in
the available code.
In the decoupled solver we have to solve for velocity from equation (2.3)

un+1 − un

∆t
+ F̂un+1 = − 1

ρn+ 1
2

BTpn+ 1
2 + τ n +

(
1

ρ
f s

)n+ 1
2

+ hn+ 1
2 . (2.5)

We can not solve the above system directly since pn+ 1
2 is not known. Hence the

following scheme is adopted:
Solve

û− un

∆t
+ F̂ û = − 1

ρn−
1
2

BTpn−
1
2 + τ n +

(
1

ρ
f s

)n− 1
2

+ hn−
1
2 (2.6)

Since the above equation is solved with pressure at previous time step û is not solenoidal.
But we want un+1 to be divergence-free, hence we subtract equation (2.6) from equation
(2.3) to get

un+1 − û
∆t

= − 1

ρn+ 1
2

BTpn+ 1
2 +

(
1

ρ
f s

)n+ 1
2

+
1

ρn−
1
2

BTpn−
1
2 −

(
1

ρ
f s

)n− 1
2

. (2.7)

16

It can be shown [7] that if a second order time integration method is used, neglecting
F̂un+1 − F̂ û in the above equation will still give a second order approximation if we
use a good enough approximation of pressure in equation (2.6). Further, since we do

not deal with time dependent body force hn+ 1
2 = hn−

1
2 .

Now, all that remains is to find the pressure which will give a solenoidal velocity. From
the continuity equation we have Bun+1 = g, hence we can derive an equation for the
pressure by taking the discrete divergence of equation (2.7):

−B 1

ρn+ 1
2

BTpn+ 1
2 =

B

(
− 1

∆t
û−

(
1

ρ
f s

)n+ 1
2

− 1

ρn−
1
2

BTpn−
1
2 +

(
1

ρ
f s

)n− 1
2

+
1

∆t
g

)
. (2.8)

The equations (2.6), (2.8) and (2.7) are known as the predictor, Poisson and corrector
equations respectively. From the above discussion we get a time integration technique,
i.e., first predict the velocity based on the pressure at the previous time step, then
solve the Poisson equation to find the pressure at the current time step which will
give a divergence-free velocity, and then finally update the velocity at the current time
step by using the corrector equation. The reason for writing pn+ 1

2 is simply because
the pressure is calculated in between the velocity updates at nth and n+ 1th time step.
This integration technique is known as the projection scheme or the pressure correction
scheme, the algorithm used in the current code is presented in Chapter 5.
The current procedure of solving though is robust, computationally cheap and widely
used, does not preserve kinetic energy of the fluid. Conservation of kinetic energy of
the fluid becomes a topic of interest in turbulent flows where energy is transferred
between different eddies. In a turbulent case if the kinetic energy is not conserved, the
size of eddies will not be accurately predicted giving an overall inaccurate flow.
To preserve the kinetic energy, one has to solve the non-linear system (2.2) in a coupled
manner i.e., simultaneously solve for both the velocity and pressure. Solving such a
non-linear system is very expensive, and hence in this endeavor, we study techniques to
solve the linearized system ((2.4)/(2.3)) in a coupled manner. This, though not kinetic
energy conserving, is a step towards it and should give a more accurate result. System
(2.4) gives rise to a saddle point problem being solved:

Ax =

[
F BT

B 0

] [
u
p

]
=

[
f
g

]
= b.

The matrix A has a zero block on the diagonal and hence is a saddle point matrix.
Solving such a coupled system is much more expensive than solving the pressure-
correction scheme. Therefore in the last century, the computational power severely

17

limited the applications for which a coupled system could be solved. The present day
computers, however, are much faster, making the solution of the coupled systems more
practical to obtain.
To solve a coupled system we can either use the direct solvers or the iterative solvers.
The direct solvers are very expensive for large systems and hence will not be discussed
any further. The iterative solvers can be further classified into the segregated (not
to be confused with the earlier discussed decoupled solver) and the coupled methods.
In the segregated methods, velocity and pressure are solved separately one after the
other, the order in which they are solved differs amongst different solvers. The idea is
to solve two smaller problems one for each velocity and pressure. Coupled methods,
on the other hand, solve the complete system simultaneously.
Iterative methods to solve the saddle point problem, especially the Krylov subspace
methods, without a suitable preconditioner suffer from a terribly slow convergence due
to the presence of a zero diagonal block in matrix A which makes it highly indefi-
nite. Thus proper preconditioning must be used to get a higher efficiency from such
solvers. The preconditioners for a saddle point problem tend to blur the distinction
between the segregated and coupled methods since the preconditioners for the coupled
methods are often based on the segregated methods. We shall discuss the appropriate
preconditioners in Appendix A.

18

Chapter 3

SOLVERS

The choice of the solver plays a vital role in achieving the desired speedup. Improving
the performance of the code is not just about parallel programming but also about
using smart solvers that are more suitable for the problem in hand, i.e., a solver which
converges quickly with relatively small computational and storage complexities. To
solve a problem of the form Ax = b, a whole plethora of solvers is available ranging
from direct to iterative. Direct solvers generally decompose the matrix A into prod-
uct of matrices which are easier to invert, for example, the Gaussian Elimination [8]
method splits the matrix A into a product of lower (L) and upper (U) triangular ma-
trices. These matrices are relatively easy to invert using the forward and backward
substitution. The main drawback, however, is in the time complexity involved in form-
ing these lower and upper triangular matrices, as a matrix of size N × N requires
O(N3) floating point operations (flops). Although there exist solvers which work more
efficiently than Gaussian Elimination, they still are too expensive for large N .
The alternative to the direct methods are the so-called iterative methods. In these
methods, unlike the direct methods, one does not compute the solution exactly, rather
the solution is updated iteratively and if the current solution satisfies the convergence
criterion the iterations are stopped [8]. The definiteness of a matrix, plays a vital
role in the performance of the iterative methods [8]. For the systems having highly
indefinite matrices, the convergence of an iterative method deteriorates drastically. We
can improve the convergence by preconditioning the matrix [9], this will be discussed
later.
The Krylov subspace methods [8] are probably the most used subclass of iterative
solvers. In these methods we look for the solution of Ax = b in the Krylov subspace
Ki(A,v) which is

Ki(A,v) = span{v, Av, A2v, ..., A(i−1)v},
where v ∈ Rn is a suitably chosen vector. A vector v is said to be of grade d with

19

respect to A if d is the smallest integer for which the set {v, Av, A2v, ..., Adv} is
linearly dependent. Since d ≤ n the Krylov subspace methods converge in at-most n
iterations [8], but practically these methods converge much before n iterations. Further
we discuss some of the solvers which are either used in the available code, or can be
used to increase its performance.

3.1 RESTARTED GMRES

GMRES [10] is a Krylov subspace method which is widely used to iteratively solve
Ax = b where A is a non hermitian matrix. In this section, we discuss the GMRES
method in detail.
In the GMRES method, the solution x is approximated by xi ∈ x0 +Ki(A, r0), where
x0 is the initial guess, Ki(A, r0) is the Krylov subspace, and r0 is the residual (defined
by ri = b − Axi) of the initial guess. The GMRES method reduces to finding xi
in each iteration such that it minimizes the residue ri which lives in the subspace
Ki+1(A, r0). This gives

xi = x0 + y, y ∈ Ki(A, r0), where Ki(A, r0) = span{r0, Ar0,A
(i−1)r0}.

Choosing the Krylov subspace defined as above does not generally give a stable al-
gorithm, therefore we use the Gram-Schmidt type vectors as the orthogonal basis of
Ki(A, r0). We form the orthogonal basis vectors using the Arnoldi decomposition:

v̂i+1 = Avi −
∑i

j=1(Avi,vj)vj,
vi+1 = v̂i+1/‖v̂i+1‖, hji = (Avi,vj), v1 = r0.

This gives,

A [v1 v2 . . . vi] = [v1 v2 . . .vi vi+1]

h11 h12 · · ·
‖v̂2‖ h22 · · ·

0 ‖v̂3‖ · · ·
0 0

. . .

0 0 0 ‖v̂i+1‖

 .
In matrix form we get AVi = Vi+1Hi+1,i, where

Hi+1,i =

h11 h12 · · ·
‖v̂2‖ h22 · · ·

0 ‖v̂3‖ · · ·
0 0

. . .

0 0 0 ‖v̂i+1‖

 and Vi = [v1 v2 . . . vi].

Hi+1,i ∈ Rn is the unreduced upper Hessenberg matrix. If r0 is of grade d with respect
to A we get AVd = VdHdd, where Hdd ∈ Rd×d is given by

20

Hd,d =

h11 h12 · · ·
‖v̂2‖ h22 · · ·

0 ‖v̂3‖
. . .

0 0
.

0 0 0 ‖v̂d‖ hdd

.

GMRES finds an xi ∈ x0 +Ki(A, r0) in each iteration i such that the residual at that
iteration is minimized, i.e., find xi such that ‖ri‖2= min

xi∈x0+Ki(A,r0)
‖b − Axi‖2. The

above equation leads to finding a vector ti ∈ Ri such that it minimizes ‖Vi+1(‖r0‖2e1−
Hi+1,it)‖2. If we form the QR decomposition of the Hessenberg matrix as Hi+1,i = QR,
where Q ∈ R(i+1)×(i+1) is an orthogonal matrix and R ∈ R(i+1)×i is an upper triangular
matrix, we get the GMRES method as

min
ti∈Ri
‖QHe1‖r0‖2−

[
Ri

0

]
ti‖2.

Choosing ti = ‖r0‖2R
−1
i

q1

q2
...
qi

 gives us the solution to the above problem, with the

minimum residual equal to |qi+1| ‖r0‖2 for each iteration. Now that we have discussed
the GMRES method, it shall be prudent to discuss its convergence properties. By
analyzing the GMRES method as a polynomial problem, one can derive a bound on
the residue at each iteration:

‖ri‖2
‖r0‖2 ≤ inf

pi∈Pi

κ(X) max
λ∈σ(A)

‖pi(λ)‖2

where Pi are the polynomials of degree i having Pi(0) = 1, and κ(X) is the conditioning
number of X where X is the matrix of eigenvectors of A and is obtained from the
diagonalization of A (assuming that A is diagonalizable). The above bound shows that
the reduction in residual per iteration is large if
1. Conditioning number κ(X) is small, i.e., A is nearly normal.
2. Eigenvalues of A are clustered far away from the origin.
One drawback of GMRES is that all the Arnoldi vectors need to be stored for compu-
tation of the solution vector. If the dimension of the system is large, this results in an
excessive computational and storage overhead. To avoid this, the Restarted GMRES
method can be employed in which, after some predefined iterations, all the Arnoldi
vectors are deleted and the iterations are restarted with the available solution as the
initial guess. In the present code the GMRES method is used to solve the implicit
predictor step, and the iterations are restarted after every 50 internal iterations.

21

3.2 CONJUGATE GRADIENT (CG)

The Conjugate Gradient (CG) method [11] is another Krylov subspace method, and
is the most preferred solver for the systems having Symmetric Positive Definite (SPD)
matrices. In the CG method, as in the GMRES method, we express the approximate
solution as a member of the Krylov subspace and form the Krylov subspace by spanning
the space generated by the orthogonal Gram-Schmidt style vectors. But because the
matrix is symmetric, the Gram-Schmidt style vectors reduces to Lanczos vectors and
we get an SPD Hessenberg matrix giving a short recursion formula, hence we need not
store all the Lanczos vectors. A similar analysis as GMRES can be easily performed
for the CG method and an elegant algorithm can be easily derived, for brevity the CG
algorithm is not presented in this report.
We further discuss the convergence properties of the CG method. Useful bounds on the
error for the CG method can be derived by approximating it as a polynomial problem.
We get

‖x− xi‖A
‖x− x0‖A

≤ 2

(√
κ− 1√
κ+ 1

)i
,

where κ = κ(A) is the conditioning number of matrix A, and x is the actual solution.
This convergence bound tells us that the CG method will converge much faster if the
matrix is well conditioned. More details about CG can be found in [8, 11].

3.3 IDR(s)

IDR(s) is another method to solve Ax = b, where A is a general matrix, which has
certain advantages over GMRES. As discussed above, the GMRES method has an
ever increasing depth of recursion with the number of iterations, i.e., the amount of
computational work increase as the number of iterations increase, also the memory
requirements scale with the number of iterations. Though restarting of GMRES helps
to partially alleviate these two problems it also slows down the convergence of the
GMRES method, which may lead to an increase in the total computational work.
The IDR(s) method due to Sonneveld, P. & van Gijzen, M.B. [12] has the same number
of matrix vector products per iteration as GMRES (which is one) but has a fixed depth
of recursion (s + 1) which is smaller than GMRES, hence the overhead of IDR(s) is
lower [12]. A short recurrence in GMRES (by restarting), as indicated earlier, seriously
affects the convergence property of the method as the finite termination property is
lost. While for IDR(s), as we will see shortly, a short recurrence is not achieved at
the cost of finite termination. Hence, the IDR(s) method can be used instead of the

22

GMRES methods to reduce the computational cost. Below we discuss the IDR(s)
algorithm.

