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PREFACE 

Panel codes are used by the Maritime Reseach Institute Natherlands (MARIN) to compute 

flows around ships and propellers. These codes are based on Boundary Element Methods 

(BEM). A known drawback of BEM is that it forms dense linear system of equations that have 

to be solved. By improving the efficiency of the dense linear solver, the computational time 

required by panel codes can be significantly reduced. Since applications of panel codes in 

MARIN include automatic optimization, where a large number of hull forms or propeller 

geometries have to be evaluated, the reduction of computational time is important.   

Four strategies were explored to improve the performance of the dense linear solver. First, to 

replace the current GMRES solver with IDR(s). Second, the updating of a fixed size block 

Jacobi preconditioner into a variable size block Jacobi preconditioner. Third, to use a 

hierarchical matrix-vector multiplication in the solver instead of dense matrix-vector 

multiplication. Lastly, to replace the block Jacobi preconditioner with a hierarchical-LU 

preconditioner. Out of the four strategies, the use of hierarchical-LU preconditioner was found 

to speed up the dense linear solver substantially, especially for large systems. The use of IDR(s) 

instead of GMRES is also recommended as it removes the problems introduced by the need to 

restart. 

This report discusses the theory, implementation and test results obtained from the four 

strategies aforementioned. As a result of this project, the use of IDR(s) combined with 

hierarchical-LU preconditioner is recommended to be implemented in the panel codes.  

The author would like to thank Dr. ir. Martin van Gijzen from TU Delft for his guidance 

throughout the project. To Dr. ir. Auke van der Ploeg from MARIN, thanks for all the valuable 

insights and support. It has been a pleasure to work on this project with both of you for the past 

nine months. 
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Delft, The Netherlands 
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1 INTRODUCTION 

1.1 PROBLEM STATEMENT 

At MARIN, Boundary Element Method (BEM) is used to compute flows around ships and 

propellers. Some examples of computer codes based on BEM, commonly known as panel codes, 

are stated below [1]: 

1. FATIMA: Used to compute ship motions and added resistance from incoming 

waves 

2. PROCAL: Used for the analysis of propellers 

3. EXCALIBUR: Computes the hull pressure fluctuations induced by the propeller 

4. RAPID: computes the wave system generated by the ship 

The use of BEM results in a dense linear system of equation to be solved in every time step. 

This is unlike methods like Finite Element Method (FEM), where the system of equations 

formed is sparse. Thus, efficient linear solvers developed for FEM cannot be applied to BEM. 

There is a need to reduce the computational time required to solve this dense linear system of 

equations in MARIN. Therefore, this project seeks to explore ways to speed up the dense linear 

solver.  

1.2 BACKGROUND  

Currently, GMRES combined with incomplete LU-decomposition preconditioner, is used to 

solve the system of equations formed. M. de Jong had proposed the use of GMRES with Block-

Jacobi preconditioner to solve the dense system of equations more efficiently [1]. 

Parallelization techniques using OpenMP and Graphics Processing Units (GPUs) were also 

studied to improve the performance of the Block-Jacobi preconditioner. The best solve times 

are listed in [1, Table 40] in the test environment stated in [1, Section 6]. 

On Sept 2014, a literature review was conducted to better understand the nature of BEM, and 

to assess the strategies available to address the problem [2]. The literature review divided the 

strategies into three main parts: different solver, different preconditioner, and different methods 

(known as Fast Multipole Method (FMM) and the Hierarchical Method). The results of the 

literature review suggested that the following strategies have the most potential. These methods 

are investigated in detail in this project.  
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1. Use of a different solver: the Induced Dimension Reduction solver (IDR(s)) 

2. Updating the current block Jacobi preconditioner to work for varying block sizes 

3. Use of the Hierarchical method  

The full literature review report can be found in [2]. 

1.3 REPORT PURPOSE AND OVERVIEW 

The report summarizes the work done to improve the efficiency of the panel codes according 

to the strategies laid out at the end of the literature review. The report is arranged in 

chronological order in which these strategies were explored.  

Section 3 discusses the advantages and disadvantages of the IDR(s) solver compared with the 

current GMRES solver. The theories of both GMRES and IDR(s) are first presented briefly, 

followed by a discussion on the integration of the IDR(s) solver into the current program. The 

results of the comparison are then discussed. 

In Section 4, updating of the current block Jacobi preconditioner to include the ability to accept 

variable block Jacobi blocks is discussed. The theory, implementation and results are presented. 

Section 5 is devoted to the use of hierarchical matrices to speed up matrix-vector multiplication 

(matvec) in the solver. In the literature review, focus was placed on the use of Lanzcos 

Bidiagonalization to perform the hierarchical splitting. In this report, an alternative method, 

known as the Adative Cross Approximation (ACA), is discussed and compared with the 

Lanzcos Bidiagonalization. The dense matvec operations in the solver are then replaced with 

hierarchical matvec. The corresponding implementation details and results are discussed within 

the section. 

In Section 6, a new strategy that was not formulated at the end of the literature review is 

explored. This strategy, known as the hierarchical-LU decomposition, forms a lower and an 

upper triangular hierarchical matrix that can be used as a preconditioner. A thorough theoretical 

review is first presented, followed by details on the implementation in Fortran. Results are 

presented and discussed next.  

The report then ends with a conclusion and recommendations for future work. 
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2 TEST ENVIRONMENT 

Throughout the project, the new strategies are translated into Fortran codes and tested to 

evaluate their performance. The details of the test matrices and the system on which the tests 

were ran are given below. In Section 2.3, the best solve times that can be obtained in this test 

environment using the code described in [1] is presented. This is the baseline results that the 

new strategies are compared against. 

2.1 TEST MATRICES 

MARIN provided us with a few test matrices generated from their existing systems. The 

matrices are dense, and their characteristics are summarized below: 

Name Size Real/Complex 

Steadycav1 4620 Real 

Steadycav2 4620 Real 

Steadycav3 4620 Real 

Steadycav4 4649 Real 

Passcal 4400 Real 

FATIMA_7894 7894 Complex 

FATIMA_20493 20493 Complex 

Table 1 Test Matrices 

2.2 SYSTEM INFORMATION 

Brand/Type 

Owner/ System no. 

DELL 

TU DELFT/ TUD205717  

CPU 

No. of cores 

Cache 

Memory 

Intel® Core™ i5-4670 CPU @ 3.40GHz 

4 

256 KB x 4 L2/ 6 MB Smart L3 

8 GB RAM DDR3-1333/1600 

Motherboard 

Operating System 

System Kernel 

Dell 0PC5F7 

Windows 7 

GPU 

Memory 

No of cores 

Intel®  HD Graphics 4600 

1696 MB 

20 

OpenMP version 2.5 

Table 2 System information 

2.3 BASELINE TEST RESULTS 

The final program resulting from the work of M. de Jong as presented in [1] were reran using 

the test matrices on the system described in Table 2. These set of results are used as a 

benchmark for comparison with the new strategies. The best solve times that are obtained are 
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summarized below. The results are all obtained with OpenMP parallelization enabled, and 

number of physical cores set to 4. The other parameters are left the same as those described in 

[1, Section 6.2]. 

Test Matrix 
Number of right 

hand side 

Block Jacobi 

Block size 
Time(s) 

FATIMA_20493 
1 4000 87.62 

7 4000 211.49 

FATIMA_7894 
1 1000 6.36 

7 1000 25.74 

PASSCAL 1 500 0.72 

Steadycav1 1 500 0.57 

Steadycav2 1 500 0.60 

Steadycav3 1 500 0.67 

Steadycav4 1 500 0.67 

Table 3 Best solve times before improvements 
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3 PART 1: SOLVER 

This project focuses on two Krylov methods to solve the linear system: Generalized Minimized 

Residual (GMRES) and Induced Dimension Reduction (IDR). GMRES is the method used 

currently, while IDR(s) is the new solver that is integrated into the current program.  

The literature report in [2] details the literature review done on GMRES and IDR(s). This 

includes the mathematical concept, pseudo-algorithm, and performance analysis. A summary 

of the theory is given here, but the reader is referred to [2] for details. Following the theory, 

the implementation details and comparison results are described.  

3.1  THEORY 

The following subsections briefly summarizes the concepts, advantages and disadvantages of 

the GMRES and IDR(s) solver.  

3.1.1 GMRES 

GMRES is the most common iterative method employed to solve 𝐴𝑥 = 𝑏, when A is not 

hermitian. At every iteration 𝑚, it approximates the exact solution, 𝑥∗, with a vector 𝑥𝑚 that 

resides in the Krylov space 𝒦𝑚, such that the residual ‖𝑟𝑚‖ = ‖𝑏 − 𝐴𝑥𝑚‖ is minimized. A 

Krylov space, 𝒦𝑚, is defined as the space 𝑠𝑝𝑎𝑛{𝑏, 𝐴𝑏, 𝐴2𝑏,… , 𝐴𝑚−1𝑏}. The main advantage 

of GMRES is that it is optimal, since at every step the residual is minimized. In addition, only 

one matrix-vector multiplication is required per iteration. The main disadvantage of the 

GMRES is that it is a long-recurrence method. This means that the work and storage required 

increase with iteration. Therefore, in most cases, including this application, GMRES is 

implemented with restart to prevent the work and storage requirement from growing too large. 

This means that after 𝑘 number of iterations, the algorithm is restarted with 𝑥𝑘 as the initial 

guess. 

3.1.2 IDR(s) 

The IDR method was introduced by Sonneveld, P. & van Gijzen, M.B. in 2008 [3]. Unlike 

GMRES, IDR(s) is a short recurrence method. The depth of recurrence depends on the 

parameter s. Also, instead of increasing the subspace with every iteration, IDR(s) uses the 

concept of nested subspaces 𝒢𝑗, where 𝒢𝑗 ⊂ 𝒢𝑗−1 and 𝒢0 =the full Krylov subspace, 𝒦(𝐴, 𝑟0). 

The main benefit of IDR(s) over GMRES is its short recurrence, therefore ensuring that storage 

and work remains constant with increasing iterations. It also has the benefit over other short 
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recurrence methods like bi-CG of requiring at most 𝑁 +
𝑁

𝑠
 matrix-vector product to arrive at 

the exact solution, where N is the problem size, and s is the codimension of a fixed subspace 

[2].  

The main mathematical concept behind IDR(s) is to search for the residual 𝑟𝑚 ∈ 𝒢𝑗 . The IDR 

theorem states that the space 𝒢𝑗  is shrinking as 𝑗 increases, and there will be some 𝑗 ≤ 𝑁 during 

which the space 𝒢𝑗 reduce to just null space. Thus, this means that the residual will be 0 at 

some point 𝑗 ≤ 𝑁 and the exact solution is found. 

3.2 IMPLEMENTATION 

A Fortran implementation of IDR(s) was adapted from Martin van Gijzen [4], and integrated 

with the current solver such that the user can choose to use GMRES or IDR(s) to solve the 

system. 

An open question remains as to what is the value of s to use. To investigate this, the IDR(s) 

solver was ran with the test matrices for different values of s. The results are graphed as shown 

in Figure 1. The figures on the left represent the trend lines for the number of iterations required 

to solve the system with IDR(s), while those on the right represent the time required. The time 

shown here is purely the time taken for IDR(s) and does not include the time required to 

construct the preconditioner.    
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Figure 1 Effect of parameter s on the number of iteration and time to IDR(s) solve time for different test matrices. 

The optimal s value for FATIMA_20493 is around 50. When s is small (𝑠 ≤ 20), there is a 

significant drop in the number of iterations as s increases. This is especially true for small block 

Jacobi block sizes, where the system is less well-conditioned. For well-conditioned system (in 

this case when block Jacobi block size is around 6000), the effect of increasing s reduces. The 

reduction continues until s reaches about 50. After this, number of iteration remains roughly 

constant even when s increases. This effect can be explained by the fact that IDR(s) can never 

outperform GMRES (without restart) in terms of the number of iterations required, since 

GMRES is optimal. Thus, there is a limit as to how much the number of iterations can be 

reduced by increasing s.    

Since s determines the depth of recursion, when s increases, the amount of work (and storage) 

per iteration increases. Thus, a slight rise in time as s increases beyond 50 can be observed, 

since the number of iterations remain constant, but each iteration involves more work.  The rise 

in time is slight, as the main bulk of the time is still taken up by the matvec operations due to 

the dense nature of the system.  

The same trend can be observed for the FATIMA_7894 test matrix, but with the optimal value 

closer to 30 instead. Although for the less well-conditioned system (when block Jacobi block 

size is 500), s still seems to be optimal at a higher value of 50, the better conditioned system 

shows a lower optimal value of s. 
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All the smaller Steadycav matrices exhibit the same trend. Therefore, only the results for 

Steadycav1 are depicted here. In this case, the optimal value of s is at 10. When s increases 

beyond 10, the number of iterations remain constant, thus, a slight increase in timing is again 

observed. Passcal matrix seems to be optimal with s = 30.  

With these observations, the values of s used are 50 for FATIMA_20493, 30 for 

FATIMA_7894 and Passcal, and 10 for the Steadycav matrices. For other systems, initial 

assessments need to be carried out to decide on an optimal value of s.  

3.3 RESULTS AND DISCUSSION 

The test matrices were solved both using GMRES and IDR(s), with the following configuration. 

 OpenMP turned on for the expensive parts of the operation (matrix-vector or matrix 

matrix multiplication, construction of block Jacobi preconditioner, application of block 

Jacobi preconditioner), with number of cores set to 4 

 Mixed precision (#define PRECISION_zc or #define PRECISION_ds) 

 Tolerance for relative residual (Exit criteria for solvers) set to 1e-09  

 GMRES restart after 200 iterations 

 Number of right hand side (nrhs) vectors is 1. The results for multiple right hand side 

(RHS) exhibits the same trend as when the number of RHS is 1, and therefore, are not 

elaborated on here  

The complete results can be found in Table 4.   An explanation of each column is provided 

below. The subsections that follow discuss these results.  

 Prec const: Time spent on the LU-factorization of the block Jacobi preconditioner 

 Prec apply: Time spent on applying the block Jacobi preconditioner during solving 

 Matvec: Time spent on matrix-vector multiplication during solving 

 Solve: Total time spent on GMRES or IDR(s) routine. The total solve time is 

approximately the sum of Prec apply and Matvec timings.  

 Total: Total wall clock time. This is roughly the sum of Solve and Prec const timings.  

 #iter: Total number of iterations required for solving 

 Rel error: Final relative error computed using the formula ‖𝑥𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑥𝑒𝑥𝑎𝑐𝑡‖1
1 

                                                 
1 The exact solution is known because in the test program, the right hand sides are constructed with specified 

solution. 
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Matrix 

Blocksize 

for block 

Jacobi 

GMRES IDR(s) 

Wall clock time (s) 

#iter Rel error 

Wall clock time (s) 

#iter Rel error Prec 

const 

Prec 

apply 
Matvec Solve Total 

Prec 

const 

Prec 

apply 
Matvec Solve Total 

FATIMA_20493 

1708 6.58 7.89 104.60 116.08 122.66 393 1.49E-06 6.51 5.08 67.26 73.94 80.45 260 6.20E-07 

4000 53.19 6.74 27.19 34.44 87.62 103 1.17E-07 53.06 7.31 28.65 36.57 89.75 110 2.45E-07 

6000 267.00 4.51 15.92 20.64 287.64 60 2.27E-07 266.28 5.12 17.59 23.07 292.51 66 1.36E-07 

FATIMA_7894 

500 0.23 0.59 8.55 9.83 10.06 231 7.03E-07 0.23 0.61 8.66 9.54 9.77 237 2.79E-07 

1000 0.90 0.58 4.63 5.47 6.36 121 1.57E-07 0.88 0.64 4.90 5.68 6.55 133 1.14E-07 

2000 12.56 0.67 2.81 3.58 16.14 74 1.50E-07 12.52 0.74 3.05 3.89 16.70 82 5.93E-08 

Steadycav1 

500 0.08 0.05 0.42 0.48 0.57 61 2.53E-04 0.08 0.06 0.47 0.54 0.62 68 5.63E-05 

1000 0.40 0.10 0.31 0.42 0.82 43 2.23E-04 0.40 0.11 0.33 0.45 0.86 47 2.85E-05 

1200 1.23 0.06 0.24 0.31 1.54 35 6.27E-05 1.23 0.07 0.28 0.35 1.58 39 1.41E-05 

1500 1.99 0.10 0.28 0.39 2.38 41 1.74E-04 1.98 0.11 0.31 0.43 2.41 45 4.10E-04 

Steadycav2 

500 0.08 0.06 0.45 0.52 0.60 65 2.59E-04 0.08 0.06 0.50 0.57 0.65 72 6.73E-07 

1000 0.40 0.10 0.33 0.44 0.84 47 2.39E-05 0.49 0.12 0.37 0.49 0.90 52 1.79E-04 

1200 1.23 0.06 0.26 0.33 1.57 38 8.84E-06 1.23 0.08 0.31 0.39 1.62 43 1.22E-04 

1500 1.99 0.11 0.30 0.42 2.40 44 7.16E-05 1.98 0.13 0.35 0.48 2.46 50 2.13E-04 

Steadycav3 

500 0.08 0.06 0.51 0.58 0.67 70 1.60E-02 0.08 0.06 0.51 0.59 0.67 73 1.23E-02 

1000 0.41 0.11 0.34 0.46 0.87 50 2.49E-03 0.40 0.12 0.37 0.49 0.89 53 1.06E-02 

1200 1.23 0.07 0.28 0.35 1.58 40 2.74E-04 1.23 0.08 0.32 0.40 1.63 45 6.79E-04 

1500 1.99 0.11 0.33 0.45 2.44 47 6.92E-03 1.98 0.14 0.40 0.55 2.53 57 3.41E-03 

Steadycav4 

500 0.08 0.06 0.50 0.58 0.67 72 8.05E-05 0.08 0.07 0.60 0.69 0.77 87 7.80E-06 

1000 0.40 0.11 0.35 0.47 0.88 50 1.09E-05 0.40 0.12 0.38 0.52 0.92 54 3.28E-05 

1200 1.25 0.07 0.28 0.36 1.60 40 1.19E-05 1.24 0.08 0.33 0.42 1.67 47 6.73E-06 

1500 1.99 0.11 0.33 0.45 2.44 47 3.02E-05 1.98 0.13 0.38 0.52 2.50 54 2.71E-05 

Passcal 

500 0.08 0.08 0.54 0.64 0.72 91 3.54E-07 0.08 0.08 0.57 0.69 0.76 96 5.19E-07 

1000 0.40 0.18 0.47 0.67 1.07 81 5.59E-07 0.40 0.19 0.50 0.73 1.13 86 1.58E-06 

1200 0.99 0.13 0.46 0.60 1.560 77 2.99E-07 0.99 0.14 0.50 0.67 1.65 83 2.06E-07 

1500 1.83 0.17 0.43 0.62 2.45 73 1.28E-06 1.83 0.19 0.50 0.69 2.52 78 3.15E-06 

Table 4 Comparison between GMRES and IDR(s). The best solve time, total time, and number of iterations required for each case is highlighted in green. 



Ang Yun Mei Elisa Master Thesis Report 10 

3.3.1 Number of iterations 

First, attention is given to comparing the number of iterations GMRES and IDR(s) take to solve 

the problem. In most cases, IDR(s) takes a few more iterations as compared to GMRES. This is 

due to the fact that GMRES is optimal, thus, it is expected that GMRES uses the lowest number 

of iterations required to solve the system. However, when restart is required for GMRES, it can be 

seen that IDR(s) could require a significantly lower number of iterations. This is exemplified by 

the FATIMA_20493 matrix, with a block Jacobi block size of 1708. GMRES requires 393 

iterations, while IDR(s) requires only 260 (Refer to Table 4).  

The reason for this behavior can be explained using the relative residual plots, shown in Figure 2. 

The usual cases for GMRES without restart are shown in the first three plots. GMRES always 

display a faster convergence, but IDR(s) stays close to this convergence behavior of GMRES. The 

last figure shows the case for the FATIMA_20493 matrix with block Jacobi block size of 1708, 

where a restart is required. It can be observed that at the onset of a restart, the relative residual 

behavior of GMRES is to plateau, and then converge steeply again. Since restart is not required in 

IDR(s), the plateau behavior is not observed and the number of iterations required is therefore 

lower. Although GMRES without restart gives again the lowest number of iterations required, its 

use is prohibitive due to the increase in the work and storage requirement with iterations. On the 

other hand, IDR(s) do not require restart since it is a short recurrence method. Therefore, in such 

cases, it is clear that IDR(s) has a distinct advantage over GMRES. 

 

Figure 2 Relative residual plots for GMRES and IDR(s) 
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3.3.2 Timings 

After studying the number of iterations required, the focus is now on the time required to solve the 

system. One important benefit that IDR(s) have over GMRES is that less amount of work is 

required per iteration. Thus in theory, IDR(s) can afford to have more iterations, and may still 

perform better than GMRES in terms of timings. However, because the system here is dense, the 

dominant work in every iteration is the matrix-vector multiplication. This can be seen from the 

timings presented in Table 4. It can be observed that the matvec time takes up about 70% to 90% 

of the solve time. Both GMRES and IDR(s) needs one matrix-vector multiplication per iteration. 

Thus although each iteration of IDR(s) may require less work than GMRES, the additional few 

number of iterations required for IDR(s) to solve the system dominates over this. Therefore, the 

time required for IDR(s) is slightly higher as compared to GMRES in most cases. 

The case for the FATIMA_7894 system preconditioned with block Jacobi block size of 500 is one 

example where the gain of IDR(s) over GMRES can be observed. Although the number of 

iterations for IDR(s) is slightly higher as compared to GMRES (237 and 231 respectively), the 

time required for IDR(s) is 9.5s, as compared to the 9.8s required for GMRES. The time spent on 

work other than matvec for GMRES is about 1.3s while that for IDR(s) is 0.9s. While this gain is 

recognized, the overall effect on the total time is still not significant.  

3.3.3 Memory requirement 

The memory required for GMRES and IDR(s) differs in the number of vectors from previous 

iterations that have to be stored. In the Fortran implementation of the GMRES method, the amount 

of memory allocated to store the vectors from previous iterations is a size 𝑁 × 𝑛𝑟ℎ𝑠 ×

𝑔𝑚𝑟𝑒𝑠_𝑟𝑒𝑠𝑡𝑎𝑟𝑡  array. The term 𝑔𝑚𝑟𝑒𝑠_𝑟𝑒𝑠𝑡𝑎𝑟𝑡  defines the number of iterations at which a 

restart is invoke. In the case of IDR(s), the amount of memory allocated to store the vectors from 

previous iterations is three size 𝑁 × 𝑛𝑟ℎ𝑠 × 𝑠  arrays. Since 3𝑠  is expected to be smaller than 

𝑔𝑚𝑟𝑒𝑠_𝑟𝑒𝑠𝑡𝑎𝑟𝑡, the amount of memory required for IDR(s) is lower.  

However, as the systems here are dense, the main bulk of the memory is allocated to store the 

system matrix. The reduction in memory required for IDR(s) as compared to GMRES is 

insignificant in these cases.  
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In conclusion, the performance of IDR(s) is close to that of GMRES for most cases. From the test 

matrices, it was observed that IDR(s) solver outperforms GMRES significantly in cases when 

GMRES restart is required. In the case of FATIMA_20493 with block Jacobi block size of 1708, 

the total time required to solve the system using GMRES is 122.7s, while that for IDR(s) is only 

80.5s. Thus, using IDR(s) instead of GMRES can lead to a substantial performance gain when 

restart is required, in the expense of slightly higher computational time when restart is not invoked. 
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4 PART 2: VARIABLE SIZE BLOCK JACOBI PRECONDITIONER 

For some applications in MARIN, variable Jacobi blocks are of interest. Consider the case of 

simulation of ships’ interactions. The resulting test matrix has a natural block structure, illustrated 

below: 

 

Figure 3 Structure of a typical matrix derived from ship simulations 

The main diagonal has blocks with elements which represent interactions of panels belonging to 

the same ship. The off diagonal blocks represent interactions between panels belonging to different 

ships. For such applications, at each time step, the elements within the main diagonal blocks do 

not change. Only the off diagonal elements are updated. Thus, if variable sized blocks in the block 

Jacobi preconditioner can be implemented, the LU decomposition for the block Jacobi 

preconditioner needs only to be done once, and can be used for the rest of the time steps.  

The subsections below discusses first the implementation of variable size block Jacobi 

preconditioner. The results are then discussed in the next section.  

4.1 IMPLEMENTATION 

To adapt the current implementation to cater to varying block Jacobi block sizes, the following 

changes were made: 

1. A new derived type, 𝐿𝑈_𝑏𝑙𝑜𝑐𝑘𝑠, was defined to store the variable sized block Jacobi blocks. 

𝐿𝑈_𝑏𝑙𝑜𝑐𝑘𝑠 is made up of the following 1D arrays.  

a. 𝑳𝑼_𝟏𝑫: used to store the elements in all the block Jacobi blocks. The size of this 

array is hence ∑ 𝑠𝑖𝑧𝑒𝑗𝑎𝑐𝑜𝑏𝑖 𝑏𝑙𝑜𝑐𝑘 𝑖
2# 𝑗𝑎𝑐𝑜𝑏𝑖 𝑏𝑙𝑜𝑐𝑘𝑠

𝑖=1  



Ang Yun Mei Elisa Master Thesis Report 14 

b. 𝒑𝒊𝒗𝒐𝒕_𝟏𝑫: used to store the pivot array that comes from LU decomposition. The 

size of this array is 𝑁. 

c. 𝑳𝑼𝒑𝒐𝒔_𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓: used to store the start index of the first element of each block 

in 𝐿𝑈_1𝐷. The purpose of this container is to allow the easy access of the elements 

in each Jacobi block. The size of this array is the total number of block Jacobi 

blocks. 

d. 𝒑𝒊𝒗𝒐𝒕𝒑𝒐𝒔_𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓: used to store the start index of the first element of each 

block in 𝑝𝑖𝑣𝑜𝑡_1𝐷. The purpose of this container is to allow the easy access of the 

pivot element of each Jacobi block. The size of this array is the total number of 

block Jacobi blocks. 

 

 type, public :: LUblocks 

  DATATYPE1,    allocatable, dimension (:) :: LU_1D 

  integer(kind=SHORT), allocatable, dimension (:) :: pivot_1D 

  integer(kind=SHORT), allocatable, dimension (:) :: LUpos_container 

  integer(kind=SHORT), allocatable, dimension (:) :: pivotpos_container 

  integer(kind=SHORT)    :: LU_1D_size 

  integer(kind=SHORT)    :: pivot_1D_size 

 end type LUblocks 

 

Figure 4 Data structure for 𝐿𝑈𝑏𝑙𝑜𝑐𝑘𝑠 

2. The existing codes were updated to use this derived type instead of the 3D arrays previously 

used to store the block Jacobi blocks. To illustrate how this was done, assume that a 

𝐿𝑈𝑏𝑙𝑜𝑐𝑘𝑠 typed object named 𝐿𝑈𝑝𝑖𝑣𝑜𝑡 is declared and constructed.  Then, the product of 

the LU-factorization of each block Jacobi blocks are stored in 𝐿𝑈𝑝𝑖𝑣𝑜𝑡 by the following 

code fragment.  

To help understand the code fragment, some definitions are given here: 

 𝑛𝑟𝑏𝑙𝑜𝑐𝑘𝑠 denotes the total number of block Jacobi blocks 

 𝑙𝑤𝑏 denotes the first row or column number corresponding to a particular block 

 𝑢𝑝𝑏 denotes the last row or column number corresponding to a particular block 

 𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 denotes the first element corresponding to a particular block in the 

𝐿𝑈_1𝐷 array 

 𝑁𝑙𝑜𝑐 denotes the total number of columns or rows belonging in a block 

 𝑟𝑒𝑡𝑢𝑟𝑛_𝑝𝑜𝑠 is a helper function that returns the position of an element in the 

𝐿𝑈_1𝐷 array given its local index 𝑖, 𝑗 in its block Jacobi block number.  
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            do kw = 1,nrblocks   

  lwb=LUpivot%pivotpos_container(kw) 

  blockposition=LUpivot%LUpos_container(kw) 

                 upb = min ( N,lwb-1+blocksize_container(kw) ) 

 

                ! Compute actual block size: may be smaller than 'blocksize'  

                ! for the last block 

                ! ---------------  

                Nloc = upb+1-lwb  

 

                ! Copy the 'kw-th' main diagonal block of A to LU(:,:,kw)  

                ! -------------------------------------------------------- 

                do k = lwb,upb 

                    call F1COPY ( Nloc,A(lwb,k),1, & 

  LUpivot%LU_1D(return_pos(blockposition, Nloc, 1, k-lwb+1)),1 ) 

                end do 

   

 

                ! Compute LU-factorization of block on the main diagonal 

                ! Note: sequential within the block 

                ! ------------------------------------------------------- 

 

                call F1GETRF ( Nloc,Nloc,LUpivot%LU_1D(blockposition), & 

        blocksize_container(kw), LUpivot%pivot_1D(lwb),info ) 

 

                ! Store 1/diag element 

                ! --------------------- 

                do k = 1,Nloc 

                   LUpivot%LU_1D(return_pos(blockposition, Nloc, k, k))& 

  = F1ONE / LUpivot%LU_1D(return_pos(blockposition, Nloc, k, k)) 

               end do 

 

            end do  

Figure 5 Code fragment illustrating the LU-factorization of the variable sized block Jacobi blocks 

4.2 RESULTS AND DISCUSSION 

Passcal is an example of a matrix that has the structure shown in Figure 3. It has three main 

diagonal blocks, with sizes 1600, 1600 and 1200 respectively. The results obtained using the 

variable size block Jacobi preconditioner is shown in Table 5, together with the best results 

obtained using the fixed size block Jacobi preconditioner (block size = 500) for comparison. The 

same setting as described in Section 3.3 is used here. 

In this case, the variable size block Jacobi preconditioner does not provide a significant gain as 

expected. It was hypothesized that by using a preconditioner that takes into account the natural 

block structure, the number of iterations required could be lowered. However, it can be seen that 

the number of iterations required for the variable size block Jacobi preconditioner in this case 

( which is 80 for GMRES) is even slightly more than the corresponding fixed size block Jacobi 

preconditioner (block size of 1200 requires 77 iterations). 
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Moreover, although there is only a one time effort to construct the variable size block Jacobi 

preconditioner, the main diagonal blocks are usually large, hence, the time taken to apply the 

preconditioner at every time step is also high. On the other hand, although there is a need to 

construct the fixed size block Jacobi preconditioner at every iteration, the preconditioner that 

performs best in this case has a small block size. This means that the construction and application 

of the fixed size preconditioner is relatively cheap.   

Table 6 shows a comparison in the time taken to solve the system with a fixed or variable size 

block Jacobi preconditioner for different number of time steps required. In the case of GMRES, 

only when the time steps required exceed 1000, then there will be about 1-2% gain in time. In the 

case of IDR(s), since the solve time for variable size block Jacobi preconditioner is already more 

than the total time required for the fixed size block Jacobi preconditioner, it can be seen that the 

fixed size block Jacobi preconditioner performs better. 

To sum up, for this example, the use of variable size block Jacobi preconditioner does not show a 

significant gain. Since it was shown that the number of iterations did not reduce by exploiting the 

natural block structure, the benefit of a variable size block Jacobi preconditioner is limited.  
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Matrix 
Blocksize for 

block Jacobi 

GMRES IDR(30) 

Wall clock time (s) 

#iter Rel error 

Wall clock time (s) 

#iter Rel error Prec 

const 

Prec 

apply 
Matvec Solve Total 

Prec 

const 

Prec 

apply 
Matvec Solve Total 

Passcal 
500 0.08 0.08 0.54 0.64 0.72 91 3.54E-07 0.08 0.088 0.57 0.69 0.76 96 5.19E-07 

1600, 1600, 1200 1.54 0.21 0.47 0.71 2.25 80 4.66E-07 1.54 0.24 0.54 0.81 2.35 88 2.35E-06 

Table 5 Results for variable size block Jacobi preconditioner compared with fixed size block Jacobi preconditioner. The highlighted values are used in Table 6. 

