

Efficiency Improvement of Panel Codes
Master Thesis Report

by

Ang Yun Mei Elisa (4420888)

in partial fulfilment of the requirements for the degree of

Master of Science

In Applied Mathematics

At the Delft University of Technology

To be defended publicly on Friday July 10, 2015 at 3.30 pm

Supervisor: Dr. ir. M.B. van Gijzen, TU Delft

MARIN Supervisor: Dr. ir. A. van der Ploeg, MARIN

Thesis committee: Prof. dr. ir. C. Vuik, TU Delft

 Dr. ir. H.X. Lin TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Delft
University of
Technology

PREFACE

Panel codes are used by the Maritime Reseach Institute Natherlands (MARIN) to compute

flows around ships and propellers. These codes are based on Boundary Element Methods

(BEM). A known drawback of BEM is that it forms dense linear system of equations that have

to be solved. By improving the efficiency of the dense linear solver, the computational time

required by panel codes can be significantly reduced. Since applications of panel codes in

MARIN include automatic optimization, where a large number of hull forms or propeller

geometries have to be evaluated, the reduction of computational time is important.

Four strategies were explored to improve the performance of the dense linear solver. First, to

replace the current GMRES solver with IDR(s). Second, the updating of a fixed size block

Jacobi preconditioner into a variable size block Jacobi preconditioner. Third, to use a

hierarchical matrix-vector multiplication in the solver instead of dense matrix-vector

multiplication. Lastly, to replace the block Jacobi preconditioner with a hierarchical-LU

preconditioner. Out of the four strategies, the use of hierarchical-LU preconditioner was found

to speed up the dense linear solver substantially, especially for large systems. The use of IDR(s)

instead of GMRES is also recommended as it removes the problems introduced by the need to

restart.

This report discusses the theory, implementation and test results obtained from the four

strategies aforementioned. As a result of this project, the use of IDR(s) combined with

hierarchical-LU preconditioner is recommended to be implemented in the panel codes.

The author would like to thank Dr. ir. Martin van Gijzen from TU Delft for his guidance

throughout the project. To Dr. ir. Auke van der Ploeg from MARIN, thanks for all the valuable

insights and support. It has been a pleasure to work on this project with both of you for the past

nine months.

Ang Yun Mei Elisa

Delft, The Netherlands

June 21, 2015.

CONTENTS

1 Introduction .. 1

1.1 Problem Statement .. 1

1.2 Background ... 1

1.3 Report purpose and overview .. 2

2 Test Environment ... 3

2.1 Test Matrices ... 3

2.2 System Information ... 3

2.3 Baseline test results ... 3

3 Part 1: Solver .. 5

3.1 Theory ... 5

3.1.1 GMRES .. 5

3.1.2 IDR(s) .. 5

3.2 Implementation.. 6

3.3 Results and Discussion .. 8

3.3.1 Number of iterations .. 10

3.3.2 Timings .. 11

3.3.3 Memory requirement ... 11

4 Part 2: Variable Size Block Jacobi Preconditioner ... 13

4.1 Implementation.. 13

4.2 Results and Discussion .. 15

5 Part 3: Hierarchical Method to speed up matrix-vector multiplication 18

5.1 Theory ... 18

5.1.1 Hierarchical Splitting of a Matrix A .. 19

5.1.2 Low Rank Approximation ... 19

5.1.3 Matrix Vector Multiplication using the H-matrix Structure 24

5.2 Implementation Details ... 26

5.2.1 Data structure of a Hierarchical Matrix (H-matrix) ... 26

5.2.2 Subroutines .. 34

5.2.3 Adapting the solver to use hie_matvec_A instead of dense matvec 38

5.2.4 Implementation issues and fixes .. 38

5.3 Results ... 40

5.3.1 Lanzcos Bidiagonalization versus ACA .. 41

5.3.2 Results after integration with solver .. 45

6 Part 4: Hierarchical LU-Decomposition ... 49

6.1 Theory ... 49

6.1.1 Basic Hierarchical Matrix Operations ... 50

6.1.2 Rounded subtraction Operation 𝑨 = 𝑨 – 𝑳𝑼 .. 53

6.1.3 Lower Triangular Solver 𝑳𝑩 = 𝑨 .. 55

6.1.4 Upper Triangular Solver 𝑩𝑼 = 𝑨 .. 57

6.1.5 Hierarchical LU Decomposition – the Algorithm ... 57

6.2 Program implementation details.. 58

6.2.1 Update to the data structure of a H-matrix for hierarchical-LU decomposition 58

6.2.2 Additional subroutines ... 62

6.2.3 Integration with the solver ... 73

6.2.4 Parallelization .. 74

6.3 Results ... 79

6.3.1 Results based on sequential computations ... 79

6.3.2 Results based on parallel computations ... 92

7 Conclusion .. 106

8 References .. 109

Ang Yun Mei Elisa Master Thesis Report 1

1 INTRODUCTION

1.1 PROBLEM STATEMENT

At MARIN, Boundary Element Method (BEM) is used to compute flows around ships and

propellers. Some examples of computer codes based on BEM, commonly known as panel codes,

are stated below [1]:

1. FATIMA: Used to compute ship motions and added resistance from incoming

waves

2. PROCAL: Used for the analysis of propellers

3. EXCALIBUR: Computes the hull pressure fluctuations induced by the propeller

4. RAPID: computes the wave system generated by the ship

The use of BEM results in a dense linear system of equation to be solved in every time step.

This is unlike methods like Finite Element Method (FEM), where the system of equations

formed is sparse. Thus, efficient linear solvers developed for FEM cannot be applied to BEM.

There is a need to reduce the computational time required to solve this dense linear system of

equations in MARIN. Therefore, this project seeks to explore ways to speed up the dense linear

solver.

1.2 BACKGROUND

Currently, GMRES combined with incomplete LU-decomposition preconditioner, is used to

solve the system of equations formed. M. de Jong had proposed the use of GMRES with Block-

Jacobi preconditioner to solve the dense system of equations more efficiently [1].

Parallelization techniques using OpenMP and Graphics Processing Units (GPUs) were also

studied to improve the performance of the Block-Jacobi preconditioner. The best solve times

are listed in [1, Table 40] in the test environment stated in [1, Section 6].

On Sept 2014, a literature review was conducted to better understand the nature of BEM, and

to assess the strategies available to address the problem [2]. The literature review divided the

strategies into three main parts: different solver, different preconditioner, and different methods

(known as Fast Multipole Method (FMM) and the Hierarchical Method). The results of the

literature review suggested that the following strategies have the most potential. These methods

are investigated in detail in this project.

Ang Yun Mei Elisa Master Thesis Report 2

1. Use of a different solver: the Induced Dimension Reduction solver (IDR(s))

2. Updating the current block Jacobi preconditioner to work for varying block sizes

3. Use of the Hierarchical method

The full literature review report can be found in [2].

1.3 REPORT PURPOSE AND OVERVIEW

The report summarizes the work done to improve the efficiency of the panel codes according

to the strategies laid out at the end of the literature review. The report is arranged in

chronological order in which these strategies were explored.

Section 3 discusses the advantages and disadvantages of the IDR(s) solver compared with the

current GMRES solver. The theories of both GMRES and IDR(s) are first presented briefly,

followed by a discussion on the integration of the IDR(s) solver into the current program. The

results of the comparison are then discussed.

In Section 4, updating of the current block Jacobi preconditioner to include the ability to accept

variable block Jacobi blocks is discussed. The theory, implementation and results are presented.

Section 5 is devoted to the use of hierarchical matrices to speed up matrix-vector multiplication

(matvec) in the solver. In the literature review, focus was placed on the use of Lanzcos

Bidiagonalization to perform the hierarchical splitting. In this report, an alternative method,

known as the Adative Cross Approximation (ACA), is discussed and compared with the

Lanzcos Bidiagonalization. The dense matvec operations in the solver are then replaced with

hierarchical matvec. The corresponding implementation details and results are discussed within

the section.

In Section 6, a new strategy that was not formulated at the end of the literature review is

explored. This strategy, known as the hierarchical-LU decomposition, forms a lower and an

upper triangular hierarchical matrix that can be used as a preconditioner. A thorough theoretical

review is first presented, followed by details on the implementation in Fortran. Results are

presented and discussed next.

The report then ends with a conclusion and recommendations for future work.

Ang Yun Mei Elisa Master Thesis Report 3

2 TEST ENVIRONMENT

Throughout the project, the new strategies are translated into Fortran codes and tested to

evaluate their performance. The details of the test matrices and the system on which the tests

were ran are given below. In Section 2.3, the best solve times that can be obtained in this test

environment using the code described in [1] is presented. This is the baseline results that the

new strategies are compared against.