IDR(s) Theorem (4.1): Consider any matrix A ∈ RN×N and non-zero vector v0 ∈
RN , and let G0 ∈ KN(A,v0). Let S be a proper subspace of RN , such that S and
G0 does not share a nontrivial invariant subspace of A, and for nonzero ω′js define
sequence Gj = (I − ωjA)(Gj−1 ∩ S), j = 1, 2, 3, 4, Then the following holds,
1. Gj ⊂ Gj−1∀j > 0.
2. Gj = 0 for some j ≤ N.
The proof of this theorem can be found in [12]. The above theorem can be applied
by generating residuals rk which are forced to live in the subspace Gj, here j is non-
decreasing with k. This implies that the system will be solved in at-most N iterations.
The residual rk+1 belongs to Gj+1 if

rk+1 = (I − wj+1A)vk where vk ∈ Gj ∩ S.

Now if we choose,

vk = rk −
l̂∑

i=1

γi∆rk−i we get

rk+1 = rk − ωj+1Avk −
l̂∑

i=1

γi∆rk−i = vk − ωj+1Avk

This is similar to the residual in the general Krylov subspace methods [12]. Let us
assume S to be in the left nullspace of some N×s matrix T . Now, since vk ∈ Gj∩S ∈ S
we have THvk = 0. It follows that we get a linear system of size s× l̂ for l̂ coefficients
γi, and the system is uniquely solvable if l̂ = s. Hence, the first vector in Gj requires
s+1 vectors in Gj−1 and rk lies in Gj only if k ≥ j(s+ 1). Defining

∆Rk = (∆rk−1,∆rk−2, ,∆rk−s) and

∆Xk = (∆xk−1,∆xk−2, ,∆xk−s) then

rk+1 ∈ Gj+1 can be computed in the following way. Calculate γ ∈ Rs from

(TH∆Rk)γ = THrk then compute

v = rk −∆Rkγ giving

rk+1 = v − ωj+1Av.

Since Gj+1 ⊂ Gj, the new residuals rk+2, rk+3, , rk+s+1 ⊂ Gj+1 can be produced
by performing the above calculations repeatedly. The next residual, however, will
belong to Gj+2. Also to be noted is the fact that for calculation of the first residual
in Gj we can use any value for ωj but this value must be same for calculation of the
remaining residuals in Gj. Further the algorithm for IDR(s) is presented.

23

Data: A,x0, b, T
//Initialize r = b− Ax0, calculate first s residuals by

v = Ark; ω = vHrk

vHv and ∆xk = ωrk; ∆rk = −ωv
rk+1 = rk + ∆rk; xk+1 = xk + ∆xk where k ∈ [0, s− 1] and form
∆Rk+1 = (∆rk,∆rk−1, ,∆r0) and ∆Xk+1 = (∆xk,∆xk−1, ,∆x0)

//Building Gj spaces for j = 1, 2, 3, ...
n = s
//loop over Gj spaces
while ((‖rk‖> Tol) & (k < Max iter)) do

//loop inside Gj space-time
for k = 0, s do

Solve for γ by TH∆Rkγ = THrk
v = rk −∆Rkγ
if k = 0 then

//First vector in Gj+1

t = Av

ω = tHvk

tHt
∆rk = −∆Rkγ − ωt
∆xk = −∆Xkγ − ωv

else
//Subsequent vectors in Gj+1

∆xk = −∆Xkγ − ωv
∆rk = −A∆xk

end
rk+1 = rk + ∆rk
xk+1 = xk + ∆xk
k = k + 1
∆Rk = (∆rk−1,∆rk−2, ,∆rk−s)
∆Xk = (∆xk−1,∆xk−2, ,∆xk−s)

end

end
Algorithm 1: IDR(s) Solver (to solve Ax = b)

As proven by Theorem 4.1, the IDR(s) method converges in at-most N outer steps,
with each outer step having s + 1 inner steps. Hence we have at-most N × (s + 1)
matrix vector multiplications. It can be proven, however, that the rate at which the
dimension of Gjreduces is ”almost always” equal to s[12], hence the total number of
outer iterations reduces to N

s
.

24

3.4 GCR METHOD

The GCR method [8] is yet another method to solve Ax = b, where A is a general
matrix. For a constant preconditioner, the GCR method and the GMRES method
are mathematically the same. The GCR method, although may not be the fastest
algorithm, is very simple to implement, minimizes the residual norm and has a very
important property that it does not require a constant preconditioner. The usefulness
of the last property will be shown in Appendix A where we discuss the preconditioners
for the saddle point problem, here we just discuss the basic formulation.
Let {v1v2 . . .vk} be the orthonormal basis of Kk(A, r0), we construct rk orthonormal
to Kk(A, r0). Then we have

rk = r0 −
k∑
1

αjvj where αj = (r0,vj) =

(
r0 −

j−1∑
m=1

(r0,vm)vm,vj

)
= (rj−1,vj)

implying
rk = rk−1 − (rk−1,vk)vk.

Which gives
xk = xk−1 + (rk−1,vk)sk, vk = Ask

Now all that remains is to find {v1,v2 . . .vk} and {s1, s2 . . . sk}. This can be done
by using the Gram-Schmidt type orthogonalization processes. The GCR method with
preconditioning is presented later.
Evidently the computational overhead of the GCR method is more than that of the
GMRES method (nearly twice), since both {v1,v2 . . .vk} and {s1, s2 . . . sk} must be
stored and computed. But an advantage of GCR is that we can truncate it easily,
unlike the GMRES method, because of which the GCR method may converge faster
than GMRES.

25

Chapter 4

PRECONDITIONERS

The previous discussion of convergence for the GMRES and CG methods motivates
the use of preconditioning, i.e., improve the spectral properties of A to solve Ax = b
efficiently. The main idea is to premultiply matrix A with another easily invertible
matrix P−1, which is close to A, such that the iterative solver for the system having
P−1A as the system matrix converges faster than the iterative solver for the system
having system matrix A. That is, instead of solving Ax = b we solve the system

P−1Ax = P−1b.

Another way of forming a preconditioned system is by right preconditioning. That is,
we solve AP−1Px = b. In this system we first solve for y in AP−1y = b and then
extract solution by solving Px = y. Which way to model a preconditioned system is
a topic open for debate with no conclusive answers yet. However, for this study both
left and right preconditioning is used.
As described above, in choosing a preconditioner we are faced with two requirements
[9]
1. The preconditioner must be easily invertible, i.e., Px = y is easily solvable.
2. It must improve the convergence of the iterative method.
If we look at the first condition the Identity matrix is a perfect choice, but it does not
help us at all with the second requirement. While, if we look at the second condition
A−1 is the perfect choice, but it does not help us at all with the first condition. There-
fore, choosing a preconditioner is an optimization problem between the above two
requirements. Further, we discuss some of the preconditioners used in the available
code, or proposed to be used in this thesis.

26

4.1 JACOBI PRECONDITIONER

Jacobi is an easy to implement preconditioner, which and can improve the convergence
in the cases having jumps in the diffusion coefficient [9] (which is also the case in this
endeavor due to the presence of the interface). Jacobi preconditioning is also easy to
parallelize. It is basically scaling the equation with the diagonal of system matrix,
presenting us with very little extra calculations. Here,

A =

a11 a12 · · · a1n

a21 · · · a2n
...

...
an1 an2 · · · ann

 & P =

a11 0 · · · 0
0 a22 0 0
...

. . .
...

0 · · · ann

with P−1 simply

P−1 =

1/a11 0 · · · 0

0 1/a22 0 0
...

. . .
...

0 · · · 1/ann

4.2 INCOMPLETE CHOLESKY PRECONDITIONER

For methods like CG, which are applicable for a Symmetric Positive Definite (SPD),
we would like to have a preconditioner such that the resulting system is also SPD. Let
LLT be the Cholesky decomposition of system matrix A, then P = LLT preserves the
the SPD properties of the system if used as a dual-sided preconditioner. The problem
with this preconditioner is that it is not sparse, hence the resulting system may also
not be sparse requiring more memory space and incurring more construction cost. To
preserve the sparsity we can use an Incomplete Cholesky factorization [13] which is in
some sense close to the Cholesky factorization. The Incomplete Cholesky factorization
is constructed by setting the non-zero elements of L which are zero in A to zero.
Below, we describe the algorithm of the factorization used in the present code. For a 2-
d case, we know that we get a five diagonal matrix from the Poisson equation (for which
CG method is used) which requires storage of only 3 diagonal (due to symmetry). We
form the preconditioner as P = LD−1LT where, lower triangular matrix L and diagonal
matrix D satisfies
1. Lij = 0 if Aij = 0, i > j
2. Lii = Dii

3. (LD−1LT)ij = Aij ∀ (i, j) where Aij 6= 0, i ≥ j

Therefore, if A and L are

27

A =

a1 b1 0 c1

b1 a2 b2
. . . c2 0

...
.

c1 bm am+1 bm+1 0 cm+1

0
. . . 0

. 0
. . .

L =

d1
1

b1
1 d1

2

...
. 0

c1
1 b1

m d1
m+1

0
. . . 0

.

,

then

d1
i = ai −

b2i−1

di−1
− c2i−m

di−m

b1
i = bi
c1
i = ci

 i = 1,, n.

Very easily this method can be extended for a 3d case in which case we will get a seven
diagonal matrix from the Poisson equation. More details about this method can be
found in [13].

4.3 DEFLATION PRECONDITONER

As discussed above, the aim of preconditioning is to improve the spectral properties of
matrix A so that the Krylov subspace method solves Ax = b efficiently. Presence of
the small eigenvalues is one such spectral property which deteriorates the performance
of the solver considerably. Therefore, it makes sense to have a preconditioner which
deflates the small eigenvalues of A. This is the main motivation behind the deflation
preconditioners [14, 15, 16, 17].
As will be discussed below, the deflation preconditioner requires construction of the
deflation matrix which spans the approximate null space of matrix A, which points
to the small eigenvalues that need to be deflated. Naturally, the construction of an

28

efficient deflation matrix is quite important as a bad choice of deflation matrix may
not deflate the required eigenvalues. One obvious way to construct the deflation matrix
is to run the Arnoldi iterations to find the smallest eigenvalues, this however is a very
expensive task and would definitely mitigate the speedup achieved by deflation to a
great extent, if not completely.
Another way is to find the eigenvalues based on the physics of the problem, for exam-
ple, if an interface is present in the domain, the interface location may give information
about the small eigenvalues and this information could be used to construct the defla-
tion matrix. The third way, which pertains more to this research, is to construct the
deflation matrix using the algebraic deflation vectors, as in the case of domain decom-
position. We shall discuss this more in detail later, for now it suffices to say that since
in this research the deflation preconditioner is only used to improve the performance
of domain decomposition, from now on, we will not consider the first two methods of
constructing the deflation matrix. Further, we discuss the deflation algorithm.
Suppose we have to solve Ax = b where A ∈ Rn×n. We consider a matrix Z ∈ Rn×m,
where m < n and rank of Z is m, i.e., columns of Z are all linearly independent.
The columns of Z are called the deflation vectors and Z is called the deflation matrix.
The columns of Z are spanned by the deflation subspace in which the bad (small)
eigenvalues of A reside (which are to be projected out of the residual). For this we
define two projectors

Π = I − AZE−1ZT and Q = I − ZE−1ZTA, with

Π2 = Π, Q2 = Q and E = ZTAZ,

where E ∈ Rm×m and I is identity matrix of appropriate size. To solve for x we write

x = (I −Q)x+Qx = ZE−1ZTb+Qx. (4.1)

Here ZE−1ZTb is easily computed, hence we turn our attention towards the remaining
expression Qx. Since ΠA = AQ we compute Qx = xa by

ΠAxa = ΠAQx = Π2Ax = ΠAx = Πb, i.e., we solve

ΠAxa = Πb.

Then if we multiply xa by Q we get Qxa = Q2x = Qx hence we replace Qx = Qxa
in equation (4.1) to solve for x. For further discussion on deflation [14, 15, 16, 17]
are recommended. In the above method, E is presumed to be easily invertible. It
can be shown that the deflation method works correctly if E−1 is computed with high
accuracy. Also, we do not explicitly compute E−1 rather solve the system Eq = t with
high accuracy using some direct method.
Now, we discuss the way to formulate the deflation matrix for the domain decompo-
sition technique. The need for deflation for domain decomposition is discussed later

29

(in the section where we discuss domain decomposition), here we only present how to
formulate the deflation vectors. We base our deflation vectors on the decomposition
of domain Ω, i.e., if we decompose the domain into d non-overlapping sub-domains we
define the deflation vector zi as

(zi)j =
0 if xj /∈ Ωi

1 if xj ∈ Ωi

}
1 ≤ i ≤ d.

Where, Ωi is the ith sub-domain, and xj is the position where the jth unknown is eval-
uated. That is, the total number of deflation vectors is the number of non-overlapping
sub-domains, and each vector has a non homogeneous entry only when that index be-
longs to the domain to which the corresponding deflation vector belongs. The exact
deflation vector in our case will be presented in the domain decomposition sub-section.
Further, we present the algorithms of a few Krylov subspace methods with deflation
technique.