 

 GMRES IDR(30) 

Total number of 

time steps 

Time with fixed 

sized block Jacobi 

preconditioner (s) 

Time with variable 

sized block Jacobi 

preconditioner (s) 

Time with fixed 

sized block Jacobi 

preconditioner (s) 

Time with variable 

sized block Jacobi 

preconditioner (s) 

100 71.8 72.24 76.4 82.24 

1000 718 708.54 764 808.54 

10000 7180 7071.54 7640 8071.54 

Table 6 Performance of fixed and variable block Jacobi blocks for different time steps
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5 PART 3: HIERARCHICAL METHOD TO SPEED UP MATRIX-

VECTOR MULTIPLICATION 

In the literature review [2], the theory of Fast Multipole Method was presented. The Fast Multipole 

Method (FMM) is introduced by Rokhlin and Greengard in 1980s [5]. It has the benefit of allowing 

matvec operations to be performed in 𝑂(𝑁) complexity, where 𝑁 is the size of the system matrix. 

However, it requires kernel and domain information to build up the low rank approximation via 

series expansion. 

In 1999, Hackbush introduced the hierarchical matrices (H-matrices) [6]. Here, it is assumed that 

the system matrix is given. The matrix is then split hierarchically, and each block is approximated 

by a low rank approximation. This structure allows the method to be implemented as a black box, 

without knowing any domain or kernel information. This makes it simpler to implement. In general, 

the use of H-matrices brings the complexity of matrix-vector multiplication down to 𝑂(𝑁𝑙𝑜𝑔𝑁) 

[7]. Because of the possibility to implement this method as a black box, this project choose to 

focus on the H-matrices instead of FMM. 

With the construction of H-matrix, each dense matvec performed by the solver can be replaced 

with a hierarchical matvec. This is desired, since the dense matvec is the most time consuming 

operation in the solver, with complexity 𝑂(𝑁2).  

The following subsections discuss first the theory of hierarchical method. The implementation 

details of the hierarchical matrix in Fortran and its integration in the solver are presented next. The 

results are then presented and the strategy is evaluated.  

5.1 THEORY 

This section addresses the theory behind constructing a hierarchical form of a matrix, and how it 

can be used to reduce the complexity of matvec operation from 𝑂(𝑁2)  to 𝑂(𝑁𝑙𝑜𝑔𝑁) . The 

construction of a H-matrix includes the hierarchical splitting of a matrix 𝐴  into blocks, 

determination of whether each block is low rank, and then obtaining the low rank approximation 

if they exist.  
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5.1.1 Hierarchical Splitting of a Matrix A 

The process of hierarchically partitioning A into blocks is illustrated in Figure 6. 

At level 𝑙 = 0, 𝐴 is not partitioned. At level 𝑙 = 1, A is partition into 4 blocks. At 𝑙 = 2, 𝐴 is 

partition into 16 blocks and so on until 𝑙 = 𝑙𝑒𝑣𝑒𝑙𝑠, when each block is deemed to be small enough. 

Each matrix block obtained from level 𝑙 is represented by the symbol 𝑀𝜎,𝜏(𝑙), where 𝜎, 𝜏 are the 

local row and column block numbers of level 𝑙, and 𝜎, 𝜏 ∈ {0,1, … , 2𝑙}. Each block has row and 

column size indicated by 𝑠𝑖𝑧𝑒𝜎 and 𝑠𝑖𝑧𝑒𝜏. 

 

Figure 6 Hierarchical Partitioning of Matrix A 

5.1.2 Low Rank Approximation 

With A split hierarchically, the next step is to determine if each block is of low rank. There are 

different ways to decide if a block is low rank, and if so, construct the low rank approximation of 

the block. Two methods are studied here: the Lanzcos Bidiagonalization method and the Adaptive 

Cross Approximation (ACA) method.  

A block is of low rank if the matrix block can approximated as shown in Equation 1 or Equation 

2.  

𝑀𝜎,𝜏(𝑙) ≈ �̃�𝜎,𝜏(𝑙) = 𝑈𝜎,𝜏𝐵𝜎,𝜏𝑉𝜎,𝜏
𝑇  

Equation 1 
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𝑀𝜎,𝜏(𝑙) ≈ �̃�𝜎,𝜏(𝑙) = ∑ 𝑢𝑘𝑣𝑘
𝑇

𝑝

𝑘=1

= 𝑈𝜎,𝜏𝑉𝜎,𝜏
𝑇  

Equation 2 

Where 𝑈𝜎,𝜏 ∈  ℂ𝑠𝑖𝑧𝑒𝜎×𝑝 , 𝑉𝜎,𝜏 ∈  ℂ𝑠𝑖𝑧𝑒𝜏×𝑝 , 𝐵𝜎,𝜏 ∈ ℂ𝑝×𝑝 , 𝑢𝑘 ∈ ℂ𝑠𝑖𝑧𝑒𝜎×1, 𝑣𝑘 ∈ ℂ𝑠𝑖𝑧𝑒𝜏×1 , and 𝑝 ≪

𝑠𝑖𝑧𝑒𝜎 𝑜𝑟 𝑠𝑖𝑧𝑒𝜏. 

If the blocks can be approximated by Equation 1 or Equation 2, it can be said that the rank of each 

block is approximately 𝑝. Lanzcos Bidiagonalization approximates a block with Equation 1, while 

ACA uses Equation 2. The two methods are discussed further in the following subsections. 

5.1.2.1 Lanzcos bidiagonalization 

A quick summary of the Lanzcos Bidiagonalization method is first given. Consider the reduction 

of 𝐴 ∈ ℂ𝑚𝑥𝑛 into bidiagonal form [8]: 

𝐴 [𝑣1 |… | 𝑣𝑛] = [𝑢1 |… | 𝑢𝑚] 

[
 
 
 
𝛼1 𝛽1

𝛼2 ⋱
⋱ 𝛽𝑛−1

𝛼𝑛 ]
 
 
 
 

Equation 3 

Let 𝑈 = [𝑢1 |… | 𝑢𝑚]  and 𝑉 = [𝑣1 |… | 𝑣𝑛] . 𝑈  and 𝑉  are required to be orthogonal 

matrices. Also, let 𝐵  be the bidiagonal matrix 

[
 
 
 
𝛼1 𝛽1

𝛼2 ⋱
⋱ 𝛽𝑛−1

𝛼𝑛 ]
 
 
 
. Thus, Equation 3 can be 

written as 𝐴𝑉 = 𝑈𝐵.  

For the kth column, the following can be written 

𝛼𝑘𝑢𝑘 = 𝐴𝑣𝑘 − 𝛽𝑘−1𝑢𝑘−1 

Equation 4 

Since 𝐴𝑉 = 𝑈𝐵, then 𝐴𝐻𝑈 = 𝑉𝐵𝐻 must be also true. This provides us with another formula for 

the kth column: 
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𝛽𝑘𝑣𝑘+1 = 𝐴𝐻𝑢𝑘 − 𝛼𝑘𝑣𝑘 

Equation 5 

Thus, if any unit vector 𝑣1  is specified and assume 𝛽0 is 0, then Equations 4 and 5 form the 

recurrence relation required to obtain 𝑢𝑘 and 𝑣𝑘+1 at every step k.  The two scalers 𝛼𝑘 and 𝛽𝑘 are 

chosen to normalize 𝑢𝑘 and 𝑣𝑘+1. This algorithm is described in many literature, for example [8]. 

The algorithm is modified such that the decomposition is terminated after 𝑝 steps. Hence, the 

dimensions of the decomposed matrix block are: 

𝑈 ∈ ℂ𝑚𝑥𝑝, 𝑉 ∈  ℂ𝑛𝑥𝑝, 𝐵 ∈  ℂ𝑝𝑥𝑝 

Again, let each matrix block in the hierarchical division of 𝐴 be 𝑀𝜎,𝜏(𝑙). Applying the Lanzcos 

Bidiagonalization algorithm to 𝑀𝜎,𝜏(𝑙) gives us an approximation �̃�𝜎,𝜏(𝑙) = 𝑈𝐵𝑉𝐻 (Note that the 

subscripts 𝜎, 𝜏 on 𝑈, 𝑉 and 𝐵 are dropped to avoid cluttering). To check if 𝑀𝜎,𝜏(𝑙) is admissible, 

the pth diagonal element from 𝐵, 𝐵(𝑝, 𝑝), is checked to see if it has decreased below a tolerance, 

𝑡𝑜𝑙_ℎ𝑖𝑒. The rationale for this is described in [2].  

5.1.2.2 Adaptive Cross Approximation (ACA) 

Bebendorf introduced the ACA method in 2000 [9]. Like the Lanzcos Bidiagonalization method, 

it seeks to find an approximation to blocks that are of low rank. While Lanzcos Bidiagonalization 

approximates the low rank blocks with Equation 1, ACA approximates the low rank blocks using 

the outer products as described in Equation 2 [9]. In this section, the main equations governing the 

ACA algorithm is first introduced. The formulation of the admissibility criterion is next presented. 

Lastly, a discussion on the different ways to choose the rows and columns required during the 

algorithm is discussed. 

The theory behind ACA described here is referenced mainly from [7] and [9]. 

5.1.2.2.1 Main equations 

The ACA works by first separating the matrix block 𝑀, into an approximation matrix 𝑆, and a 

residual matrix 𝑅. 

𝑀 = 𝑅 + 𝑆 
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Initially, 𝑅0 = 𝑀 and 𝑆0 = 0. At each iteration, a row 𝑖𝑘 and a column 𝑗𝑘 are chosen. It is assumed 

for now that these choices are known. Let 𝑒𝑖,𝑠𝑖𝑧𝑒𝜎
 represents the 𝑖𝑡ℎ column of the identity matrix 

𝐼𝑠𝑖𝑧𝑒𝜎𝑥𝑠𝑖𝑧𝑒𝜎. At each step of the iteration, 𝑅 and 𝑆 is computed based on the recursive relation: 

𝛾𝑘+1 = (𝑒𝑖𝑘+1,𝑠𝑖𝑧𝑒𝜎

𝑇  𝑅𝑘 𝑒𝑗𝑘+1,𝑠𝑖𝑧𝑒𝜏
)
−1

=
1

𝑅𝑘(𝑖𝑘+1, 𝑗𝑘+1)
 

𝑅𝑘+1 = 𝑅𝑘 − 𝛾𝑘+1𝑅𝑘𝑒𝑗𝑘+1,𝑠𝑖𝑧𝑒𝜏
𝑒𝑖𝑘+1,𝑠𝑖𝑧𝑒𝜎

𝑇 𝑅𝑘 

𝑆𝑘+1 = 𝑆𝑘 + 𝛾𝑘+1𝑅𝑘𝑒𝑗𝑘+1,𝑠𝑖𝑧𝑒𝜏
𝑒𝑖𝑘+1,,𝑠𝑖𝑧𝑒𝜎

𝑇 𝑅𝑘 

Equations 6 [9] 

It can be observe that  𝑅𝑘𝑒𝑗𝑘+1,𝑠𝑖𝑧𝑒𝜏
 just represents the 𝑗𝑘+1  column of 𝑅𝑘 , and 𝑒𝑖𝑘+1,𝑠𝑖𝑧𝑒𝜎

𝑇 𝑅𝑘 

represents the 𝑖𝑘+1 row of 𝑅𝑘. Let: 

𝑢𝑘 = 𝑅𝑘−1𝑒𝑗𝑘
 

𝑣𝑘 = 𝛾𝑘𝑒𝑖𝑘
𝑇 𝑅𝑘−1 

Equations 7 

where 𝑢𝑘 and 𝑣𝑘 are the same as in Equation 2. The relation between Equations 7 and Equation 2 

can be seen by considering the set of Equations 6, which now can be written as: 

𝛾𝑘+1 =
1

𝑅𝑘(𝑖𝑘+1, 𝑗𝑘+1)
 

𝑅𝑘+1 = 𝑅𝑘 − 𝑢𝑘+1𝑣𝑘+1 

𝑆𝑘+1 = 𝑆𝑘 + 𝑢𝑘+1𝑣𝑘+1 

Equations 8 

Since 𝑆0 = 0 , we see that the equation for 𝑆𝑘+1  in Equations 8 corresponds to Equation 2. 

Equations 7 and 8 together form the basis of the ACA algorithm.  

For an efficient implementation, 𝑆 and 𝑅 matrices should not be explicitly built. This is because 

the building of these matrices require outer products, which is expensive (𝑂(𝑁2)). Instead, 

throughout the algorithm, only 𝑢𝑘 and 𝑣𝑘 are considered, and the entire matrices of 𝑅 and 𝑆 are 

not needed .  The column vector 𝑢𝑘  is basically the 𝑗𝑘  column of 𝑅𝑘−1.  Consequently, only 
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information regarding the 𝑗𝑘  column of 𝑅𝑘−1  needs to be known. Similarly, only information 

regarding the 𝑖𝑘 row of 𝑅𝑘−1 is required to compute 𝑣𝑘. With this in mind, we can reformulate the 

set of equations as: 

𝑢𝑘 = 𝑅𝑘−1(: , 𝑗𝑘) = 𝑀 − ∑ 𝑣𝑖(𝑗𝑘)

𝑘−1

𝑖=1

∗ 𝑢𝑖 

𝛾𝑘 =
1

𝑅𝑘−1(𝑖𝑘, 𝑗𝑘)
 

𝑣𝑘 = 𝛾𝑘𝑅𝑘−1(𝑖𝑘, : ) = 𝛾𝑘 (𝑀 − ∑ 𝑢𝑖(𝑖𝑘) ∗ 𝑣𝑖

𝑘−1

𝑖=1

) 

Equation 9 [9] 

5.1.2.2.2 Admissibility criterion 

What is still lacking is an admissibility criterion to determine if the approximation 𝑆𝑝 to 𝑀 is good 

enough. The naïve implementation of ‖𝑅𝑝‖
𝐹

≤ 𝜀‖𝑀‖𝐹 is not feasible, since this requires again 

the expensive operation of building up of the matrix 𝑅𝑝. In addition, computation of the Frobenius 

norm of a matrix is also an 𝑂(𝑁2) operation. Instead, ‖𝑢𝑝𝑣𝑝‖
𝐹

 provides a good approximation to 

‖𝑅𝑝‖
𝐹
 [9]. The outer product 𝑢𝑝𝑣𝑝 can be avoided by using the following identity: 

‖𝑢𝑝𝑣𝑝‖
𝐹

= ‖𝑢𝑝‖
2
‖𝑣𝑝‖

2
 

‖𝑀‖𝐹 can be approximated by ‖𝑆𝑝‖
𝐹
,  which can also be computed without explicitly constructing 

the outer product using the recurrence relation [7]: 

‖𝑆𝑘+1‖
2
𝐹

= ‖𝑆𝑘‖
2
𝐹

+ 2 ∑|𝑢𝑖
𝑇𝑢𝑘|

𝑘−1

𝑖=1

∙ |𝑣𝑖𝑣𝑘
𝑇| + ‖𝑢𝑘‖2

2‖𝑣𝑘‖2
2 

With these, the appropriate admissibility criterion is ‖𝑢𝑝‖
2
‖𝑣𝑝‖

2
≤ 𝜖‖𝑆𝑝‖

𝐹
. 

5.1.2.2.3 Choice of rows 𝑖𝑘 and columns 𝑗𝑘 at iteration 𝑘 

The above equations were formulated based on the assumption that the choice of 𝑖𝑘  and 𝑗𝑘  is 

known at every iteration. This choice must be addressed to formulate the algorithm. One obvious 
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choice is to choose 𝑖𝑘 and 𝑗𝑘 to coincide at the most dominant element in the matrix 𝑅𝑘 at each 

step 𝑘. This is known as the Fully Pivoted ACA [10]. Choosing 𝑖𝑘 and 𝑗𝑘 this way ensures that the 

most dominant element of the matrix block is always included first in the approximation, making 

sure that the approximation is good if the block is low rank. Also, in this way, the approximation 

for ‖𝑅𝑝‖
𝐹

 is always valid and the admissibility criterion always works. However, the Fully 

Pivoted ACA requires the search for the maximum element of a matrix, which is an 𝑂(𝑁2) 

operation. This makes it too expensive for practical use. 

Instead, the Partially Pivoted ACA shows potential for practical implementations [10].  This 

algorithm works by choosing an arbitrary starting row 𝑖1. 𝑗𝑘 is then selected such that 𝑅𝑘−1(𝑖𝑘, 𝑗𝑘) 

is the largest element for the row 𝑅𝑘−1(𝑖𝑘,: ). Then the next row 𝑖𝑘+1  is selected such that 

𝑅𝑘(𝑖𝑘+1, 𝑗𝑘) is the largest element for the column 𝑅𝑘(: , 𝑗𝑘). In the Partially Pivoted ACA, it could 

happen that no pivot column or row can be chosen because 𝑅𝑘−1(𝑖𝑘, ∶) or 𝑅𝑘(: , 𝑗𝑘) has available 

elements all equal to zero. In this case, a different non-zero row or column should be selected. 

Because the Partially Pivoted ACA only needs to search through a column or a row, it has 

computational complexity 𝑂(𝑁).  

5.1.3 Matrix Vector Multiplication using the H-matrix Structure 

The use of Lanzcos Bidiagonalization or ACA allows each block to be checked if it is admissible 

or inadmissible. This test for admissibility is applied from level 𝑙 = 2 onwards. Pictorially, the 

result of this operation can look like Figure 7. Black boxes represents blocks that become 

admissible at that level, grey boxes indicates blocks that was already admissible in previous levels, 

and white boxes are blocks that are still inadmissible at that level. 
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Figure 7 The hierarchically split matrix A 

Define now 𝑀𝑙 as the matrix made up of admissible blocks at that level, 𝑀�̃� is the matrix with the 

same structure as 𝑀𝑙, but with each blocks approximated by their low rank approximation as given 

in Equation 1 or 2. 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 is the matrix made up of all the inadmissible blocks at the finest level. 

Refer to Figure 8 for an illustration of the sparsity structure of 𝑀𝑙  and 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 based on Figure 7. 

 

Figure 8 Sparsity structure of Matrix 𝑀𝑙 and 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 for a hierarchical matrix shown in Figure 7. White boxes indicates blocks 

which have elements all zeros. 

With this, an approximation for the matrix vector product 𝐴𝑥 can be written as: 

𝐴𝑥 = ∑ 𝑀𝑙𝑥

𝑙𝑒𝑣𝑒𝑙𝑠

𝑙=2

+ 𝑁𝑙𝑒𝑣𝑒𝑙𝑠𝑥 ≈ ∑ �̃�𝑙𝑥

𝑙𝑒𝑣𝑒𝑙𝑠

𝑙=2

+ 𝑁𝑙𝑒𝑣𝑒𝑙𝑠𝑥 

Consider �̃�𝑙𝑥. First partition the vector 𝑥 with respect to the column partition of �̃�𝑙, and the vector 

�̃�𝑙𝑥 with respect to the row partition of �̃�𝑙. Each partition of the vector 𝑥 is represented by 𝑥𝜏, 

and each partition of vector �̃�𝑙𝑥 by (�̃�𝑙𝑥)
𝜎

. 
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If Equation 2 is used, the vector �̃�𝑙𝑥 can be written as: 

�̃�𝑙𝑥 =  

[
 
 
 
 
 
(�̃�𝑙𝑥)

1

⋮
(�̃�𝑙𝑥)

𝜎

⋮
(�̃�𝑙𝑥)

2𝑙]
 
 
 
 
 

=

[
 
 
 
 
 
 

∑𝑈1,𝜏𝐵1,𝜏𝑉1,𝜏
𝑇

2𝑙

𝜏=1

𝑥𝜏

⋮

∑ 𝑈2𝑙,𝜏𝐵2𝑙,𝜏𝑉2𝑙,𝜏
𝑇

2𝑙

𝜏=1

𝑥𝜏
]
 
 
 
 
 
 

 

For Equation 3, the following is used instead: 

�̃�𝑙𝑥 =  

[
 
 
 
 
 
(�̃�𝑙𝑥)

1

⋮
(�̃�𝑙𝑥)

𝜎

⋮
(�̃�𝑙𝑥)

2𝑙]
 
 
 
 
 

=

[
 
 
 
 
 
 
∑𝑈1,𝜏𝑉1,𝜏

𝑇

2𝑙

𝜏=1

𝑥𝜏

⋮

∑𝑈2𝑙,𝜏𝑉2𝑙,𝜏
𝑇

2𝑙

𝜏=1

𝑥𝜏
]
 
 
 
 
 
 

 

5.2 IMPLEMENTATION DETAILS 

To implement the hierarchical method in Fortran, a data structure must first be defined to store the 

H-matrix. This is named the hierarchy_class object. With the data structure defined, subroutines 

that are required to handle the H-matrix must be formulated. Subsequently, the hierarchy_class 

object must be integrated with the current solver codes such that the dense matvec operations are 

replaced by hierarchical matvec. This section discusses all these implementations, and ends with 

some comments on the implementation issues faced.  

5.2.1 Data structure of a Hierarchical Matrix (H-matrix) 

A data structure needs to be defined to store the H-matrix. In this section, it is assumed that 

Equation 2 is used. The data structure can be adapted for Equation 1 with minor modifications. 

The data structure for the H-matrix is given in Figure 9 below.  
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type, public :: hierarchy 

 

     ! List of arrays 

     ! ----------------------------------------------  

 DATATYPE1,       allocatable, dimension(:) :: U  

 DATATYPE1,       allocatable, dimension(:) :: V  

 integer(kind=SHORT), allocatable, dimension(:) :: index_con  

 integer(kind=SHORT), allocatable, dimension(:) :: index_lvl_con 

        integer(kind=SHORT), allocatable, dimension(:) :: adm_row 

 integer(kind=SHORT), allocatable, dimension(:) :: adm_col 

 integer(kind=SHORT), allocatable, dimension(:) :: inadm_row 

 integer(kind=SHORT), allocatable, dimension(:) :: inadm_col 

 integer(kind=SHORT), allocatable, dimension(:) :: block_lvl_con  

 integer(kind=SHORT), allocatable, dimension(:) :: Ublockpos_con  

 integer(kind=SHORT), allocatable, dimension(:) :: Vblockpos_con 

  

 

     ! List of variables 

     ! ---------------------------------------------- 

     integer(kind=SHORT) :: p !rank of admissible block 

     integer(kind=SHORT) :: b !minimum block size 

 integer(kind=SHORT) :: N !size of original array 

 integer(kind=SHORT) :: levels 

 real       :: tol !tolerance of low rank approximation 

 

    end type hierarchy  

Figure 9 Data structure of H-matrix 

Some definitions need to be specified here before delving into the details. 

Firstly, the global block number is defined as the block number of a block with respect to all blocks 

at all levels, starting from level 2. The global block number starts from level 2 because the low 

rank approximation of blocks begin at level 2. Figure 10 below depicts the concept of global block 

number.   

 

Figure 10 Definition of global block number. The first block at level 3 for instance have global block number 17 
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On the other hand, the local block number is defined as the block number of the block with respect 

to the blocks at that level. For example, the local block number of the blocks at level 3 are shown 

in Figure 11 below. 

 

Figure 11 Local block number at level 3 

Next, the 1D global indices at level 𝑙 is the set of row or column indices that defines how the row 

or column is divided at that level. It can be assumed that the original matrix is square, hence, the 

row and column division is the same. Taking the example of the FATIMA_7894 matrix, the 

hierarchy division of the matrix from level 1 to 3 is shown in Figure 12. The 1D global indices for 

this matrix at 𝑙 = 2 is {1, 1975, 3948, 5922, 7895}. Note that the last element stored is purely for 

computational reasons. Similarly, at 𝑙 = 3 , the 1D global indices are 

{1, 988, 1975, 2962, 3948, 4935, 5922, 6909, 7895}. 

 

Figure 12 Hierarchical division of FATIMA_7894 from level 1 to 3 

With these defined, each element in the data structure for H-matrix, as shown in Figure 9, is 

elaborated in the subsections below. 

5.2.1.1 𝑼 and 𝑽 

The 𝑈 and 𝑉 1D arrays specified in the data structure of H-matrix are used to store the elements 

from the low rank approximation of admissible blocks. Before calling Lanzcos Bidiagonalization 
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or ACA to hierarchically split the matrix, there is no way of knowing which blocks are admissible. 

Hence, memory is be allocated for 𝑈𝜎,𝜏 and 𝑉𝜎,𝜏 for all 2𝑙 × 2𝑙 blocks at each level 𝑙. Let the finest 

recursion level be named 𝑙𝑒𝑣𝑒𝑙𝑠 . Then the size of the 1D array required for 𝑈  or 𝑉  is 

𝑁𝑝(2𝑙𝑒𝑣𝑒𝑙𝑠+1 − 4), since the total number of elements can be computed as follows: 

∑ 𝑁 × 2𝑙 × 𝑝

𝑙𝑒𝑣𝑒𝑙𝑠

𝑙=2

= 𝑁𝑝(
(1 − 2𝑙𝑒𝑣𝑒𝑙𝑠+1)

1 − 2
− 20 − 21) = 𝑁𝑝(2𝑙𝑒𝑣𝑒𝑙𝑠+1 − 4) 

The 1D arrays store the low rank approximation of each block according to the global block 

number. That is, the matrix block corresponding to global block 1 is stored first in a column major 

format, followed by the matrix block corresponding to global block 2 and so on. This is illustrated 

in Figure 13 below: 

 

Figure 13 Storage of admissible U or V matrix 

Blocks that are admissible have the respective 𝑈𝜎,𝜏 and 𝑉𝜎,𝜏 elements computed either by ACA or 

Lanzcos Bidiagonalization (in which case a third 1D array, 𝐵, is required). The resulting 𝑈𝜎,𝜏 and 

𝑉𝜎,𝜏 are then stored in their respective position in the 1D array. Blocks that are inadmissible have 

all zero elements in the 1D arrays.  

5.2.1.2 𝒂𝒅𝒎_𝒓𝒐𝒘 and 𝒂𝒅𝒎_𝒄𝒐𝒍 

It is helpful to know which blocks are admissible at each level without the need to sieve through 

the 1D arrays of 𝑈  or 𝑉  for non-zero blocks. Therefore, a data structure is required to store 
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information regarding which blocks are admissible. Two 1D arrays named 𝑎𝑑𝑚_𝑟𝑜𝑤  and 

𝑎𝑑𝑚_𝑐𝑜𝑙 are used to store this information. Each of these arrays are of size 
4𝑙𝑒𝑣𝑒𝑙𝑠+1−1

3
− 5, since 

∑ 2𝑙 × 2𝑙

𝑙𝑒𝑣𝑒𝑙𝑠

𝑙=2

=
4𝑙𝑒𝑣𝑒𝑙𝑠+1 − 1

3
− 40 − 41 =

4𝑙𝑒𝑣𝑒𝑙𝑠+1 − 1

3
− 5 

Each element of the 1D array 𝑎𝑑𝑚_𝑟𝑜𝑤 or 𝑎𝑑𝑚_𝑐𝑜𝑙 corresponds to a global block. This means 

that the first element of the 1D array corresponds to global block 1, the second corresponds to 

global block 2, and so on. If the block is admissible, the local block row or local block column 

number is stored. Else, 0 is stored. Figure 14 below shows how 𝑎𝑑𝑚_𝑟𝑜𝑤 and 𝑎𝑑𝑚_𝑐𝑜𝑙 looks like 

for the FATIMA_7894 matrix with 𝑙𝑒𝑣𝑒𝑙𝑠 = 3, 𝑝 = 50. The corresponding admissible blocks are 

depicted in Figure 15. 

adm_row 

           0           0           3           4 

           0           0           0           0 

           1           0           0           0 

           1           2           0           0 

           0           0           0           4           0           0           0           0 

           0           0           0           0           0           0           0           0 

           0           0           0           0           0           6           7           8 

           1           0           0           0           0           0           7           8 

           0           0           0           0           0           0           0           0 

           0           0           3           4           0           0           0           0 

           0           0           0           0           5           0           0           0 

           0           0           0           0           0           0           0           0 

 adm_col 

           0           0           1           1 

           0           0           0           0 

           3           0           0           0 

           4           4           0           0 

           0           0           0           1           0           0           0           0 

           0           0           0           0           0           0           0           0 

           0           0           0           0           0           3           3           3 

           4           0           0           0           0           0           4           4 

           0           0           0           0           0           0           0           0 

           0           0           6           6           0           0           0           0 

           0           0           0           0           7           0           0           0 

           0           0           0           0           0           0           0           0  

Figure 14 Example of how “adm_row” and “adm_col” looks like for FATIMA_7894 with levels = 3 , p = 50 

 

Figure 15 Corresponding admissible blocks (in orange) of the FATIMA_7894 matrix with reference to Figure 14 
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5.2.1.3 𝑼𝒃𝒍𝒐𝒄𝒌𝒑𝒐𝒔_𝒄𝒐𝒏 and 𝑽𝒃𝒍𝒐𝒄𝒌𝒑𝒐𝒔_𝒄𝒐𝒏 

As a link between the global block number and the 𝑈/𝑉 arrays, two 1D arrays are defined to store 

the index of the first element in the 𝑈/𝑉 arrays corresponding to every global block. This allows 

the easy access of the required 𝑈𝜎,𝜏 or 𝑉𝜎,𝜏 matrix blocks. These are known as 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 

and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛. For instance, global block 1 always has its first element in the U and V 

container retrieved using 𝑈(1) and 𝑉(1). Global block 2 will have its first elements retrieved using 

𝑈 (1 + ⌈
𝑁

22⌉ × 𝑝 ) and 𝑉 (1 + ⌈
𝑁

22⌉ × 𝑝). The index used to access the first element of every global 

block is stored in 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛. 

An example of how 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 look like, again using the example of 

FATIMA_7894 with 𝑙𝑒𝑣𝑒𝑙𝑠 = 3, is shown below: 

Ublockpos_con 

           1       98701      197351      296051 

      394701      493401      592051      690751 

      789401      888101      986751     1085451 

     1184101     1282801     1381451     1480151 

     1578801     1628151     1677501     1726851     1776151     1825501     1874851     1924201 

     1973501     2022851     2072201     2121551     2170851     2220201     2269551     2318901 

     2368201     2417551     2466901     2516251     2565551     2614901     2664251     2713601 

     2762901     2812251     2861601     2910951     2960251     3009601     3058951     3108301 

     3157601     3206951     3256301     3305651     3354951     3404301     3453651     3503001 

     3552301     3601651     3651001     3700351     3749651     3799001     3848351     3897701 

     3947001     3996351     4045701     4095051     4144351     4193701     4243051     4292401 

     4341701     4391051     4440401     4489751     4539051     4588401     4637751     4687101 

     4736401 

 Vblockpos_con 

           1       98701      197401      296101 

      394801      493451      592101      690751 

      789401      888101      986801     1085501 

     1184201     1282851     1381501     1480151 

     1578801     1628151     1677501     1726851     1776201     1825551     1874901     1924251 

     1973601     2022951     2072301     2121651     2171001     2220351     2269701     2319051 

     2368401     2417751     2467101     2516451     2565801     2615151     2664501     2713851 

     2763201     2812501     2861801     2911101     2960401     3009701     3059001     3108301 

     3157601     3206951     3256301     3305651     3355001     3404351     3453701     3503051 

     3552401     3601751     3651101     3700451     3749801     3799151     3848501     3897851 

     3947201     3996551     4045901     4095251     4144601     4193951     4243301     4292651 

     4342001     4391301     4440601     4489901     4539201     4588501     4637801     4687101 

     4736401  

Figure 16 Example of how “Ublockpos_con” and “Vblockpos_con” looks like for FATIMA_7894 with levels = 3  

5.2.1.4 𝒃𝒍𝒐𝒄𝒌_𝒍𝒗𝒍_𝒄𝒐𝒏 

To convert from the local block numbers to global block numbers, repeated computations 

involving powers are required. To reduce this need, an auxiliary array 𝑏𝑙𝑜𝑐𝑘_𝑙𝑣𝑙_𝑐𝑜𝑛 with size 

(𝑙𝑒𝑣𝑒𝑙𝑠 − 1) is defined. This array simply stores the global block number of the first block at every 

level from level 2 till 𝑙𝑒𝑣𝑒𝑙𝑠 . Thus, 𝑏𝑙𝑜𝑐𝑘_𝑙𝑣𝑙_𝑐𝑜𝑛  consist of elements {1, 1 + (22 × 22), 1 +

(23 × 23), … , 1 + (2𝑙𝑒𝑣𝑒𝑙𝑠−1 × 2𝑙𝑒𝑣𝑒𝑙𝑠−1)}. 
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5.2.1.5 Example to illustrate how to retrieve a block 𝑼𝝈,𝝉/𝑽𝝈,𝝉 

With these in place, it is now easy to retrieve the low rank approximation of an admissible block. 