2.1 TEST MATRICES

MARIN provided us with a few test matrices generated from their existing systems. The

matrices are dense, and their characteristics are summarized below:

Name Size Real/Complex

Steadycav1 4620 Real

Steadycav2 4620 Real

Steadycav3 4620 Real

Steadycav4 4649 Real

Passcal 4400 Real

FATIMA_7894 7894 Complex

FATIMA_20493 20493 Complex

Table 1 Test Matrices

2.2 SYSTEM INFORMATION

Brand/Type

Owner/ System no.

DELL

TU DELFT/ TUD205717

CPU

No. of cores

Cache

Memory

Intel® Core™ i5-4670 CPU @ 3.40GHz

4

256 KB x 4 L2/ 6 MB Smart L3

8 GB RAM DDR3-1333/1600

Motherboard

Operating System

System Kernel

Dell 0PC5F7

Windows 7

GPU

Memory

No of cores

Intel® HD Graphics 4600

1696 MB

20

OpenMP version 2.5

Table 2 System information

2.3 BASELINE TEST RESULTS

The final program resulting from the work of M. de Jong as presented in [1] were reran using

the test matrices on the system described in Table 2. These set of results are used as a

benchmark for comparison with the new strategies. The best solve times that are obtained are

Ang Yun Mei Elisa Master Thesis Report 4

summarized below. The results are all obtained with OpenMP parallelization enabled, and

number of physical cores set to 4. The other parameters are left the same as those described in

[1, Section 6.2].

Test Matrix
Number of right

hand side

Block Jacobi

Block size
Time(s)

FATIMA_20493
1 4000 87.62

7 4000 211.49

FATIMA_7894
1 1000 6.36

7 1000 25.74

PASSCAL 1 500 0.72

Steadycav1 1 500 0.57

Steadycav2 1 500 0.60

Steadycav3 1 500 0.67

Steadycav4 1 500 0.67

Table 3 Best solve times before improvements

Ang Yun Mei Elisa Master Thesis Report 5

3 PART 1: SOLVER

This project focuses on two Krylov methods to solve the linear system: Generalized Minimized

Residual (GMRES) and Induced Dimension Reduction (IDR). GMRES is the method used

currently, while IDR(s) is the new solver that is integrated into the current program.

The literature report in [2] details the literature review done on GMRES and IDR(s). This

includes the mathematical concept, pseudo-algorithm, and performance analysis. A summary

of the theory is given here, but the reader is referred to [2] for details. Following the theory,

the implementation details and comparison results are described.

3.1 THEORY

The following subsections briefly summarizes the concepts, advantages and disadvantages of

the GMRES and IDR(s) solver.

3.1.1 GMRES

GMRES is the most common iterative method employed to solve 𝐴𝑥 = 𝑏, when A is not

hermitian. At every iteration 𝑚, it approximates the exact solution, 𝑥∗, with a vector 𝑥𝑚 that

resides in the Krylov space 𝒦𝑚, such that the residual ‖𝑟𝑚‖ = ‖𝑏 − 𝐴𝑥𝑚‖ is minimized. A

Krylov space, 𝒦𝑚, is defined as the space 𝑠𝑝𝑎𝑛{𝑏, 𝐴𝑏, 𝐴2𝑏,… , 𝐴𝑚−1𝑏}. The main advantage

of GMRES is that it is optimal, since at every step the residual is minimized. In addition, only

one matrix-vector multiplication is required per iteration. The main disadvantage of the

GMRES is that it is a long-recurrence method. This means that the work and storage required

increase with iteration. Therefore, in most cases, including this application, GMRES is

implemented with restart to prevent the work and storage requirement from growing too large.

This means that after 𝑘 number of iterations, the algorithm is restarted with 𝑥𝑘 as the initial

guess.

3.1.2 IDR(s)

The IDR method was introduced by Sonneveld, P. & van Gijzen, M.B. in 2008 [3]. Unlike

GMRES, IDR(s) is a short recurrence method. The depth of recurrence depends on the

parameter s. Also, instead of increasing the subspace with every iteration, IDR(s) uses the

concept of nested subspaces 𝒢𝑗, where 𝒢𝑗 ⊂ 𝒢𝑗−1 and 𝒢0 =the full Krylov subspace, 𝒦(𝐴, 𝑟0).

The main benefit of IDR(s) over GMRES is its short recurrence, therefore ensuring that storage

and work remains constant with increasing iterations. It also has the benefit over other short

Ang Yun Mei Elisa Master Thesis Report 6

recurrence methods like bi-CG of requiring at most 𝑁 +
𝑁

𝑠
 matrix-vector product to arrive at

the exact solution, where N is the problem size, and s is the codimension of a fixed subspace

[2].