//Select x0. Compute r0 = (b− Ax0), set r1
0 = Πr0

//Solve Px0 = r1
0 and set p0 = y0

for j = 0, 1, . . . until convergence do
w1
j = ΠApj

α =
(r1

j ,yj)

(w1
j ,‘pj)

x1
j+1 = x1

j + αjpj
r1
j+1 = r1

j − αjw1
j

Solve Pyj+1 = r1
j+1

β =
(r1

j+1,yj+1)

(r1
j ,yj)

pj+1 = yj+1 + βjpj

end
x = ZE−1ZTb+Qx1

j+1

Algorithm 2: Deflated Preconditioned CG for solving Ax = b with preconditioner
P and deflation matrix Z.

Similarly the deflation technique can be used for non-symmetric systems as well. In
this case instead of solving Ax = b (A non-symmetric), we use the above described
method and solve ΠAx = Πb using Krylov subspace methods like GMRES/IDR(s).
Then we multiply xa by Q and put it in the equation (4.1) to solve for x. The first
part (ZE−1ZTb) is computed like before.
If the non-symmetric system is left preconditioned with preconditioner P , then we
instead solve P−1ΠAx = P−1Πb and form QP−1xa to solve for x. While if the system

30

is right preconditioned, we solve ΠAP−1x = Πb and form QP−1xa to solve for x.

31

Chapter 5

DESCRIPTION OF THE
AVAILABLE CODE

The FDM scheme is used in this approach with variables stored in the Arakawa C
grid as discussed in the previous section. Second order accurate schemes are used for
the space discretization, and a second order implicit time integration method with
Newton’s linearization is used in the predictor step. The code is written in Fortran 90,
and uses various LAPACK subroutines.

5.1 OVERALL ALGORITHM

In the original available code, as pointed out in the previous section, the calculation
of flow and interface variables are fully decoupled. The flow at new time step n+ 1 is
calculated based on the interface position at the previous time step n+ 1

2
, and then the

interface is advected based on the just calculated flow variables. The values of density
and viscosity only depend on the interface and hence are fixed for a given interface
position. The overall flow of algorithm is shown in Figure 5.1.

5.2 FLOW SOLVER

The flow solver part is broadly divided into three steps as mentioned in section 2,
viz. the predictor step for a first approximation of the velocity based on the pressure
value at the previous time step, the Poisson step to update the pressure based on the
velocity calculated in the predictor step, and the corrector step to obtain a divergence-
free velocity. Restarted GMRES is used to solve the implicit predictor equation, while

32

Figure 5.1: Overall flow chart of the algorithm.

for the Poisson equation the incomplete Cholesky preconditioned Conjugate Gradient
method (ICCG) is used. A brief flowchart of the flow algorithm is given in Figure 5.2.

Figure 5.2: Brief flowchart of the flow algorithm.

5.3 INTERFACE SOLVER

The interface is advected as described in Chapter 2. For a stable advection of the
interface the Courant number (defined as u∆t

∆x
, where u is the velocity magnitude, t is

time and x is the space variable) should be less than a half. It may so happen that
the Courant number in flow calculation gets higher than one half, in which case the
time step for the interface advection is reduced (so as to have a Courant number which

33

is less than a half) and multiple time step integrations are performed to increase the
overall time step by the same amount as that in the flow calculation. How many steps
need to be performed is calculated in the Subcycling module.
Figure 5.3 gives a brief flowchart of the Interface advection algorithm.

Figure 5.3: Brief flowchart of the interface advection algorithm.

34

Chapter 6

PARALLELIZATION OF THE
MODIFIED CODE

The first step of parallelization involves making a choice regarding the architecture for
which the parallelization of the code will be done. One has to choose between shared
memory systems and distributed memory systems. The shared memory architecture
has scalability limitations on both the memory and the processors. Additionally, paral-
lelization on such an architectures, done using the Openmp library, is heavily plagued
by synchronization problems. Due to these limitations of the shared memory architec-
ture, in this thesis, the code is parallelized for distributed memory systems as described
below.

6.1 DISTRIBUTED SYSTEMS

The distributed systems are those in which all the processors have their own memories
and do not have a direct access to each others memory. A distributed system has all the
nodes/processors connected via an interconnect and theoretically has no requirement
of close proximity of all the participating nodes. In practice it may happen that the
clusters and supercomputers have participating nodes which are several hundred miles
away. Figure 6.1 shows a conceptual design of such a system.
Parallelization for the distributed memory systems has the following attributes,

• Access time depends on distance to data, i.e., distance between processors.

• Every processor has its own local address space.

• Non local data can be accessed through a request to the owning processor.

35

Figure 6.1: Conceptual design of a distributed memory system.

• Communication is through message passing.

• Data distribution is important and expensive.

• OpenMPI can be used to parallelize a software on the distributed memory archi-
tectures.

In distributed memory systems, synchronization problems are much less of an issue
since the communication is through explicit messages and no processor has direct ac-
cess to other processor’s memory. Another very important advantage of distributed
systems is that they are theoretically infinitely scalable, hence we can run our parallel
application over a much large numbers of processors as compared to shared memory
systems. Although the parallelization using OpenMPI is harder than Openmp (for
shared memory systems), due to high scalability of distributed architectures we shall
use OpenMPI to parallelize the available code.

6.2 DOMAIN DECOMPOSITION

After we have decided to choose the distributed architecture, we must now focus our
attention towards the parallelization methodology. Since fine grain parallelization is
not very suitable for the distributed architectures, we choose domain decomposition as
a valid and efficient parallelization technique.
Now all that remains is to choose what type of domain decomposition we shall choose,
i.e., shall we do column/row wise domain decomposition or 2d/3d block domain decom-
position. Since in this case we essentially deal with pipe flows in which number of cells
in axial direction is much large compared to the number of cells in any other direction,
we decompose the domain axially. To implement domain decomposition axially in the
available code, one should be careful about the following points:

36

1. We do not solve the axial (z)-momentum equation for the last boundary cell in the
z direction (since a boundary conditions is specified there), but for the subdomains
obtained after domain decomposition, we may have to solve the z-momentum equation
for the local last boundary cell in the z direction (depending on the sub-domain).
2. Depending on the rank of the sub-domain, only the first, last, or both z-cells data
need to be communicated for all the variables except for the level set function. For the
level set function, the first/last 2 cells data must be communicated.
3. Another important point noted during the implementation of parallelization was
the rounding errors. Since many arithmetic operations are non associative in machine
precision, the rounding errors made by the parallel code will be different than the serial
code. These rounding errors are inconsequential in most cases except if the problem
is unstable. Then all codes behave differently since the rounding errors propagate dif-
ferently in different codes because of the instabilities and non-linearity of the problem.
This point will be demonstrated in the following Chapter.

Moreover, computing the solution in parallel on a decomposed domain reduces the
computational time per iteration of a Krylov iterative solver on one hand. On the
other hand, however, it may increase the total number of iterations to be performed
[14, 15, 16, 17], thus reducing the total efficiency of the parallelized system. As reasoned
in [17], though it is simple to implement a non-overlapping preconditioner in parallel,
the convergence behavior of the preconditioner may deteriorate considerably when the
domain is split into a high number of sub-domains. The loss of convergence is attributed
to the small eigenvalues arising from domain decomposition. This motivates the use of
deflation for improving the convergence of the incomplete Cholesky preconditioned CG
method (used to solve the Poisson equation). The deflation technique can also be used
as a coarse grid correction preconditioner [14], for this reason we shall use deflation in
combination with diagonal scaling as a preconditioner for the predictor equation.
As previously discussed, for applying the deflation technique we must construct the
deflation matrix whose construction is also discussed above. Here we present the de-
flation matrix for our case. Let us subdivide our domain into d sub-domains and let
us have total n number of unknowns in the total domain and mri,mθi,mzi,mpi be the
number of velocity and pressure unknowns in the ith sub-domain 1 ≤ i ≤ d. Further
let {ri, θi, zi, pi} be the index set (of velocity and pressure unknowns in the ith sub-
domain) giving the location of corresponding unknowns in n× 1 vector, then deflation
vectors zi can be given by two ways:

z(r/θ/z/p)i(k) =

{
1 if k ∈ {ri/θi/zi/pi}
0 otherwise

or zi(k) =

{
1 if k ∈ {ri, θi, zi, pi}
0 otherwise

Example: the deflation vectors for a 2-d channel divided into 4 sub-domains (as shown
in Figure 6.2) can be constructed in two ways as indicated below:

37

Figure 6.2: Domain decomposition for a 2-d channel.

first way

zx1 =

1
0
0
0

0
0
0
0

0
0
0
0

, zy1 =

0
0
0
0

1
0
0
0

0
0
0
0

, zp1 =

0
0
0
0

0
0
0
0

1
0
0
0

, zx2 =

0
1
0
0

0
0
0
0

0
0
0
0

, zy2 =

0
0
0
0

0
1
0
0

0
0
0
0

, zp2 =

0
0
0
0

0
0
0
0

0
1
0
0

, zx3 =

0
0
1
0

0
0
0
0

0
0
0
0

, zy3 =

0
0
0
0

0
0
1
0

0
0
0
0

, zp3 =

0
0
0
0

0
0
0
0

0
0
1
0

zx4 =

0
0
0
1

0
0
0
0

0
0
0
0

, zy4 =

0
0
0
0

0
0
0
1

0
0
0
0

, zp4 =

0
0
0
0

0
0
0
0

0
0
0
1

, zi =

u1

u2

u3

u4

v1

v2

v3

v4

p1

p2

p3

p4

and

Z =
[
zx1, zy1, zp1, zx2, zy2, zp2, zx3, zy3, zp3, zx4, zy4, zp4

]
.

second way

38

z1 =

1
0
0
0

1
0
0
0

1
0
0
0

, z2 =

0
1
0
0

0
1
0
0

0
1
0
0

, z3 =

0
0
1
0

0
0
1
0

0
0
1
0

, z4 =

0
0
0
1

0
0
0
1

0
0
0
1

, zi =

u1

u2

u3

u4

v1

v2

v3

v4

p1

p2

p3

p4

and Z = [z1, z2, z3, z4]

Where bold numerals denote the vectors of the size mxi,myi,mpi in each sub-domain
i. It is not clear which of the above two ways of constructing the deflation vectors give
a better performance. In this research, however, we implemented the first way as it
seems to be more suitable for mechanical problems having discontinuous coefficients
[18].

39

Chapter 7

RESULTS & DISCUSSION

In the subsequent sections, we first discuss the profiling results of the available code.
Then, we show the speedup results (on a single processor) of the modified code obtained
by changing the flow structure of the available code and by diagonal scaling of the
GMRES method. Next, we shall demonstrate the accuracy of implementation of the
different solvers, preconditioners, and parallelization by comparing the results with
that of the available code for two physical test cases. This is followed by a discussion
on the speedup obtained due to the implementation of parallelization, deflation, and
IDR(s).

7.1 PROFILING & SERIAL IMPROVEMENT

To increase the speed of a code it is important to identify the parts which take the
longest time per iteration. It is not very wise to improve the efficiency of those parts of
the program which take little time in comparison to others, because it does not help in
improving the overall speed by much. Hence, profiling of the available code was done
to identify the components which take the maximum time. The profiling results were
obtained for two different test cases which are explained in detail in the next section
where we examine the physical results and the accuracy given by the different codes.
Here, we only give the physical parameters for which the codes were run (Table 7.1).
The profiling results of the original code for various density to viscosity ratios, which
correspond to various Reynolds number, for the two test cases are presented in Table
7.2. Percentage denotes the percentage of total time taken by a particular module.
As evident from the above profiling results, at least for lower Reynolds number flows,
which are typical of the applications for which this code is developed, the predictor
part takes the longest time for both the test cases. The Poisson solver, contrary to our
expectations takes much less time.

40

Table 7.1: Physical properties used for two different test cases.

case1 (Benjamin bubble) case2 (Rising bubble)
Cylinder Radius [mm] 4.2x10−2 4.2x10−2

Cylinder Length [mm] 1.18x10−1 1.18x10−1

Bubble Initial Radius [mm] - 6.08x10−3

Bubble Initial Position [mm] - -0.354
Grid Size 20x30x54 20x30x50

time step [ms] 0.1 0.1
Surface Tension [N/m] 0 0.0322

In the available code, restarted GMRES is used to solve the predictor part. To speed it
up, various modifications are performed on the original code. The first major improve-
ment was motivated by the fact that, in the available code, the calculations of matrix
entries are performed in each iteration of GMRES unnecessarily. Hence, if we could
save the matrix in some diagonal form it would decrease the computational time. This
modification, though quite complex and involved to perform, was rather fruitful as it
gave an overall speedup of nearly 4 times in the predictor step (Table 7.3) irrespective
of the Reynolds number. In Table 7.3 we present some speedup results for the two
cases (for different density to viscosity ratios).
The second improvement was motivated by the knowledge that Krylov subspace solvers
converge faster with preconditioning. Hence, the Jacobi preconditioner was used to
speed up the predictor module. This preconditioner was chosen because it is easy to
implement, delivers considerable speedups for our case [9], and also lends itself well
to parallel programming which is a highly desirable property for the present endeavor.
Table 7.4 compares the time taken by the non-preconditioned and preconditioned GM-
RES methods for the two test cases. As can be seen from Table 7.4, diagonal scaling
gives a speedup of nearly 1.5-2 times for the low Reynolds number cases (which are
typical of the target applications).
The above modifications improve the performance of the serial version substantially.
For the low Reynolds number cases a speedup of approximately 8-9 times is obtained
in the predictor step. For example in the rising bubble problem, the last case initially
took 4.1s, but after the two improvements it took only 0.56s, hence a speedup of 8
times is obtained. While for the Benjamin bubble problem, the time was reduced from
9.5s to 1.1s (for the ratio 1e2&1e3) which is a 9 times speedup.
Similarly, for the high Reynolds number cases a speedup of approximately 4-5 times
can be expected (in the predictor step) as a result of the above improvements.