Assume that the level 𝑙 and the local block row and column numbers 𝑖, 𝑗 are known. The global 

block number, 𝑏𝑙𝑜𝑐𝑘_𝑛𝑢𝑚𝑏𝑒𝑟, can be easily computed with the help of 𝑏𝑙𝑜𝑐𝑘_𝑙𝑣𝑙_𝑐𝑜𝑛. The 𝑈𝜎,𝜏 

and 𝑉𝜎,𝜏 matrix corresponding to this block can be retrieved from the 1D arrays 𝑈 and 𝑉 with the 

help of 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛. The code fragment below illustrates how 𝑈𝜎,𝜏 and 

𝑉𝜎,𝜏 corresponding to a block defined by 𝑙, 𝑖 𝑎𝑛𝑑 𝑗 can be retrieved and called in a function:  

 !Read out the global block number of the first block of this level 

 ! ---------------------------------------------- 

 start_block_lvl = this%block_lvl_con(level-1) 

 

 !Compute the global block number 

 ! ---------------------------------------------- 

 block_number = start_block_lvl + i + (j-1)*2**l-1 

 

 !Retrieve the start and end position of 𝑈𝜎 ,𝜏 and 𝑉𝜎 ,𝜏  

 ! ---------------------------------------------- 

 start_U_block = this%Ublockpos_con(block_number) 

 end_U_block = this%Ublockpos_con(block_number+1)-1 

 

 start_V_block = this%Vblockpos_con(block_number) 

 end_V_block = this%Vblockpos_con(block_number+1)-1 

 

 !Do work with this admissible block 

 ! ---------------------------------------------- 

call sample_function(this%U(start_U_block:end_U_block), & 

   this%V(start_V_block:end_V_block),…) 
 

Figure 17 Code fragment depicting how to retrieve 𝑈𝜎,𝜏 and 𝑉𝜎,𝜏  for a particular block 

5.2.1.6 𝒊𝒏𝒂𝒅𝒎_𝒓𝒐𝒘 and 𝒊𝒏𝒂𝒅𝒎_𝒄𝒐𝒍 

Notice that the data structure of the H-matrix does not include an array for the inadmissible matrix 

𝑁𝑙𝑒𝑣𝑒𝑙𝑠 (Refer to Figure 9). This is because the full matrix 𝐴 is already stored, and the matrix 

elements in 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 can be extracted from 𝐴. For this purpose, two 1D arrays named 𝑖𝑛𝑎𝑑𝑚_𝑟𝑜𝑤 

and 𝑖𝑛𝑎𝑑𝑚_𝑐𝑜𝑙  are created. In this case, the two arrays are of size 2𝑙𝑒𝑣𝑒𝑙𝑠 × 2𝑙𝑒𝑣𝑒𝑙𝑠 , since 

inadmissible blocks only occur at the finest recursion level. Each element of the array corresponds 

to a local block at 𝑙 = 𝑙𝑒𝑣𝑒𝑙𝑠. If the block is inadmissible, the block row number and column 

number are stored. Else, 0 is stored. Refer to Figure 18 for an example of how these arrays look 

like.  
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inadm_row 

           1           2           3           0           0           0           0           0 

           1           2           3           4           0           0           0           0 

           1           2           3           4           5           0           0           0 

           0           2           3           4           5           6           0           0 

           0           0           3           4           5           6           7           8 

           0           0           0           0           5           6           7           8 

           0           0           0           0           0           6           7           8 

           0           0           0           0           5           6           7           8 

 inadm_col 

           1           1           1           0           0           0           0           0 

           2           2           2           2           0           0           0           0 

           3           3           3           3           3           0           0           0 

           0           4           4           4           4           4           0           0 

           0           0           5           5           5           5           5           5 

           0           0           0           0           6           6           6           6 

           0           0           0           0           0           7           7           7 

           0           0           0           0           8           8           8           8  

 

Figure 18 Example of how “inadm_row” and “inadm_col” looks like for FATIMA_7894 with levels = 3 , p = 50 

5.2.1.7 𝒊𝒏𝒅𝒆𝒙_𝒄𝒐𝒏 

For the easy retrieval of inadmissible matrix blocks, 1D global indices can be used to specify the 

exact indices in the system matrix 𝐴 corresponding to an inadmissible block. An auxiliary 1D array 

is defined to store the 1D global indices at every level from level 1 till 𝑙𝑒𝑣𝑒𝑙𝑠. This is named 

𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑛, with size 𝑙𝑒𝑣𝑒𝑙𝑠 + 2𝑙𝑒𝑣𝑒𝑙𝑠+1 − 2, since 

∑ 2𝑙 + 1 = 𝑙𝑒𝑣𝑒𝑙𝑠 + 2𝑙𝑒𝑣𝑒𝑙𝑠+1 − 2

𝑙𝑒𝑣𝑒𝑙𝑠

𝑙=1

 

As an illustration, the 𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑛 array for the FATIMA_7894 matrix, with 𝑙𝑒𝑣𝑒𝑙𝑠 = 3, looks 

like: 

index_con 

           1        3948        7895 

           1        1975        3948        5922        7895 

           1         988        1975        2962        3948        4935        5922        6909        7895  
Figure 19 Example of how “index_con” looks like for FATIMA_7894 with levels = 3  

Thus, given an inadmissible block at 𝑙 = 3, with 𝑖, 𝑗 = 2,2, the indices of this block in the system 

matrix 𝐴 starts from (988,988). 

5.2.1.8 𝒊𝒏𝒅𝒆𝒙_𝒍𝒗𝒍_𝒄𝒐𝒏 

To reduce the need to compute powers repeatedly, another auxiliary array of size 𝑙𝑒𝑣𝑒𝑙𝑠 will be 

used to store the start position in the 𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑛 array of the first block of every level. This array 

is called 𝑖𝑛𝑑𝑒𝑥_𝑙𝑣𝑙_𝑐𝑜𝑛 . Its elements will simply be {1, 1 + (21 + 1), 1 + (22 + 1),… , 1 +

(2𝑙𝑒𝑣𝑒𝑙𝑠−1 + 1)}.  
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5.2.1.9 Example to illustrate how to retrieve an inadmissible block in 𝑵𝒍𝒆𝒗𝒆𝒍𝒔 

Assume that the local block row 𝑖, local block column 𝑗, and the level 𝑙 are known. Two steps are 

required to retrieve an inadmissible block. First, a 1D array is used to store the 1D global indices 

at level 𝑙. Then, the global indices corresponding to this block can be found by simply reading out 

the respective elements in this 1D array. With the range of indices corresponding to this block 

known, the relevant block from the matrix 𝐴 can be extracted to perform work. The code fragment 

below illustrates how this can be done. 

 !Read out the global indices of all blocks at this level 

index_global = this%index_con(this%index_lvl_con(l): 

this%index_lvl_con(l+1)-1) 

 !Read out the global index of this block 

 i_start_global = index_global(block_start_i) 

 i_end_global = index_global(block_start_i+1)-1 

 j_start_global = index_global(block_start_j) 

 j_end_global = index_global(block_start_j+1)-1 

 !Do work with this inadmissible block 

 ! ---------------------------------------------- 

call sample_function(A(i_start_local:i_end_local, 

j_start_local:j_end_local),…) 
 

Figure 20 Code fragment depicting how to retrieve an inadmissible block 

5.2.1.10 Other variables 

Apart from the 1D arrays defined, some constants need to be defined:  

      p: rank of admissible block 

      b: minimum block size 

  N: size of matrix A 

  levels: Depth of recursion 

  tol: tolerance we set to determine if a block is admissible or not in ACA 

5.2.2 Subroutines 

The subroutines required to handle H-matrix include: 

 Hierarchy_construct: to allocate memory and initialize the hierarchy_class object 

 Hierarchy_destruct: to clean up memory 

 Hierarchy_split: to split a matrix hierarchically and store the relevant information in the 

H-matrix 

 ACA: contains the ACA algorithm.Called within hierarchy_split to check if a block is 

admissible and return 𝑈𝜎,𝜏 and 𝑉𝜎,𝜏 
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 Lanzcos_bidiag: contains the Lanzcos Bidiagonalization algorithm. Called within 

hierarchy_split to check if a block is admissible and return 𝑈𝜎,𝜏 and 𝑉𝜎,𝜏 

 Hie_matvec_A: performs hierarchical matvec   

The implementation details for the subroutines for hierarchy_split, ACA, lanzcos_bidiag and 

hie_matvec_A are elaborated in this section. 

5.2.2.1 Hierarchy_split 

The hierarchy_split subroutine is a recursive subroutine that takes the following argument as input: 

 The matrix block to be split hierarchically: 𝑀(: , : ) 

 The level at which 𝑀 is at: 𝑙𝑒𝑣𝑒𝑙 

 The current row and column block number of 𝑀: 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗 

It returns a hierarchy_class object as output.  

The pseudo-code for hierarchy_split subroutine is given below: 

1) Compute the 4 block row and column numbers corresponding to the 4 sub-blocks of 

M at the next level. This can be obtained easily from 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖 and 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗 
as depicted in the figure below. 

 

2) If 𝑙 = 0 
a) Do for blocks 1 to 4 

i) Recursively call hierarchy_split 

3) Else 

a) Do for blocks 1 to 4 

i) Call ACA or Lanzcos_Bidiag to determine if block is admissible 

(1) If admissible, store 𝑈𝜎 ,𝜏  and 𝑉𝜎 ,𝜏  in the 1D array 𝑈 and 𝑉 and update 

𝑎𝑑𝑚_𝑟𝑜𝑤 and 𝑎𝑑𝑚_𝑐𝑜𝑙 
(2) Else 

(a) If 𝑙 =finest recursion level, update 𝑖𝑛𝑎𝑑𝑚_𝑟𝑜𝑤 and 𝑖𝑛𝑎𝑑𝑚_𝑐𝑜𝑙 
(b) Else, recursively call hierarchy_split 

 

Algorithm 1 Hierarchy_split 
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5.2.2.2 ACA 

The input to subroutine ACA consist of: 

 The matrix block in which ACA is called: 𝑀(: , : ) 

 The rank of each low rank approximated block: 𝑝 

 The row and column size of the matrix block 𝑀: 𝑠𝑖𝑧𝑒_𝑈_𝑟𝑜𝑤 and 𝑠𝑖𝑧𝑒_𝑉_𝑟𝑜𝑤 

 The tolerance below which the block is deemed admissible: 𝑡𝑜𝑙 

The output of the subroutine consist of: 

 A flag which is 0 if the block is inadmissible, and 1 if admissible: 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 

 The matrix 𝑈𝜎,𝜏 and 𝑉𝜎,𝜏: 𝑈(: ), 𝑉(: ) 

The pseudo-code for ACA routine is given below, extracted from [11]: 

 

Algorithm 2 Pseudo-code for ACA [11] 
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5.2.2.3 Lanzcos_Bidiag 

The input and output arguments for the Lanzcos_Bidiag routine is the same as ACA. The pseudo-

code is given below, adapted from [8]. 

 

Algorithm 3 Lanzcos_Bidiag [8] 

The only changes made to the pseudo-code to adapt to this application is the loop-stopping criteria. 

The loop is stopped when 𝑘 > 𝑝 or 𝛽𝑘 < 𝑡𝑜𝑙. 

5.2.2.4 Hie_matvec_A 

This is a recursive subroutine. The input to this subroutine are: 

 A hierarchy_type object that contains the hierarchical form of A: ℎ𝑖𝑒 

 The original system matrix: 𝐴(: , : ) 

 The bock row and block column number at which the multiplication is currently carried 

out: 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖 and 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗 

 A flag to indicate if the current block is admissible: 𝑎𝑑𝑚_𝐴 

 The current level: 𝑙 

 The vector to be multiplied: 𝑀_𝑖𝑛(: ) 

The output to this subroutine is the result of the matrix-vector multiplication 𝑀_𝑜𝑢𝑡(: ). 

To illustrate how this algorithm works, consider a block of the hierarchical form of A that is not 

at its finest level, and is not admissible. In this case, matrix vector multiplication can be performed 

using the following equation: 
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𝑀_𝑜𝑢𝑡 = [
𝑀_𝑜𝑢𝑡1
𝑀_𝑜𝑢𝑡2

] = [
𝐴11 𝐴12

𝐴21 𝐴22
] [

𝑀_𝑖𝑛1

𝑀_𝑖𝑛2
] = [

𝐴11𝑀_𝑖𝑛1 + 𝐴12𝑀_𝑖𝑛2

𝐴21𝑀_𝑖𝑛1 + 𝐴22𝑀_𝑖𝑛2
] 

Equation 10 Hierarchical matrix vector multiplication 

With Equation 10, one can construct the algorithm. If 𝐴𝑖𝑗  is a block at the finest level, the 

individual matrix-vector multiplication can be carried out in either of the following ways: 

1. If 𝐴𝑖𝑗  is admissible, then its low rank approximation is to be used for the matrix-vector 

multiplication. 𝐴𝑖𝑗  𝑀_𝑖𝑛𝑗 = 𝑈𝑖𝑗𝑉𝑖𝑗
𝑇 𝑀_𝑖𝑛𝑗 . This is known as low rank matrix-vector 

multiplication 

2. Otherwise, dense matrix vector multiplication is carried out instead. 

Thus we have the following pseudo-code for hie_matvec_A: 

1) If 𝑙 = finest recursion level 

a) If 𝑎𝑑𝑚_𝐴 is inadmissible (0) 
i) Dense matrix-vector multiplication is carried out 

b) Else 

i) Low rank matrix-vector multiplication is carried out 

2) Else 

i) If 𝑎𝑑𝑚_𝐴 is admissible (1) 
(1) low rank matrix-vector multiplication is carried out 

ii) Else 

(1) The block is split into 4 sub-blocks. The subroutine hie_matvec_A is 

recursively called on each sub-blocks, with the results compiled 

according to Equation 10.  

 

Algorithm 4 Pseudo-code for hie_matvec_A 

5.2.3 Adapting the solver to use hie_matvec_A instead of dense matvec 

Both GMRES and IDR(s) solver calls one dense matvec per iteration. Hence, one just have to 

replace this matvec subroutine with hie_matvec_A in the solver routine. To do this, the data 

structure of the solver_class object is edited to include a hierarchy_class object. Before calling the 

solver, the hierarchy_class object is constructed and updated to contain the hierarchical form of 

the matrix.  

5.2.4 Implementation issues and fixes 

5.2.4.1 Skipping ACA or Lanzcos_Bidiag for blocks next to the main diagonal 

It can be inferred from the theory of BEM [2] and verified from experience that the blocks near 

the main diagonal is not admissible. As such, instead of calling the ACA or Lanzcos_Bidiag 
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routine for these blocks, it is cheaper to just assume the blocks are inadmissible. This is done in 

the hierarchy_split routine as shown in the code fragment below: 

 

  !if block near main diagonal, skip ACA check 

  if ( ABS(block_no_row(i) - block_no_col(j)) <= 1) then  

      admissible =0 

  else  

      call ACA(M(i_start_local:i_end_local, j_start_local:j_end_local), & 

          this%p, & 

          this%U(start_U_block:end_U_block), & 

          this%V(start_V_block:end_V_block), & 

          i_end_global - i_start_global+1, & 

          j_end_global - j_start_global+1, & 

          this%tol,& 

          admissible) 

     

  end if  

Figure 21 Code fragment from hierarchy_split showing how the blocks next to the main diagonal are skipped 

5.2.4.2 Issues in ACA sub-routine 

Although the computational complexity of the partially pivoted ACA is much needed, it proves to 

have an issue with the admissibility criterion for certain matrices. Specifically, the approximation 

of ‖𝑅𝑝‖
𝐹
 with ‖𝑢𝑝𝑣𝑝‖

𝐹
. In our case, the Steadycav matrices and the Passcal matrix proves to be 

problematic with partially pivoted ACA.  

Focusing first on the Steadycav matrices, all of these matrices have blocks whose sparsity structure 

is shown in Figure 22. White region indicates zero elements. It can be seen that the last few 

columns of this matrix are completely filled with zeros, with the exception of four elements. These 

four elements have values that are order of magnitudes larger than the rest of the matrix elements. 

Imagine now that the ACA subroutine is applied to one such matrix. 

 

Figure 22 Sample matrix block from Steadycav1 matrix and an example of the selection of pivot columns and rows 



Ang Yun Mei Elisa Master Thesis Report 40 

A sample of how the first three pivot columns and rows can be selected is shown in yellow in the 

above figure. There is a high chance that the dominant elements will not be selected, and the 

admissibility criterion could be fulfilled, when in actual fact ‖𝑅𝑝‖
𝐹

> 𝜀‖𝑀‖𝐹.  

To correct this, the Partially Pivoted ACA can be supplemented with an admissibility criterion 

based on the Completely Pivoted ACA. This will ensure that no blocks that are not admissible are 

wrongly classified as admissible. As this incur additional cost, it is only implemented for the 

Steadycav matrices.  

Next, for the Passcal matrices, the sparsity structure for a block from the matrix can be as shown: 

 

Figure 23 Sample matrix block from Passcal matrix 

The entire matrix is almost zero, except for the element at the top right corner. In this case, partial 

pivoted ACA will fail because the algorithm as it is cannot detect that the entire matrix is almost 

zero, and division by zero will occur. To prevent this, the algorithm is updated so that it breaks out 

of the function whenever it detects that there are no more non-zero pivot elements to choose from.  

5.3 RESULTS 

In this section, the results for the hierarchical method are presented. First, the performance of 

Lanzcos Bidiagonalization and ACA are discussed. Next, the performance of the solver with 

hierarchical matvec is compared against the solver with dense matvec. This section then concludes 

with an assessment of this strategy.   
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5.3.1 Lanzcos Bidiagonalization versus ACA 

Hierarchical splitting was performed using first Lanzcos Bidiagonalization, then ACA, for 

different levels of recursion 𝑙𝑒𝑣𝑒𝑙𝑠 (defined by minimum block size allowed 𝑏) and rank of low 

rank approximation 𝑝. The results are tabulated in Table 7-10. The results for all the Steadycav 

matrices are similar, and therefore only the results for Steadycav 1 are shown. 

The explanation of what each column in Table 7-10 represents are given below: 

 Time for normal matvec: time for dense matrix-vector multiplication 

 Time split: time taken to hierarchically split the matrix 

 Time for hie_matvec_A:  time for hierarchical matrix-vector multiplication 

 ‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖: 2-norm of the error defined by the result of the hierarchical matvec 

based on the result from dense matvec 

 Number of matvec to break even: The number of matvec operations required to start 

gaining from the reduced time taken to do hierarchical matrix-vector multiplication. When 

the time taken for hierarchical matvec is more than or equal to that for dense matrix-vector 

multiplication, this is marked with “NA”. 

Looking at Table 8, 9 and 10, which depicts the result for Passcal, FATIMA_7894 and 

FATIMA_20493 respectively, it can be seen that ACA is the clear winner. The time required to 

perform hierarchical splitting by Lanzcos Bidiagonalization is simply too high. This can be seen 

also in Figure 24 below, which plots the time required to split using Lanzcos and ACA. An average 

of about 200 matvec operation is required to break even for Lanzcos Bidiagonalization, but for the 

ACA, the average is at about 30.  

 

Figure 24 Comparison between Lanzcos Bidiagonalization an ACA on the time required to do hierarchical splitting 
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The graph in Figure 25 below compares the time required to do hierarchical matvec based on 

Lanzcos Bidiagonalization, ACA with an admissibility criterion based on complete pivoting and 

ACA (without complete pivoting in the admissibility criterion). It is clear that all three methods 

reduce the matvec time significantly as compared to the dense matvec operation. ACA has the 

lowest time required out of the three methods. This is because ACA is generally more relaxed in 

its admissibility criterion, and more blocks are deemed as admissible. Lanzcos Bidiagonalization 

comes in second, and ACA with one complete pivoting has the worst performance out of the three. 

This is expected, since ACA with an admissibility criterion based on complete pivoting causes less 

blocks to be admissible, and the time to do hierarchical matvec therefore increases.  

 

Figure 25 Comparison between Lanzcos Bidiagonalization an ACA on the time required to do hierarchical matvec 

Referring to Table 7 for Steadycav1, it can be observed that ACA with one last iteration of 

complete pivoting does not work very well. Because of the final check with complete pivoting, too 

many blocks are inadmissible. This causes the hierarchical matvec time to be not competitive with 

the time required to do dense matrix-vector multiplication. Therefore, it can be concluded that this 

strategy is not suitable for the Steadycav type matrices. 

In conclusion, ACA is preferred over Lanzcos Bidiagonalization due to its much lower time 

required to perform hierarchical splitting. Hence, ACA is used in hierarchy_split subroutine from 

this point on. It was assessed that this strategy is not applicable for the Steadycav matrices, and 

therefore, the next section does not address this class of matrices. 
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Steadycav1 

 Lanzcos Bidiagonalization ACA with one last iteration of complete pivoting 

p b 
time for normal 

matvec 

Time_

split 

time for 

hie_matvec_A 
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖ 

Number of 

matvec to 

break even 

Time_

split 

time for 

hie_matvec_A 
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖ 

Number of 

matvec to 

break even 

10 

60 

0.024 1.47 0.028 2.28E-05 NA 0.15 0.04 6.20E-06 NA 

20 0.024 2.52 0.016 1.45E-05 316 0.43 0.036 1.60E-05 NA 

30 0.024 3.28 0.016 1.13E-05 411 0.77 0.032 3.52E-05 NA 

40 0.024 3.71 0.02 8.89E-06 928 1.23 0.032 2.46E-05 NA 

10 

100 

0.024 1.11 0.024 1.24E-05 NA 0.072 0.028 4.24E-15 NA 

20 0.024 2.07 0.016 9.62E-06 259 0.20 0.024 1.45E-06 NA 

30 0.024 2.83 0.012 9.05E-06 236 0.37 0.024 1.24E-05 NA 

40 0.024 3.14 0.016 6.85E-06 784 0.60 0.02 2.43E-05 150 

10 

200 

0.024 0.78 0.024 2.96E-06 NA 0.028 0.024 4.23E-05 NA 

20 0.024 1.51 0.02 4.60E-06 378 0.084 0.024 1.27E-05 NA 

30 0.024 2.12 0.016 6.07E-06 266 0.17 0.024 1.13E-05 NA 

40 0.024 2.57 0.016 5.26E-06 321 0.26 0.024 2.36E-05 NA 

50 0.024 2.78 0.012 5.14E-06 231 0.38 0.024 1.16E-05 NA 

Table 7 Comparison between Lanzcos Bidiagonalization and ACA (with one last iteration of complete pivoting) for Steadycav1. The lowest time or number of iterations recorded 

for each column are highlighted in green. 

Passcal 

 Lanzcos Bidiagonalization ACA 

p b 
time for normal 

matvec 

Time_

split 

time for 

hie_matvec_A 
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖ 

Number of 

matvec to 

break even 

Time_

split 

time for 

hie_matvec_A 
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖ 

Number of 

matvec to 

break even 

10 

60 

0.02 0.988 0.012 9.87E-06 124 0.096 0.016 4.65E-05 24 

20 0.02 1.408 0.012 5.12E-06 176 0.18 0.012 1.54E-05 23 

30 0.02 1.772 0.008 5.15E-06 148 0.272 0.012 4.76E-05 34 

10 

100 

0.02 0.836 0.012 7.04E-06 105 0.052 0.016 3.80E-06 13 

20 0.02 1.304 0.012 3.35E-06 163 0.108 0.012 1.30E-05 14 

30 0.02 1.724 0.012 3.98E-06 216 0.184 0.012 1.94E-05 23 

10 

200 

0.02 0.676 0.02 4.09E-06 NA 0.02 0.02 2.71E-6 NA 

20 0.02 0.964 0.016 2.65E-06 241 0.052 0.016 7.66E-6 13 

30 0.02 1.304 0.012 3.36E-06 163 0.104 0.012 7.01E-6 13 

Table 8 Comparison between Lanzcos Bidiagonalization and ACA for Passcal. The lowest time or number of iterations recorded for each column are highlighted in green. 
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FATIMA_7894 

 Lanzcos Bidiagonalization ACA 

p b 

time for 

normal 

matvec 

Time_split 
time for 

hie_matvec_A 
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖ 

Number of 

matvec to 

break even 

Time_split 
time for 

hie_matvec_A 
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖ 

Number of 

matvec to 

break even 

10 

60 

0.132 9.62 0.1 3.86E-07 301 1.05 0.12 1.23E-03 87 

20 0.132 16.75 0.092 2.22E-07 419 1.89 0.088 1.42E-03 43 

30 0.132 23.29 0.096 1.99E-07 647 3.06 0.084 1.24E-03 64 

40 0.132 29.94 0.108 1.93E-07 1248 4.40 0.088 2.39E-05 100 

10 

100 

0.132 8.16 0.104 3.65E-07 291 0.56 0.108 1.20E-03 23 

20 0.132 14.52 0.084 2.06E-07 303 1.04 0.076 1.42E-03 19 

30 0.132 20.42 0.08 1.92E-07 393 1.70 0.076 1.24E-03 30 

40 0.132 26.51 0.084 1.84E-07 552 2.46 0.072 2.39E-04 41 

10 

200 

0.132 6.39 0.116 2.91E-07 400 0.30 0.124 5.25E-07 37 

20 0.132 11.36 0.092 1.50E-07 258 0.55 0.084 2.92E-04 11 

30 0.132 15.87 0.084 1.37E-07 331 0.88 0.08 3.53E-04 17 

40 0.132 20.24 0.084 1.40E-07 422 1.34 0.076 1.67E-04 24 

Table 9 Comparison between Lanzcos Bidiagonalization and ACA for Fatima_7894. The lowest time or number of iterations recorded for each column are highlighted in green. 

FATIMA_20493 

 Lanzcos Bidiagonalization ACA 

p b 

time for 

normal 

matvec 

Time_split 
time for 

hie_matvec_A 
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖ 

Number of 

matvec to 

break even 

Time_split 
time for 

hie_matvec_A 
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖ 

Number of 

matvec to 

break even 

10 70 0.932 111.68 0.30 1.19E-04 176 4.20 0.29 1.73E-03 7 

10 
100 

0.932 108.68 0.40 1.65E-05 203 3.04 0.39 1.70E-03 6 

20 0.932 186.05 0.37 1.65E-05 332 5.24 0.32 4.60E-03 9 

10 

200 

0.932 80.17 0.70 9.81E-07 352 1.75 0.71 1.62E-03 8 

20 0.932 182.41 0.56 9.80E-07 496 3.14 0.45 4.51E-03 7 

30 0.932 250.39 0.53 9.79E-07 623 4.79 0.40 1.26E-03 9 

Table 10 Comparison between Lanzcos Bidiagonalization and ACA for FATIMA_20493. The lowest time or number of iterations recorded for each column are highlighted in 

green. 
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5.3.2 Results after integration with solver 

The hierarchy_class object using ACA is integrated with the current solver and the performance 

of the solver with hierarchical matvec as compared to dense matvec is shown in the Table 11-13. 

For clarity, the results are also illustrated in Figure 26 below. Note that in this section, the codes 

were ran in serial, and the tolerance 𝜖 in the admissibility criterion for the hierarchy_class object 

is set to 1e-4. The columns in Table 11-13 has the same definition as that stated in Section 3.3. 

 

 

Figure 26 Performance of solver with hierarchical matvec as compared to dense matvec  

Regardless of whether IDR(s) or GMRES is used, the time to solve the system using hierarchical 

matvec instead of dense matvec is significantly lower. This can be seen clearly In Figure 26. The 

larger the matrix, the more the gain in time when using hierarchical matvec. With Passcal, the 

solve time drops by about 30% when hierarchical matvec is used. For FATIMA_7894, the solve 

time drops by about 40%, and for FATIMA_20493, the solve time drops further by about 50%.  

While this is true, the accuracy of the solution is not acceptable with hierarchical matvec. When 

each dense matvec is replaced with the hierarchical matvec, the effect is that the system matrix is 

perturbed. How well the solution of this approximate system estimates the exact solution depends 

on the condition of the system matrix. The accuracy at which this perturbed matrix approximates 
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the system matrix is determined by the tolerance of the admissibility criterion. In the case when 

this tolerance is set to 1e-4, relative errors of about 1e-03, 1e-02 and 1e-01 are obtained for Passcal, 

FATIMA_7895 and FATIMA_20493 respectively.  

To improve the situation, the tolerance of the admissibility criterion can be raised. The effect of 

raising this criterion for the case of FATIMA_20493 matrix with b=200, p=50 is shown in Table 

14. As the tolerance is raised, the number of inadmissible blocks increases. This caused the time 

to do hierarchical matvec to increase. At a tolerance of 1e-5, the number of inadmissible blocks is 

so high that the hierarchical matvec becomes even more expensive than the matvec due to the 

overheads involved.  

Therefore, it can be concluded that this method is not favorable for this application. The idea is 

that if this approximation can be constructed as a preconditioner instead, it may be more applicable. 

The next section explores the use of Hierarchical-LU decomposition as a preconditioner.  
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Passcal 

Block Jacobi 

block size 

Wall clock time (s) 
#iter Rel error 

Wall clock time (s) 
#iter Rel error 

Solve Total Solve Total 

GMRES with dense matvec GMRES with hierarchical matvec 

500 2.02 2.20 91 3.54E-07 1.34 1.68 91 3.99E-03 

1000 1.96 2.68 81 5.59E-07 1.28 2.22 81 3.99E-03 

1200 1.83 2.83 77 2.99E-07 1.2 2.40 77 4.00E-03 

 IDR(30) with dense matvec IDR(30) with hierarchical matvec 

500 2.16 2.34 96 5.19E-07 1.42 1.76 96 3.99E-003 

1000 2.04 2.81 86 1.58E-06 1.38 2.31 86 4.00E-003 

1200 2.01 3.00 78 2.06E-07 1.38 2.52 83 4.00E-003 
Table 11 Comparison of results between solvers with with dense matvec as compared to hierarchical matvec for Passcal. The results were obtained based on b=200, p=40. 

FATIMA_7894 

Block Jacobi 

block size 

Wall clock time (s) 
#iter Rel error 

Wall clock time (s) 
#iter Rel error 

Solve Total Solve Total 

GMRES with dense matvec GMRES with hierarchical matvec 

500 33.08 33.89 231 7.03E-07 19.47 22.02 232 6.51E-02 

1000 18.07 21.28 121 1.57E-07 10.87 15.76 121 6.51E-02 

2000 12.05 22.91 74 1.50E-07 7.74 21.99 75 6.51E-02 

 IDR(30) with dense matvec IDR(30) with hierarchical matvec 

500 33.64 34.47 236 3.86E-07 19.04 21.59 232 6.51E-02 

1000 19.99 23.18 132 1.43E-07 12.11 17.00 135 6.51E-02 

2000 13.87 26.38 83 1.08E-07 8.50 22.73 81 6.51E-02 
Table 12 Comparison of results between solvers with with dense matvec as compared to hierarchical matvec for FATIMA_7894. The results were obtained based on b=200, p=50. 

FATIMA_20493 

Block Jacobi 

block size 

Wall clock time (s) 
#iter Rel error 

Wall clock time (s) 
#iter Rel error 

Solve Total Solve Total 

GMRES with dense matvec GMRES with hierarchical matvec 

1708 379.60 386.19 393 1.49E-06 161.77 175.04 396 6.15E-01 

4000 103.22 156.81 103 1.17E-07 47.67 107.57 104 6.15E-01 

6000 60.70 327.70 60 2.27E-07 31.34 304.33 61 6.15E-01 

 IDR(50) with dense matvec IDR(50) with hierarchical matvec 

1708 248.87 255.46 259 2.47E-07 109.23 123.10 258 6.15E-01 

4000 111.30 164.81 109 1.66E-07 53.60 113.88 113 6.15E-01 

6000 68.48 335.77 66 1.36E-07 31.68 304.75 65 6.15E-01 
Table 13 Comparison of results between solvers with with dense matvec as compared to hierarchical matvec for FATIMA_20493. The results were obtained based on b=200, 

p=40.
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ε 
Number of inadm 

blocks 
Time for hie matvec 

Time for normal 

matvec 
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖ 

1e-4 1270 0.392 0.928 7.36E-04 

5e-5 1393 0.448 0.928 3.80E-04 

2e-5 3234 0.912 0.928 1.59E-04 

1e-5 3572 1.032 0.928 5.25E-07 

Table 14 Effect of increasing tolerance for admissibility criterion for the FATIMA_20493 matrix with b=200, p=50. The total 

number of inadmissible blocks at this level is 4096 
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6 PART 4: HIERARCHICAL LU-DECOMPOSITION 

In the previous section, the implementation of the solver with hierarchical matvec was explored. 

However, the large relative error prohibits its use. Despite this, it has been shown that operations 

using the hierarchical form is indeed much cheaper as compared to the dense form. In this section, 

the use of hierarchical-LU decomposition to construct a hierarchical-LU preconditioner is explored. 

It is hopeful that this method will allow us to reap the benefits from the cheaper hierarchical 

operations while maintaining the accuracy of the computed solution. 

The hierarchical-LU decomposition are discussed in various text. The ones referred to in this report 

are given in [7] and [12]. This section begins with a theoretical review of hierarchical LU 

decomposition. The implementation details and results follow after.  

6.1 THEORY 

The hierarchical-LU decomposition is a process that decomposed a hierarchical matrix 𝐴 into a 

lower triangular hierarchical matrix 𝐿  and an upper triangular hierarchical matrix 𝑈 . This is 

illustrated in the figure below: 

 

Figure 27 Illustration of the Hierarchical LU decomposition [12] 

Note that 𝐿 and 𝑈 have the same hierarchical structure as 𝐴.  

To formulate the algorithm for hierarchical-LU decomposition, first split the matrix 𝐴, 𝐿 and 𝑈 

into four blocks: 

𝐴 = [
𝐴11 𝐴12

𝐴21 𝐴22
] = [

𝐿11 0
𝐿21 𝐿22

] × [
𝑈11 𝑈12

0 𝑈22
] 

Equation 11 

Thus, the problem of solving for 𝐿 and 𝑈 is divided into four sub-problems [7]: 
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1. Compute 𝐿11, 𝑈11 from the hierarchical-LU decomposition of 𝐴11. Since 𝐿11 is in general 

not a lower triangular matrix unless a pivot 𝑃11 is used, thus, in general, 𝐿11 = 𝑃11
−1�̂�11, 

where �̂�11 is lower triangular.  

2. Compute 𝑈12 from the lower triangular equation �̂�11𝑈12 = 𝑃11𝐴12 

3. Compute 𝐿21 from the upper triangular equation 𝐿21𝑈11 = 𝐴21 

4. Compute 𝐿22, 𝑈22 from the hierarchical-LU decomposition of 𝐴22 − 𝐿21𝑈12. Again 

𝐿22 = 𝑃22
−1�̂�22 

Each sub-block of 𝐴 is again a hierarchical matrix. Therefore, it can be seen now that the following 

major hierarchical matrix operations need to be defined: 

1. Multiplication and Subtraction to obtain 𝐴 =  𝐴 − 𝐿𝑈. We shall term this operation 

rounded subtraction. This is elaborated in Section 6.1.2. 

2. Lower triangular Solver 𝐿𝐵 = 𝐴. This is elaborated in Section 6.1.3. 

3. Upper triangular Solver 𝐵𝑈 = 𝐴. This is elaborated in Section 6.1.4. 

To define these major operations, some basic operations with hierarchical matrix are needed. These 

are elaborated in the next sub-section. The subsequent sub-sections then elaborate on the three 

major operations. This section then ends by bringing together all the operations defined into the 

final hierarchical-LU decomposition algorithm. 

6.1.1 Basic Hierarchical Matrix Operations 

All hierarchical matrices have a recursive structure, where the main matrix is split into four blocks, 

and each block is further split into four blocks until the finest level of recursion 𝑙𝑒𝑣𝑒𝑙𝑠. At this 

finest level, there exist essentially either low rank matrix operations or full matrix operations. Full 

matrix operations are well understood. Hence the first part of this section deals with how to handle 

low rank matrix operations. Namely, multiplication and addition (or subtraction) are considered. 

The remaining parts of this section focuses on some of the operations that need to be defined for 

the three major operations required for hierarchical LU decomposition. These operations are 

hierarchical matrix multiplication, truncation of a hierarchical matrix into its low rank 

approximation, and addition (or subtraction) of a hierarchical matrix with low rank matrices. 
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6.1.1.1 Low rank matrix operations 

6.1.1.1.1 Low rank matrix multiplication 

Given a low rank matrix 𝑅 = 𝐴𝐵𝑇  ∈ ℂ𝑁×𝑀 of rank 𝑝, and a full rank matrix 𝑀 ∈ ℂ𝑀×𝐿 , the result 

of the multiplication 𝑅𝑀 will be another rank 𝑝 matrix, since 𝑅𝑀 = 𝐴𝐵𝑇𝑀 = 𝐴(𝑀𝑇𝐵)𝑇.  

Similarly, given another full rank matrix 𝑁 ∈ ℂ𝐿×𝑁, 𝑁𝑅 is yet another rank 𝑝 matrix, since 𝑁𝑅 =

(𝑁𝐴)𝐵𝑇. 

 Two rank 𝑝 matrix multiplication also gives another rank  𝑝 matrix. Let = 𝑈𝑉𝑇 ∈ ℂ𝑀×𝐿 , then 

𝑅𝑇 = (𝐴(𝑈𝑇𝐵)𝑇)𝑉𝑇 [12]. 

6.1.1.1.2 Formatted addition 

Given two low rank matrix 𝑅 = 𝐴𝐵𝑇  ∈ ℂ𝑁×𝑀 and 𝑇 = 𝑈𝑉𝑇 ∈ ℂ𝑁×𝑀 of rank 𝑝, the result of 𝑅 +

𝑇 is a rank 2𝑝 matrix. This is because 𝑀 = 𝑅 + 𝑇 = [𝐴 𝑈] [𝐵
𝑇

𝑉𝑇] = [𝐴 𝑈][𝐵 𝑉]𝑇. To obtain 

the rank 𝑝 approximation to 𝑀, the truncation operation which truncates a rank 2𝑝 matrix to a rank 

𝑝 matrix must be performed. This is termed here as RK-truncation, and is described in the next 

section. The addition operation, followed by RK-truncation, is termed as a whole as formatted 

addition. 

6.1.1.1.3 RK-truncation: truncation of a rank k matrix to a rank p matrix 

It is assumed here that  𝑝 < 𝑘 . Given a rank 𝑘  matrix in the form 𝑉𝑇 ∈ ℂ𝑁×𝑀  , the rank 𝑝 

approximation �̃� = 𝑈′𝑉′𝑇 can be obtained using a reduced singular value decomposition (SVD) 

operation [12]: 

1. Perform QR-factorization of 𝑈 = 𝑄𝑢𝑅𝑢 and 𝑉 = 𝑄𝑣𝑅𝑣. Note that 𝑄𝑢 ∈ ℂ𝑁×𝑘, 𝑅𝑢, 𝑅𝑣 ∈

ℂ𝑘×𝑘 and 𝑄𝑣 ∈ ℂ𝑀×𝑘. Thus 𝑀 = 𝑄𝑢𝑅𝑢𝑅𝑣
𝑇𝑄𝑣

𝑇. 

2. Next, perform reduced SVD on 𝑅𝑢𝑅𝑣
𝑇. This is can be done using the SVD, Lanzcos 

Bidiagonalization, or ACA. In our case, ACA is chosen since it is the cheapest option. 

This gives 𝑅𝑢𝑅𝑣
𝑇 ≈ 𝑈𝑅𝑉𝑅

𝑇, 𝑈𝑅𝑉𝑅
𝑇 is of rank 𝑝.  

3. Lastly, set 𝑈′ = 𝑄𝑢𝑈𝑅 and 𝑉′ = 𝑄𝑣𝑉𝑅 
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Because of the truncation operation, it is expected that formatted addition introduces an error. The 

error introduced by the truncation operation is discussed in [7] and [12]. Since the hierarchical-LU 

decomposition is to be used as a preconditioner, the elaborated error analysis is not presented here.  

6.1.1.2 Hierarchical matrix multiplication 

The result of the multiplication of a hierarchical matrix 𝐴 ∈ ℂ𝑁×𝑀 with a full matrix 𝑀 ∈ ℂ𝑀×𝐿 is 

another full matrix 𝐴𝑀 ∈ ℂ𝑁×𝐿. The multiplication can be carried out recursively. At the finest 

level, 𝐴 is either a low rank or a full matrix. Thus 𝐴𝑀 can be obtained either by low rank matrix 

multiplication, or by full matrix-matrix multiplication. If not at the finest level and 𝐴 is not 

admissible, 𝐴 is divided into four sub-blocks, and 𝑀 into two:  

𝐴𝑀 = [
𝐴11 𝐴12

𝐴21 𝐴22
] [

𝑀1

𝑀2
] = [

𝐴11𝑀1 + 𝐴12𝑀2

𝐴21𝑀1 + 𝐴22𝑀2
] 

Equation 12 

The hierarchical matrix multiplication operation is then called recursively accordingly to Equation 

12.  

6.1.1.3 Truncation: truncation of hierarchical matrix A to a low rank matrix 

The operation to truncate a hierarchical matrix to its low rank approximation is required for the 

rounded-subtraction operation. The truncation operation can be illustrated with the diagram below 

[12]: 

 

Figure 28 Illustration of truncation operation [12] 

The hierarchical matrix in this case consists of full matrix blocks 𝐹 and low rank matrix blocks 𝑅. 

Starting from the finest level (represented by matrix 𝑀 in Figure 28), each 𝐹 block is truncated to 

a low rank matrix block 𝑅 using reduced SVD. Next, combine four low rank matrix sub-blocks 

into one low rank matrix block by formatted addition (note that here, 𝑅𝑖 = 𝑈𝑖𝑉𝑖
𝑇): 
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[
𝑅1 𝑅2

𝑅3 𝑅4
] = [

𝑅1 0
0 0

] + [
0 𝑅2

0 0
] + [

0 0
𝑅3 0

] + [
0 0
0 𝑅4

]

= [
𝑈1

0
] [𝑉1

𝑇 0] + [
𝑈2

0
] [0 𝑉2

𝑇] + [
0
𝑈3

] [𝑉3
𝑇 0] + [

0
𝑈4

] [0 𝑉4
𝑇] = [𝑅] 

This is performed until the coarsest level, level 0. By this time, a low rank approximation is 

attained for the entire hierarchical matrix.  

6.1.1.4 Subtract-lowrank: Addition (or Subtraction) of a Hierarchical Matrix with a low rank 

matrix 

Consider here the operation 𝐴 = 𝐴 + 𝑈𝑉𝑇, where 𝐴 is a hierarchical matrix. At the finest level, 𝐴 

is either a full matrix or a low rank matrix. If 𝐴 is a full matrix, 𝑈𝑉𝑇 has to be formed explicitly 

and added to the full matrix. Otherwise, formatted addition is performed. 

At coarser levels, if 𝐴 is admissible, formatted addition is performed. If A is not admissible, then 

the function has to be recursively called. 𝐴 is split into four blocks, while 𝑈 and 𝑉 are split into 

two blocks as follows: 

[
𝐴11 𝐴12

𝐴21 𝐴22
] = [

𝐴11 𝐴12

𝐴21 𝐴22
] + [

𝑈1

𝑈2
] [𝑉1

𝑇 𝑉2
𝑇] 

= [
𝐴11 + 𝑈1𝑉1

𝑇 𝐴12 + 𝑈1𝑉2
𝑇

𝐴21 + 𝑈2𝑉1
𝑇 𝐴22 + 𝑈2𝑉2

𝑇] 

Equation 13 

The function is then recursively called in each of the four sub-blocks according to Equation 13. 

The operation 𝐴 = 𝐴 − 𝑈𝑉𝑇 is defined similarly.  

6.1.2 Rounded subtraction Operation 𝑨 =  𝑨 –  𝑳𝑼 

The implementation of the rounded subtraction operation uses the functions that have been defined 

till now. It is assumed that 𝐴, 𝐿 and 𝑈 are all hierarchical matrices, but they may not be of the same 

hierarchical structure.  This assumption is required because although the full 𝐴, 𝐿 and 𝑈 matrices 

share the same hierarchical structure, in rounded subtraction, 𝐴, 𝐿 and 𝑈 represent different sub-

blocks of their respective full hierarchical matrices. 
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First consider the case when rounded subtraction function is called at the finest level. In this case, 

there are eight scenarios, depicted in the figure below. 

 

Figure 29 Cases to consider for rounded subtraction at the finest level 

For Cases 1 to 4, since 𝐴 is low rank, the result of 𝐴 − 𝐿𝑈 is also low rank. Now consider case 1 

2 and 3, low rank matrix multiplication is first used to compute the product 𝐿𝑈. Next, formatted 

addition is used to compute the rank 𝑝 approximation to 𝐴 − 𝐿𝑈.  

For Case 4, both 𝐿 and 𝑈 are full matrices. To subtract a full matrix from a low rank matrix 

efficiently, 𝐿  and 𝑈  have to be truncated into their low rank approximation. With the 

approximation, this case can then proceed like in Case 1, 2 or 3. 

For Cases 4 to 8, the result of 𝐴 − 𝐿𝑈 is a full matrix. In all cases, either low rank multiplication 

or full multiplication is performed, followed by full matrix subtraction to arrive at the result. 

When rounded subtraction is called at a higher level, the following cases have to be considered: 

 

Figure 30 Cases to consider for rounded subtraction not at the finest level 
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If 𝐴 is admissible, as it is for Case 9 to 12, this is very similar to Case 1 to 4. If 𝐿 and 𝑈 are both 

not admissible, then they have to be truncated to their low rank approximation. Otherwise, 

hierarchical matrix multiplication can be carried out. Once 𝐴 and 𝐿𝑈 are both in their low rank 

form, then formatted addition can be applied to obtain 𝐴 − 𝐿𝑈.  

When 𝐴 is not admissible, the result of the rounded subtraction operation is another hierarchical 

matrix with the same structure as 𝐴. Consider Case 13. Since 𝐿 and 𝑈 are both admissible, the 

product 𝐿𝑈 is another low rank matrix. The subtract-lowrank operation can then be used to subtract 

a low rank matrix from a hierarchical matrix 𝐴.  

When either 𝐿 or 𝑈 becomes admissible, as in Case 14 or 15, the recursive hierarchical matrix 

multiplication is called to form another low rank matrix. For instance, when 𝑈 is admissible, 𝑈 =

𝐶𝐷𝑇 , thus the operation becomes 𝐴 = 𝐴 − (𝐿𝐶)𝐷𝑇 .Since 𝐿 is a hierarchical matrix, recursive 

hierarchical matrix multiplication can be used to evaluate 𝐿𝐶, which is of size 𝑁 × 𝑝. Thus, the 

operation is again reduced to the subtraction of a low rank matrix (𝐿𝐶)𝐷𝑇 from a hierarchical 

matrix 𝐴. This can be evaluated by the subtract-lowrank operation. 

Lastly, Case 16 occurs when all three matrices are hierarchical. In this case the rounded subtraction 

function has to be recursively called. All three matrices can be split into four blocks as shown: 

[
𝐴11 𝐴12

𝐴21 𝐴22
] = [

𝐴11 𝐴12

𝐴21 𝐴22
] − [

𝐿11 𝐿12

𝐿21 𝐿22
] [

𝑈11 𝑈12

𝑈21 𝑈22
] 

= [
𝐴11 − 𝐿11𝑈11 − 𝐿12𝑈21 𝐴12 − 𝐿11𝑈12 − 𝐿12𝑈22

𝐴21 − 𝐿21𝑈11 − 𝐿22𝑈21 𝐴22 − 𝐿21𝑈12 − 𝐿22𝑈22
] 

Equation 14 

For each block, rounded subtraction is first called on 𝐴𝑖𝑗 = 𝐴𝑖𝑗 − 𝐿𝑖1𝑈1𝑗 , then on 𝐴𝑖𝑗 = 𝐴𝑖𝑗 −

𝐿𝑖2𝑈2𝑗. 

6.1.3  Lower Triangular Solver 𝑳𝑩 = 𝑨 

A lower triangular solver solves for 𝐵 in 𝐿𝐵 = 𝐴, where 𝐿, 𝐵 and 𝐴 are all hierarchical matrices 

and 𝐿 is lower triangular. With respect to our application, it can be assumed that 𝐵 and 𝐴 share the 

same hierarchical structure, while 𝐿 need not. Again, the lower triangular solver is a recursive 
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solver. Like all recursive functions, it is easier to deal first with the case at the finest level of 

recursion. 

All lower triangular matrices lie on the diagonal. Therefore, at the finest level of recursion, 𝐿 can 

only be a full rank matrix. Therefore, there are essentially only 2 cases to consider: first, when 

𝐴/𝐵 is low rank, and second when 𝐴/𝐵 is full rank.   

 

Figure 31 Cases to consider for lower triangular solver at the finest level 

If 𝐴/𝐵 is full, then the usual lower triangular solver can be called to solve the lower triangular 

system. Otherwise, first, express 𝐴 = 𝑈𝑉𝑇 , 𝐵 = 𝐶𝐷𝑇  to arrive at 𝐿𝐶𝐷𝑇 = 𝑈𝑉𝑇 . The aim is to 

solve for matrix 𝐶 and 𝐷. In this case, 𝐷 can be solved by just letting 𝐷 = 𝑉, and employ a lower 

triangular solver to the subsystem 𝐿𝐶 = 𝑈.  

Consider now the case where the recursion level is not at the finest. There are again two cases: 

𝐴/𝐵 is not admissible and 𝐴/𝐵 is admissible. 

 

Figure 32 Cases to consider for lower triangular solver not at the finest level 

When A/B is admissible, the case is handled similarly as that at the finest level. If 𝐴/𝐵 is not 

admissible, consider the following equation: 

[
𝐿11 0
𝐿21 𝐿22

] × [
𝐵11 𝐵12

𝐵21 𝐵22
] = [

𝐴11 𝐴12

𝐴21 𝐴22
] 

Equation 15 

The lower triangular solver has to be recursively called as follows to solve for B [7]: 

At the finest level

A/B is low rank, 

L is full

A/B is full,

L is full

Not at the finest level

A/B is low rank, 

L is full

A/B is not 
admissible,

L is full
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1. Solve for 𝐵11 by calling lower triangular solver on 𝐿11𝐵11 = 𝐴11. 

2. Solve for 𝐵12 by calling lower triangular solver on 𝐿11𝐵12 = 𝐴12. 

3. Solve for 𝐵21 by first calling rounded subtraction to obtain 𝐴21 − 𝐿21𝐵11, then calling 

lower triangular solver on 𝐿22𝐵21 = 𝐴21 − 𝐿21𝐵11. 

4. Solve for 𝐵22 by first calling rounded subtraction to obtain 𝐴22 − 𝐿21𝐵12, then calling 

lower triangular solver on 𝐿22𝐵22 = 𝐴22 − 𝐿21𝐵12. 

6.1.4 Upper Triangular Solver 𝑩𝑼 = 𝑨 

The upper triangular solver is very similar to the lower triangular solver. At the finest level, if 𝐴/𝐵 

is full, dense upper triangular solver is used to solve for 𝐵. Otherwise, let 𝐴 = 𝐸𝐹𝑇 , 𝐵 = 𝐶𝐷𝑇 to 

arrive at 𝐶𝐷𝑇𝑈 = 𝐸𝐹𝑇, where 𝐶 and 𝐷 are the unknowns. In this case, let 𝐶 = 𝐸, and solve the 

smaller upper triangular system 𝐷𝑇𝑈 = 𝐹𝑇 . 

For the two cases when the level of recursion is not the finest, the case when 𝐴/𝐵 is admissible is 

handled the same way as at the finest level of recursion. The case when 𝐴/𝐵 is not admissible is 

solved by considering the following equation: 

[
𝐵11 𝐵12

𝐵21 𝐵22
] × [

𝑈11 𝑈12

0 𝑈22
] = [

𝐴11 𝐴12

𝐴21 𝐴22
] 

Equation 16 

The upper triangular solver is called recursively as follows [7]: 

1. Solve for 𝐵11 by calling upper triangular solver on 𝐵11𝑈11 = 𝐴11. 

2. Solve for 𝐵21 by calling upper triangular solver on 𝐵21𝑈11 = 𝐴21. 

3. Solve for 𝐵12 by first calling rounded subtraction to obtain 𝐴12 − 𝐵11𝑈12, then calling 

upper triangular solver on 𝐵12𝑈22 = 𝐴12 − 𝐵11𝑈12. 

4. Solve for 𝐵22 by first calling rounded subtraction to obtain 𝐴22 − 𝐵21𝑈12, then calling 

lower triangular solver on 𝐵22𝑈22 = 𝐴22 − 𝐵21𝑈12. 

6.1.5 Hierarchical LU Decomposition – the Algorithm 

Now with all the building blocks in place, it is time to put everything together into the hierarchical-

LU decomposition algorithm introduced at the start of this section. At the finest level, there is only 
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the case when 𝐴 is full, since this algorithm is called only on diagonal blocks. Thus, the usual LU-

decomposition routine is called to solve for 𝐿 and 𝑈.  

When not at the finest level, again only the case when 𝐴 is hierarchical is considered (since A 

cannot be admissible as it is a diagonal block). Thus, 𝐴 is split into four sub-blocks, and the 

hierarchical LU decomposition function, hierarchical lower triangular solver, and the hierarchical 

upper triangular solver is applied to the respective sub-blocks, according to Equation 11.  

6.2 PROGRAM IMPLEMENTATION DETAILS 

This section discusses how the hierarchical-LU decomposition is implemented and integrated with 

the solver. The hierarchy_class object data structure must first be updated to accommodate for the 

additional storage required for hierarchical-LU decomposition. Its subroutines must also be 

expanded to include the operations defined in Section 6.1. The resulting hierarchcial upper 

triangular 𝑈 and lower triangular 𝐿 matrix are then applied as a preconditioner to the solver. These 

are discussed in the subsections below: 

6.2.1 Update to the data structure of a H-matrix for hierarchical-LU decomposition 

The data structure of the hierarchy_class object is updated as shown below. The updates are 

explained in the following subsections. 
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    type, public :: hierarchy 

 

     !private 

     ! List of arrays 

     ! ----------------------------------------------  

 DATATYPE1,  allocatable, dimension(:) :: U 

 DATATYPE1,  allocatable, dimension(:) :: V 

 integer(kind=SHORT),  allocatable, dimension(:) :: index_con  

 integer(kind=SHORT),  allocatable, dimension(:) :: index_lvl_con 

        integer(kind=SHORT),  allocatable, dimension(:) :: adm_row 

 integer(kind=SHORT),  allocatable, dimension(:) :: adm_col 

 integer(kind=SHORT),  allocatable, dimension(:) :: inadm_row 

 integer(kind=SHORT),  allocatable, dimension(:) :: inadm_col  

 integer(kind=SHORT),  allocatable, dimension(:) :: block_lvl_con  

 integer(kind=SHORT),  allocatable, dimension(:) :: Ublockpos_con  

 integer(kind=SHORT),  allocatable, dimension(:) :: Vblockpos_con  

 DATATYPE1,   allocatable, dimension(:) :: matrix_N  

 integer(kind=SHORT), allocatable, dimension(:) :: Nblockpos_con 

 DATATYPE1,  allocatable, dimension(:) :: U_compressed 

 integer(kind=SHORT), allocatable, dimension(:) :: Ublockpos_com_con   

 DATATYPE1,  allocatable, dimension(:) :: V_compressed 

 integer(kind=SHORT),  allocatable, dimension(:) :: Vblockpos_com_con 

 DATATYPE1,  allocatable, dimension(:) :: LU 

 DATATYPE1,  allocatable, dimension(:) :: LU_U 

 DATATYPE1,  allocatable, dimension(:) :: LU_V 

 integer(kind=SHORT),  allocatable, dimension(:) :: Pivot 

 

     ! List of variables 

     ! ---------------------------------------------- 

     integer(kind=SHORT) :: p  

     integer(kind=SHORT) :: b  

 integer(kind=SHORT) :: N  

 integer(kind=SHORT) :: levels 

 integer(kind=SHORT) :: alloc_stat 

 real     :: tol  

 

    end type hierarchy  

Figure 33 Updated data structure of the hierarchy_class object to cater for the hierarchical-LU decomposition 

6.2.1.1 Compression 

In the hierarchical-LU decomposition routine, there is a need to alter the hierarchical matrix 𝐴, 

since 𝐴 = 𝐴 − 𝐿𝑈 have to be performed during the algorithm. In order to not change the original 

𝐴 matrix, which is required for the matrix-vector multiplication in the solver, there is a need to 

make a copy of this matrix to form the inadmissible matrix 𝑁𝑙𝑒𝑣𝑒𝑙𝑠. It is however too expensive to 

make a copy of the entire matrix 𝐴. Instead, only the inadmissible blocks should be stored. In the 

same way, it is also helpful to compress the 1D arrays 𝑈 and 𝑉 after hierarchical splitting have 

been performed, since 𝑈 and 𝑉 are non zeros only in parts where the blocks become admissible. 

Therefore, the following new items are added to the hierarchy class data structure. The rationale 

behind each item is described below. 
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 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁(: ): contains the inadmissible blocks that made up 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 

 𝑁𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛(: ): contains the index of the first element in 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁 corresponding to 

the local block number at the finest level  

 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑(: ): contains the compressed 𝑈 array 

 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛(: ) : contains the index of the first element in the 

𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 array corresponding to the global block number  

 𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑(: ): contains the compressed 𝑉 array 

 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛(: ) : contains the index of the first element in the 

𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 array corresponding to the global block number  

To construct 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁, the size of matrix_N required must first be computed. This is just the sum 

of the block sizes of all inadmissible blocks, ∑ 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒𝑖𝑛𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑏𝑙𝑜𝑐𝑘𝑠 . The inadmissible 

blocks are then stored in ascending order of the local block number at the finest recusion level 

𝑙𝑒𝑣𝑒𝑙𝑠, again, in column major format. Figure 34 below illustrates the structure of the 1D array 

used to store 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁. 

 

Figure 34 Structure of 𝑀𝑎𝑡𝑟𝑖𝑥_𝑁 when the finest recursion level is 3. Purple boxes indicate inadmissible blocks, while green 

blocks indicate admissible ones. 

To easily retrieve the matrix block corresponding to a local block number, the 𝑁𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 

array is defined. This is an array of size 2𝑙𝑒𝑣𝑒𝑙𝑠 × 2𝑙𝑒𝑣𝑒𝑙𝑠 , and each element within the array 

corresponds to one local block at level 𝑙𝑒𝑣𝑒𝑙𝑠. If the block is inadmissible, the position of the first 

element of that block in 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁 is stored in 𝑁𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 array. Else, a 0 is stored. An 

example of how 𝑁𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 looks like for the FATIMA_7894 matrix at 𝑙𝑒𝑣𝑒𝑙𝑠 = 3 and 𝑝 =

50 is shown below: 
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 Nblockpos_con 

           1      974170           0           0           0           0           0           0 

     1948339     2922508     3896677           0           0           0           0           0 

           0     4870846     5845015     6819184           0           0           0           0 

           0           0     7792366     8765548     9737744           0           0           0 

           0           0           0    10710926    11684108    12658277           0           0 

           0           0           0           0    13632446    14606615    15580784    16554953 

           0           0           0           0           0    17528135    18502304    19476473 

           0           0           0           0           0           0    20449655    21422837 

    22395033  

Figure 35 Example of how 𝑁𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 looks like for FATIMA_7894 matrix with 𝑙𝑒𝑣𝑒𝑙𝑠 = 3 and 𝑝 = 50 

Next, arrays 𝑈 and 𝑉 are compressed into 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and 𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 arrays. The size 

of the arrays required to store the inadmissible blocks can be computed as 

∑ ∑ 𝑏𝑙𝑜𝑐𝑘_𝑟𝑜𝑤_𝑠𝑖𝑧𝑒 × 𝑝𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑏𝑙𝑜𝑐𝑘𝑠
𝑙𝑒𝑣𝑒𝑙𝑠
𝑙=2  for 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑  and 

∑ ∑ 𝑏𝑙𝑜𝑐𝑘_𝑐𝑜𝑙_𝑠𝑖𝑧𝑒 × 𝑝𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑏𝑙𝑜𝑐𝑘𝑠
𝑙𝑒𝑣𝑒𝑙𝑠
𝑙=2  for V_compressed. After 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and 

𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 array are allocated with this size, the low rank approximations for the admissible 

blocks are stored in ascending order of the global block number. The figure below illustrates the 

structure of the compressed arrays. 

 

Figure 36 Structure of Array U and V after compression 

Similar to 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛  and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛  for the 𝑈  and 𝑉  1D arrays, the 

𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 serves as a link between the global block number 

and their respective blocks in the 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑  and 𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑  1D array. There is an 

element allocated in 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 for every global block from 

level 2 onwards. If the global block is admissible, the element is equal to the index of the first 

element of the block in the 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 or 𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 container. Otherwise, it is just set 

to 0. An example of how the 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 looks like for the 

FATIMA_7894 matrix with 𝑙𝑒𝑣𝑒𝑙𝑠 = 3 and 𝑝 = 50 is shown below: 
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 Ublockpos_com_con 

           0           0           1       98701 

           0           0           0      197351 

      296001           0           0           0 

      394701      493401           0           0 

           0           0      592051      641401           0           0           0           0 

           0           0           0      690701           0           0           0           0 

      740001           0           0           0      789351      838701           0           0 

      888051      937401           0           0           0      986751           0           0 

           0           0     1036101           0           0           0     1085451     1134801 

           0           0     1184101     1233451           0           0           0           0 

           0           0           0           0     1282751           0           0           0 

           0           0           0           0     1332101     1381451           0           0 

     1430801 

 

 

 Vblockpos_com_con 

           0           0           1       98701 

           0           0           0      197401 

      296051           0           0           0 

      394751      493401           0           0 

           0           0      592051      641401           0           0           0           0 

           0           0           0      690751           0           0           0           0 

      740101           0           0           0      789451      838801           0           0 

      888151      937451           0           0           0      986751           0           0 

           0           0     1036051           0           0           0     1085401     1134751 

           0           0     1184101     1233451           0           0           0           0 

           0           0           0           0     1282801           0           0           0 

           0           0           0           0     1332151     1381451           0           0 

     1430751  

Figure 37 Example of what 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 looks like for FATIMA_7894 with 𝑙𝑒𝑣𝑒𝑙𝑠 = 3 and 

𝑝 = 50 

After these arrays are constructed, the arrays 𝑈(: ), 𝑉(: ), 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛(: ),  and 

𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛(: ) can be deallocated to free up memory. 