41

Table 7.2: Profiling results of the original code for 20 time steps for two different cases.

Density to
viscosity ratio
(Fluid 1 & Fluid
2)

Flow Time[s] -
percentage

Interface Time[s] -
percentage

Predictor
Time[s]
/ per-

centage

Poisson
Time[s]
/ per-

centage

Corrector
Time[s]
/ per-

centage

Advect
VOF &LS
Time[s] /

percentage

LS˙reinit
Time[s]
/ per-

centage

Coupling
Time[s]
/ per-

centage
case1 (Benjamin bubble)

1e4 & 1e6
17.4 - 91.7% 1.07 - 5.9%

10.89 -
60.2%

5.37 -
29.7%

0.29 -
1.6%

0.25 - 1.3% 0.45 -
2.5%

0.15 -
0.8%

1e3 & 1e5
40.2 - 96.1% 1.2 - 2.9%

33.69 -
81.8%

5.32 -
12.9%

0.31 -
0.75%

0.5 - 1.3% 0.45 -
1.1%

0.15 -
0.38%

1e2 & 1e4
129.32 - 97.8% 1.44 - 1.1%

123.91 -
93.3%

5.25 -
4%

0.26 -
0.2%

0.81 -
0.62%

0.44 -
0.3%

0.14 -
0.1%

1e2 & 1e3
146.45 - 98.1% 1.42 - 0.9%

141.2 -
94.2%

5.07 -
3.4%

0.31 -
0.21%

0.70 -
0.47%

0.45 -
0.3%

0.15 -
0.1%

case2 (Rising bubble)

1e4 & 1e6
7.37 - 91.0% 0.6 - 8.0%

3.14 -
43.8%

3.18 -
44.4%

0.17 -
2.4%

0.23 -
3.13%

0.25 -
3.4%

0.08 -
1.1%

1e3 & 1e5
13.36 - 94.9% 0.53 - 4.3%

9.12 -
69.2%

3.21 -
24.4%

0.13 -
1.0%

0.17 - 1.3% 0.23 -
1.8%

0.07 -
0.5%

1e2 & 1e4
47.28 - 98.9% 0.45 - 1.0%

42.89 -
90.7%

3.33 -
7.1%

0.15 -
0.3%

0.2 - 0.4% 0.12 -
0.3%

0.09 -
0.2%

1e2 & 1e3
60.12 - 98.5% 0.48 - 1.0%

56.47 -
92.7%

3.18 -
5.2%

0.16 -
0.3%

0.15 - 0.3% 0.24 -
0.4%

0.05 -
0.1%

7.2 ACCURACY CHECK

To check the accuracy of the modified code, simulation results for the two test cases
mentioned above are discussed. The following subsections describe the test cases in

42

Table 7.3: Number of iterations and time taken by GMRES method to solve a single
predictor step.

Benjamin bubble Rising bubble
Density to
viscosity
ratio

GMRES GMRES
Original code Storing Matrix Original code Storing Matrix

#
Iter.

Time
[s]

#
Iter.

Time
[s]

#
Iter.

Time
[s]

#
Iter.

Time
[s]

1e4 & 1e6 11 0.75 11 0.19 5 0.22 5 0.08
1e3 & 1e5 34 2.5 34 0.5 17 0.68 17 0.15
1e2 & 1e4 120 8.75 120 1.78 78 3.1 78 0.66
1e2 & 1e3 133 9.5 133 1.91 100 4.1 100 0.9

Table 7.4: Number of iterations and time taken by the improved GMRES method to
solve a single predictor step with and without preconditioning.

Benjamin bubble Rising bubble
Density to
viscosity
ratio

GMRES GMRES
No precond. precond. No precond. precond.
#

Iter.
Time

[s]
#

Iter.
Time

[s]
#

Iter.
Time

[s]
#

Iter.
Time

[s]
1e4 & 1e6 11 0.19 10 0.19 5 0.08 5 0.08
1e3 & 1e5 34 0.5 24 0.37 17 0.15 16 0.15
1e2 & 1e4 120 1.78 65 1.1 78 0.66 62 0.54
1e2 & 1e3 133 1.91 66 1.1 100 0.9 64 0.56

detail and compare the results obtained by the different codes. Before moving on, we
refer to Table 7.5 to know some important terms used in further discussions.

7.2.1 Dam Break / Benjamin Bubble Problem

In the dam break problem, we consider two fluids with different densities, which are
initially at rest, in a closed pipe. The fluids are separated by a vertical dam as shown
in Figure 7.1. At t=0 the dam breaks, and the fluids start to move so as to attain an
equilibrium where the heavier fluid is below the lighter one.
We impose a slip boundary condition at the walls, with the two fluids initially at
rest. The geometry and the properties of oil and water are indicated in Table 7.6, and
in this test case the surface tension is neglected. Figure 7.2 shows the movement of
the interface with time. Initially, the interface falls as a single entity, but as the time

43

Table 7.5: Terminology and specifications of different codes.

Sl.
No.

Code name Poisson
Solver

Predictor solver

1 original
(available) code

ICCG unpreconditioned GMRES (Restarted 50
unless stated otherwise)

2 modified serial
code

ICCG diagonally scaled GMRES (Restarted 50
unless stated otherwise)

3 parallel
(modified) code

ICCG diagonally scaled GMRES (Restarted 50
unless stated otherwise)

4 deflated code Deflated
ICCG

diagonally scaled GMRES (Restarted 50
unless stated otherwise)

5 IDR code ICCG diagonally scaled IDR(s) (s=5 unless
stated otherwise)

Figure 7.1: Initial condition for the Benjamin bubble problem.

progresses the interface hits the cylinder walls and due to the lack of surface tension and
wall viscous effects the interface crumbles and disintegrates. As the interface crosses
the center line, the inherent numerical errors in the code lead to instabilities in the
solution.

Table 7.6: Benjamin bubble geometry and properties.

Cylinder Radius [mm] 4.2x10−2

Cylinder Length [mm] 1.18x10−1

Grid Size 50x60x84
time step [ms] 0.1

Density of Fluids [kg/m3] 875.5 & 900.0
Viscosity of Fluids [kg/m/s] 0.118x10−3 & 1.77x10−3

To check the accuracy of the new codes, we shall compare the velocity of the center
of mass of one fluid (Rise velocity) obtained by the modified serial/parallel code with
that of the available code. Figure 7.3 shows three plots, i.e., difference between the
Rise velocities predicted by the modified serial code and the original code, and the

44

Figure 7.2: Movement of the interface.

difference between the Rise velocities obtained by the parallel modified code (with 7
and 12 processors) and the original code. As can be seen, up to around 0.75s we have
a very good match for the Rise velocity. This means that the build-up in the machine
precision differences, resulting due to the distinct sequence of floating point operations,
for different codes are low. Later, due to the above explained instabilities and non-
linearity of the problem, the machine precision differences lead to larger deviation in
the solutions giving larger discrepancies in the Rise velocities.
Further, to check the accuracy of implementation of the deflated CG and IDR(s)

45

Figure 7.3: Difference in Rise velocity obtained by modified serial and parallel codes.

method, the deflated code and the IDR(s) code were run for the same test case in
parallel (on 7 and 12 procs). Figure 7.4 shows the difference between the Rise veloci-
ties obtained by the two codes and the Rise velocity obtained by the modified parallel
code (without deflation and IDR(s) solver) on respective number of processors. As
evident, we have a good match, but again as before, due to the non-linearity of the
problem and creeping instabilities the results differ at the end. Another observation
can be made while comparing Figure 7.3 and Figure 7.4 i.e., there is an exact same
trend in the growth of difference with time, even when in Figure 7.3 the comparison
is with respect to the original available code and in Figure 7.4 the comparison is in
respect to the modified parallel code. This points out to the fact that the difference
in the Rise velocities is not due to some errors made during parallelization or solver
implementation, but rather due to the inherent instabilities which affect all the codes.

7.2.2 The Axisymmetric Rising Bubble Problem

In the axisymmetric rising bubble problem, we initially have an axisymmetric bubble
of one fluid in the other fluid. As the time progresses, the bubble rises due to the
buoyancy effect. As in the previous case, the aim of this test case is to accurately
predict (in comparison to the original code) the Rise velocity of the bubble.
If the bubble radius is comparable to the cylinder radius, then due to the wall effects the

46

Figure 7.4: Difference in Rise velocity obtained by using deflation and IDR(s) solver.

bubble becomes unstable. Hence, a cylinder with a sufficiently large radius is chosen.
Also due to the importance of surface tension on the shape and Rise velocity of the
bubble, we have a non-zero surface tension for this case. Further, we impose a no-slip
boundary condition on the walls. Table 7.7 gives the geometry and physical properties
of the fluid.

Table 7.7: Rising bubble geometry and properties.

Cylinder Radius [mm] 4.2x10−2

Cylinder Length [mm] 1.18x10−1

Bubble Initial Radius 6.08x10−3

Bubble Initial Position -0.354
Grid Size 50x60x84

time step [µs] 10.0
Density of Fluids [kg/m3] 875.5 & 1.225

Viscosity of Fluids [kg/m/s] 0.118 & 1.77x10−5

Surface Tension [N/m] 0.0322

Figure 7.5 shows the bubble captured at different time instances. As can be seen
initially the bubble behaves fine, but after some time the bubble is not axisymmetric
anymore. This is due to the numerical inaccuracies and insufficient grid size. These

47

Figure 7.5: Movement of the bubble.

numerical inaccuracies give rise to instabilities, which causes different codes to behave
differently. This is very well reflected in Figure 7.6a which, like in the previous test
case, plots the difference between the Rise velocities predicted by the modified codes
(serial and parallel on 7 and 20 processors) and the Rise velocity predicted by the
original code. Initially the difference between the velocities is quite negligible, but as
the time progresses and instabilities creep in, due to the non-linearity of the problem,
the machine precision floating point differences in different codes result in a larger
deviation in the solutions.
As in the previous case, same simulations are performed parallely (on 7 and 20 cores)
with deflated CG and IDR(s) method turned on (separately) to further prove the
accuracy of the implementation. Figure 7.6b shows the difference between the Rise
velocities of the interfaces obtained by the two codes and the Rise velocity obtained by
the parallel code (without deflation and IDR solver) on respective number of processors.
As evident, at least initially, the difference between the Rise velocities is negligible for

48

(a) Difference in Rise velocity obtained by modi-
fied serial and parallel codes.

(b) Difference in Rise velocity obtained by using
deflation and IDR(s) solver.

Figure 7.6: Difference in Rise velocity for the rising bubble.

all engineering purposes. At the later stage (after the onset of instabilities), however,
due to the reasons explained earlier, different codes perform differently as the rounding
errors propagate uniquely in each code. Further, for this test case as well, the similarity
in the trends in Figure 7.6a and 7.6b shows that the differences are due to the inherent
instabilities in the problem and not due to the implementation errors.
To prove the accuracy of the solution even further Figure 7.7a and Figure7.7b shows
the normalized mass given by mass(t)−mass(0)

mass(0)
of one fluid in the domain (for both of

the above test cases) for the original, modified serial, parallel GMRES, deflated, and
parallel IDR(s) code. Due to the mass conservation the normalized mass should ideally
be 0, this is reflected in Figure 7.7a and Figure7.7b where it is always less than the
specified tolerance of 1x10−8.

7.3 SPEEDUP & SCALABILITY OF PARALLELIZA-

TION

In this section, we shall present in detail the speedup results for the cases described
above. Also, we shall demonstrate the scaling properties of the parallelized code for
different problem sizes. In the next section, the effect of deflation preconditioner and
performance of IDR(s) in comparison to GMRES is discussed in detail. All the speedup
comparisons are based on first 100 time steps only (unless otherwise stated), as running

49

(a) Benjamin bubble (b) Rising bubble

Figure 7.7: Normalized Mass obtained by different codes.

full simulations for all the grids and cases is not feasible.