6.2.1.2 Arrays to store result of LU-decomposition 

The arrays required to store the results of the LU decomposition are named 𝐿𝑈, 𝐿𝑈_𝑈, 𝐿𝑈_𝑉 and 

𝑃𝑖𝑣𝑜𝑡 . Note that the upper triangular matrix 𝑈and lower triangular matrix 𝐿 H-matrix are stored 

together to save storage space. Since 𝐿  and 𝑈  have the same hierarchical structure as 𝐴, the 

𝐿𝑈, 𝐿𝑈_𝑈 and 𝐿𝑈_𝑉 arrays have the same size as 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁, 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and 𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 

respectively. In addition, a 1D array named 𝑃𝑖𝑣𝑜𝑡 is required to store the pivoting elements formed 

with the LU decomposition of the inadmissible blocks. This is of size N. 

6.2.2 Additional subroutines 

In addition to the subroutines already defined in Section 5.2.2, subroutines required to perform 

hierarchical-LU decomposition are listed. The theory behind these subroutines are provided in 

Section 6.1.  

 Hierarchy_compress: to construct the compressed arrays to free up memory 

 RK_truncation: truncates a matrix with rank 2𝑝 to rank 𝑝  
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 truncate: truncates a matrix block from 𝐿 or 𝑈 into its rank 𝑝 approximation 

 subtract_lowrank: performs 𝐴 = 𝐴 − 𝑈𝑉𝑇, where 𝐴 is a H-matrix and 𝑈𝑉𝑇 is a rank 𝑝 

matrix  

 hie_matmul_A: performs 𝑀_𝑜𝑢𝑡 = 𝑀_𝑜𝑢𝑡 + 𝐴𝑀_𝑖𝑛, where 𝐴 is a H-matrix  

 hie_matmul_L: performs 𝑀_𝑜𝑢𝑡 = 𝑀_𝑜𝑢𝑡 + 𝐿𝑀_𝑖𝑛, where 𝐿 is a lower triangular H-

matrix  

 hie_matmul_U: performs 𝑀_𝑜𝑢𝑡 = 𝑀_𝑜𝑢𝑡 + 𝑈𝑀_𝑖𝑛, where 𝑈 is an upper triangular H-

matrix  

 hie_matmul_U_T: performs 𝑀_𝑜𝑢𝑡 = 𝑀_𝑜𝑢𝑡 + 𝑈𝑇𝑀_𝑖𝑛, where U is an upper triangular 

H-matrix 

 rounded_subtraction: performs 𝐴 = 𝐴 − 𝐿𝑈, 𝐴 is a H-matrix, 𝐿 is a lower triangular H-

matrix and 𝑈 is an upper triangular H-matrix 

 hie_LTS: solves 𝐵 in 𝐿𝐵 = 𝐴, 𝐴 and B are H-matrices, 𝐿 is a lower triangular H-matrix 

 hie_LTS_RK: solves 𝐶 𝑖𝑛 𝐿𝐶 = 𝑈, 𝐶 and 𝑈 are full matrices, 𝐿 is a lower triangular H-

matrix 

 hie_UTS: solves 𝐵 in 𝐵𝑈 = 𝐴, 𝐴 and 𝐵 are H-matrices, 𝑈 is an upper triangular H-matrix 

 hie_UTS_RK: solves 𝐷 in 𝐷𝑈 = 𝐹, 𝐷 and 𝐹 are full matrices, 𝑈 is an upper triangular H-

matrix 

 hie_LU: solves 𝐿 and 𝑈 in 𝐴 = 𝐿𝑈, 𝐴 is a H-matrix, 𝐿 is a lower triangular H-matrix and 

𝑈 is an upper triangular H-matrix 

The following subsections describe the implementation details of these subroutines, namely their 

input, output and pseudo-codes.  Optimized library routines from LAPACK are used as much as 

possible. The routines name are provided where applicable. 

6.2.2.1 Hierarchy_compress 

The input to this subroutine are: 

 A hierarchy_class object 

 the size of the system: 𝑁 

 The original system matrix: 𝐴 
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The hierarchy_class object is returned as an output, with the compressed arrays constructed and 

assigned. 

The pseudo-code of this subroutine can be found below. 

1. Compute the sum of all inadmissible blocks (𝑠𝑖𝑧𝑒_𝑁)and fill up 𝑁𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 

2. Allocate 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁 with 𝑠𝑖𝑧𝑒_𝑁 

3. Copy the appropriate inadmissible blocks from 𝐴 to 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁 according to 
global block numbers 

4. Compute the sum of the size of 𝑈𝜎 ,𝜏  and 𝑉𝜎 ,𝜏  for all admissible blocks (𝑠𝑖𝑧𝑒_𝑈, 

𝑠𝑖𝑧𝑒_𝑉)and fill up 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 

5. Allocate 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 with 𝑠𝑖𝑧𝑒_𝑈 and 𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 with 𝑠𝑖𝑧𝑒_𝑉 

6. Copy the appropriate admissible blocks from 𝑈 and 𝑉 to 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and 

𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 respectively 

7. Deallocate 𝑈, 𝑉, 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 

 

Algorithm 5 Hierarchy_compress 

6.2.2.2 RK_truncation 

The inputs to this subroutine are 

 two arrays that define the rank 2𝑝 matrix, 𝐴𝑡𝑒𝑚𝑝 ∈ ℂ𝑠𝑖𝑧𝑒_𝑟𝑜𝑤×2𝑝, 𝐵𝑡𝑒𝑚𝑝 ∈ ℂ𝑠𝑖𝑧𝑒_𝑐𝑜𝑙×2𝑝 

 the integer 𝑝 that defines the rank of the low rank approximation 

 tolerance 𝑡𝑜𝑙_ℎ𝑖𝑒 that defines the tolerance of the ACA algorithm 

The subroutine outputs two arrays that define the truncated matrix of rank 𝑝, 𝑈 ∈ ℂ𝑠𝑖𝑧𝑒_𝑟𝑜𝑤×𝑝 and 

𝑉 ∈ ℂ𝑠𝑖𝑧𝑒_𝑐𝑜𝑙×𝑝. 

The pseudo-code for this subroutine is already outlined in Section 6.1.1.1.3. 

6.2.2.3 Truncate 

The inputs to this subroutine are:  

 A hierarchy_class object for which defines 𝐿 or 𝑈 

 The local row and column block number that defines which block of 𝐿  or 𝑈  is to be 

truncated: 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗 

  A flag to define if the block is admissible or not: 𝑎𝑑𝑚_𝐿𝑈. 𝑎𝑑𝑚_𝐿𝑈 is 0 if block is 

inadmissible, and 1 if block is admissible. 

 The level at which the block belongs to: 𝑙 
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 A flag to define if the block belongs to the 𝐿 or 𝑈: 𝐿_𝑓𝑙𝑎𝑔. 𝐿_𝑓𝑙𝑎𝑔 is 0 if block belongs to 

𝑈,  and 1 if block belongs to 𝐿. 

The output to this subroutine are two arrays that define the truncated matrix of rank p, 𝑈 ∈

ℂ𝑠𝑖𝑧𝑒_𝜎×𝑝 and 𝑉 ∈ ℂ𝑠𝑖𝑧𝑒_𝜏×𝑝. 

With reference to the concept presented in Section 6.1.1.3, the pseudo-code for truncate subroutine 

is given below. 

1) If 𝑎𝑑𝑚_𝐿𝑈 = 1 
i) The block is already low rank. Return its low rank approximation 

2) Else 

a) If 𝑙 = finest recursion level 
i) call ACA to obtain its low rank approximation 

b) Else 

i) If this is a diagonal block 

(1) If 𝐿_𝑓𝑙𝑎𝑔 = 1 
(a) Split the block into three lower triangular sub-blocks and 

recursively call truncate on each of these sub-blocks. Formatted 

addition are then done on low rank approximations for the three 

sub-blocks 

(2) Else 

(a) Split the block into three upper triangular sub-blocks and 

recursively call truncate on each of these sub-blocks. Formatted 

addition are then done on low rank approximations for the three 

sub-blocks 

ii) Else 

(1) Split the block into four sub-blocks and recursively call truncate on 

each of these sub-blocks. Formatted addition are then done on low rank 

approximations for the four sub-blocks. 

 

Algorithm 6 truncate 

6.2.2.4 Subtract_lowrank 

The inputs to this subroutine are: 

 A hierarchy_class object which defines 𝐴 in 𝐴 = 𝐴 − 𝑈𝑉𝑇 

 The local row and column block number that defines the block in 𝐴 : 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖 , 

𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗 

 A flag to define if the block is admissible or not: 𝑎𝑑𝑚_𝐴 . 𝑎𝑑𝑚_𝐴  is 0 if block is 

inadmissible, and 1 if block is admissible. 

 The level at which the block belongs to: 𝑙 

 Two arrays which define 𝑈, 𝑉 
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The output to this subroutine is to update the hierarchy_class object 𝐴 with 𝐴 − 𝑈𝑉𝑇. 

The pseudo-code is given by: 

1) If 𝑎𝑑𝑚_𝐴 =  1 
i) Perform formatted addition 

2) Else 

a) If 𝑙 = finest recursion level 

i) Construct the product 𝑈𝑉𝑇 explicitly (XGEMM) and subtract A with 

the product 

b) Else 

i) Split the block into four sub-blocks, 𝑈 and 𝑉 into halves as 
shown in Equation 13. Update each sub-blocks by recursively 

calling subtract-lowrank. 

 

Algorithm 7 Subtract_lowrank 

6.2.2.5 Hie_matmul_A, hie_matmul_L, hie_matmul_U 

These are hierarchical matrix multiplications for a general H-matrix, lower or upper triangular H-

matrix respectively. The input, output and pseudo-codes of these routines are similar, and therefore 

are discussed together in this section. 

The inputs to these routines consist of: 

 A hierarchy_class object which defines 𝐴, 𝐿 or 𝑈 

 The local row and column block number that defines which block is to be multiplied: 

𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗 

 A flag to define if the block is admissible or not: 𝑎𝑑𝑚_𝐴, 𝑎𝑑𝑚_𝐿 or 𝑎𝑑𝑚_𝑈. These are 0 

if block is inadmissible, and 1 if block is admissible. 

 The level at which the block belongs to: 𝑙 

 An array which defines the input matrix 𝑀_𝑖𝑛 

The output to this routine is the matrix 𝑀_𝑜𝑢𝑡. 

The pseudo-code to these routines are given: 
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1) If 𝑎𝑑𝑚_𝐴, 𝑎𝑑𝑚_𝐿 or 𝑎𝑑𝑚_𝑈 = 1 
a) Low rank matrix multiplication (XGEMM 

2) Else 

a) If 𝑙 =finest recursion level 

i) For A, dense matrix multiplication for 𝐴 (XGEMM) 

ii) For 𝐿 and 𝑈, if this is a diagonal block 
(1) Dense upper or lower triangular matrix multiplication (XTRMM) 

iii) Else 

(1) Dense matrix multiplication (XGEMM) 

b) Else 

i) For A, Split the block into four sub-blocks, and 𝑀_𝑖𝑛 and 𝑀_𝑜𝑢𝑡 into two 
halves according to Equation 12.Recursively call hie_matmul_A on each of 

the sub-blocks and update 𝑀_𝑜𝑢𝑡 according to Equation 12. 
ii) For L and U, if this is a diagonal block 

(1) Split the block into three lower or upper triangular blocks instead. 

Recursively call hie_matmul_L or hie_matmul_U on each of these sub-

blocks and update 𝑀_𝑜𝑢𝑡. 
iii) Else 

(1) Split the block into four sub-blocks like in 2.b.i. 

 

Algorithm 8 hie_matmul_A, hie_matmul_L or hie_matmul_U 

6.2.2.6 Hie_matmul_U_T 

𝑈𝑇 is essentially a lower triangular matrix that looks like the following in block form: 

𝑈𝑇 = [
𝑈11

𝑇 0

𝑈12
𝑇 𝑈22

𝑇 ] 

Thus, the pseudo-code for hie_matmul_U_T looks like that for hie_matmul_L, just that the 

transpose matrix multiplication is called instead. The inputs and output are also the same. 

6.2.2.7 Rounded_subtraction 

The subroutines defined before this are put together here to complete the operation 𝐴 = 𝐴 − 𝐿𝑈. 

The inputs to this subroutine are: 

 The hierarchy_class object that contains information on 𝐴, 𝐿 and 𝑈 

 The local row and column block number that defines the block in 𝐴 to be updated: 

𝑏𝑙𝑜𝑐𝑘_𝐴_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑗 

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐴 . 𝑎𝑑𝑚_𝐴  is 0 if block 𝐴 is 

inadmissible, and 1 if block is admissible. 

 The local row and column block number that defines the block in 𝐿: 𝑏𝑙𝑜𝑐𝑘_𝐿_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐿_𝑗 

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐿 

 The local row and column block number that defines the block in 𝑈: 𝑏𝑙𝑜𝑐𝑘_𝑈_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝑈_𝑗 



Ang Yun Mei Elisa Master Thesis Report 68 

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝑈 

 The level at which all these blocks belong to: 𝑙 

The output is that the hierarchy_class object will have its 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁 , 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and 

𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 updated according to 𝐴 = 𝐴 − 𝐿𝑈. 

The pseudo-code for this subroutine is given below. The cases referred to here are defined in 

Figures 30 and 31. 

1) Case 1: 

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM) 

b) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈 
2) Case 2: 

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM) 

b) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈 
3) Case 3: 

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM) 

b) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈 
4) Case 4: 

a) Truncate 𝐿 and 𝑈 to obtain their low rank approximation 

b) Low rank multiplication between the low rank approximations of 𝐿 and 𝑈 to 

obtain a low rank 𝐿𝑈 (XGEMM) 

c) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈 
5) Case 5: 

a) Low rank multiplication of 𝐿 and 𝑈. The full matrix 𝐿𝑈 is explicitly formed 
from the low rank multiplication (XGEMM) 

b) Dense matrix subtraction between 𝐴 and 𝐿𝑈 
6) Case 6: 

a) Low rank multiplication of 𝐿 and 𝑈. The full matrix 𝐿𝑈 is explicitly formed 
from the low rank multiplication (XGEMM) 

b) Dense matrix subtraction between 𝐴 and 𝐿𝑈 
7) Case 7: 

a) Low rank multiplication of 𝐿 and 𝑈. The full matrix 𝐿𝑈 is explicitly formed 
from the low rank multiplication(XGEMM) 

b) Dense matrix subtraction between 𝐴 and 𝐿𝑈 
8) Case 8: 

a) Dense matrix multiplication of 𝐿 and 𝑈 to form full matrix 𝐿𝑈 (XGEMM) 

b) Dense matrix subtraction between 𝐴 and 𝐿𝑈 
9) Case 9: 

a) Low rank multiplication of L and U to obtain low rank 𝐿𝑈 (XGEMM) 

b) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈 
10) Case 10 

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM) 

b) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈 
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11) Case 11 

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM) 

b) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈 
12) Case 12: 

a) Truncate 𝐿 and 𝑈 to obtain their low rank approximation 

b) Low rank multiplication between the low rank approximation of 𝐿 and 𝑈 to 

obtain low rank 𝐿𝑈 (XGEMM) 

c) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈 
13) Case 13 

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM) 

b) Call subtract_lowrank to update 𝐴 with 𝐴 − 𝐿𝑈 
14) Case 14 

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM) 

b) Call subtract_lowrank to update 𝐴 with 𝐴 − 𝐿𝑈 
15) Case 15 

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM) 

b) Call subtract_lowrank to update 𝐴 with 𝐴 − 𝐿𝑈 
16) Case 16 

a) Split all three 𝐴, 𝐿 and 𝑈 blocks into four sub-blocks each and apply 
rounded-subtraction recursively according to Equation 14.  

 

Algorithm 9 rounded_subtraction 

6.2.2.8 Hie_LTS and hie_LTS_RK 

The subroutine hie_LTS is as described in Section 6.1.3.  

An additional helper routine hie_LTS_RK is defined is for the case when block 𝐴/𝐵 becomes 

admissible at level 𝑙, while 𝐿 is still hierarchical. In this case, there is the problem that 𝐴/𝐵 and 𝐿 

does not belong to the same level. While 𝐿 has to be hierarchically divided into finer levels, the 

admissible blocks to be read from or to be updated in 𝐴 or 𝐵 belongs to level 𝑙. In addition, when 

this happens, a smaller lower triangular system,  𝐿𝐶 = 𝑈 , where 𝐶, 𝑈 ∈ ℂ𝑠𝑖𝑧𝑒𝜏×𝑝 needs to be 

solved. 𝐶 and 𝑈 are dense matrices, not hierarchical matrices. Therefore, Equation 15 should not 

be used. Instead, the following equation can be used instead: 

[
𝐿11 0
𝐿21 𝐿22

] (
𝐶1

𝐶2
) = (

𝑈1

𝑈2
) 

(
𝐿11𝐶1

𝐿21𝐶1 + 𝐿22𝐶2
) = (

𝑈1

𝑈2
) 

Equation 17 

Because of these reasons, a separate sub-routine hie_LTS_RK is created to deal with the case when 

block 𝐴/𝐵 becomes admissible while 𝐿 is still hierarchical. 
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Hie_LTS have the following inputs: 

 A hierarchy_class object that contains information for 𝐿, 𝐵 and 𝐴. Note that 𝐵 is a non-

diagonal block that belongs to 𝑈. 

 The local row and column block number that defines the block in 𝐴: 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑗 

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐴 . 𝑎𝑑𝑚_𝐴  is 0 if block 𝐴 is 

inadmissible, and 1 if block is admissible. 

 The local row and column block number that defines the block in 𝐿: 𝑏𝑙𝑜𝑐𝑘_𝐿_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐿_𝑗 

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐿 

 The level at which all these blocks belong to: 𝑙 

Note that the local row and column block number for block 𝐵 is the same as 𝐴. 

The output to hie_LTS is an updated upper triangular hierarchical matrix 𝑈 in the hierarchy_class 

object. 

The inputs to hie_LTS_RK consist of: 

 A hierarchy_class object that contains information for 𝐿 

 An array that defines the matrix 𝑈 in 𝐿𝐶 = 𝑈 

 The local row and column block number that defines the block in 𝐿: 𝑏𝑙𝑜𝑐𝑘_𝐿_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐿_𝑗 

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐿 

 The level at which block 𝐿 belongs to: 𝑙 

The output to hie_LTS_RK consist of the array defining 𝐶. 

The pseudo-code for hie_LTS_RK and hie_LTS are given below: 

1) If 𝑙 = finest recursion level 

a) Swap the rows in 𝑈 according to 𝑃𝑖𝑣𝑜𝑡 (XLASWP) 
b) Solve the lower triangular system (XTRTRS) 

2) Else 

a) Split 𝐿 into 3 sub-blocks and 𝑈/𝐶 into halves according to Equation 17. 

b) Recursively call hie_LTS_RK on the first sub-block to solve 𝐶1 

c) Call hie_matmul_L to obtain 𝐿21𝐶1 

d) Dense matrix subtraction to obtain 𝑈2 = 𝑈2 − 𝐿21𝐶1 

e) Recursively call hie_LTS_RK on the third sub-block to solve 𝐶2 

 

Algorithm 10 hie_LTS_RK 
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1) If 𝑙 =finest recursion level 

a) If 𝑎𝑑𝑚_𝐴 = 0 

i) Swap the rows in the dense matrix 𝐴 according to 𝑃𝑖𝑣𝑜𝑡(XLASWP) 
ii) Solve the lower triangular system (XTRTRS) 

b) Else 

i) Let 𝐵 = 𝐶𝐷𝑇, 𝐴 = 𝑈𝑉𝑇. Solve for 𝐷 using 𝐷 = 𝑉 

ii) Swap the rows in the matrix 𝑈 according to 𝑃𝑖𝑣𝑜𝑡(XLASWP) 

iii) Solve the lower triangular system 𝐿𝐶 = 𝑈 (XTRTRS) 
2) Else 

a) If 𝑎𝑑𝑚_𝐴 = 0 

i) Split block 𝐴, 𝐵 and 𝐿 into four sub-blocks each according to Equation 15. 

ii) Solve for 𝐵11 by recursively calling hie_LTS 

iii) Solve for 𝐵12 by recursively calling hie_LTS 

iv) Call rounded_subtraction to update 𝐴21 with 𝐴21 − 𝐿21𝐵11 and 𝐴22 with 𝐴22 −

𝐿21𝐵12 

v) Solve for 𝐵21 and 𝐵22 by recursively calling hie_LTS 

b) Else 

i) Let 𝐵 = 𝐶𝐷𝑇, 𝐴 = 𝑈𝑉𝑇. Solve for 𝐷 using 𝐷 = 𝑉 

ii) Call hie_LTS_RK to solve for 𝐶.  

 

Algorithm 11 hie_LTS 

6.2.2.9 Hie_UTS and hie_UTS_RK 

The upper triangular solver differs from the lower triangular solver mainly because an additional 

step is required to use the LAPACK routine. To solve a system 𝐵𝑈 = 𝐴  for 𝐵, one needs to 

transpose the system to obtain 𝑈𝑇𝐵𝑇 = 𝐴𝑇. This becomes then a lower triangular system and the 

same concept is applied.  

The need to define hie_UTS_RK is similar to the reasons described in the previous section for the 

lower triangular solver. The inputs and outputs are very similar as well, and are stated here for 

completion. 

The inputs to hie_UTS are: 

 A hierarchy_class object that contains information for 𝑈, 𝐵 and 𝐴. Note that 𝐵 is a non-

diagonal block that belongs to 𝐿. 

 The local row and column block number that defines the block in 𝐴: 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑗 

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐴 . 𝑎𝑑𝑚_𝐴  is 0 if block 𝐴 is 

inadmissible, and 1 if block is admissible. 

 The local row and column block number that defines which the block in 𝑈: 𝑏𝑙𝑜𝑐𝑘_𝑈_𝑖, 

𝑏𝑙𝑜𝑐𝑘_𝑈_𝑗 

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝑈 
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 The level at which all these blocks belong to: 𝑙 

The output to hie_UTS is an updated lower triangular matrix 𝐿 in the hierarchy_class object. 

The inputs to hie_UTS_RK are: 

 A hierarchy_class object that contains information for 𝑈 in 𝐷𝑇𝑈 = 𝐹𝑇 

 An array that defines the matrix 𝐹  

 The local row and column block number that defines the block in 𝑈: 𝑏𝑙𝑜𝑐𝑘_𝑈_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝑈_𝑗 

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝑈 

 The level at which block 𝑈 belongs to: 𝑙 

The pseudo-code is given below: 

1) If 𝑙 = finest recursion level 

a) Solve the upper triangular system 𝑈𝑇𝐷 = 𝐹 (XTRTRS) 
2) Else 

a) Split block 𝑈 into three upper triangular sub-blocks, 𝐷/F into halves 

b) Recursively call hie_UTS_RK on the first sub-block to solve 𝐷1 

c) Call hie_matmul_U_T to obtain 𝑈12
𝑇 𝐷1 

d) Dense matrix subtraction to obtain 𝐹2 = 𝐹2 − 𝑈12
𝑇 𝐷1 

e) Recursively call hie_UTS_RK on the third sub-block to solve 𝐷2  

 

Algorithm 12 hie_UTS_RK 

1) If 𝑙 =finest recursion level 

a) If 𝑎𝑑𝑚_𝐴 = 0 

i) Solve the upper triangular system 𝑈𝑇𝐵𝑇 = 𝐴𝑇(XTRTRS) 

b) Else 

i) Let 𝐵 = 𝐶𝐷𝑇, 𝐴 = 𝐸𝐹𝑇. Solve for 𝐶 using 𝐶 = 𝐸 

ii) Solve the upper triangular system 𝑈𝑇𝐷 = 𝐹 (XTRTRS) 
2) Else 

a) If 𝑎𝑑𝑚_𝐴 = 0 

i) Split block 𝐴, 𝐵 and 𝑈 into four sub-blocks each according to Equation 16. 

ii) Solve for 𝐵11 by recursively calling hie_UTS 

iii) Solve for 𝐵21 by recursively calling hie_UTS 

iv) Call rounded_subtraction to update 𝐴12 with 𝐴12 − 𝐵11𝑈12 and 𝐴22 with 𝐴22 −

𝐵21𝑈12 

v) Solve for 𝐵12 and 𝐵22 by recursively calling hie_UTS 

b) Else 

i) Let 𝐵 = 𝐶𝐷𝑇, 𝐴 = 𝐸𝐹𝑇. Solve for 𝐶 using 𝐶 = 𝐸 

ii) Call hie_UTS_RK to solve for 𝐷.  

 

Algorithm 13 hie_UTS 
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6.2.2.10 Hie_LU 

The final algorithm of hie_LU has inputs: 

 A hierarchy_class object that contains information on 𝐴 in 𝐴 = 𝐿𝑈. 

  The local row and column block number that defines the block in 𝐴: 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑗 

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐴 . 𝑎𝑑𝑚_𝐴  is 0 if block 𝐴 is 

inadmissible, and 1 if block is admissible. 

 The level at which block A belongs to: 𝑙 

The output to this routine is an updated hierarchy_class object that now contains information in 

𝐿𝑈, 𝐿𝑈_𝑈, 𝐿𝑈_𝑉 and 𝑃𝑖𝑣𝑜𝑡. 

The pseudo-code is given below: 

1) If 𝑙 = finest recursion levels 
a) Dense matrix LU-decomposition (XGETRF) 

2) Else 

a) Split block A into 4 sub-blocks according to Equation 11. 

b) Recursively call hie_LU on the first sub-block 𝐴11 

c) Call hie_LTS on the second sub-block 𝐴12 

d) Call hie_UTS on the third sub-block 𝐴21 

e) Call rounded_subtraction to update 𝐴22  with 𝐴22 = 𝐴22 − 𝐿21𝑈12 

f) Recursively call hie_LU on the last sub-block 𝐴22 

 

Algorithm 14 hie_LU 

6.2.3 Integration with the solver 

To use the result of the hierarchical-LU decomposition as a preconditioner, the original system is 

transformed into: 

(𝐿𝑈)−1𝐴𝑥 = (𝐿𝑈)−1𝑏 

where 𝐿 and 𝑈 are hierarchical lower and upper triangular matrix respectively. Therefore, one 

needs to define a hierarchical lower triangular solver that solves 𝐿𝑦 = 𝑧  for 𝑦 , and an upper 

triangular solver that solves 𝑈𝑥 = 𝑦  for 𝑥 . Before the start of the iterative solver, the lower 

triangular solver is first applied to 𝑏, then the upper triangular solver is applied to obtain (𝐿𝑈)−1𝑏. 

In each iteration, the lower triangular and upper triangular solver is applied in the same way to the 

vector/matrix (𝐴𝑥) . Here, the lower triangular solver is named hie_LTS_vec and the upper 

triangular solver is named hie_UTS_vec.  
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The following subroutines are added to the hierarchy_class object to be able to perform lower and 

upper triangular solve in the solver: 

 hie_matvec_L: This is similar to hie_matvec_A described in Section 5.2.2.4, but for a 

lower triangular matrix instead. This is used in hie_LTS_vec. 

 hie_matvec_U: This is again similar to hie_matvec_A, but for an upper triangular matrix 

instead. This is used in hie_UTS_vec. 

 hie_LTS_vec: Lower triangular solver to be called in the solver routine 

 hie_UTS_vec: Upper triangular solver to be called in the solver routine 

This subroutine hie_LTS_vec and hie_UTS_vec are very similar to the subroutines hie_LTS_RK 

and hie_UTS_RK. Therefore, one can refer to the pseudo-codes defined for hie_LTS_RK and 

hie_UTS_RK in algorithm 10 and 12. The only difference is that the hie_LTS_vec and 

hie_UTS_vec must cater for mixed precision, where the matrix 𝐴𝑥 or 𝑏 is of double precision, 

while 𝐿 and 𝑈 are of single precision. The reason for the mixed precision is detailed in [1]. 

For hie_matvec_L and hie_matvec_U, one can refer to the pseudo-code defined for hie_matvec_A 

in Section 5.2.2.4. The only difference is that the two new routines are modified for lower or upper 

triangular matrix multiplication instead. 

With these subroutines defined, the hierarchical-LU preconditioner is constructed and applied as 

follows. First, hierarchy_split, hierarchy_compress and hie_LU subroutines are called to construct 

the preconditioner. To apply the preconditioner, hie_LTS_vec is called first, followed by 

hie_UTS_vec.  

6.2.4 Parallelization 

The hierarchical-LU preconditioner is parallelized using OpenMP. This is a preliminary attempt 

made so that the performance of parallel hierarchical-LU preconditioner can be compared to 

parallel block Jacobi. The comparison is desired, since the main benefit of block Jacobi lies in its 

parallelizability. However, there are better parallelizing strategies available where near optimal 

speedup can be attained. The implementation of these more complicated strategies are however 

not within the scope of this project. These are discussed in Section 7 as part of the recommendation 

for future works.  
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The main consideration for parallelizing the codes here is to ensure that the tasks distributed to the 

processor is large enough to justify the overhead required to run OpenMP on these routines. In 

addition, the routines associated with the hierarchy_class object is recursive in nature. Hence, one 

has to enable nested parallelism in OpenMP to achieve reasonable results. With this in mind, the 

following subroutines are parallelized: 

 hierarchy_split  

 subtract_lowrank 

 hie_matmul_A 

 hie_matmul_L 

 hie_matmul_U 

 hie_matmul_U_T 

 rounded_subtraction 

 hie_LTS 

 hie_UTS 

 hie_LU 

 hie_matvec_A 

 hie_matvec_L 

 hie_matvec_U 

Subroutines like truncate are not parallelized because results showed that the tasks distributed to 

each processor is too small. Thus, the amount of overhead involved in setting up OpenMP 

dominates over the benefit of parallelism. Other subroutines hie_LTS_RK, hie_UTS_RK, are 

intrinsically sequential. Hence, they are not parallelized as well.  

The following subsections discussed how the subroutines are parallelized. All parallel regions are 

enclosed in red. 

6.2.4.1 Hierarchy_split 

Here, each block can be assigned to a processor. The level of nested parallelism is limited to 𝑙 = 2 

here because the amount of work required to hierarchically split a block of matrix is relatively 

small. Hence, if the work is reduced to pieces that are too small, the overhead required to parallelize 

dominates over the gain in performance. 
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1) Compute the 4 block row and column numbers corresponding to the 4 sub-blocks of 

M at the next level. This can be obtained easily from 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖 and 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗 
as depicted in the figure below. 

 

2) If 𝑙 = 0 
PARALLEL DO 

a) Do for block 1 to 4 

i) Recursively call hierarchy_split 

END PARALLEL DO 

3) Else 

PARALLEL DO IF(𝒍 ≤ 𝟐) 
a) Do for block 1 to 4 

i) Call ACA or Lanzcos_Bidiag to determine if block is admissible 

(1) If admissible, store 𝑈𝜎 ,𝜏  and 𝑉𝜎 ,𝜏  in the 1D array 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and 

𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and update 𝑎𝑑𝑚_𝑟𝑜𝑤 and 𝑎𝑑𝑚_𝑐𝑜𝑙 
(2) Else 

(a) If 𝑙 =finest recursion level, update 𝑖𝑛𝑎𝑑𝑚_𝑟𝑜𝑤 and 𝑖𝑛𝑎𝑑𝑚_𝑐𝑜𝑙 
(b) Else, recursively call hierarchy_split 

    END PARALLEL DO 

  

Algorithm 15 Parallel hierarchy_split 

6.2.4.2 Subtract_lowrank 

The level of nested parallelism is again limited.  
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1) If 𝑙 = finest recursion level 

a) If 𝑎𝑑𝑚_𝐴 = 0 

i) Construct the product 𝑈𝑉𝑇 explicitly and subtract A with the product 

b) Else 

i) Perform formatted addition 

2) Else 

a) If 𝑎𝑑𝑚_𝐴 = 1 
i) Perform formatted addition 

b) Else, split the block into four sub-blocks, 𝑈 and 𝑉 into halves as shown in 
Equation 13. 

PARALLEL SECTIONS if (𝒍 ≤ 𝟑) 
SECTION 1: 

i) 𝐴11 = 𝐴11 − 𝑈1𝑉1
𝑇 

SECTION 2: 

ii) 𝐴12 = 𝐴12 − 𝑈1𝑉2
𝑇 

SECTION 3: 

iii) 𝐴21 = 𝐴21 − 𝑈2𝑉1
𝑇 

SECTION 4: 

iv) 𝐴22 = 𝐴22 − 𝑈2𝑉2
𝑇 

END PARALLEL SECTIONS  

Algorithm 16 Parallel subtract_lowrank 

6.2.4.3 Hie_matmul_A, hie_matmul_L, hie_matmul_U, hie_matmul_U_T, hie_matvec_A, 

hie_matvec_L, hie_matvec_U 

All these subroutines are parallelized in the same way. Hence, only the pseudo-code for 

hie_matmul_A is shown. Note that the level of nested parallelism is not limited in this case, since 

the amount of work required at the leaf nodes is high.  

1) If 𝑙 =finest recursion level 

a) If 𝑎𝑑𝑚_𝐴 = 0 
i)  Dense matrix multiplication (XGEMM) 

b) Else 

i) Low rank matrix multiplication (XGEMM) 

2) Else 

a) If 𝑎𝑑𝑚_𝐴 = 1 
i) Low rank matrix multiplication (XGEMM) 

b) Else, split the block into four sub-blocks, and 𝑀_𝑖𝑛 and 𝑀_𝑜𝑢𝑡 into two 
halves according to Equation 12. 

PARALLEL SECTIONS 

SECTION 1: 

i) 𝑀_𝑜𝑢𝑡1 = 𝑀_𝑜𝑢𝑡1 + 𝐴11𝑀_𝑖𝑛1 + 𝐴12𝑀_𝑖𝑛2  
SECTION 2: 

ii) 𝑀_𝑜𝑢𝑡2 = 𝑀_𝑜𝑢𝑡2 + 𝐴21𝑀_𝑖𝑛1 + 𝑀22𝑀_𝑖𝑛2 

END PARALLEL SECTIONS  

Algorithm 17 Parallel hie_matmul_A 
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6.2.4.4 Rounded_subtraction 

In the case of rounded_subtraction, only case 16 is parallelized, since the rest of the cases are leaf 

nodes. The algorithm below thus shows only case 16. 

… 

16) Case 16: Split all three 𝐴, 𝐿 and 𝑈 blocks into 4 sub-blocks each and apply 
rounded-subtraction recursively according to Equation 14.  

PARALLEL SECTIONS 

SECTION 1: 

a) 𝐴11 = 𝐴11 − 𝐿11𝑈11 − 𝐿12𝑈21 

SECTION 2: 

b) 𝐴12 = 𝐴12 − 𝐿11𝑈12 − 𝐿12𝑈22 

SECTION 3: 

c) 𝐴21 = 𝐴21 − 𝐿21𝑈11 − 𝐿22𝑈21 

SECTION 4: 

d) 𝐴22 = 𝐴22 − 𝐿21𝑈12 − 𝐿22𝑈22 

END PARALLEL SECTIONS  

Algorithm 18 Parallel rounded_subtraction 

6.2.4.5 Hie_LTS and Hie_UTS 

The parallelization of hie_LTS and hie_UTS is again similar. Hence, only hie_LTS is shown here.  

1) If 𝑙 =finest recursion level 

a) If 𝑎𝑑𝑚_𝐴 = 0 

i) Swap the rows in the dense matrix 𝐴 according to 𝑃𝑖𝑣𝑜𝑡(XLASWP) 
ii) Solve the lower triangular system (XTRTRS) 

b) Else 

i) Let 𝐵 = 𝐶𝐷𝑇, 𝐴 = 𝑈𝑉𝑇. Solve for 𝐷 using 𝐷 = 𝑉 

ii) Swap the rows in the matrix 𝑈 according to 𝑃𝑖𝑣𝑜𝑡 (XLASWP) 

iii) Solve the lower triangular system 𝐿𝐶 = 𝑈 (XTRTRS) 
2) Else 

a) If 𝑎𝑑𝑚_𝐴 = 0 

i) Split block 𝐴, 𝐵 and 𝐿 into four sub-blocks each according to Equation 15. 
PARALLEL SECTIONS 

SECTION 1: 

ii) Solve for 𝐵11 by recursively calling hie_LTS 

iii) Call rounded_subtraction to update 𝐴21 with 𝐴21 − 𝐿21𝐵11 

iv) Solve for 𝐵21 by recursively calling hie_LTS 

SECTION 2: 

ii) Solve for 𝐵12 by recursively calling hie_LTS 

iii) Call rounded_subtraction to update 𝐴22 with 𝐴22 − 𝐿21𝐵12 

iv) Solve for 𝐵22 by recursively calling hie_LTS 

END PARALLEL SECTIONS 

b) Else 

ii) Let 𝐵 = 𝐶𝐷𝑇, 𝐴 = 𝑈𝑉𝑇. Solve for 𝐷 using 𝐷 = 𝑉 

iii) Call hie_LTS_RK to solve for 𝐶.   

Algorithm 19 Parallelized hie_LTS 
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6.2.4.6 Hie_LU 

The algorithm for hie_LU is intrinsically sequential in the sense that work described in (2c) and 

(2d) can only start when (2b) is completed, and (2e) can only begin when (2c) and (2d) are done. 

Hence, only (2c) and (2d) can be parallelized here. 

1) If 𝑙 = finest recursion levels 
a) Dense matrix LU-decomposition (XGETRF) 

2) Else 

a) Split block A into 4 sub-blocks according to Equation 11. 

b) Recursively call hie_LU on the first sub_block 𝐴11 

PARALLEL SECTIONS 

SECTION 1 

c) Call hie_LTS on the second sub-block 𝐴12 

SECTION 2 

d) Call hie_UTS on the third sub-block 𝐴21 

END PARALLEL SECTIONS 

e) Call rounded_subtraction to update 𝐴22  with 𝐴22 = 𝐴22 − 𝐿21𝑈12 

f) Recursively call hie_LU on the last sub-block 𝐴22  

Algorithm 20 Parallel hie_LU 

6.3 RESULTS 

This section presents the results obtain from solving the test problems with hierarchical-LU 

preconditioner. There are three main parameters that can be varied to influence the performance 

of the hierarchical-LU preconditioner, the tolerance below which the blocks are admissible 𝑡𝑜𝑙_ℎ𝑖𝑒, 

the level of recursion determined by the minimum block length allowed 𝑏 and the rank of the low 

rank approximation 𝑝. These parameters are varied, and the results are recorded. The best results 

obtained from these tests are then compared against the best results obtained using block Jacobi 

preconditioner. Results for both GMRES and IDR(s) are presented in this section.   

This section is organized such that the results obtained using sequential computations are first 

presented. This is then followed by the results obtained when OpenMP is enabled. In view of the 

long test time involved for sequential computations with multiple RHS, results for multiple RHS 

are only obtained with OpenMP enabled.  

6.3.1 Results based on sequential computations 

The solve times obtained using the hierarchical-LU decomposition is shown in Table 17-20.  
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The columns in Table 17-20 has the same definitions as those in Section 3.3. The only difference 

is the Prec const is now the time required to perform hierarchy_split, hierarchy_compress and 

hie_LU, and Prec apply is now the time to apply the hie_LU preconditioner through calling 

hie_LTS_vec and hie_UTS_vec. Note that when the number of iteration exceeds 500, the results 

are not recorded.  

Before discussing the many test results recorded in Table 17-20, the performance of the 

hierarchical-LU preconditioner as compared to the block Jacobi preconditioner is first studied. 

Table 15 below shows the best solve time obtained sequentially with block Jacobi preconditioner 

for the test matrices. This is the baseline results with which the solve times for hierarchical-LU 

decomposition are compared against.  

Matrix 

Block-size for 

Block Jacobi 

Preconditioner 

GMRES IDR(s) 

Wall clock time (s) # iters Wall clock time (s) # iters 

FATIMA_20493 4000 239.8 103 249.836 110 

FATIMA_7894 1000 21.3 121 23.23 133 

PASSCAL 500 2.2 91 2.7 106 

STEADYCAV1 

(representing all 

steadycav matrices) 

500 1.7 61 1.9 68 

Table 15 Baseline results using block Jacobi preconditioner – Sequential. Results that are better than those obtained with 

hierarchical-LU preconditioner are highlighted in green 

The best solve time attained using hierarchical-LU decomposition is shown in the table below: 

Matrix 
Variables for 

hie_LU 

GMRES IDR(s) 

Wall clock time (s) # iters Wall clock time (s) # iters 

FATIMA_20493 

Tol: 1e-03 

b = 200 

p = 50 

134.74 51 140.35 55 

FATIMA_7894 

Tol: 1e-03 

b = 200 

p = 50 

18.72 11 19.03 11 

PASSCAL 

Tol: 1e-02 

b = 100 

p = 20 

2.62 44 2.72 46 

STEADYCAV1 

(representing all 

steadycav matrices) 

Tol: 1e-02 

b = 100 

p = 30 

2.65 32 2.86 37 

Table 16 Best results obtained using hierarchical-LU preconditioner - Sequential. Results that are better than those obtained 

with block Jacobi preconditioner are highlighted in green 

Although for the smaller matrices, hierarchical-LU preconditioner takes slightly more time as 

compared to block Jacobi, as the size of the system grows, hierarchical-LU preconditioner 



Ang Yun Mei Elisa Master Thesis Report 81 

outperforms block Jacobi. The time required to solve the larger FATIMA_20493 system is 44% 

less when using the hierarchical-LU preconditioner as compared to the block Jacobi preconditioner. 

The advantage of the hierarchical-LU preconditioner is illustrated more clearly by looking at 

Figure 38. As the size of the matrix increases, the time required to solve the system using 

hierarchical-LU preconditioner becomes much cheaper, as compared to that required for the block 

Jacobi preconditioner. This can be explained by the fact that with the block Jacobi preconditioner, 

the time to construct the preconditioner scales with 𝑂 ((
𝑁

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠
)
3

), while that required 

for the hierarchical-LU preconditioner scales with 𝑂(𝑁(𝑙𝑜𝑔𝑁)2) [12]. In addition, the use of the 

hierarchical-LU preconditioner with a reasonable tolerance preconditions the system very well, as 

can be seen by the low number of iterations required to solve the system. This reduces the number 

of dense matvec operations required, and therefore, improves the performance of the solver. 

 

Figure 38 Comparison of block Jacobi preconditioner with hie-LU preconditioner 

For the Steadycav matrices, it was mentioned in Section 5 that due to their structure, ACA 

algorithm with partial pivoting is unable to approximate the Steadycav matrices well. Using the 

hierarchical matrices as a preconditioner instead of an approximation to the system matrix, allows 

the ACA algorithm with partial pivoting to be used for the Steadycav matrices. One can still 

observe a significant reduction in number of iterations required. 

Having established the success of the hierarchical-LU preconditioner, its dependence on the 3 

parameters, 𝑡𝑜𝑙_ℎ𝑖𝑒, 𝑏 and 𝑝 is now discussed. 
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FATIMA_20493 

Tol_

hie 
b p 

GMRES IDR(s) 

Wall clock time (s) 

#iter 
Rel 

error 

Wall clock time (s) 

#iter Rel error Prec 

const 

Prec 

apply 

Matve

c 
Solve Total 

Prec 

const 

Prec 

apply 
Matvec Solve Total 

1.00E

-02 

100 

10 27.69     >500  27.66 40.87 393.99 436.77 467.70 420 1.65E-05 

20 24.38     >500  24.34 34.22 348.55 384.47 409.27 371 8.07E-06 

30 25.46     >500  25.55 38.43 396.99 437.35 463.56 421 1.30E-05 

40 29.32     >500  29.30     >500  

50 39.51     >500  37.64     >500  

200 

10 70.71 22.88 132.57 156.32 227.48 142 2.06E-05 70.80 28.94 152.99 182.72 256.75 162 8.03E-06 

20 42.82 22.03 169.20 192.61 235.93 181 6.12E-06 43.04 29.78 211.33 242.18 285.54 223 2.59E-06 

30 36.60 40.99 332.65 376.62 413.82 354 4.85E-06 36.62 29.33 237.33 267.84 304.79 252 4.00E-06 

40 35.18     >500  35.22 42.96 331.30 375.88 411.55 352 9.42E-07 

50 34.03     >500  34.09 50.84 405.45 458.26 492.92 431 3.43E-06 

600 

10 122.61 24.91 97.79 123.18 246.21 105 6.54E-06 122.59 32.18 114.83 147.62 273.32 121 2.71E-06 

20 73.18 25.65 129.12 155.59 229.20 138 4.69E-06 73.41 32.72 151.51 185.01 258.59 160 1.24E-06 

30 61.04 22.29 121.27 144.29 205.82 130 1.32E-06 60.94 27.13 136.56 164.40 225.60 145 6.38E-07 

40 58.34 23.66 128.32 152.79 211.66 137 1.53E-06 58.43 27.22 147.52 175.49 237.28 156 7.10E-07 

50 53.55 23.62 131.11 155.58 209.68 140 4.49E-06 53.86 27.13 151.22 179.13 236.33 160 2.45E-06 

60 53.79 25.52 140.33 166.81 220.91 150 1.24E-06 53.86 32.38 168.32 201.56 255.78 179 1.77E-06 

1.00E

-03 

100 

10 136.41     >500  136.51     >500  

20 72.66 13.39 88.90 102.69 176.10 95 2.86E-06 72.64 15.63 103.84 120.00 193.37 109 7.43E-07 

30 65.83 8.88 63.56 72.64 139.39 68 3.27E-07 65.85 10.00 71.68 82.06 148.90 75 1.30E-07 

40 70.87 8.63 61.39 70.53 142.58 66 5.84E-07 68.99 9.79 69.82 79.99 150.13 73 2.21E-07 

50 77.50 8.06 63.90 72.55 151.81 61 5.52E-07 90.65 9.54 78.48 88.39 180.63 68 1.99E-07 

200 

10 406.40 42.51 110.88 154.00 560.90 119 2.08E-05 408.53 48.88 129.48 179.03 588.90 137 5.86E-06 

20 126.00 14.81 65.46 80.50 207.08 70 1.99E-06 125.88 18.39 74.55 93.33 219.55 78 8.32E-07 

30 87.70 10.42 57.94 68.54 156.63 62 5.84E-07 88.19 12.73 65.67 78.77 167.33 69 5.20E-07 

40 81.47 8.53 49.62 58.28 140.58 53 1.84E-07 81.47 9.41 54.22 63.94 145.85 57 1.84E-07 

50 77.97 8.00 47.76 55.88 134.74 51 1.22E-07 77.99 8.85 52.70 61.84 140.35 55 1.80E-07 

60 81.33 8.31 48.69 57.13 139.44 52 2.21E-07 81.37 9.83 53.59 63.73 145.78 56 1.64E-07 

600 

10 963.87 32.20 53.34 85.70 1050.11 57 3.63E-06 971.32 35.79 59.34 98.66 1070.51 62 1.40E-06 

20 276.34 15.22 43.98 59.30 336.18 47 6.47E-07 276.69 16.32 47.21 64.10 340.96 49 4.33E-07 

30 164.34 14.52 52.45 67.12 231.99 56 1.66E-06 164.63 17.95 59.20 77.49 245.42 62 4.70E-07 
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40 121.25 12.09 49.67 61.90 183.72 53 7.22E-08 121.33 13.60 55.62 69.54 191.12 58 3.06E-08 

50 92.82 10.04 46.87 57.04 150.46 50 1.28E-07 92.83 11.10 51.88 63.28 156.40 54 6.58E-08 

60 92.79 10.15 46.83 57.11 150.57 50 1.03E-06 92.67 12.14 52.54 64.99 158.03 55 4.17E-07 

1.00E

-04 

100 

10 331.32     >500  331.14 111.20 340.50 453.36 784.77 362 6.18E-05 

20 215.48 11.71 44.88 56.71 272.98 48 3.53E-07 214.12 13.07 50.05 63.41 277.99 52 8.84E-08 

30 194.35 6.77 28.06 34.88 229.94 30 1.34E-08 193.96 7.52 31.32 39.04 236.76 32 8.20E-09 

40 218.94 7072.00 31.70 39.14 259.01 31 2.28E-08 222.17 7.87 37.37 45.44 271.60 33 9.93E-09 

50 264.96 7.43 43.49 54.14 320.32 33 1.29E-08 271.13 8.05 50.39 58.78 334.16 34 3.85E-08 

200 

10 1111.75 31.11 50.46 84.87 1197.17 54 9.13E-07 1123.46 33.89 58.13 92.34 1219.34 58 1.34E-06 

20 371.70 14.74 41.06 55.89 428.21 44 2.72E-07 371.99 15.90 44.51 60.68 432.95 46 3.46E-07 

30 301.42 8.83 27.15 36.03 337.90 29 3.29E-08 301.80 9.86 30.34 40.40 342.57 31 3.00E-08 

40 279.68 8.25 26.20 34.50 314.76 28 1.75E-08 279.79 8.98 28.49 37.66 317.94 29 2.78E-08 

50 247.97 8.01 27.17 35.36 283.88 29 1.92E-08 248.11 9.28 31.16 40.64 292.41 32 6.09E-09 

60 244.93 8.10 28.07 36.21 281.84 30 2.47E-08 244.82 8.76 30.23 39.19 287.76 31 1.92E-08 

600 

20 697.21 16.64 31.67 48.37 745.84 34 2.97E-07 700.10 17.85 33.97 52.04 752.36 35 2.52E-07 

30 396.08 11.30 27.95 39.30 435.65 30 1.62E-07 397.48 12.60 31.24 44.05 441.78 32 9.26E-08 

40 338.43 10.24 27.16 37.45 376.19 29 1.39E-08 339.97 11.21 29.45 40.86 381.11 30 3.22E-08 

50 282.32 11.50 32.80 44.36 327.05 35 9.54E-08 282.99 12.64 35.89 48.75 332.06 37 3.43E-08 

60 266.34 11.45 33.46 44.99 311.11 36 1.76E-07 267.18 12.70 36.82 49.74 317.29 38 1.97E-07 

Table 17 Results using hierarchy-LU preconditioner for FATIMA_20493. The best results obtained for GMRES and IDR(s) are highlighted in green 
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FATIMA_7894 

Tol_

hie 
b p 

GMRES IDR(s) 

Wall clock time (s) 

#iter 
Rel 

error 

Wall clock time (s) 

#iter Rel error Prec 

const 

Prec 

apply 

Matve

c 
Solve Total 

Prec 

const 

Prec 

apply 
Matvec Solve Total 

1.00E

-02 

100 

10 19.47 7.93 23.18 31.60 51.08 173 9.19E-05 19.59 11.10 32.40 43.77 63.38 243 3.73E-05 

20 9.47 12.01 52.96 66.23 75.74 395 1.40E-05 9.38 9.93 41.16 51.42 60.84 305 7.94E-06 

30 8.51     >500  8.51     >500  

40 9.38 10.57 47.49 59.10 68.56 355 2.22E-06 9.35 9.38 40.30 50.00 59.43 301 1.41E-06 

50 10.45 10.64 45.88 57.51 68.06 343 1.67E-06 10.38 8.60 36.97 45.86 56.34 278 1.25E-06 

60 11.73 10.80 44.01 55.73 67.57 328 4.64E-06 11.72 9.38 36.89 46.56 58.41 277 7.50E-07 

200 

10 29.46 2.42 5.43 7.89 37.36 41 1.11E-07 29.41 2.67 5.99 8.72 38.14 44 6.89E-08 

20 12.52 2.05 7.15 9.26 21.79 53 1.16E-06 12.37 2.58 8.37 11.03 23.41 61 1.00E-07 

30 9.64 1.97 7.56 9.59 19.26 57 4.20E-07 9.71 2.43 9.53 12.04 21.78 68 2.93E-07 

40 9.45 2.25 8.81 11.14 20.62 65 5.41E-07 9.47 2.65 10.31 13.05 22.57 75 6.44E-07 

50 9.32 3.33 13.07 16.56 25.93 98 6.85E-07 9.35 3.78 15.02 18.93 28.33 109 4.87E-07 

60 9.88 3.69 14.11 17.98 27.92 105 5.23E-07 9.81 4.30 16.37 20.80 30.67 122 2.42E-07 

250 

10 40.39 1.70 3.03 4.74 45.14 23 1.16E-08 40.16 2.03 3.35 5.41 45.58 24 1.12E-08 

20 19.69 1.62 3.97 5.62 25.32 30 1.92E-08 19.80 1.83 4.50 6.37 26.18 32 4.72E-08 

30 13.42 1.49 4.14 5.65 19.08 31 1.52E-07 13.45 1.69 4.75 6.49 19.96 34 8.04E-08 

40 13.14 1.53 4.43 5.98 19.14 33 8.79E-08 13.16 1.73 5.04 6.82 20.00 36 2.51E-08 

50 12.56 1.88 5.49 7.40 19.99 41 9.98E-08 12.58 2.03 5.96 8.04 20.64 43 9.29E-08 

60 12.34 1.85 5.35 7.23 19.60 40 1.30E-07 12.31 2.11 6.05 8.21 20.55 44 2.50E-08 

1.00E

-03 

100 

10 58.01 4.10 7.25 11.40 69.43 54 9.71E-08 57.71 4.91 8.05 13.03 70.76 58 1.62E-07 

20 23.62 1.17 3.32 4.50 28.17 25 2.59E-08 23.63 1.33 3.80 5.17 28.84 27 6.91E-09 

30 18.52 1.08 3.46 4.55 23.13 26 1.09E-08 18.58 1.19 3.81 5.03 23.67 27 1.09E-08 

40 17.73 0.98 3.21 4.20 22.01 24 9.54E-09 17.68 1.08 3.53 4.64 22.41 25 2.05E-08 

50 18.70 1.00 3.18 4.19 23.00 24 1.80E-08 18.82 1.14 3.64 4.82 23.73 26 8.13E-09 

60 20.84 1.04 3.19 4.24 25.21 24 8.27E-09 20.76 1.20 3.51 4.75 25.63 25 1.92E-08 

200 

10 77.57 1.32 1.86 3.18 80.76 14 8.07E-08 77.61 1.53 2.17 3.73 81.34 15 6.92E-08 

20 28.11 0.81 1.86 2.68 30.81 14 3.47E-09 28.21 0.95 2.21 3.18 31.41 15 1.16E-09 

30 19.27 0.49 1.32 1.82 21.12 10 1.77E-08 19.39 0.60 1.67 2.30 21.72 11 3.49E-09 

40 16.93 0.50 1.46 1.97 18.94 11 9.19E-10 17.03 0.57 1.67 2.26 19.33 11 2.09E-09 

50 16.69 0.51 1.47 1.98 18.72 11 1.81E-09 16.71 0.57 1.68 2.27 19.03 11 3.61E-09 

60 17.30 0.56 1.59 2.15 19.51 12 5.70E-09 17.32 0.67 1.92 2.61 19.99 13 2.77E-09 

250 
10 103.16 1.07 1.19 2.26 105.43 9 2.47E-10 103.03 1.21 1.37 2.61 105.64 9 2.31E-09 

20 37.98 0.55 0.92 1.47 39.46 7 1.10E-08 38.00 0.65 1.12 1.79 39.80 7 6.15E-09 
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30 24.57 0.52 1.06 1.59 26.17 8 3.11E-09 24.61 0.60 1.26 1.88 26.51 8 1.23E-08 

40 20.02 0.54 1.19 1.73 21.77 9 1.36E-09 19.91 0.61 1.39 2.02 21.95 9 3.08E-09 

50 18.23 0.53 1.22 1.75 20.01 9 5.76E-09 18.34 0.65 1.57 2.24 20.60 10 1.38E-09 

60 18.86 0.57 1.35 1.93 20.81 10 3.29E-09 18.81 0.65 1.55 2.23 21.07 10 1.28E-08 

1.00E

-04 

100 

10 93.57 2.36 3.18 5.56 99.15 24 1.14E-08 93.72 2.59 3.51 6.14 99.88 25 9.39E-09 

20 49.68 2.03 3.99 6.04 55.76 30 2.39E-08 49.72 2.25 4.43 6.72 56.49 32 5.23E-08 

30 38.47 2.06 4.94 7.03 45.56 37 3.72E-08 38.42 2.29 5.57 7.92 46.40 40 2.31E-08 

40 36.94 1.40 3.51 4.92 41.95 26 2.86E-08 37.05 1.53 3.77 5.33 42.46 27 7.67E-08 

50 37.98 1.03 2.52 3.56 41.64 19 2.39E-08 37.95 1.24 3.02 4.30 42.35 21 9.76E-09 

60 40.90 0.58 1.34 1.93 42.95 10 3.43E-09 40.99 0.67 1.51 2.20 43.32 10 9.19E-09 

200 

10 121.17 0.88 0.93 1.81 122.99 7 1.47E-09 121.26 1.04 1.12 2.17 123.44 7 2.96E-09 

20 53.50 0.96 1.60 2.57 56.09 12 1.65E-08 53.44 1.14 1.93 3.10 56.56 13 7.23E-09 

30 36.90 0.91 1.86 2.78 39.71 14 7.13E-09 36.96 1.07 2.20 3.29 40.28 15 3.24E-09 

40 32.80 0.79 1.73 2.52 35.36 13 3.25E-09 32.80 0.93 2.06 3.01 35.85 14 1.42E-09 

50 31.49 0.64 1.46 2.11 33.65 11 6.42E-08 31.54 0.78 1.79 2.59 34.18 12 1.38E-08 

60 31.27 0.48 1.08 1.57 32.89 8 4.31E-10 31.34 0.56 1.25 1.83 33.22 8 1.90E-09 

250 

10 153.53 0.75 0.66 1.41 154.94 5 3.93E-10 153.37 0.93 0.85 1.79 155.17 5 1.89E-09 

20 68.42 0.81 1.06 1.87 70.30 8 3.65E-08 68.61 1.04 1.39 2.45 71.07 9 2.47E-09 

30 44.48 0.82 1.33 2.15 46.65 10 2.11E-09 44.46 0.94 1.54 2.50 46.98 10 3.20E-09 

40 39.12 0.56 0.94 1.50 40.64 7 3.41E-10 39.22 0.68 1.12 1.81 41.05 7 1.06E-09 

50 34.66 0.60 1.07 1.67 36.36 8 6.03E-09 34.66 0.78 1.38 2.18 36.87 9 4.87E-10 

60 32.31 0.39 0.67 1.06 33.40 5 1.13E-08 32.25 0.55 0.99 1.56 33.84 6 7.72E-10 

Table 18 Results using hierarchy-LU preconditioner for FATIMA_7894. The best results obtained for GMRES and IDR(s) are highlighted in green. 
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PASSCAL 

Tol_

hie 
b p 

GMRES IDR(s) 

Wall clock time (s) 

#iter 
Rel 

error 

Wall clock time (s) 

#iter Rel error Prec 

const 

Prec 

apply 

Matve

c 
Solve Total 

Prec 

const 

Prec 

apply 
Matvec Solve Total 

1.00E

-02 

100 

10 2.37 0.25 0.47 0.73 3.10 23 4.62E-08 2.38 0.27 0.52 0.81 3.19 24 1.33E-08 

20 1.37 0.34 0.91 1.25 2.62 44 3.34E-08 1.36 0.36 0.98 1.36 2.72 46 2.38E-07 

30 1.46 0.35 0.97 1.33 2.80 47 1.01E-06 1.48 0.40 1.08 1.49 2.98 51 1.69E-07 

40 1.70 0.40 1.12 1.53 3.24 49 7.71E-07 1.70 0.45 1.13 1.59 3.30 53 3.33E-07 

50 1.85 0.44 1.03 1.48 3.35 50 7.72E-07 1.85 0.48 1.14 1.65 3.51 54 3.60E-07 

200 

10 5.22 0.30 0.41 0.72 5.94 20 1.68E-07 5.18 0.35 0.49 0.85 6.03 22 2.42E-08 

20 2.20 0.40 0.79 1.19 3.40 38 9.54E-08 2.21 0.46 0.89 1.37 3.58 42 3.45E-07 

30 1.74 0.43 0.95 1.39 3.13 46 7.41E-07 1.74 0.48 1.07 1.56 3.31 50 2.57E-07 

40 1.70 0.44 0.99 1.44 3.15 48 1.14E-06 1.71 0.51 1.13 1.66 3.38 53 2.27E-07 

50 1.84 0.48 1.04 1.53 3.37 50 9.29E-07 1.85 0.53 1.17 1.72 3.58 55 2.36E-06 

1.00E

-03 

100 

10 3.99 0.12 0.17 0.29 4.28 8 4.87E-09 3.97 0.15 0.22 0.37 4.35 9 3.60E-10 

20 2.82 0.13 0.23 0.36 3.18 11 1.01E-08 2.84 0.15 0.26 0.41 3.26 11 1.14E-08 

30 2.98 0.19 0.39 0.59 3.58 19 7.42E-09 3.03 0.23 0.46 0.70 3.74 21 1.34E-09 

40 3.01 0.18 0.37 0.56 3.58 18 1.78E-08 3.02 0.21 0.42 0.64 3.67 19 6.54E-09 

50 3.26 0.21 0.41 0.62 3.89 20 1.21E-08 3.31 0.24 0.46 0.71 4.04 21 9.70E-09 

200 

10 7.45 0.10 0.10 0.21 7.66 5 3.62E-10 7.45 0.13 0.13 0.27 7.71 5 6.93E-09 

20 4.92 0.17 0.23 0.40 5.32 11 6.88E-10 4.97 0.19 0.26 0.45 5.43 11 2.65E-09 

30 3.58 0.24 0.37 0.61 4.19 18 2.50E-08 3.63 0.29 0.45 0.74 4.38 20 1.40E-08 

40 2.96 0.21 0.39 0.61 3.57 19 8.70E-09 2.96 0.23 0.42 0.67 3.63 19 2.41E-08 

50 2.91 0.22 0.39 0.61 3.53 19 2.29E-08 2.92 0.25 0.49 0.74 3.67 20 2.58E-08 

1.00E

-04 

100 

10 6.15 0.13 0.15 0.28 6.42 7 3.20E-09 6.12 0.15 0.18 0.33 6.46 7 5.80E-09 

20 3.96 0.10 0.14 0.25 4.21 7 4.46E-09 3.95 0.12 0.17 0.30 4.26 7 1.22E-08 

30 3.87 0.10 0.17 0.27 4.15 8 2.27E-09 3.90 0.12 0.20 0.32 4.23 8 8.58E-09 

40 4.81 0.09 0.14 0.24 5.06 7 1.78E-10 4.67 0.11 0.17 0.29 4.97 7 4.19E-10 

50 4.97 0.09 0.15 0.24 5.22 7 3.12E-10 4.96 0.11 0.18 0.30 5.27 7 7.20E-10 

200 

10 12.88 0.13 0.10 0.24 13.12 5 4.08E-09 12.88 0.19 0.15 0.35 13.24 6 3.52E-11 

20 6.92 0.08 0.08 0.17 7.09 4 8.12E-12 6.94 0.11 0.11 0.22 7.17 4 9.60E-12 

30 4.73 0.11 0.14 0.26 4.99 7 3.87E-09 4.78 0.15 0.20 0.35 5.14 8 1.01E-10 

40 4.18 0.10 0.15 0.25 4.43 7 3.68E-09 4.18 0.12 0.17 0.30 4.49 7 6.46E-09 

50 4.41 0.09 0.12 0.21 4.63 6 1.56E-09 4.41 0.11 0.15 0.27 4.68 6 1.04E-08 

Table 19 Results using hierarchy-LU preconditioner for PASSCAL. The best results obtained for GMRES and IDR(s) are highlighted in green 
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STEADYCAV1 