7.3.1 Benjamin Bubble Problem

Table 7.8 gives the time taken to solve the Benjamin bubble problem (on different
number of processors) for the above mentioned geometry and two different grids. As
can be seen from Table 7.8, a big chunk of speedup is achieved due to the serial code
modifications, this however is not 8-9 times as seen in the previous sections. This is
due to the fact that we achieved 8-9 times speedup only for the predictor step, while
for this test case the ratio of time taken by the predictor solver to the total time taken
is much less than 1, hence the overall speedup gain is less.
The parallelization reduces the computational time even further, and behaves as ex-
pected i.e, the efficiency of parallelization reduces for a fixed grid as the number of
processors increases. Figure 7.8a and Figure 7.8b shows the achieved speedup and effi-
ciency of parallelization (for the two grids) with the number of processors. As evident
from the plot, a nearly linear speedup is achieved for both the grids, and as the grid
size increases the efficiency and speedup achieved at higher number of processors im-
proves. Hence, as the problem (grid) size increases the number of processors at which
the maximum speedup occurs increases. The non-monotonously decreasing efficiency
indicates the better use of cache memory for the respective number of processors.

50

Table 7.8: Total computational time taken to solve Benjamin bubble for 2 grids on
different number of processors.

Grid size
Time [s]

available
code

modified
serial

parallel modified (# cores)
2 4 8 12 16 20 24

50x60x84 1601 800.2 430.2 220.0 125.7 80.8 89.93 - -
60x70x124 2995.2 2460.0 1280.1 660.4 344.4 250.4 198.0 204.6 212.8

(a) Scaling of Speedup (b) Scaling of Efficiency

Figure 7.8: Scaling for the Benjamin bubble problem.

7.3.2 Rising Bubble

Table 7.9 shows the computational time taken for performing 100 time steps (on two
different grids) for the rising bubble problem on different number of processors. As
evident from the table, there exists a very large difference between the computational
times taken by the serial available code and modified serial code. This speedup is
much more than the speedup seen in the Benjamin bubble case, as for this problem,
solving the predictor step takes the largest fraction of the computational time, and the
modifications performed are quite efficient in obtaining a very high speedup.
As in the previous case, Figure 7.9a and Figure 7.9b show how the achieved speedup
and efficiency of parallelization (for the two grids) vary with the number of processors.
As can be seen from the plots a maximum speedup of around 15 times is obtained
on 24 processors, and as expected, the efficiency of parallelization improves as the
grid size increases. One important point to be noted here is that the scaling does not

51

Table 7.9: Total computational time taken to solve Rising bubble for 2 grids on different
number of processors.

Grid size
Time [s]

avail.
code

mod.
serial

parallel modified (# cores)
2 4 8 12 16 20 24 28

50x60x84 13500 1186.6 597.3 302.9 192.1 140.2 106.7 89.3 82.4 108.5
60x70x124 27940 2606.1 1344.7 695.6 349.7 281.4 233.7 183.8 177.1 198.2

(a) Scaling of Speedup (b) Scaling of Efficiency

Figure 7.9: Scaling for the rising bubble problem.

improve much as the problem size increases. This is due to the fact that as the grid
is refined, the problem behavior changes due to which the solvers behave differently,
leading to different parallelization characteristics. Further, the non-monotonicity in the
parallelization efficiency comes from the fact that we have multiple levels of memory
(cache) and the load on the cluster is different at different times.

7.4 SPEEDUP GIVEN BY SOLVERS AND PRE-

CONDITIONERS

In this section, we first test how efficient the deflation preconditioner is in improving
the convergence properties of the Krylov subspace solvers for the type of problems in
hand. Further, as described before, the IDR(s) method can be more efficient than
the restarted GMRES method since it does not need to store all the Arnoldi vectors,

52

resulting in lower a computational and storage overhead. Hence later in this section,
we also test if the IDR(s) method is in fact more efficient than the restarted GMRES
method, or the benefits of lower overhead is subsided by a loss in convergence. It is
stressed at this juncture, that the accuracy of implementation of the deflation technique
and the IDR(s) method were demonstrated in the previous sections.

7.4.1 Deflation

As described earlier, we implemented deflation as a preconditioner to improve the
performance of the diagonalized predictor equation, and to improve the efficiency of
the incomplete Cholesky preconditioned CG method over decomposed domains. The
deflation method did not reduce the number of iterations required by the Krylov solver
to solve the predictor step, as the system matrix has quite favorable spectral properties.
This is due to the presence of 1

timestep
term on the diagonal which makes the matrix

highly diagonally dominant. Figure 7.10 shows the smallest 50 eigenvalues and the
Gerschgorin circle of maximum radius, defined as {max

i
Ri | Ri =

∑
j 6=i|aij|, i, j ∈

1, ..., n}, of a typical diagonally scaled system matrix obtained in one of the simulations.
The diagonal scaling of the matrix helps to cluster the eigenvalues of the matrix around
one as shown in Figure 7.10. Due to this clustering of the eigenvalues, deflating a few
small ones does not help in improving convergence properties of the solver.

Figure 7.10: Smallest 50 eigenvalues of a typical diagonally scaled system matrix.

The Deflation method, however, proved to be quite useful in improving the conver-
gence properties of the incomplete Cholesky preconditioner used to solve the Poisson

53

equation. Table 7.10 shows the number of iterations taken by the ICCG and deflated
ICCG methods for the rising bubble case on different number of processors. As can be
seen from Table 7.10, the number of iterations taken by the CG method reduces consid-
erably, the total computational time however does not reduce. This is due to the fact
that the system matrix of the ICCG method is relatively well conditioned for our case.
Figure 7.11a shows the convergence history of the ICCG and deflated ICCG meth-
ods on different number of processors. The plot indicates that for the ICCG method,
there exist a few eigenvalues which initially stall the convergence. These eigenvalues,
however, are quickly overcome by the ICCG method, and after that, the convergence
is more or less monotonic. The deflation method deflates these eigenvalues, and the
convergence is nearly monotonic (Figure 7.11a) even initially. But because we specify
a very small tolerance on the residue, the gain given by deflation is subsided by the
large number of iterations required by both the methods to converge. Hence, though
deflation reduces the number of iterations, it still requires sufficiently large number of
iterations such that the extra time taken by the deflation process itself is more than
the time saved by it due the improved convergence of the ICCG method.

Table 7.10: Time and iterations taken by the Poisson solver for a single integration
step (Rising bubble).

cores
8 12 16 20

ICCG # iterations 274 278 285 295
Deflated ICCG # iterations 225 229 233 237

ICCG Time(s) 0.73 0.478 0.37 0.34
Deflated ICCG Time(s) 0.76 0.57 0.5 0.48

To validate the above point, a similar simulation as above with a lower tolerance is
performed and Table 7.11 gives the obtained results. As evident, for a smaller number
of sub-domains (processors) we indeed got a speedup in terms of time as well, but
as the number of subdomains (processors) increase the speedup due to the deflation
technique decreases. This is due to the fact that the ICCG method does not perform
particularly bad as the number of processors increase (Figure 7.11a), but the size of
matrix E = ZTAZ increases and hence the time taken by the deflation module itself
increases to high values. While at a relatively lower number of processors, the size
of matrix E is small and deflation takes less time which leads to a reduced overall
computational time.
Table 7.12 shows the number of iterations and time taken by the ICCG and deflated
ICCG methods for the above discussed Benjamin bubble problem. As in the previous

54

Table 7.11: Time and iterations taken by the Poisson solver for a single integration
step (Rising bubble), tolerance 1e-4.

cores
8 12 16 20

ICCG # iterations 170 180 176 188
Deflated ICCG # iterations 114 120 117 121

ICCG Time(s) 0.48 0.34 0.29 0.24
Deflated ICCG Time(s) 0.42 0.31 0.29 0.27

(a) Rising bubble (b) Benjamin bubble

Figure 7.11: Convergence history of ICCG and deflated ICCG.

case, the deflation techniques helps to improve the convergence properties of the in-
complete Cholesky preconditioner, but the time taken is more for the deflated case for
all number of processors. The same reasoning as in the previous case is valid, i.e, since
the matrix is relatively well conditioned, the effect of domain decomposition on the
preconditioner does not affect the convergence by much (Figure 7.11b). Hence even
though deflation helps to reduce the number of iterations initially, for converging to
higher tolerances, the time taken by the deflation module itself is more dominant, and
therefore the total time increases.
From the above discussion, the convergence benefits of the deflation technique for the
problem at hand is quite clear. The time gain, however, varies from problem to problem
and the user is advised to check the time benefits of deflation as per case.

55

Table 7.12: Time and iterations taken by the Poisson solver for a single integration
step (Benjamin bubble).

cores
8 10 12 16

ICCG # iterations 269 271 276 280
Deflated ICCG # iterations 236 244 247 254

ICCG Time(s) 0.71 0.47 0.41 0.36
Deflated ICCG Time(s) 0.84 0.62 0.53 0.51

7.4.2 IDR(s)

The IDR(s) method described earlier has been tested as a replacement to the restarted
GMRES method to solve the predictor equation. To extensively compare the two
methods, computations have been performed using both the methods for both rising
bubble and Benjamin bubble cases on different number of processors. We shall discuss
them one by one.
Table 7.13 shows the computational time and number of iterations taken by the predic-
tor step for the Benjamin bubble case. The table is for different number of processors,
and different restarting points for GMRES and s values for IDR(s). As can be seen, the
GMRES method converges quite quickly even as the frequency of restarting increases.
This is because the system matrix has extremely well spectral conditions due to the
presence of 1

timestep
term on its diagonal, further the jump in the system coefficients

(viscosity and density) is pretty minimal in this case which leads to the system ma-
trix having even better spectral properties. The IDR(s) method on the other hand
performs as expected, but due to the extremely few number of iterations required by
the restarted GMRES method the overhead of storing and using the Arnoldi vectors is
pretty minimal, hence the benefits of the IDR(s) method does not outweigh the ones
of the GMRES method.

Table 7.13: Restarted GMRES versus IDR(s) for solving one predictor step on different
number of processors (Benjamin bubble).

cores
Restarted GMRES IDR(s)
Restarting iteration s

10 5 10 5

#iterations
(time(s))

4 8 (0.54) 8 (0.53) 8 (0.62) 8 (0.62)
8 8 (0.36) 8 (0.37) 8 (0.43) 8 (0.41)
16 8 (0.21) 8 (0.20) 8 (0.20) 8 (0.21)

56

A similar analysis is also performed for the rising bubble problem. For this case, the
matrix spectral properties are slightly worse in comparison to the matrix properties
for the Benjamin bubble problem because of higher differences in the physical coeffi-
cients (viscosity and density). Table 7.14 shows the computational time and number of
iterations taken by the predictor step for different restarting points of restarted GM-
RES and different s values for IDR(s). The minimum achieved computational times
are also highlighted. For this case, as the restarting frequency of GMRES increases,
the computational time also increases as the number of iterations required to converge
increases considerably, and the gain given by storing less Arnoldi vectors due to restart-
ing is overpowered by the extra time taken because of the loss of convergence. The
performance of IDR(s), on the other hand, is not much affected as s decreases because
IDR(s) is not a truncating or restarting method, and s just indicates the number of
previously computed residues based on which the current residue is calculated. Hence
reducing s does not affect the convergence of IDR(s) as severely as restarting affects
that of GMRES. This benefit of IDR(s) gives a speedup for this case as can be seen in
Table 7.14.

Table 7.14: Restarted GMRES versus IDR(s) for solving one predictor step on different
number of processors (Rising bubble).

No.
of
cores

Restarted GMRES IDR(s)
Restarting iteration s

No restart 10 5 10 5 3
iter-
ations
(time(s))

4 17 (0.85) 22 (1.0) 30 (1.3) 17 (1.14) 17 (0.96) 18 (0.82)
8 17 (0.45) 22 (0.52) 30 (0.63) 17 (0.67) 18 (0.45) 18 (0.41)
16 17 (0.35) 22 (0.39) 30 (0.49) 17 (0.42) 18 (0.34) 18 (0.32)

From the above table it is clear that IDR(s) can indeed save computational time if the
GMRES method requires storage of sufficiently large number of Arnoldi vectors. To
prove this point even further, for the same case, simulations were carried out with a
larger time step (0.5 ms) which might be required depending on the problem. This
results in a system matrix having slightly worse spectral properties due to the reduction
of 1

timestep
term on the diagonal. Table 7.15 shows the obtained results, and as can be

seen the GMRES method requires much higher number of iterations to converge in
comparison to the case having a smaller time step. This leads to the storage of large
number of Arnoldi vectors on the part of GMRES, resulting in higher overhead cost.
Restarting the GMRES method after 75 iterations helps (for this case) to reduce the
overhead cost, but as the restarting is done more often the number of iterations required
to converge increase so much that the benefits of lower overhead is subsided by the time
required to perform extra iterations. The IDR(s) method, however, performs quite well

57

for this case in comparison to the (restarted) GMRES method. As can be seen from
the table, as s decreases, the overhead cost reduces without a significant loss in the
convergence resulting in a lower computational time.

Table 7.15: Restarted GMRES versus IDR(s) for solving one predictor step on different
number of processors (Rising bubble, larger time step(0.5ms)).