Tol_

hie 
b p 

GMRES IDR(s) 

Wall clock time (s) 

#iter 
Rel 

error 

Wall clock time (s) 

#iter Rel error Prec 

const 

Prec 

apply 

Matve

c 
Solve Total 

Prec 

const 

Prec 

apply 
Matvec Solve Total 

1.00E

-02 

100 

10 5.76 0.57 0.78 1.35 7.12 34 3.78E-06 5.77 0.70 0.94 1.65 7.43 40 6.09E-07 

20 1.98 0.34 0.73 1.07 3.06 32 5.76E-05 1.99 0.38 0.96 1.35 3.34 37 3.48E-05 

30 1.63 0.28 0.73 1.01 2.65 32 9.35E-05 1.63 0.34 0.88 1.22 2.86 37 1.43E-06 

40 1.61 0.28 0.78 1.06 2.69 34 1.58E-05 1.61 0.33 0.99 1.33 2.96 38 1.98E-05 

50 1.93 0.30 0.78 1.08 3.02 34 1.37E-05 1.94 0.34 0.88 1.22 3.17 37 7.82E-05 

200 

10 7.66 0.60 0.73 1.34 9.00 32 2.52E-05 7.65 0.71 0.86 1.57 9.23 36 2.54E-06 

20 2.36 0.32 0.66 0.98 3.34 29 3.45E-05 2.36 0.36 0.72 1.08 3.44 30 5.53E-06 

30 1.85 0.32 0.73 1.05 2.90 32 8.87E-05 1.85 0.38 0.85 1.23 3.08 36 4.83E-05 

40 1.67 0.31 0.73 1.04 2.72 32 2.36E-05 1.66 0.36 0.86 1.22 2.89 36 3.86E-05 

50 1.78 0.31 0.73 1.05 2.83 32 5.50E-05 1.78 0.36 0.83 1.19 2.97 35 3.77E-05 

1.00E

-03 

100 

10 17.54 0.59 0.48 1.07 18.61 21 3.66E-05 17.55 0.73 0.58 1.31 18.86 24 2.53E-05 

20 7.09 0.36 0.45 0.81 7.90 20 4.02E-06 7.09 0.41 0.53 0.95 8.05 22 2.12E-06 

30 3.84 0.28 0.50 0.78 4.63 22 1.41E-05 3.84 0.32 0.57 0.90 4.75 24 2.75E-06 

40 3.29 0.24 0.50 0.74 4.05 22 3.18E-05 3.30 0.28 0.58 0.87 4.18 24 5.85E-05 

50 3.77 0.25 0.52 0.78 4.57 23 1.12E-05 3.76 0.30 0.60 0.90 4.67 25 1.92E-05 

200 

10 18.02 0.42 0.34 0.76 18.78 15 8.97E-06 18.02 0.51 0.42 0.93 18.96 17 2.59E-06 

20 8.57 0.41 0.46 0.87 9.44 20 6.35E-05 8.55 0.49 0.56 1.05 9.61 23 2.92E-06 

30 3.91 0.29 0.45 0.74 4.65 20 1.82E-05 3.92 0.35 0.56 0.91 4.83 23 2.05E-06 

40 2.97 0.24 0.45 0.70 3.68 20 7.27E-06 2.95 0.28 0.53 0.82 3.77 22 6.69E-05 

50 3.06 0.24 0.46 0.70 3.76 20 4.04E-05 3.04 0.28 0.53 0.81 3.86 22 4.23E-05 

1.00E

-04 

100 

10 20.68 0.40 0.30 0.70 21.38 13 4.78E-07 20.83 0.48 0.35 0.83 21.67 14 3.24E-06 

20 13.75 0.55 0.50 1.05 14.81 22 1.56E-05 13.78 0.67 0.62 1.30 15.08 26 2.21E-06 

30 11.30 0.50 0.54 1.05 12.36 24 5.53E-05 11.21 0.61 0.67 1.28 12.50 28 1.43E-05 

40 9.58 0.38 0.48 0.86 10.45 21 1.68E-05 9.57 0.46 0.58 1.05 10.63 24 4.42E-06 

50 9.39 0.29 0.39 0.68 10.08 17 9.41E-06 9.42 0.35 0.46 0.81 10.25 19 6.34E-06 

200 

10 19.49 0.35 0.27 0.62 20.11 12 3.53E-06 19.50 0.42 0.33 0.75 20.25 13 9.52E-06 

20 14.60 0.43 0.39 0.82 15.42 17 6.95E-06 14.62 0.50 0.44 0.94 15.57 18 7.93E-07 

30 11.09 0.47 0.48 0.95 12.04 21 2.27E-05 11.09 0.61 0.62 1.23 12.33 26 1.26E-06 

40 8.22 0.35 0.41 0.76 8.99 18 1.37E-05 8.27 0.40 0.47 0.87 9.15 19 1.55E-05 

50 7.21 0.28 0.36 0.65 7.86 16 7.98E-07 7.23 0.34 0.44 0.79 8.03 18 2.68E-06 

60 7.01 0.26 0.34 0.60 7.62 15 4.53E-06 7.02 0.30 0.40 0.70 7.73 16 2.36E-08 

Table 20 Results using hierarchy-LU preconditioner for STEADYCAV1. The best results obtained for GMRES and IDR(s) are highlighted in green
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6.3.1.1 Effect of tol_hie on the performance of hierarchical-LU preconditioner 

The tolerance 𝑡𝑜𝑙_ℎ𝑖𝑒  affects the accuracy of how well the hierarchical- 𝐿𝑈  preconditioner 

approximates the original system matrix 𝐴 . Therefore, the general trend expected is that the 

number of iterations required to solve the system increase as 𝑡𝑜𝑙_ℎ𝑖𝑒  decreases. This can be 

observed from the results shown in Table 17-20. For FATIMA_20493 at 𝑏 = 100, when 𝑡𝑜𝑙_ℎ𝑖𝑒 

drops to 1e-2, the preconditioner became so inaccurate that the number of iterations required 

exceeds 500. When 𝑡𝑜𝑙_ℎ𝑖𝑒 is increased to 1e-4, the average number of iterations required is only 

about 35 (disregarding the case when p=10). 

However, the lower the tolerance, the cheaper it is to perform hierarchical-LU decomposition. This 

is because more blocks are allowed to be admissible. Again using FATIMA_20493 matrix at 𝑏 =

100 as an example, the average time required to construct the preconditioner when 𝑡𝑜𝑙_ℎ𝑖𝑒 is 1e-

4 is roughly 245 s, while that required when 𝑡𝑜𝑙_ℎ𝑖𝑒 is 1e-2 is only about 30 s. Hence, there is a 

tradeoff between the time to construct the preconditioner and the solve time required. 

From Table 17 -20, one can obtain the graphs in Figure 39 below by looking at the various timings 

recorded for a fixed 𝑝 and 𝑏 while varying the tolerance. The same trends were observed for 

GMRES and IDR(s) solver, hence, only results for GMRES are plotted. The tradeoff between hie-

LU time and GMRES solver time as 𝑡𝑜𝑙_ℎ𝑖𝑒 increases is clearly shown for FATIMA_20493. 

Because of this trade-off, the optimal tolerance for FATIMA_20493 is around 1e-3. 

As the size of the matrix decreases, the time to perform dense matvec decreases with complexity 

𝑂(𝑁2). As such, the substantial decrease in time required to construct the preconditioner as 

𝑡𝑜𝑙_ℎ𝑖𝑒  decreases dominates over the increase in number of iterations required. This can be 

observed from the results of the smallest test matrix Passcal. The optimal tolerance here is found 

to be 1e-2.  
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Figure 39 Solver timings versus tolerance for the test matrices 
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6.3.1.2 Effect of b on the performance of hierarchical-LU preconditioner 

The smaller 𝑏 is, the deeper the recursion. There is an optimal 𝑏, because while deeper recursion 

implies additional work and storage, it also means more blocks can become admissible. This is 

illustrated using Figure 40, which shows the sparsity plot of 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 at different 𝑙𝑒𝑣𝑒𝑙𝑠 for Passcal. 

When 𝑙𝑒𝑣𝑒𝑙𝑠 increase from 4 to 5, a large part of the matrix becomes admissible. One can then 

expect the amount of work save from the additional admissible blocks to dominate over the extra 

work required from the deeper level of recursion. However, if 𝑙𝑒𝑣𝑒𝑙𝑠 increase to 6, the proportion 

of the matrix that becomes admissible is relatively smaller. In this case, the additional admissible 

blocks may not justify the deeper level of recursion. Because of this reason, it is not surprising to 

find that the time required to perform the hierarchy-LU decomposition in this case is 4.89s for 

𝑙𝑒𝑣𝑒𝑙𝑠 = 4, 4.02s for 𝑙𝑒𝑣𝑒𝑙𝑠 = 5 and 5.64 for 𝑙𝑒𝑣𝑒𝑙𝑠 = 6. 

 

Figure 40 Sparsity of the inadmissible matrix N for recursion levels 4 (left), 5 (middle) and 6(right) - (Passcal, p=35, tol_hie=1e-

4) 

In general, the trend observed is that the optimal 𝑙𝑒𝑣𝑒𝑙𝑠 is between 5 or 6 for all the test matrices. 

6.3.1.3 Effect of p on the performance of hierarchical-LU preconditioner 

The optimal value of 𝑝 depends very much on the physics of the system, reflected through the 

inherent rank of the off diagonal blocks of the system matrix. It can be observed from Figure 41 

that as 𝑝 approaches a threshold value, the time required for hierarchical-LU decomposition drops 

drastically. As 𝑝 increases beyond this threshold, the time required increase or decrease only 

slightly. The increase can be explained by the fact that as 𝑝 increases, the work required for every 

low rank operation increases. In addition, it can also cause more approximation since more blocks 

become admissible, and therefore, possibly increasing the number of iterations required to solve. 

However, increase in 𝑝 can also result in a more accurate low rank approximation to each low rank 

block. In this case, a slight drop in iteration can be observed, with a corresponding drop in time 



Ang Yun Mei Elisa Master Thesis Report 91 

required for GMRES/IDR(s). A combination of these effects result in the unstructured behavior 

observed above the threshold 𝑝 value.  

 

 

Figure 41 Solver timings versus rank p for the test matrices 

This threshold value of 𝑝 is observed to be about 30 for FATIMA_20493 and FATIMA_7894, 20 

for PASSCAL, and 30 for Steadycav1. 
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6.3.2 Results based on parallel computations 

The previous section has demonstrated the success of the hierarchical-LU preconditioner when 

operated sequentially. In this section, the performance of the hierarchical-LU preconditioner in 

parallel is evaluated. First, the baseline results for block Jacobi preconditioner when OpenMP is 

enabled is shown in Table 21.   

Matrix nrhs 

Block-size for 

Block Jacobi 

Preconditioner 

GMRES IDR(s) 

Wall clock 

time (s) 
# iters 

Wall clock 

time (s) 
# iters 

FATIMA_20493 

1 
4000 for GMRES 

1708 for IDR(s) 
87.62 103 80.45 260 

7 4000 211.49 103 220.48 
112 

 

FATIMA_7894 
1 1000 6.36 121 6.55 133 

7 1000 25.74 121 28.18 136 

PASSCAL 1 500 0.72 91 0.76 96 

STEADYCAV1 

(representing all 

steadycav 

matrices) 

1 500 
0.57 

 
61 

0.58 

 

62 

 

Table 21 Baseline results using block Jacobi preconditioner – Parallel. Results that are better than those obtained with 

hierarchical-LU preconditioner are highlighted in green 

Matrix Nrhs 
Variables for 

hie_LU 

GMRES IDR(s) 

Wall clock 

time (s) 
# iters 

Wall clock time 

(s) 

# 

iters 

FATIMA_20493 

1 

Tol: 1e-03 

b = 200 

p = 50 

47.48 51 50.14 55 

7 

Tol: 1e-04 

b = 100 

p = 30 

108.96 30 116.20 32 

FATIMA_7894 

1 

Tol: 1e-03 

b = 200 

p = 50 

6.44 11 6.57 11 

7 

Tol: 1e-03 

b = 200 

p = 40 

9.17 11 9.74 11 

PASSCAL 1 

Tol: 1e-03 

b = 100 

p = 20 

1.42 11 1.49 11 

STEADYCAV1 

(representing all 

steadycav 

matrices) 

1 

Tol: 1e-02 

b = 100 

p = 30 

1.934 32 2.12 37 

Table 22 Best results obtained using hierarchical-LU preconditioner - Parallel. Results that are better than those obtained with 

block Jacobi preconditioner are highlighted in green 
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The best solve time attained using hierarchical-LU decomposition with OpenMP is shown in the 

Table 22. For both Tables 21 and 22, the better solve times attained when comparing the block 

Jacobi preconditioner with the hierarchical-LU preconditioner, are highlighted in green. 

In parallel, the hierarchical-LU preconditioner still outperforms the block Jacobi preconditioner 

for the large size matrix FATIMA_20493. The time required to solve the system using 

hierarchical-LU preconditioner is still about 40% lower than block Jacobi for the case with 1 RHS. 

The time taken to solve the FATIMA_7894 system in parallel with 1 RHS is comparable between 

the two methods.  

With multiple RHS, the benefit of the hierarchical-LU preconditioner over block Jacobi is even 

more pronounce. For the FATIMA_20394, the improvement is about 48%, while that for 

FATIMA_7894 is about 65%. The reason for the sharp drop in time for FATIMA_7894 is due to 

the fact that the hierarchical-LU preconditioner conditions the system very well. The number of 

iterations required for convergence for FATIMA_7894 is only 11, as compared to the 121 

iterations required for block Jacobi preconditioner. This results in significantly less dense matrix-

matrix multiplication required, hence, the large improvement of 65%. 

For the smaller matrices, just like in the sequential case, block Jacobi preconditioner performs 

better than hierarchical-LU preconditioner. The advantage of the block Jacobi preconditioner in 

parallel is more obvious due to its near-optimal speedup and the non-optimal speedup for the 

hierarchical-LU preconditioner. Even so, because of the much lower time required to solve the 

small system as compared to the large system, this slight setback on the hierarchical-LU 

preconditioner is not substantial. 

The complete results recorded when the program is ran with OpenMP for different 

𝑡𝑜𝑙_ℎ𝑖𝑒, 𝑏  𝑎𝑛𝑑 𝑝  are shown in Tables 23 to 28. The column speedup is measured in 

preconditioner construct time (time to construct the hierarchical LU preconditioner 

sequentially/time to construct the hierarchical-LU preconditioner in parallel). The same trends as 

the results computed sequentially can be observed. The sub-sections below discuss the results 

unique to parallel implementation, namely speedup and the results obtained for systems with 

multiple RHS. 
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6.3.2.1 Comments on speedup 

The speedup attained for the construction of the hierarchical-LU preconditioner ranges from about 

1.5 to about 3.6. The average speedup attained for FATIMA_20493, FATIMA_7894 and 

PASSCAL matrices ranges from about 2.7 to 3.0. This is as expected, since some parts of the 

hierarchical LU decomposition algorithm have to run sequentially. The lower end of the speedup 

occurs mostly in the test cases involving Steadycav1 matrices. This indicates that the load 

balancing with the recursive parallelism is not good with the Steadycav1 matrices. A closer look 

at the sparsity diagram of the final inadmissible matrix for Steadycav1 as compared to the other 

matrices explains this bad load balancing. An example with 𝑏 = 100, 𝑝 = 30 and 𝑡𝑜𝑙_ℎ𝑖𝑒 = 1𝑒 −

4 is shown in Figure 42 below. Recall that the hie-LU code is parallelized such that the main 

diagonals have to be dealt with in a sequential way. With the main diagonal almost completely 

inadmissible, this means that more work have to be performed sequentially for Steadycav1 matrix. 

This explains the low speedup observed. 

 

Figure 42 Sparsity diagram of the 𝑁𝑙𝑒𝑣𝑒𝑙𝑠  for Passcal (left) and Steadycav1(right) with b=100, p=30, tol_hie=1e-4. 

6.3.2.2 Comment on results for multiple RHS. 

An interesting observation can be made when looking at the results for multiple RHS. While higher 

tolerance (𝑡𝑜𝑙ℎ𝑖𝑒 = 1𝑒 − 04) does not seem to work well when there is only one RHS, this setting 

performs well when applied to a system with multiple RHS. The reason for this is that the matrix-

matrix multiplication is significantly more expensive than matrix-vector multiplication. Therefore, 

lowering the number of iterations drives the time down by a big amount, which dominates over 

the time increase to construct the preconditioner due to the higher tolerance setting. It can therefore 

be concluded that with multiple RHS, one can afford a longer time to construct the preconditioner 

if the system turns out to be better conditioned such that the number of iterations is reduced by a 

significant amount.  
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To sum up Section 6, it has been shown that hierarchical-LU preconditioner works very well for 

the test matrices. By exploiting the hierarchical structure of these matrices, the construction of the 

hierarchical-LU preconditioner can be done relatively cheaply with almost linear complexity. Test 

results have shown that the hierarchical-LU preconditioner conditions the system very well, 

reducing the number of iterations significantly more than block Jacobi preconditioner with 

reasonable block size. Therefore, the use of hierarchical-LU preconditioner over block Jacobi 

preconditioner is definitely recommended. 
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 FATIMA_20493 

Tol_h

ie 
b p 

GMRES IDR(s) 

Speedup 
Wall clock time (s) 

#iter Rel error 

Wall clock time (s) 

#iter Rel error Prec 

const 

Prec 

apply 
Matvec Solve Total 

Prec 

const 

Prec 

apply 
Matvec Solve Total 

1.00E

-02 

100 

10 10.13     >500  10.75 54.61 113.68 170.28 181.56 420 1.65E-05 2.73 

20 8.70     >500  9.76 39.76 98.21 139.71 149.92 371 8.07E-06 2.80 

30 9.05     >500  9.77 43.40 112.05 157.39 167.82 421 1.30E-05 2.81 

40 10.74     >500  10.67     >500  2.73 

50 22.73     >500  26.71     >500  1.74 

200 

10 23.08 22.33 37.34 60.60 83.83 142 2.06E-05 23.58 25.47 43.02 69.28 93.31 162 8.03E-06 3.06 

20 15.60 25.40 47.69 74.59 90.40 181 6.12E-06 15.84 31.23 59.17 91.47 107.85 223 2.59E-06 2.75 

30 14.43 47.50 93.18 144.17 158.96 354 4.85E-06 14.67 33.74 67.07 101.99 117.05 252 4.00E-06 2.54 

40 14.31     >500  14.20 47.09 93.19 141.91 156.86 352 9.42E-07 2.46 

50 14.25     >500  14.04 55.68 114.29 171.95 186.55 431 3.43E-06 2.39 

600 

10 48.93 27.56 27.74 55.82 105.14 105 6.54E-06 49.09 31.10 32.20 63.90 113.42 121 2.71E-06 2.51 

20 34.54 33.13 36.24 70.25 104.93 138 4.69E-06 34.45 38.07 42.47 81.32 115.89 160 1.24E-06 2.12 

30 31.88 29.69 34.57 65.05 97.11 130 1.32E-06 32.07 33.77 39.37 73.85 106.09 145 6.38E-07 1.91 

40 31.16 31.16 36.06 68.09 99.77 137 1.53E-06 31.23 35.71 41.61 78.08 109.55 156 7.10E-07 1.87 

50 29.86 31.58 36.97 69.45 99.60 140 4.49E-06 29.77 35.79 43.18 79.75 110.10 160 2.45E-06 1.79 

60 29.29 33.44 39.51 73.98 103.61 150 1.24E-06 29.37 39.98 48.41 89.27 118.96 179 1.77E-06 1.84 

1.00E

-03 

100 

10 42.01     >500  43.44     >500  3.25 

20 23.03 14.86 24.86 40.16 63.64 95 2.86E-06 23.35 16.92 29.10 46.56 70.39 109 7.43E-07 3.15 

30 20.84 9.01 17.86 27.10 48.88 68 3.27E-07 21.51 10.46 20.07 30.92 53.46 75 1.30E-07 3.16 

40 22.09 8.66 17.33 26.26 49.49 66 5.84E-07 22.03 9.83 19.95 30.17 53.10 73 2.21E-07 3.21 

50 45.08 7.92 28.73 39.16 85.68 61 5.52E-07 66.19 8.92 36.96 46.28 113.96 68 1.99E-07 1.72 

200 

10 113.45 29.14 31.19 60.99 174.64 119 2.08E-05 113.78 32.77 36.29 69.73 183.73 137 5.86E-06 3.58 

20 37.86 12.81 18.29 31.34 69.47 70 1.99E-06 38.42 14.57 20.77 35.75 74.45 78 8.32E-07 3.33 

30 27.91 10.11 16.25 26.56 54.80 62 5.84E-07 28.05 11.37 18.79 30.53 58.92 69 5.20E-07 3.14 

40 26.33 8.34 13.88 22.37 49.19 53 1.84E-07 26.42 9.17 15.41 24.90 51.78 57 1.84E-07 3.09 

50 25.32 7.73 13.46 21.33 47.48 51 1.22E-07 23.86 8.59 14.96 25.44 50.14 55 1.80E-07 3.08 

60 26.85 8.14 13.82 22.10 49.65 52 2.21E-07 26.84 8.96 15.09 24.36 51.86 56 1.64E-07 3.03 

600 

10 285.75 21.15 15.34 36.71 325.68 57 3.63E-06 285.20 23.48 16.58 40.41 328.96 62 1.40E-06 3.37 

20 88.83 13.86 12.30 26.27 115.28 47 6.47E-07 89.02 14.39 13.38 28.05 117.30 49 4.33E-07 3.11 

30 59.89 14.93 14.77 29.86 90.26 56 1.66E-06 59.57 16.69 16.72 33.75 93.86 62 4.70E-07 2.74 

40 47.73 13.94 13.92 28.01 76.01 53 7.22E-08 48.18 15.16 15.87 31.35 80.08 58 3.06E-08 2.54 

50 41.50 12.58 13.18 25.90 67.68 50 1.28E-07 40.97 13.72 14.87 28.89 70.18 54 6.58E-08 2.24 
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60 41.54 12.34 13.18 25.65 67.83 50 1.03E-06 41.16 13.76 14.94 29.01 70.54 55 4.17E-07 2.23 

1.00E

-04 

100 

20 62.73 10.20 13.01 23.64 87.13 48 3.53E-07 63.87 11.15 14.20 25.63 90.31 52 8.84E-08 3.43 

30 58.21 5.89 7.88 13.83 73.00 30 1.34E-08 57.64 6.58 8.81 15.59 73.93 32 8.20E-09 3.34 

40 69.32 5.88 15.38 21.63 91.84 31 2.28E-08 70.48 6.66 15.67 22.56 94.27 33 9.93E-09 3.16 

50 134.27 6.31 26.39 32.81 168.21 33 1.29E-08 121.08 6.63 29.21 36.08 158.60 34 3.85E-08 1.97 

200 

10 311.85 16.71 19.75 36.67 351.87 54 9.13E-07 304.73 18.52 17.70 36.54 344.73 58 1.34E-06 3.56 

20 104.28 10.40 11.55 22.05 126.94 44 2.72E-07 103.88 10.83 12.53 23.62 127.86 46 3.46E-07 3.56 

30 85.41 6.40 7.68 14.13 99.91 29 3.29E-08 85.34 7.18 8.58 15.96 101.74 31 3.00E-08 3.53 

40 79.72 5.96 7.30 13.31 93.48 28 1.75E-08 79.59 6.44 8.03 14.66 94.82 29 2.78E-08 3.51 

50 72.04 6.00 7.66 13.71 86.31 29 1.92E-08 71.71 6.80 8.88 15.88 88.19 32 6.09E-09 3.44 

60 72.58 6.11 7.91 14.07 87.61 30 2.47E-08 72.63 6.55 8.58 15.33 88.97 31 1.92E-08 3.37 

600 

20 208.03 11.96 8.87 20.89 232.11 34 2.97E-07 207.93 12.52 9.58 22.32 230.47 35 2.52E-07 3.35 

30 121.90 9.46 7.89 17.39 139.81 30 1.62E-07 122.47 10.47 8.79 19.47 142.18 32 9.26E-08 3.25 

40 106.68 8.84 7.62 16.51 124.02 29 1.39E-08 106.12 9.52 8.26 17.98 124.37 30 3.22E-08 3.17 

50 91.59 10.48 9.12 19.66 111.88 35 9.54E-08 91.83 11.29 10.14 21.66 114.10 37 3.43E-08 3.08 

60 87.93 10.64 9.59 20.30 108.87 36 1.76E-07 87.92 11.47 10.32 22.03 110.35 38 1.97E-07 3.03 

Table 23 Results using hierarchy-LU preconditioner for FATIMA_20493 with nrhs=1. The best results obtained for GMRES and IDR(s) are highlighted in green 
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FATIMA_20493 

Tol_h

ie 
b p 

GMRES IDR(s) 

Wall clock time (s) 

#iter Rel error 

Wall clock time (s) 

#iter Rel error Prec 

const 

Prec 

apply 
Matvec Solve Total 

Prec 

const 

Prec 

apply 
Matvec Solve Total 

1.00E

-02 

200 

10 23.46 75.80 154.43 236.55 260.16 142 2.06E-05 23.25 86.74 175.15 267.79 291.22 161 1.58E-05 

20 15.85 86.57 196.66 293.22 309.63 181 6.12E-06 15.98 103.19 235.95 346.95 363.18 217 4.31E-06 

30 14.52 168.71 385.26 573.05 588.00 354 4.85E-06 14.81 121.70 278.48 409.28 424.44 256 2.33E-06 

600 

10 49.23 92.11 113.60 209.39 258.81 105 6.54E-06 49.38 92.53 114.49 211.00 260.52 105 6.54E-06 

20 34.57 109.45 150.42 265.88 300.95 138 4.69E-06 34.49 125.38 174.72 306.01 340.68 160 1.91E-06 

30 31.99 97.12 141.28 243.78 276.28 130 1.32E-06 32.05 110.62 158.89 274.91 307.18 145 3.87E-07 

40 30.94 102.06 148.61 256.58 287.80 137 1.53E-06 31.29 121.23 168.26 295.18 326.75 155 6.10E-07 

50 29.83 100.55 151.65 258.36 288.84 140 4.49E-06 29.62 124.85 180.35 311.26 341.19 165 2.35E-06 

60 29.58 110.67 163.02 280.70 310.70 150 1.24E-06 29.81 130.87 190.04 327.34 357.53 175 2.61E-06 

1.00E

-03 

100 

20 23.88 41.59 102.56 147.24 171.60 95 2.86E-06 22.77 46.83 115.75 166.63 189.88 106 1.19E-06 

30 21.72 29.04 73.27 104.37 126.81 68 3.27E-07 21.83 32.98 83.04 118.98 141.85 76 1.16E-07 

40 23.24 28.26 71.01 101.28 125.44 66 5.84E-07 27.38 31.26 79.01 113.09 141.34 72 2.63E-07 

200 

20 38.66 43.91 76.84 122.60 161.54 70 1.99E-06 38.27 47.58 82.00 132.54 171.13 75 7.20E-07 

30 27.98 35.51 67.08 104.12 132.48 62 5.84E-07 28.00 40.23 76.27 119.26 147.93 69 8.58E-07 

40 26.13 29.98 57.08 88.26 114.84 53 1.84E-07 26.22 32.70 63.02 98.08 124.77 57 1.77E-07 

50 25.42 28.99 54.83 84.97 110.94 51 1.22E-07 25.25 32.74 62.59 97.59 123.69 57 3.04E-08 

60 26.66 29.98 56.35 87.51 114.86 52 2.21E-07 26.90 33.76 62.78 98.82 126.68 57 2.66E-07 

600 

20 89.04 48.75 52.76 102.55 191.80 47 6.47E-07 89.75 50.58 52.91 105.59 195.51 48 5.13E-07 

30 59.31 51.89 60.55 113.76 173.31 56 1.66E-06 59.60 58.40 67.82 128.75 188.56 62 3.15E-07 

40 47.86 46.33 57.60 105.16 153.31 53 7.22E-08 48.19 52.71 63.44 118.55 166.99 58 8.97E-08 

50 41.19 42.69 54.31 98.13 139.63 50 1.28E-07 41.36 45.84 59.45 107.56 149.49 54 7.12E-08 

60 41.27 41.83 54.28 97.24 138.88 50 1.03E-06 41.48 48.84 62.30 113.47 155.60 56 8.15E-08 

1.00E

-04 

100 

20 62.16 29.92 51.81 83.10 145.80 48 3.53E-07 63.59 32.86 57.20 92.22 156.58 52 1.67E-07 

30 56.85 18.12 32.33 51.11 108.96 30 1.34E-08 57.95 20.08 35.68 57.23 116.20 32 2.15E-08 

40 75.91 19.02 39.49 59.31 136.42 31 2.28E-08 73.26 21.22 41.20 64.13 138.63 33 1.04E-08 

50 135.83 20.56 52.71 74.31 211.56 33 1.29E-08 122.88 22.16 48.41 72.40 196.39 34 3.08E-08 

200 

20 103.81 36.05 47.54 84.53 188.65 44 2.72E-07 104.04 38.93 50.81 91.76 196.12 46 2.64E-07 

30 85.25 22.83 31.10 54.24 139.88 29 3.29E-08 84.87 24.46 33.56 59.46 145.06 30 5.13E-08 

40 79.58 21.66 30.13 52.08 132.16 28 1.75E-08 79.46 24.06 33.64 59.13 139.08 30 1.04E-08 

50 71.76 21.84 31.49 53.64 126.00 29 1.92E-08 72.08 24.41 34.58 60.44 133.43 31 3.58E-08 

60 72.48 22.67 32.25 55.56 129.06 30 2.47E-08 72.76 25.22 35.81 62.55 136.25 32 8.94E-09 

600 20 207.68 43.93 37.13 84.53 292.71 34 2.97E-07 207.65 49.03 41.14 91.86 299.70 37 1.74E-08 
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30 122.24 33.98 32.87 67.19 189.66 30 1.62E-07 122.08 36.54 34.76 72.77 195.08 31 7.45E-08 

40 106.19 31.78 31.33 63.42 170.19 29 1.39E-08 106.36 35.19 34.80 71.46 178.08 31 9.68E-09 

50 91.77 37.29 37.64 75.37 167.47 35 9.54E-08 91.25 42.78 43.60 88.15 179.72 39 1.85E-08 

60 88.09 38.95 39.03 78.74 167.51 36 1.76E-07 88.19 42.01 42.23 85.97 174.56 38 8.54E-08 

Table 24 Results using hierarchy-LU preconditioner for FATIMA_20493 with nrhs=7. The best results obtained for GMRES and IDR(s) are highlighted in green 
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FATIMA_7894 

Tol_h

ie 
b p 

GMRES IDR(s) 

Speedup 
Wall clock time (s) 

#iter Rel error 

Wall clock time (s) 

#iter Rel error Prec 

const 

Prec 

apply 
Matvec Solve Total 

Prec 

const 

Prec 

apply 
Matvec Solve Total 

1.00E

-02 

100 

10 6.30 9.84 7.04 17.38 23.99 173 9.19E-05 6.34 13.86 9.42 23.56 29.92 243 3.73E-05 3.09 

20 3.49 16.89 15.92 34.11 37.64 395 1.40E-05 3.43 13.17 11.57 25.09 28.56 305 7.94E-06 2.71 

30 3.06     >500  3.08       2.78 

40 3.40 12.90 14.46 28.42 31.90 355 2.22E-06 3.37 10.90 11.28 22.52 25.96 301 1.41E-06 2.76 

50 3.62 11.85 13.96 26.82 30.55 343 1.67E-06 3.69 9.91 10.92 21.14 24.93 278 1.25E-06 2.88 

60 4.09 11.82 13.39 26.15 30.36 328 4.64E-06 4.09 10.12 10.76 21.20 25.41 277 7.50E-07 2.87 

200 

10 8.87 2.22 1.65 3.90 12.78 41 1.11E-07 8.90 2.49 1.86 4.41 13.32 44 6.89E-08 3.32 

20 4.33 2.29 2.15 4.50 8.85 53 1.16E-06 4.38 2.72 2.55 5.35 9.75 61 1.00E-07 2.89 

30 3.66 2.35 2.33 4.74 8.44 57 4.20E-07 3.65 2.87 2.91 5.86 9.53 68 2.93E-07 2.63 

40 3.56 2.58 2.54 5.19 8.79 65 5.41E-07 3.59 3.06 3.08 6.23 9.86 75 6.44E-07 2.66 

50 3.57 3.78 4.03 7.98 11.60 98 6.85E-07 3.52 4.19 4.69 9.02 12.59 109 4.87E-07 2.61 

60 3.77 3.95 4.34 8.48 12.30 105 5.23E-07 3.64 4.63 5.20 9.97 13.67 121 2.42E-07 2.62 

250 

10 14.36 1.80 0.92 2.74 17.11 23 1.16E-08 14.11 1.70 1.05 2.78 16.90 24 1.12E-08 2.81 

20 8.67 2.09 1.20 3.31 11.99 30 1.92E-08 8.50 2.34 1.39 3.78 12.29 32 4.72E-08 2.27 

30 7.09 2.07 1.23 3.33 10.43 31 1.52E-07 7.13 1.95 1.41 3.41 10.55 34 8.04E-08 1.89 

40 6.98 2.17 1.36 3.56 10.55 33 8.79E-08 6.96 2.45 1.53 4.03 11.01 36 2.51E-08 1.88 

50 6.82 2.68 1.71 4.42 11.26 41 9.98E-08 6.84 2.37 1.79 4.22 11.08 43 9.29E-08 1.84 

60 6.72 2.66 1.62 4.31 11.06 40 1.30E-07 6.73 2.44 1.80 4.30 11.06 44 2.50E-08 1.84 

1.00E

-03 

100 

10 17.01 4.20 2.12 6.37 23.40 54 9.71E-08 17.09 4.64 2.25 6.96 24.07 58 1.62E-07 3.41 

20 7.41 1.41 0.97 2.39 9.84 25 2.59E-08 7.29 1.66 1.12 2.82 10.15 27 6.91E-09 3.19 

30 5.84 1.29 1.00 2.31 8.21 26 1.09E-08 5.79 1.28 1.00 2.29 8.14 26 1.09E-08 3.17 

40 5.55 1.17 0.92 2.10 7.73 24 9.54E-09 5.51 1.32 1.04 2.40 7.98 25 2.05E-08 3.19 

50 5.83 1.11 0.92 2.05 7.98 24 1.80E-08 5.88 1.29 1.06 2.39 8.37 26 8.13E-09 3.21 

60 6.35 1.15 0.92 2.09 8.56 24 8.27E-09 6.35 1.29 1.07 2.40 8.87 25 1.92E-08 3.28 

200 

10 21.74 0.99 0.52 1.51 23.26 14 8.07E-08 21.85 1.19 0.65 1.86 23.73 15 6.92E-08 3.57 

20 8.43 0.76 0.53 1.29 9.74 14 3.47E-09 8.42 0.92 0.73 1.67 10.12 15 1.16E-09 3.34 

30 6.10 0.52 0.39 0.91 7.04 10 1.77E-08 6.13 0.64 0.52 1.18 7.33 11 3.49E-09 3.16 

40 5.53 0.54 0.42 0.96 6.53 11 9.19E-10 5.51 0.63 0.53 1.18 6.74 11 2.09E-09 3.06 

50 5.44 0.53 0.42 0.96 6.44 11 1.81E-09 5.39 0.60 0.51 1.13 6.57 11 3.61E-09 3.07 

60 5.65 0.56 0.47 1.04 6.75 12 5.70E-09 5.56 0.67 0.58 1.28 6.90 13 2.77E-09 3.06 

250 
10 30.67 0.86 0.36 1.23 31.91 9 2.47E-10 30.74 1.01 0.45 1.48 32.22 9 2.31E-09 3.36 

20 12.95 0.62 0.28 0.90 13.86 7 1.10E-08 13.02 0.62 0.35 0.99 14.02 7 6.15E-09 2.93 
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30 9.62 0.64 0.33 0.97 10.61 8 3.11E-09 9.57 0.75 0.41 1.18 10.76 8 1.23E-08 2.55 

40 8.80 0.69 0.39 1.08 9.90 9 1.36E-09 8.68 0.79 0.41 1.22 9.92 9 3.08E-09 2.27 

50 8.51 0.48 0.36 0.84 9.37 9 5.76E-09 8.48 0.61 0.45 1.08 9.58 10 1.38E-09 2.14 

60 8.46 0.74 0.41 1.15 9.64 10 3.29E-09 8.53 0.71 0.48 1.21 9.77 10 1.28E-08 2.23 

1.00E

-04 

100 

10 26.69 2.32 0.89 3.23 29.95 24 1.14E-08 26.72 2.64 0.99 3.67 30.42 25 9.39E-09 3.51 

20 14.56 2.16 1.19 3.36 17.97 30 2.39E-08 14.50 2.39 1.31 3.74 18.28 32 5.23E-08 3.41 

30 11.33 2.30 1.49 3.82 15.20 37 3.72E-08 11.40 2.54 1.65 4.24 15.70 40 2.31E-08 3.40 

40 10.98 1.52 1.01 2.54 13.60 26 2.86E-08 11.07 1.77 1.14 2.95 14.10 27 7.67E-08 3.37 

50 11.38 1.06 0.74 1.80 13.28 19 2.39E-08 11.54 1.25 0.86 2.15 13.78 21 9.76E-09 3.34 

60 12.01 0.55 0.39 0.94 13.06 10 3.43E-09 12.03 0.66 0.46 1.14 13.29 10 9.19E-09 3.41 

200 

10 33.54 0.62 0.26 0.88 34.43 7 1.47E-09 33.44 0.74 0.37 1.12 34.57 7 2.96E-09 3.61 

20 15.25 0.83 0.52 1.36 16.62 12 1.65E-08 15.33 0.95 0.65 1.62 16.98 13 7.23E-09 3.51 

30 10.94 0.83 0.53 1.37 12.34 14 7.13E-09 10.82 0.82 0.69 1.54 12.39 15 3.24E-09 3.37 

40 9.81 0.72 0.50 1.23 11.08 13 3.25E-09 9.68 0.87 0.66 1.55 11.27 14 1.42E-09 3.34 

50 9.45 0.60 0.43 1.03 10.53 11 6.42E-08 9.45 0.73 0.56 1.31 10.81 12 1.38E-08 3.33 

60 9.44 0.45 0.31 0.76 10.26 8 4.31E-10 9.40 0.54 0.39 0.95 10.40 8 1.90E-09 3.31 

250 

10 44.36 0.55 0.19 0.74 45.11 5 3.93E-10 44.43 0.63 0.27 0.92 45.35 5 1.89E-09 3.46 

20 21.25 0.74 0.32 1.05 22.31 8 3.65E-08 21.34 0.83 0.43 1.28 22.63 9 2.47E-09 3.22 

30 14.62 0.85 0.38 1.24 15.87 10 2.11E-09 14.86 0.84 0.50 1.36 16.24 10 3.20E-09 3.04 

40 13.61 0.61 0.28 0.89 14.52 7 3.41E-10 13.39 0.63 0.36 1.01 14.42 7 1.06E-09 2.87 

50 12.33 0.67 0.32 1.00 13.35 8 6.03E-09 12.24 0.74 0.42 1.18 13.44 9 4.87E-10 2.81 

60 11.75 0.44 0.20 0.64 12.41 5 1.13E-08 11.70 0.54 0.31 0.87 12.60 6 7.72E-10 2.75 

Table 25 Results using hierarchy-LU preconditioner for FATIMA_7894 with nrhs=1. The best results obtained for GMRES and IDR(s) are highlighted in green 
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FATIMA_7894 

Tol_h

ie 
B p 

GMRES IDR(s) 

Wall clock time (s) 

#iter Rel error 

Wall clock time (s) 

#iter Rel error Prec 

const 

Prec 

apply 
Matvec Solve Total 

Prec 

const 

Prec 

apply 
Matvec Solve Total 

1.00E

-02 

200 

10 8.77 7.30 6.60 14.12 22.91 41 1.11E-07 8.82 8.25 7.42 16.07 24.91 45 4.62E-08 

20 4.29 7.58 8.49 16.43 20.74 53 1.16E-06 4.41 8.79 10.06 19.36 23.79 59 9.72E-07 

30 3.60 7.36 9.28 17.06 20.69 57 4.20E-07 3.68 9.63 11.25 21.43 25.17 67 1.76E-07 

40 3.51 9.09 10.77 20.39 23.95 65 5.41E-07 3.57 10.49 12.40 23.50 27.15 74 3.44E-07 

50 3.57 13.70 16.01 30.86 34.48 98 6.85E-07 3.51 15.81 18.62 35.31 38.87 112 5.86E-07 

60 3.71 14.71 17.40 33.45 37.22 105 5.23E-07 3.74 16.86 19.90 37.70 41.51 119 3.49E-07 

250 

10 14.34 6.02 3.78 9.88 24.22 23 1.16E-08 14.48 6.88 4.41 11.55 26.04 25 3.35E-09 

20 8.58 6.91 4.98 12.02 20.60 30 1.92E-08 8.60 7.67 5.52 13.49 22.10 32 2.68E-08 

30 7.10 6.69 5.29 12.12 19.24 31 1.52E-07 7.13 7.55 5.90 13.77 20.91 34 1.21E-07 

40 7.00 7.09 5.45 12.69 19.71 33 8.79E-08 7.01 7.84 6.54 14.72 21.75 36 7.11E-08 

50 6.89 8.60 6.70 15.53 22.44 41 9.98E-08 6.85 9.41 7.46 17.27 24.15 44 7.50E-08 

60 6.75 7.98 6.55 14.75 21.52 40 1.30E-07 6.72 9.64 7.49 17.53 24.28 44 3.39E-08 

1.00E

-03 

100 

10 17.05 11.03 8.87 20.28 37.35 54 9.71E-08 17.14 12.13 9.58 22.20 39.36 58 7.35E-08 

20 7.35 3.70 4.11 7.90 15.30 25 2.59E-08 7.40 4.05 4.51 8.82 16.26 26 1.57E-08 

30 5.92 3.61 4.29 8.00 13.99 26 1.09E-08 5.86 4.15 4.81 9.23 15.15 28 5.60E-09 

40 5.58 3.35 3.98 7.41 13.07 24 9.54E-09 5.52 3.83 4.43 8.52 14.12 26 3.47E-09 

50 5.95 3.45 4.07 7.61 13.66 24 1.80E-08 5.85 3.99 4.47 8.72 14.67 26 3.49E-09 

60 6.42 3.57 3.99 7.65 14.19 24 8.27E-09 6.43 3.78 4.17 8.19 14.74 24 2.25E-08 

200 

10 21.92 3.31 2.26 5.61 27.54 14 8.07E-08 21.88 3.90 2.59 6.67 28.56 15 2.32E-08 

20 8.47 2.57 2.31 4.92 13.40 14 3.47E-09 8.52 2.97 2.66 5.81 14.35 15 8.22E-10 

30 6.15 1.71 1.66 3.39 9.57 10 1.77E-08 6.13 2.09 2.01 4.25 10.41 11 5.80E-09 

40 5.46 1.81 1.84 3.68 9.17 11 9.19E-10 5.51 2.05 1.99 4.19 9.74 11 5.43E-09 

50 5.47 1.85 1.82 3.69 9.21 11 1.81E-09 5.46 2.09 2.01 4.25 9.75 11 3.82E-09 

60 5.60 2.03 1.98 4.04 9.69 12 5.70E-09 5.62 2.44 2.32 4.92 10.60 13 5.59E-09 

250 

10 30.76 3.00 1.44 4.46 35.23 9 2.47E-10 30.76 3.40 1.65 5.18 35.95 9 1.06E-09 

20 13.11 2.03 1.14 3.19 16.31 7 1.10E-08 13.00 2.61 1.49 4.23 17.24 8 8.51E-10 

30 9.43 2.08 1.32 3.42 12.86 8 3.11E-09 9.58 2.39 1.51 4.02 13.61 8 9.38E-09 

40 8.88 2.26 1.48 3.77 12.66 9 1.36E-09 8.80 2.56 1.70 4.39 13.21 9 3.53E-09 

50 8.40 2.05 1.50 3.57 12.00 9 5.76E-09 8.42 2.74 1.87 4.74 13.19 10 9.40E-10 

60 8.53 2.45 1.63 4.10 12.66 10 3.29E-09 8.52 2.98 2.00 5.13 13.68 11 1.12E-09 

1.00E

-04 
100 

10 26.72 6.08 3.87 10.05 36.79 24 1.14E-08 26.89 6.58 4.17 11.01 37.92 25 9.89E-09 

20 14.65 5.60 4.91 10.64 25.33 30 2.39E-08 14.60 6.29 5.42 12.01 26.65 32 3.44E-08 
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30 11.38 6.17 6.08 12.43 23.87 37 3.72E-08 11.36 7.00 6.95 14.32 25.74 41 1.05E-08 

40 10.91 4.28 4.35 8.73 19.72 26 2.86E-08 10.98 4.55 4.52 9.34 20.40 26 8.50E-08 

50 11.51 3.17 3.22 6.46 18.07 19 2.39E-08 11.30 3.71 3.58 7.51 18.90 21 3.30E-09 

60 12.02 1.77 1.63 3.42 15.56 10 3.43E-09 11.98 2.05 1.84 4.04 16.15 10 1.44E-08 

200 

10 33.57 2.06 1.14 3.22 36.80 7 1.47E-09 33.48 2.44 1.31 3.87 37.37 7 3.02E-09 

20 15.42 2.64 1.93 4.60 20.04 12 1.65E-08 15.34 3.16 2.40 5.73 21.09 13 4.40E-09 

30 10.86 2.83 2.41 5.27 16.17 14 7.13E-09 10.90 3.23 2.67 6.07 17.01 15 4.82E-09 

40 9.83 2.51 2.23 4.78 14.65 13 3.25E-09 9.85 2.69 2.35 5.20 15.10 13 8.55E-09 

50 9.56 2.09 1.83 3.95 13.56 11 6.42E-08 9.47 2.51 2.16 4.82 14.34 12 4.94E-09 

60 9.47 1.55 1.32 2.89 12.42 8 4.31E-10 9.48 1.80 1.48 3.42 12.95 8 1.48E-09 

250 

10 44.45 1.94 0.82 2.77 47.23 5 3.93E-10 44.63 2.37 1.00 3.48 48.11 5 2.16E-09 

20 21.45 2.52 1.28 3.82 25.29 8 3.65E-08 21.45 3.13 1.63 4.89 26.35 9 1.11E-09 

30 14.78 2.85 1.63 4.50 19.30 10 2.11E-09 14.75 3.23 1.92 5.29 20.05 10 3.65E-09 

40 13.60 2.08 1.17 3.26 16.88 7 3.41E-10 13.45 2.48 1.37 3.97 17.44 7 1.96E-09 

50 12.32 2.28 1.37 3.67 16.02 8 6.03E-09 12.39 2.84 1.73 4.71 17.12 9 1.16E-09 

60 11.71 1.48 0.88 2.37 14.11 5 1.13E-08 11.65 2.08 1.18 3.37 15.05 6 8.89E-10 

Table 26 Results using hierarchy-LU preconditioner for FATIMA_7894 with nrhs=7. The best results obtained for GMRES and IDR(s) are highlighted in green 
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PASSCAL 

Tol_h

ie 
b P 

GMRES IDR(s) 

Speedup 
Wall clock time (s) 

#iter Rel error 

Wall clock time (s) 

#iter Rel error Prec 

const 

Prec 

apply 
Matvec Solve Total 

Prec 

const 

Prec 

apply 
Matvec Solve Total 

1.00E

-02 

100 

10 0.97 0.44 0.13 0.58 1.55 23 4.62E-08 0.92 0.49 0.16 0.66 1.58 24 1.33E-08 2.46 

20 0.64 0.62 0.28 0.91 1.55 44 3.34E-08 0.62 0.63 0.29 0.94 1.56 46 2.38E-07 2.15 

30 0.66 0.54 0.30 0.85 1.52 47 1.01E-06 0.65 0.62 0.36 1.00 1.66 51 1.69E-07 2.22 

40 0.72 0.58 0.30 0.89 1.62 49 7.71E-07 0.73 0.68 0.33 1.03 1.77 53 3.33E-07 2.36 

50 0.73 0.46 0.34 0.81 1.55 50 7.72E-07 0.72 0.53 0.35 0.90 1.64 54 3.60E-07 2.55 

200 

10 1.74 0.32 0.12 0.44 2.19 20 1.68E-07 1.71 0.40 0.15 0.56 2.28 22 2.42E-08 3.00 

20 0.94 0.53 0.23 0.76 1.71 38 9.54E-08 0.93 0.57 0.26 0.86 1.79 42 3.45E-07 2.33 

30 0.80 0.55 0.29 0.85 1.66 46 7.41E-07 0.80 0.62 0.31 0.94 1.74 50 2.57E-07 2.17 

40 0.76 0.58 0.29 0.88 1.65 48 1.14E-06 0.77 0.65 0.34 1.01 1.79 53 2.27E-07 2.23 

50 0.83 0.54 0.31 0.86 1.70 50 9.29E-07 0.79 0.60 0.34 0.96 1.76 55 2.36E-06 2.22 

1.00E

-03 

100 

10 1.41 0.22 0.05 0.27 1.69 8 4.87E-09 1.43 0.27 0.07 0.35 1.78 9 3.60E-10 2.82 

20 1.10 0.24 0.08 0.32 1.42 11 1.01E-08 1.10 0.29 0.08 0.38 1.49 11 1.14E-08 2.56 

30 1.17 0.29 0.12 0.42 1.59 19 7.42E-09 1.12 0.38 0.14 0.53 1.66 21 1.34E-09 2.56 

40 1.15 0.27 0.11 0.38 1.54 18 1.78E-08 1.12 0.30 0.12 0.44 1.57 19 6.54E-09 2.62 

50 1.22 0.28 0.13 0.41 1.64 20 1.21E-08 1.21 0.30 0.14 0.46 1.68 21 9.70E-09 2.68 

200 

10 2.28 0.10 0.03 0.13 2.41 5 3.62E-10 2.28 0.13 0.04 0.18 2.45 5 6.93E-09 3.27 

20 1.67 0.20 0.07 0.27 1.94 11 6.88E-10 1.66 0.22 0.09 0.31 1.97 11 2.65E-09 2.95 

30 1.30 0.26 0.12 0.37 1.68 18 2.50E-08 1.31 0.30 0.13 0.44 1.75 20 1.40E-08 2.75 

40 1.17 0.26 0.11 0.38 1.55 19 8.70E-09 1.19 0.27 0.12 0.40 1.59 19 2.41E-08 2.52 

50 1.16 0.25 0.11 0.37 1.53 19 2.29E-08 1.14 0.28 0.13 0.42 1.57 20 2.58E-08 2.51 

1.00E

-04 

100 

10 2.05 0.20 0.04 0.25 2.30 7 3.20E-09 2.11 0.23 0.05 0.29 2.40 7 5.80E-09 3.00 

20 1.40 0.17 0.05 0.22 1.62 7 4.46E-09 1.36 0.20 0.05 0.26 1.63 7 1.61E-09 2.84 

30 1.46 0.17 0.05 0.21 1.68 8 2.27E-09 1.40 0.20 0.06 0.27 1.68 8 8.58E-09 2.65 

40 1.61 0.15 0.05 0.20 1.82 7 1.78E-10 1.60 0.17 0.05 0.23 1.84 7 4.19E-10 2.99 

50 1.70 0.13 0.05 0.18 1.90 7 3.12E-10 1.73 0.16 0.06 0.23 1.98 7 7.20E-10 2.92 

200 

10 3.71 0.11 0.03 0.14 3.85 5 4.08E-09 3.73 0.17 0.05 0.22 3.95 6 3.52E-11 3.47 

20 2.15 0.08 0.02 0.11 2.26 4 8.12E-12 2.17 0.11 0.04 0.16 2.33 4 9.60E-12 3.22 

30 1.60 0.12 0.05 0.17 1.78 7 3.87E-09 1.61 0.17 0.06 0.23 1.84 8 1.01E-10 2.95 

40 1.47 0.12 0.04 0.16 1.64 7 3.68E-09 1.45 0.15 0.05 0.21 1.66 7 6.46E-09 2.85 

50 1.50 0.10 0.04 0.14 1.65 6 1.56E-09 1.49 0.12 0.05 0.18 1.67 6 1.04E-08 2.94 

Table 27 Results using hierarchy-LU preconditioner for PASSCAL with nrhs=1. The best results obtained for GMRES and IDR(s) are highlighted in green 
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STEADYCAV1 

Tol_h

ie 
b p 

GMRES IDR(s) 

Speedup 
Wall clock time (s) 

#iter Rel error 

Wall clock time (s) 

#iter Rel error Prec 

const 

Prec 

apply 
Matvec Solve Total 

Prec 

const 

Prec 

apply 
Matvec Solve Total 

1.00E

-02 

100 

20 1.17 0.39 0.74 1.13 2.31 32 5.76E-05 1.18 0.46 0.88 1.35 2.53 37 3.48E-05 1.69 

30 0.92 0.26 0.74 1.00 1.93 32 9.35E-05 0.92 0.31 0.87 1.19 2.12 37 1.43E-06 1.77 

40 0.90 0.26 0.78 1.04 1.95 34 1.58E-05 0.90 0.31 0.91 1.22 2.13 38 1.98E-05 1.79 

50 1.07 0.32 0.78 1.11 2.20 34 1.37E-05 1.06 0.27 0.88 1.16 2.24 37 7.82E-05 1.80 

200 

10 4.25 0.60 0.73 1.34 5.59 32 2.52E-05 4.23 0.69 0.85 1.54 5.77 36 2.54E-06 1.80 

20 1.52 0.40 0.67 1.07 2.60 29 3.45E-05 1.51 0.44 0.72 1.16 2.67 30 5.53E-06 1.55 

30 1.20 0.40 0.73 1.13 2.33 32 8.87E-05 1.19 0.47 0.85 1.33 2.53 36 4.83E-05 1.54 

40 1.06 0.42 0.73 1.16 2.23 32 2.36E-05 1.07 0.50 0.85 1.36 2.44 36 3.86E-05 1.58 

50 1.12 0.28 0.74 1.02 2.15 32 5.50E-05 1.11 0.44 0.83 1.28 2.39 35 3.77E-05 1.59 

1.00E

-03 

100 

10 7.53 0.36 0.48 0.84 8.37 21 3.66E-05 7.53 0.46 0.58 1.04 8.57 24 2.53E-05 2.33 

20 3.24 0.26 0.46 0.71 3.96 20 4.02E-06 3.21 0.30 0.53 0.83 4.05 22 2.12E-06 2.19 

30 2.40 0.23 0.50 0.73 3.15 22 1.41E-05 2.43 0.27 0.59 0.86 3.30 24 2.75E-06 1.60 

40 2.01 0.20 0.50 0.71 2.73 22 3.18E-05 2.00 0.25 0.58 0.83 2.84 24 5.85E-05 1.64 

50 2.26 0.19 0.52 0.72 2.99 23 1.12E-05 2.26 0.26 0.60 0.87 3.15 25 1.92E-05 1.67 

200 

10 7.74 0.33 0.34 0.67 8.42 15 8.97E-06 7.75 0.41 0.42 0.83 8.58 17 2.59E-06 2.33 

20 4.10 0.36 0.46 0.83 4.93 20 6.35E-05 4.10 0.46 0.56 1.02 5.13 23 2.92E-06 2.09 

30 2.53 0.30 0.46 0.76 3.30 20 1.82E-05 2.52 0.37 0.56 0.93 3.46 23 2.05E-06 1.54 

40 1.89 0.27 0.46 0.73 2.63 20 7.27E-06 1.89 0.23 0.53 0.77 2.67 22 6.69E-05 1.57 

50 1.93 0.29 0.46 0.75 2.69 20 4.04E-05 1.93 0.25 0.54 0.79 2.73 22 4.23E-05 1.58 

1.00E

-04 

100 

10 8.47 0.26 0.30 0.55 9.02 13 4.78E-07 8.46 0.28 0.35 0.64 9.10 14 3.24E-06 2.44 

20 6.31 0.36 0.50 0.87 7.18 22 1.56E-05 6.28 0.45 0.63 1.09 7.38 26 2.21E-06 2.18 

30 4.98 0.35 0.55 0.90 5.89 24 5.53E-05 4.98 0.43 0.67 1.11 6.10 28 1.43E-05 2.27 

40 5.08 0.29 0.48 0.77 5.86 21 1.68E-05 5.04 0.33 0.58 0.92 5.97 24 4.42E-06 1.89 

50 4.79 0.22 0.39 0.61 5.41 17 9.41E-06 4.78 0.26 0.46 0.72 5.53 19 6.34E-06 1.96 

200 

10 8.19 0.29 0.28 0.56 8.76 12 3.53E-06 8.15 0.27 0.33 0.60 8.75 13 9.52E-06 2.38 

20 6.55 0.33 0.43 0.76 7.31 17 6.95E-06 6.56 0.41 0.44 0.85 7.42 18 7.93E-07 2.23 

30 5.19 0.41 0.48 0.90 6.09 21 2.27E-05 5.19 0.54 0.63 1.17 6.37 26 1.26E-06 2.14 

40 4.35 0.26 0.41 0.67 5.03 18 1.37E-05 4.37 0.36 0.47 0.83 5.21 19 1.55E-05 1.89 

50 3.58 0.27 0.37 0.63 4.22 16 7.98E-07 3.59 0.25 0.44 0.70 4.30 18 2.68E-06 2.01 

60 3.41 0.26 0.34 0.61 4.03 15 4.53E-06 3.40 0.29 0.40 0.70 4.10 16 6.84E-07 2.06 

Table 28 Results using hierarchy-LU preconditioner for STEADYCAV1 with nrhs=1. The best results obtained for GMRES and IDR(s) are highlighted in green
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7 CONCLUSION 

In this report, four strategies to improve the efficiency of the dense linear solver used in panel 

codes were explored.  These are 

1. The use of the IDR(s) solver instead of GMRES 

2. The choice to use variable size block Jacobi preconditioner in suitable scenarios 

3. Replacing dense matvec in the solver with hierarchical matvec 

4. The use of hierarchical-LU preconditioner instead of block Jacobi preconditioner 

With these, many tests were conducted with the test matrices. The best strategy, together with the 

timing attained, are summarized in the table below: 

Test Matrix nrhs Strategy Time(s) 

FATIMA_20493 

1 
GMRES with Hierarchical-LU preconditioner 

OpenMP enabled  
47.48 

7 
GMRES with Hierarchical-LU preconditioner 

OpenMP enabled 
108.96 

FATIMA_7894 

1 
GMRES with block Jacobi Preconditioner 

OpenMP enabled 
6.36 

7 
GMRES with Hierarchical-LU preconditioner 

OpenMP enabled 
9.17 

PASSCAL 1 
GMRES with block Jacobi Preconditioner 

OpenMP enabled 
0.718 

Steadycav1 1 
GMRES with block Jacobi Preconditioner 

OpenMP enabled 
0.565 

Steadycav2 1 
GMRES with block Jacobi Preconditioner 

OpenMP enabled 
0.599 

Steadycav3 1 
GMRES with block Jacobi Preconditioner 

OpenMP enabled 
0.667 

Steadycav4 1 
GMRES with block Jacobi Preconditioner 

OpenMP enabled 
0.665 

Table 29 Final best timings attained in this Project 

While it may seem at first glance that GMRES with block Jacobi appears to provide the best 

solution for many of the test matrices, the author proposes the use of strategies 1 and 4 over this 

solution.  

The reason for the recommendation to use IDR(s) instead of GMRES stems from the fact that it 

generally outperforms GMRES significantly when restart is required. When restart is not required, 

IDR(s) usually requires only a few more iterations when compared with GMRES. This is evident 
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from the results presented in Section 3.3. Thus, from a practical point of view, it may be more 

beneficial to use IDR(s). 

The reason to propose the use of hierarchical-LU preconditioner over the block Jacobi 

preconditioner is due to its scalability. It has the major advantage of having almost linear 

complexity of 𝑂(𝑁(𝑙𝑜𝑔𝑁)2). Thus, even though for smaller systems, block Jacobi may perform 

slightly better than the hierarchical-LU preconditioner, at large sizes or with multiple RHS, the 

performance of hierarchical-LU preconditioner outshines the block Jacobi preconditioner. In 

addition, it conditions the system very well, reducing the number of dense matvec required 

significantly. The reduction in time both sequentially and in parallel has been shown to be about 

40-50% for the large FATIMA_20493 test matrix. 

There are many improvements that can be made to the hierarchical-LU decomposition codes as 

introduced in this report. One major improvement that can be made is to improve its parallelization. 

The parallelization strategy used in this report was rudimentary at best. It was done to give an idea 

of how the hierarchical-LU preconditioner compares with the block Jacobi preconditioner in a 

parallel environment. To properly make the code efficient in parallel, much more work and time 

are required, and is not within the scope of this project. To this, the author would like to propose 

two approaches that could be taken to improve the parallelization. 

In [1], M. de Jong had shown that the use of GPU with block Jacobi preconditioner was able to 

significantly lower the total time required to solve the largest test problem. In a similar way, the 

use of GPU with hierarchical-LU preconditioner can also reduce the total time required 

significantly. The same MAGMA library mentioned in [1] can be employed in this case.  

Alternatively, there are available literatures which suggest that task based approach to parallelizing 

the hierarchical-LU preconditioner can provide almost optimal speedup and good scaling behavior 

up to many cores. One such literature is that written by Kriemann, R. in [14]. By using the task 

based approach with a directed acyclic graph for efficient scheduling, the hierarchical-LU 

decomposition algorithm can be redesigned to provide a speedup behavior as illustrated in Figure 

43 below. In the figure, the blue line indicates the speedup behavior should the recursive approach 

be used. This recursive approach is much like the approach taken in this project. The task based 

approach is seen to provide a near optimal performance with many cores.  
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Figure 43 Speedup of task-based H-LU factorization obtained in [14] for Laplace kernel on a sphere 

With proper parallelization in placed, the author believes that the efficiency of the panel codes can 

be significantly improve by the use of IDR(s) with hierarchical-LU preconditioner. The 

improvement will be especially significant for large matrices and for systems with multiple RHS. 

To improve the efficiency even more from this point on, the use of Fast Multipole Method to bring 

the complexity down to 𝑂(𝑁) can be explored.  
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