No.
of
cores

Restarted GMRES IDR(s)
Restarting iteration s

unrestarted 75 50 10 5 3
iter-
ations
(time(s))

4 100 (7.9) 125 (7.6) 177 (8.8) 103 (4.8) 113 (4.5) 122 (4.2)
8 100 (0.45) 125 (4.1) 176 (4.8) 106 (3.5) 111 (2.6) 117 (2.4)
16 100 (3.0) 125 (2.7) 177 (3.6) 112 (2.9) 113 (1.9) 110 (1.6)

Figure 7.12 shows the overall simulation time taken, for the above case (higher time
step), to perform 20 time integration steps on different number of processors if the
predictor equation is solved using the GMRES/IDR(s) method. For this case, the
fastest IDR solver is nearly 2 times faster than the fastest restarted GMRES solver
(per predictor equation solve), while in terms of overall speedup a factor of nearly
1.5 is obtained (Figure 7.12). As is evident from Table 7.15 and Figure 7.12, the
IDR(s) method can really help in reducing the computational cost of the predictor
step if GMRES takes sufficiently long time to converge, that is, the spectral properties
of the system matrix is such that it is not conducive to quick convergence. Such
spectral properties may result from higher time steps or larger differences in the system
coefficients.

58

Figure 7.12: Overall simulation time after using Restarted GMRES/IDR(s) to solve
the predictor step.

59

Chapter 8

PRACTICAL
CAPABILITIES/USE OF THE
MODIFIED PARALLEL CODE

In this section, we shall demonstrate the benefits of the parallel modified code by
simulating a real world problem which otherwise takes a prohibitively large amount of
time on the original available code. Below, we describe the test case first, and then
analyze the results we obtain.

As mentioned in the introduction, TNO-Netherlands, Shell and Deltares are interested
in multiphase flow happening in pipes. In such cases, pipes are initially filled with oil,
and water is pumped to flush the oil out. Many experiments to visualize the shape
and propagation velocity of the liquid-liquid interface during the flushing process have
been performed in the past. We simulated one such problem provided by TNO (for
two different geometries) to demonstrate the benefits of the newly developed code for
solving the real world problems. Next, the details of the simulated test cases are
provided.

Figure 8.1: Geometry and configuration of the simulated pipe.

60

We simulate the flow field inside a pipe configured as indicated in Figure 8.1. Initially,
the pipe is assumed to be filled with stagnant oil, and at t=0, water is provided
at the inlet to flush the oil out. It was noted in the experiments that after water
reaches the bend, it instead of rising further at the same speed, creeps horizontally
displacing the oil. The resulting interface is difficult to capture numerically. It is seen
in the previous simulations done at TNO, that a no-slip boundary condition gives an
unphysical interface shape [19] (where an oil film is formed between water and the
wall), while a slip boundary condition over-predicts the speed of the interface. For
more details on the physics of the problem we refer to [19].
As mentioned earlier, we test the behavior of the interface for two different geometries.
Table 8.1 gives the dimensions and test case properties for both the geometries. The
first geometry is smaller than the full scale model, and the aim of this test case is to
capture the physics correctly. Another point to be noted here is that we do not actually
have a bend in our geometry, rather the bend is approximated by fixing an appropriate
gravity vector.

Table 8.1: Geometry of the pipe and test case properties.

subscale (first case) full scale (second case)
Pipe Radius [mm] 30 30

Angle of Slant 26.4o 26.4o

Slant Pipe Length [mm] 250 500
Bend Circumference [mm] 200 1000

Horizontal Pipe Length [mm] 350 1700
Total Pipe Length [mm] 800 3200

Grid Size 30x40x200 30x40x800
Density of Fluids [kg/m3] 1000 & 840 1000 & 840

Viscosity of Fluids [kg/m/s] 6.58x10−4 & 4.03x1e−2 6.58x10−4 & 4.03x1e−2

Surface Tension [N/m] 0.0 0.0
Flow Rate of Water [m3/s] 0.00013005 0.00013005

As boundary conditions, we implement a no-slip boundary condition at the walls to see
whether we get the same results as reported in [19]. Further, a parabolic velocity profile
with a homogeneous pressure Neumann boundary condition is specified at the inlet.
While at the outlet, a homogeneous Neumann boundary condition is implemented for
both velocity and the pressure. The parabolic velocity profile at the inlet is given
by c(R2 − r2), where R is the radius of the pipe, r is the radial distance where the
velocity is to be calculated, and c is calculated such that the total flow rate is equal to
the specified flow rate. Moreover, so as to get a divergence free initial condition, the

61

simulation is run at a very small time step (1µs) for first 50000 iterations, and only
later, the time step is increased to 0.5ms so as to get a quicker solution.
For running the simulation, a test was conducted to determine the number of processors
which gives the maximum speedup for the current case. The results of the test are
reported in Table 8.2 which gives the time taken to perform 100 time steps on different
number of processors. As can be seen clearly, the minimum time was taken by 20
processors, and hence, this simulation was performed on the same number of processors.

Table 8.2: Time taken for 100 time steps by the first geometry on different number of
processors.

Number of processors 8 12 16 20 24
time [s] 160.6 95.66 78.13 64.81 66.03

Further, it was noted that the ICCG method takes a high number of iterations to
converge to the specified tolerance, the convergence history for the ICCG method is
shown in Figure 8.2. As can be seen, the convergence of the ICCG method is stalled
for long initially, this points to the existence of small eigenvalues in the spectrum of
the system matrix which slows down the convergence. Hence, deflation was used to
deflate these small eigenvalues and improve the efficiency of ICCG. Figure 8.2 gives
the convergence history of the deflated ICCG method as well, and as evident, the
deflation preconditioner drastically improves the convergence of the iterative solver.
Table 8.3 gives the number of iteration and time taken by both the methods to solve the
Poisson equation. The deflation method, unlike in the Benjamin bubble or rising bubble
case, not only improves the convergence, but also reduces the computational time. A
reduction of 1.5 times is obtained in the computational time, while the convergence
is accelerated by nearly 3 times. The computational time is not reduced by the same
factor as the convergence is improved because the deflation preconditioner itself takes
quite some computational time.
Because of the achieved speedup, the simulation was performed on 20 processors by
using deflated ICCG to solve the Poisson equation. The simulation took approximately
30 hours of computational time. Next, we discuss the obtained results.
Figure 8.3 shows the position and shape of the interface with time. Initially, the inter-
face movement is nearly translational until it reaches the bend (the red line marks the
starting of the bend and the black line marks the ending). After the interface reaches
the bend, the water does not rise at the same rate as before, but creeps horizontally
instead. This is completely in line with the physics explained earlier. Further, in our
simulation, there is no unphysical oil film formed between the wall and the interface

62

Figure 8.2: Convergence history for ICCG and deflated ICCG method.

Table 8.3: No. of Iterations and time taken by (deflated) ICCG to solve the Poisson
equation.

ICCG deflated ICCG
Number of iterations Time [s] Number of iterations Time [s]

370 0.36 112 0.242

as the water displaces the oil in the horizontal part (as reported in [19]). The obtained
interface shape and its movement indicate that the code captures the physics of the
problem at least qualitatively. More quantitative results are obtained from the full
scale simulation discussed next.

63

Figure 8.3: Movement of the interface with time for the subscale problem.

64

For the full scale geometry, the simulation was carried out for the same fluids and
boundary conditions as the subscale geometry. We conducted tests to derive the op-
timal number of processors and concluded that running this problem parallely on 40
processors gives the highest speedup and efficiency factor. Further, as above, it was
noticed that the ICCG method converges quite slowly while solving the Poisson equa-
tion and deflation improves the convergence of the ICCG method many folds. This
is evident from Figure 8.4 which shows the convergence history of the deflated and
undeflated ICCG methods for the full scale problem. Due to this improvement in con-
vergence, we get a speedup of nearly 2 times in the Poisson step as can be seen from
Table 8.4 which gives the number of iterations and time taken to solve one Poisson
equation. At this point it should also be noted that deflation performed nearly 3 times
better (in terms of convergence) as the size of the pipe increased from 0.8m (subscale
geometry) to 3.2m (full scale geometry). This suggests that for bigger problems, bigger
gains from deflation could be expected.
Furthermore, owing to the presence of 1

timestep
term on the diagonal and lower jump

in the coefficients across the interface, we noticed that the GMRES method converged
quickly, hence the use of IDR(s) method was not required to solve the predictor problem
in this case.

Figure 8.4: Convergence history for ICCG and deflated ICCG method for the full scale
model.

Table 8.5 shows the total computational time taken by the deflated ICCG code on 40

65

Table 8.4: No. of iterations and time taken by (deflated) ICCG to solve the Poisson
equation.

ICCG deflated ICCG
Number of iterations Time [s] Number of iterations Time [s]

1167 3.3 129 1.7

cores and the original available code to perform 10 time integration steps (for the full
scale problem). As evident, we gain an overall speedup of nearly 75 times. Due to
these observations, the current simulation was carried out on 40 processors by using
the diagonalized restarted GMRES method to solve the predictor equation and de-
flated ICCG method to solve the Poisson equation. This simulation took nearly 6 days
to complete on 40 cores, and if we extrapolate the performance results of the original
available code, we see that the simulation would have taken more than 12 months with-
out the modifications performed in this endeavor. This huge time saving demonstrates
the benefits of the new code and indicates that it can be efficiently used to further the
research in the area of pipe flows.

Table 8.5: Total time taken by available code and deflated ICCG code on 40 processors
to integrate 10 time steps.

available code deflated ICCG on 40 procs
Time [s] 2818.51 37.29

To see further how the modifications performed in this endeavor change the fraction of
time taken by each module, we performed some profiling tests for the full scale problem
simulated by the original available code and by the parallelized (40 processors) deflated
ICCG code. Table 8.6 gives the obtained results. As can be seen, for the original code
the predictor part is the heaviest and takes 65% of the total time. While for the
parallelized deflated ICCG code, not only is the computational time for each module
is reduced drastically, but also the bottleneck has changed, i.e., the predictor part is
no more the heaviest step, but the Poisson step is (which takes 50% of the total time).
This demonstrates that the efficiency of the predictor step is improved by much, and
now to improve the speedup even more, one should modify the Poisson step.
Next, we discuss the physical results obtained by the present simulation and contrast
it with the results presented in [19]. Figure 8.5 gives the movement of the interface
with time for the full scale test case. As seen before, as the interface reaches the end
of the bend, the water creeps horizontally instead of translating forward at the same
rate as before. In this case however, we see the formation of a layer of oil between
water and the wall as reported in [19]. We would like to stress at this juncture that

66

Figure 8.5: Movement of the interface with time for the full scale problem.

the comparison between the present results and the results reported in [19] can not be
one-to-one because of the following reasons:

1. The reported results are for 2-d channel flow, while we have a 3-d pipe flow.

2. The reported results are obtained by implementing an adaptive grid refinement,

67

Table 8.6: Profiling results of the original and modified codes for one time step of the
full scale problem.

Code
Flow Time[s] - percentage Interface

Time[s] -
percentage

Predictor
Time[s] /

percentage

Poisson
Time[s] /

percentage

Corrector
Time[s] /

percentage
Original
available code

237.02 - 99.24%
1.78 - 0.75%

154.1 - 65.0% 80.2 - 33.8% 0.923 - 0.4%
Parallel deflated
ICCG code

3.14 - 90.2%
0.34 - 9.75%

1.32 - 37.8% 1.7 - 50.48 % 0.046 - 1.3%

while uniform grid is used in the current endeavor.

3. The initial conditions are different for our case, i.e., in [19] the pipe is assumed
to be initially filled with oil, and at t = 0 water enters the pipe and the mass
flow rate of water is increased until t = 5s. While for our case, we assume that
the interface is already present in the slant portion of the pipe (the location is
chosen arbitrarily) and we specify a constant in time parabolic velocity profile at
the inlet.

4. The interface is captured using the VOF method in [19], while in the present
study we use the MCLS method, which is a combination of the Level Set and
VOF methods.

5. The length of the horizontal part for the current test case is 3.2 m, while in [19]
it was 15 m.

Figure 8.6: Comparison between the shape of the interface head captured by the current
simulation and as reported in [19].

68

Even though we can not draw a one-to-one comparison, Figure 8.6 compares the in-
terface profile reported in [19] (with and without no-slip boundary condition) with the
interface profile at the symmetry plane obtained from the present simulation. There
are few key points to be noted. Firstly, the shape of the head of the interface given
by the present simulation is somewhere in between the shape of the heads obtained by
using the no-slip and slip boundary conditions in the reported results. Secondly, even
though there is a thin film of oil between water and the wall in the current simulation,
it is smaller from the one reported in [19]. Further, we computed the speed of the
interface calculated as:

speed =
distance moved by the contact point of oil, water and the wall

time

Table 8.7 gives the interface velocity obtained from the experiments, simulations re-
ported in [19], and the current simulation. It can be seen that the velocity obtained
in the present endeavor is the closest match to the experimental results. However,
this must be taken as an indicative result only as the grid independence studies have
not been performed, and changing the refinement of the grid may result in a different
interface velocity.

Table 8.7: Interface velocity obtained from experiments and simulations.

experiments current (no-slip) reported (no-slip) reported (slip)
velocity [m/s] 0.143 0.15 0.11 0.165

Furthermore, it is to be noted that for the smaller test case, we did not obtain any
film of oil between water and the wall as seen in the full scale test case. This is quite
intriguing and points to the fact that the length of the test case affects the presence of
this unphysical layer of oil, and this phenomenon should be studied in more detail.
Moreover in the available code, a Navier-slip boundary condition is implemented in
which the shear stress near the contact point of the interface and wall can be spec-
ified, i.e., we have a degree of freedom with which we can specify the slip near the
interface-wall contact point and simulate the physics better. One can test this bound-
ary condition to see if it captures the interface characteristics better.

This study of the full/sub scale test cases, though quite brief, indicates that the physical
results given by the current code are close to the experimental results. Moreover, the
results are obtained in much less computational time (as compared to the original
available code) due to the modifications performed in this thesis. These benefits make
clear that this code can be extensively used to study pipe flow problems.

69

Chapter 9

CONCLUSION

The aim of this study was to improve the efficiency of a CFD code which is used to
simulate multiphase flows. To enhance the efficiency of the available code, it was pro-
posed to check how the performance of the Krylov subspace solvers can be improved.
Moreover, it was planned to parallelize the code based on domain decomposition, and
check how much speedup is achieved by distributing the work amongst different pro-
cessors. To improve the performance of parallelization, deflation was also aimed to be
implemented. Further, it was also proposed to check if using the IDR(s) solver instead
of GMRES to solve the predictor equation would reduce the computational time for
our problems.
To answer the above questions, the available code was studied and profiled, and in
addition, different solvers and preconditioners were studied to improve the performance
of the available code. From the profiling results it was learnt that the predictor step
took most of the computational time, hence the system matrix was diagonally scaled
to improve the convergence of the Krylov subspace solver (GMRES method). The
diagonal scaling improved the convergence of the GMRES method by a factor of 1.5-2
times depending on the case. Moreover, the structure of the code was modified so
that the predictor matrix is not formed in each iteration of GMRES (as was the case
originally). This modification further sped up the predictor module by nearly 4 times.
Hence in total, depending on the case, the above modifications gave a speedup of nearly
4.5-9 times in the predictor module.
Further, parallelization was implemented to reduce the overall computational time by
running the simulation on several processors simultaneously. It was seen that paral-
lelization reduced the computational time for the tested cases many folds, for example,
a maximum speedup of 10 times was achieved on 12 processors for the Benjamin bub-
ble problem, while a speedup of nearly 15 times was achieved on 24 processors for
the rising bubble problem. Moreover, the speedup achieved was nearly linear until

70

a certain number of processors (which varied from case to case), and if the number
of processor was increased further, a drastic drop in the efficiency of parallelization
was seen. Although as expected, as the problem (grid) size increased the efficiency of
parallelization also improved.
Furthermore, the deflation preconditioner was implemented as a coarse grid corrector
for the predictor equation, and to improve the performance of parallelization for the
ICCG solver. Deflation did not help as a coarse grid corrector for the predictor equation
owing to the presence of 1

timestep
term on the diagonal of the system matrix, leading

to it already having very good spectral properties. Therefore, the Krylov subspace
solver itself converged quickly and deflation was not required to improve the spectral
properties of the matrix further.
The deflation technique, however, improved the convergence of the ICCG solver by
eliminating the small eigenvalues of the system matrix which were responsible for the
slow convergence. Although, it was noticed that for few of the tested cases, the ICCG
solver itself performed quite well and hence the deflation technique was not able to
improve the performance of the solver significantly. This resulted in the deflation mod-
ule itself taking more time (per Poisson equation solve) than it saved by improving
the convergence of the ICCG method. For the TNO test cases, however, the defla-
tion preconditioner improved the convergence of the ICCG method substantially. This
substantial improvement in the convergence led to a noteworthy reduction in the com-
putational time required per Poisson equation solve, giving an overall speedup.
Next, we tested how the IDR(s) solver performed in comparison to the GMRES solver.
The IDR(s) method proved to be of great use in mitigating the computational overhead
caused by the GMRES method (due to the storage of all the Arnoldi vectors). A factor
of nearly 2 times was obtained for the cases where the predictor equation’s system
matrix had slightly poor spectral properties (owing to a higher time step or larger
jumps in coefficients of the two fluids). However, if the matrix spectral properties
were favorable to convergence and the GMRES method converged quickly, the IDR(s)
method did not help in reducing the computational time further.
Later, we demonstrated the usefulness of the new parallelized code by simulating the
real world sub/full scale test cases provided by TNO. As mentioned above, for these
cases, the deflation preconditioner reduced the computational time required to solve
the Poisson equation substantially. The IDR(s) method, however, was of no advantage
for these cases since the GMRES method converged quickly. The parallelized deflated
ICCG code took nearly 30 hours on 20 cores to simulate the subscale, and 6 days on 40
cores to simulate the full scale problem which could not be simulated by the available
code due to the prohibitively large computational time it required per iteration. An
overall speedup of nearly 75 times was obtained (for the full scale problem) by running
the deflated ICCG code on 40 processors.

71

The speedup gained by using different solvers, preconditioners and parallelization
makes it possible to simulate the real world problems in a reasonable amount of time,
and the successful numerical simulation of the full scale TNO test case proves the value
of the new code. From the results we achieved, it is evident that this code can definitely
help a researcher carry out the numerical simulations for pipe flows in much less time.

In this endeavor we achieved considerable speedups, and improved the performance of
the original code many folds. Using this new parallelized code, one could study the
effect of the length of the pipe on the unphysical layer of oil formed between water and
the pipe wall for the TNO test cases. Secondly, because of the achieved performance
in the predictor step, the Poisson step has now become the bottleneck, and hence in a
future study, one could look at the multigrid solvers to reduce the computational time
of the Poisson module even further. Moreover, the structure of the Poisson solver which
was not touched in the current thesis due to shortage of time could be modified. As a
third future research direction, we propose that the pressure correction time integration
method, used in the current study, could be replaced by solving for the velocity and
pressure at the new time step in a coupled manner to have a more accurate kinetic
energy conserving solution. A study in this direction is presented in Appendix A where
we discuss the preconditioners to improve the convergence of the saddle point problem
which would result if we indeed solved a coupled system. As a short conclusion to that
study, we suggest the usage of the MSIMPLER preconditioner, as it is suitable for the
unsteady problems and does not require formation of the Schur complement at every
time step.

72

Appendix A

Future Work - Saddle Point
Preconditioners

As explained in Chapter 2, the current procedure of time integration does not preserve
kinetic energy of the fluid. To preserve the kinetic energy one has to solve the non-linear
system ((2.2)) in a coupled manner, i.e., simultaneously solve for both the velocity and
pressure. As explained, since solving such a non-linear system is very expensive, in
future endeavors we can solve the linearized system ((2.4)/(2.3)) in a coupled manner
which results in a saddle point problem. The saddle point problem is characterized by
very slow convergence and hence an appropriate preconditioner is required to improve
the convergence. This Chapter describes the preconditioners used to solve the saddle
point problems, and serves as the building step on which the future works in this
direction could be based.
For the saddle point problems broadly two types of preconditioners are available, i.e.,
the block preconditioners and the ILU type preconditioners. The ILU type precondi-
tioners are better for finite element solvers where both matrix builder and solver must
be adapted, since the splitting of velocity and pressure unknowns is required [20]. In
this study, however, we only focus on the block type preconditioners.
Block preconditioners are based on the block LDU decomposition of the coefficient
matrix A in equation (2.4). We write

A = LDU =

[
F BT

B 0

]
=

[
I 0

BF−1 I

] [
F 0
0 S

] [
I F−1BT

0 I

]
where S = −BF−1BT is the Schur complement matrix. Almost all the preconditioners
are some form of combination of these blocks with an appropriate Schur complement
matrix approximation.
If we choose a preconditioner (P) based on the product of only the diagonal matrix D
and the upper diagonal matrix U, i.e.,

73

P =

[
F BT

0 S

]
,

then it is easy to show that the eigenvalues of the preconditioned system are all 1, hence
GMRES converges in 2 iterations in exact arithmetic [21]. Computing the inverse of
S and F is naturally not practical, hence a cheap approximation of S is used and the
system Fu = f is solved approximately using iterative methods. Application of such
a preconditioner requires solving Pz = r where z = [z1; z2] and r = [r1; r2]. Now all
that remains is to form an approximation of the Schur complement. As it turns out,
there is a plethora of ways we can approximate the Schur complement. The way we
do it leads to various block preconditioners. In the following subsections we discuss a
few of these preconditioners.

A.1 PRESSURE CONVECTION-DIFFUSION PRE-

CONDITIONER

Based on [22], let the Convection Diffusion (C-D) operator L be defined on the velocity
space. Also let wh be the approximate discrete velocity computed in the most recent
Piccard iteration. Then L is given by

L = −∆ · (ν∆) +wh) ·∆ .
Let the commutator of L be ε = L∆−∆Lp, where Lp is analogous to L but does not
carry any physical meaning. If wh is constant, the commutator is zero in the interior
of domain and is small for smooth w, hence the discrete commutator (in terms of
matrices) defined as,

εh = (Q−1
v F)(Q−1

v BT)− (Q−1
v BT)(Q−1

p Fp)

will also be small. Here, Qv is the velocity mass matrix, Qp is the pressure mass matrix
and Fp is the discrete C-D operator on the pressure space. Assuming the commutator
is indeed small then left multiplication of the discrete commutator by BF−1Qv and
right multiplication by F−1

p Qp gives an approximation of the Schur complement

−BF−1BT ≈ −BQ−1
v BTF−1

p Qp (A.1)

Since BQ−1
v BT is expensive to compute, we replace it with its spectral equivalent

matrix Ap known as pressure Laplacian matrix, thus giving

S = −BF−1BT = ApF
−1
p Qp.

This preconditioner gives a very good convergence if used with the Krylov subspace
methods for enclosed flows (if the convective terms are linearized by the Piccard lin-

74

earization). But for other problems this preconditioner may not be ideal as Ap is
defined only for the enclosed flow problems [20].

A.2 LEAST SQUARES COMMUTATOR PRECON-

DITIONER

The Least Square Commutator (LSC) preconditioner was given by Elman et al. [23],
and is based on the same principle as the PCD preconditioner discussed above. We
approximate Fp in a way which gives us a small discrete commutator. Therefore we
solve the following least squares problem

min‖[Q−1
v FQ−1

v BT]j −Q−1
v BTQ−1

p [Fp]j‖Qv ,

where the j-th column of matrix Fp is represented by [Fp]j, the j-th column of matrix
Q−1
v FQ−1

v is [Q−1
v FQ−1

v]j, and ‖.‖Qv is the energy norm with respect to Qv. The
associated normal equations are

Q−1
p BQ−1

v BTQ−1
p [Fp]j = [Q−1

p BQ−1
v FQ−1

v BT]j,

which gives the following equation for Fp:

Fp = Qp(BQ
−1
v BT)−1(BQ−1

v FQ−1
v BT). (A.2)

Equation (A.1) and (A.2) gives the Schur complement approximation

BF−1BT ≈ (BQ−1
v BT)(BQ−1

v FQ−1
v BT)−1(BQ−1

v BT), (A.3)

where Qv is approximated by its diagonal elements to reduce the complexity of inverting
it. This gives rise to the following algorithm:

//First compute ru = f and rp = −BK−1f + g then,
1. Solve Spzp = rp, where Sp = BD−1

v BT , Dv =diag(Qv)
2. Update rp = BD−1

v FD−1
v BTzp

3. Solve Spzp = −rp
4. Update ru = ru −BTzp
5. Solve Fzu = ru

Algorithm 3: LSC preconditioner

75

A.3 SIMPLE PRECONDITIONER

SIMPLE method was first introduced by Patankar & Spalding as a method to solve
the coupled system iteratively. The following steps outline the method proposed by
Patankar and Spalding

• Initialize pressure and velocity with the pressure velocity from previous step.

• Then we solve for velocity using the momentum equation, and pressure from the
Poisson equation obtained while imposing the solenoidicity of velocity.

• We continue this procedure until desired convergence is reached.

The SIMPLE method, though very easy to implement, shows poor convergence prop-
erties for most of the problems. Although if used as a preconditioner [20], the spectral
properties of Krylov subspace methods are much improved. It can be proven that
some of the eigenvalues are clustered near 1, while the others are dependent on the
approximation of the Schur complement. Further, we discuss the formulation of such
a preconditioner.
Let the system we have to solve be Ax = b where,

A =

Fr 0 0 Gr

0 Fθ 0 Gθ

0 0 Fz Gz

GT
r GT

θ GT
z 0

 =

[
F BT

B 0

]
, x =

ur
uθ
uz
p

, and b =

br
bθ
bz
bp

 =

[
f
g

]

Then we base the SIMPLE preconditioner on the approximation of LU where L & U
are lower and upper diagonal of matrix A. Thus[

F BT

B 0

]
≈
[
F 0
B Sa

] [
I D−1BT

0 I

]
,

where Sa is an approximate Schur complement constructed by approximating F by its
diagonals in the definition of S, i.e., S = −BF−1BT ≈ −BD−1BT = Sa. Thus one
iteration of SIMPLE is to solve[

F 0
B Sa

] [
I D−1BT

0 I

] [
δu
δp

]
=

[
f
g

]
−
[
F BT

B 0

] [
u(k)

p(k)

]
=

[
ru
rp

]
,

where δφ = φk+1 − φk. The above equation can be solved in two steps:[
F 0
B Sa

] [
δû
δp̂

]
=

[
ru
rp

]
and [

I D−1BT

0 I

] [
δu
δp

]
=

[
δû
δp̂

]
.

76

Then we update the velocity and pressure based on[
u(k+1)

p(k+1)

]
=

[
uk

pk

]
+

[
δu
δp

]
.

Here, one of the above iterations is used as the SIMPLE preconditioner.
The SIMPLE algorithm has a problem, i.e., the method suffers a lot if the Reynolds
number increases or the mesh size decreases. Another point to note is that many
of the Krylov subspace methods, for instance CG and GMRES, require a constant
preconditioner, or more specifically, a constant inverse of the preconditioner. If a
preconditioner is changing due to the requirement of the problem to be solved or if
we invert the preconditioner iteratively (i.e., we solve Px = y iteratively where P
is the preconditioner), this requirement of the Krylov subspace methods can not be
fulfilled. The SIMPLE preconditioner is one of the above iterations, which itself is
solved iteratively, hence the preconditioner changes in each iteration [20]. Therefore we
use the GCR solver which, though a bit expensive, can handle variable preconditioners.

1. uk and pk are known from the previous iteration
2. Set ru = f − Fuk −BTpk, rp = g −Buk
3. Solve Fδû = ru
4. Saδp̂ = rp −Bδû
5. δp = δp̂
6. δu = δû−D−1BT δp
7. uk+1 = uk + δu, pk+1 = pk + δp

Algorithm 4: SIMPLE preconditioner

A.4 SIMPLER PRECONDITIONER

There are many variants of the SIMPLE preconditioner available, one such precon-
ditioner is SIMPLER [20]. In SIMPLER we first solve for the pressure p̂ instead of
assuming it to be the same as the previous iteration’s pressure pk, and then we apply
the SIMPLE algorithm with p̂ instead of pk. The algorithm is given below

Solve Sap̂ = g −Buk −BD−1(f − Fuk), then[
F 0
B Sa

] [
I D−1BT

0 I

] [
u
δp

]
=

[
f
g

]
−
[
F BT

B 0

] [
0
p̂

]
=

[
ru
rp

]
,

which can be solved in two steps[
F 0
B Sa

] [
û
δp̂

]
=

[
ru
rp

]

77

and [
I D−1BT

0 I

] [
u
δp

]
=

[
û
δp̂

]
.

Then we update the velocity and pressure.

1. Solve Sap̂ = g −Buk −BD−1(f − Fuk)
2. Set ru = f −BT p̂, rp = g
3. Solve F û = ru
4. Solve Saδp̂ = rp −Bû
5. Update δp = δp̂
6. Update u = r̂ −D−1BT δp
7. Update p = p̂+ δp
Algorithm 5: SIMPLER preconditioner without pressure update damping

The SIMPLER preconditioner is supposed to have a convergence which is independent
of the Reynolds number. Unfortunately, in practice, not much improvement is seen
when graduating from SIMPLE to SIMPLER preconditioners. In fact for many of the
test cases, SIMPLER performs worse than SIMPLE [20]. Hence, this preconditioner
is not further discussed, however we discuss an another variant of SIMPLER, the so
called MSIMPLER which is supposed to give better results than SIMPLER.

A.5 MSIMPLER PRECONDITIONER

The MSIMPLER preconditioner is an improved SIMPLER preconditioner presented
by Segal et al. in [20]. It is inspired by the similarities between SIMPLE and the
commutator preconditioners presented by Elman et al. [23]. For the commutator
preconditioners, a more general form of Schur decomposition is given by

BF−1BT ≈ (BM−1
1 BT)F−1

p with,

Fp = (BM−1
2 BT)−1(BM−1

2 FM−1
1 BT).

In the equations (A.2) and (A.3) we took M1 = M2 = diag(Qv). Now, if we were
to create a new block factorization preconditioner in which Schur complement is built
on SIMPLE’s approximate block factorization while being based on a commutator
approximation, we get

P = LU

[
I 0
0 F−1

p

]
(A.4)

78

If S = −BF−1BT ≈ −BD−1BT = Sa, M1 = D and Fp is identity then equation (A.4)
corresponds to the SIMPLE preconditioner. Similarly, if the pressure update step (step
4) in the SIMPLE algorithm is solved with Sa = −(BM−1

1 BT)F−1
p , then the SIMPLE

preconditioner would be equivalent to equation (A.4).
In our case we deal with the time dependent multiphase flows. Hence, while discretizing
the time dependent Navier-Stokes equations, we get a 1

timestep
term on the diagonal

of matrix (which is obtained from the implicit time discretization of the momentum
equation). The presence of this 1

timestep
term on the diagonal makes the diagonal

entries larger than the off diagonal entries, hence FD−1 is close to identity. This
also implies that Fp is also close to identity. For the time dependent problems, D
is also close to the diagonal of the velocity mass matrix. Hence, if we choose again
M1 = M2 = diag(Qv) = Qvd we get

Fp = (BQ−1
vdB

T)−1(BQ−1
vd FQ

−1
vdB

T).

From the above definition it is easy to see that if FQ−1
vd is close to unity then Fp is also

close to identity, hence the Schur complement becomes

BF−1BT ≈ BQ−1
vdB

T .

Therefore, if we replace D with the diagonal of the mass matrix of velocity Qvd in
the SIMPLE/ SIMPLER method we get the MSIMPLER method. The algorithm is
presented later.
For time dependent Navier-Stokes problems, the MSIMPLER preconditioner is better
than SIMPLER because in SIMPLER we must form the Schur complement after every
time step (as it is based on diagonal elements of F which needs to be updated after
each time step), while the MSIMPLER preconditioner has the velocity mass matrix in
its definition of the Schur complement which does not change per time step, hence we
save time in building the Schur complement.

1. Solve Sap̂ = g −Buk −BQ−1
vd (f − Fuk)

2. Solve ru = f −BT p̂, rp = g
3. Solve F û = ru
4. Solve Saδp = rp −Bû
5. Update δp = δp̂
6. Update u = û−Q−1

vdB
T δp

7. Update p = p̂+ δp
Algorithm 6: MSIMPLER preconditioner without pressure update damping

Below we present the GCR algorithm with SIMPLE/SIMPLER type preconditioners,
for more details about the algorithm one is referred to [24]. We choose GCR because

79

it is stable, minimizes the residual norm, and allows for variable preconditioning which
is typical of SIMPLE type preconditioners as discussed above.

r0 = b− Ax0

for k = 0, 1, ..., ngcr do
sk+1 = P−1rk
vk+1 = Ask+1

for i = 0, 1, ..., k do
vk+1 = vk+1 − (vk+1,vi)vi
sk+1 = sk+1 − (vk+1,vi)si

end
vk+1 = vk+1/‖vk+1‖2

sk+1 = sk+1/‖sk+1‖2

xk+1 = xk + (rk,vk+1)sk+1

rk+1 = rk + (rk,vk+1)vk+1

end
Algorithm 7: GCR - MSIMPLER preconditioner to solve Ax = b

Where matrix P depends on the type of SIMPLE/SIMPLER preconditioner used, for
MSIMPLER it is

P = HrM
−1
r −HrM

−1
r AM−1

l Hl +M−1
l Hl where

Hr =

I 0 0 −Q−1

vr dGr

0 I 0 −Q−1
vθ dGθ

0 0 I −Q−1
vz dGz

0 0 0 I

, Mr =

Fr 0 0 0
0 Fθ 0 0
0 0 Fz 0
GT
r GT

θ GT
z Sa

Hl =

I 0 0 0
0 I 0 0
0 0 I 0

−GrQ
−1
vr d −GθQ

−1
vθ d −GzQ

−1
vz d I

, Mr =

Fr 0 0 Gr

0 Fθ 0 Gθ

0 0 Fz Gz

0 0 0 Sa

and W is the block diagonal of Ml +Mr − A.

80

Bibliography

[1] S. Osher, J.A. Sethian. Fronts propagating with curvature-dependent speed: algo-
rithms based on HamiltonJacobi formulations. J. Comput. Phys. 79, (1988) pp.
1249.

[2] D. Gueyffier, J. Li, A. Nadim, S. Scardovelli, S. Zaleski. Volume of Fluid inter-
face tracking with smoothed surface stress methods for three-dimensional flows. J.
Comput. Phys. 152, (1999) pp. 423456

[3] S. van der Pijl. Computation of bubbly flows with a Mass-Conserving Level-Set
Method. PhD Thesis, TU-Delft (2005).

[4] Y. Morinishi, O.V. Vasilyev, Takeshi Ogi. Fully Conservative finite difference
scheme in cylindrical coordinates for incompressible flow simulations. Journal of
Computational Physics 197, (2004) pp. 686-710.

[5] A. Arakawa, V.R. Lamb. Computational design of the basic dynamical processes of
the UCLA general circulation model. Methods of Computational Physics 17, (1977)
pp.173265.

[6] T.W.H Sheu, R.K. Lin. Newton linearization of the incompressible NavierStokes
equations. Int. J. Numer. Meth. Fluids 44, (2004) pp. 297-312.

[7] J. van Kan. A Second-Order Accurate Pressure-Correction Scheme For Viscous
Incompressible Flow. SIAM J. Sci. Stat. Comput. 7(3), (1986) pp. 870-891.

[8] Yousef Saad. Iterative Methods for Sparse Linear Systems. Second Edition, SIAM.
ISBN 978-0-89871-534-7.

[9] A. J. Wathen. Preconditioning. Acta Numerica, 24, (2015) pp. 329-376.

[10] Y. Saad, M.H. Schultz. GMRES: A generalized minimal residual algorithm for
solving non-symmetric linear systems. SIAM J. Sci. Stat. Comput., 7, (1986) pp.
856-869.

81

[11] Magnus R. Hestenes, Eduard Stiefel. Methods of Conjugate Gradients for Solving
Linear Systems. Journal of Research of the National Bureau of Standards. 49, (1952)
pp. 409436.

[12] P. Sonneveld, M.B. van Gijzen. IDR(s): A Family of Simple and Fast Algorithms
for Solving Large Nonsymmetric Stsrems of Linear Equations. SIAM J. Sci. Com-
put., 31 (2), (2008) pp. 1035-1062.

[13] J.A. Meijerink, H.A. van der Vorst. An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31, (1977)
pp. 148162.

[14] R. Nabben, C. Vuik. Domain Decomposition Methods and Deflated Krylov Sub-
space Iterations. ECCOMAS CFD (2006).

[15] J. Verkaik, C. Vuik, B.D. Paarhuis, A. Twerda. The Deflation Accelerated Schwarz
Method for CFD. ICCS, (2005) pp 868-875.

[16] J. Frank, C. Vuik, A. Segal. On The Construction of Deflation-Based Precondi-
tioners. SIAM J. Sci. Comput., 23 (2), (2001) pp. 442-462.

[17] C. Vuik, J. Frank. Coarse Grid Acceleration of a Parallel Block Preconditioner.
Future Generation Computer Systems. 17 (2001), pp. 933-940.

[18] T.B. Jonsthovel, M.B. van Gijzen, C. Vuik, A. Scarpas. On The Use Of Rigid
Body Modes In The Deflated Preconditioned Conjugate Gradient Method. SIAM J.
Sci. Comput., 35 (1), (2012) pp. B207-B225.

[19] B. de Jong. Contact Line Dynamics in Oil Water Simulations. Internship Report,
TNO (2015).

[20] A. Segal, M. ur Rehman, C. Vuik. Preconditioners for Incompressible Navier-
Stokes Solvers. Numer. Math. Theor. Meth. Appl. 3(3), (2010) pp 245-275.

[21] M. F. Murphy, G. H. Golub, A. J. Wathen. ”A Note on Preconditioning for In-
definite Linear Systems. SIAM J. Sci. Comput., 21(6), (2000) pp. 19691972.

[22] D. Kay, D. Loghin, A. J. Wathen. A preconditioner for the steady-state Navier-
Stokes equations. SIAM J. Sci. Comput., 24, (2002) pp. 237256.

[23] H.C. Elman, V.E. Howle, J. Shadid, R. Shutterworth, R. Tumirano. Block Pre-
conditioner Based on Approximate Commutators. SIAM J. Sci. Comput., 27 (5) ,
(2006) pp. 1651-1668.

82

[24] C. Vuik, A. Saghir, G.P. Boerstoel. The Krylov Accelerated SIMPLE(R) Method
for Flow Problems in Industrial Furnaces. Int. J. Numer. Meth. Fluids 33, (2000)
pp. 1027-1040.

83