The main mathematical concept behind IDR(s) is to search for the residual 𝑟𝑚 ∈ 𝒢𝑗 . The IDR

theorem states that the space 𝒢𝑗 is shrinking as 𝑗 increases, and there will be some 𝑗 ≤ 𝑁 during

which the space 𝒢𝑗 reduce to just null space. Thus, this means that the residual will be 0 at

some point 𝑗 ≤ 𝑁 and the exact solution is found.

3.2 IMPLEMENTATION

A Fortran implementation of IDR(s) was adapted from Martin van Gijzen [4], and integrated

with the current solver such that the user can choose to use GMRES or IDR(s) to solve the

system.

An open question remains as to what is the value of s to use. To investigate this, the IDR(s)

solver was ran with the test matrices for different values of s. The results are graphed as shown

in Figure 1. The figures on the left represent the trend lines for the number of iterations required

to solve the system with IDR(s), while those on the right represent the time required. The time

shown here is purely the time taken for IDR(s) and does not include the time required to

construct the preconditioner.

Ang Yun Mei Elisa Master Thesis Report 7

Figure 1 Effect of parameter s on the number of iteration and time to IDR(s) solve time for different test matrices.

The optimal s value for FATIMA_20493 is around 50. When s is small (𝑠 ≤ 20), there is a

significant drop in the number of iterations as s increases. This is especially true for small block

Jacobi block sizes, where the system is less well-conditioned. For well-conditioned system (in

this case when block Jacobi block size is around 6000), the effect of increasing s reduces. The

reduction continues until s reaches about 50. After this, number of iteration remains roughly

constant even when s increases. This effect can be explained by the fact that IDR(s) can never

outperform GMRES (without restart) in terms of the number of iterations required, since

GMRES is optimal. Thus, there is a limit as to how much the number of iterations can be

reduced by increasing s.

Since s determines the depth of recursion, when s increases, the amount of work (and storage)

per iteration increases. Thus, a slight rise in time as s increases beyond 50 can be observed,

since the number of iterations remain constant, but each iteration involves more work. The rise

in time is slight, as the main bulk of the time is still taken up by the matvec operations due to

the dense nature of the system.

The same trend can be observed for the FATIMA_7894 test matrix, but with the optimal value

closer to 30 instead. Although for the less well-conditioned system (when block Jacobi block

size is 500), s still seems to be optimal at a higher value of 50, the better conditioned system

shows a lower optimal value of s.

Ang Yun Mei Elisa Master Thesis Report 8

All the smaller Steadycav matrices exhibit the same trend. Therefore, only the results for

Steadycav1 are depicted here. In this case, the optimal value of s is at 10. When s increases

beyond 10, the number of iterations remain constant, thus, a slight increase in timing is again

observed. Passcal matrix seems to be optimal with s = 30.

With these observations, the values of s used are 50 for FATIMA_20493, 30 for

FATIMA_7894 and Passcal, and 10 for the Steadycav matrices. For other systems, initial

assessments need to be carried out to decide on an optimal value of s.

3.3 RESULTS AND DISCUSSION

The test matrices were solved both using GMRES and IDR(s), with the following configuration.

 OpenMP turned on for the expensive parts of the operation (matrix-vector or matrix

matrix multiplication, construction of block Jacobi preconditioner, application of block

Jacobi preconditioner), with number of cores set to 4

 Mixed precision (#define PRECISION_zc or #define PRECISION_ds)

 Tolerance for relative residual (Exit criteria for solvers) set to 1e-09

 GMRES restart after 200 iterations

 Number of right hand side (nrhs) vectors is 1. The results for multiple right hand side

(RHS) exhibits the same trend as when the number of RHS is 1, and therefore, are not

elaborated on here

The complete results can be found in Table 4. An explanation of each column is provided

below. The subsections that follow discuss these results.

 Prec const: Time spent on the LU-factorization of the block Jacobi preconditioner

 Prec apply: Time spent on applying the block Jacobi preconditioner during solving

 Matvec: Time spent on matrix-vector multiplication during solving

 Solve: Total time spent on GMRES or IDR(s) routine. The total solve time is

approximately the sum of Prec apply and Matvec timings.

 Total: Total wall clock time. This is roughly the sum of Solve and Prec const timings.

 #iter: Total number of iterations required for solving

 Rel error: Final relative error computed using the formula ‖𝑥𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑥𝑒𝑥𝑎𝑐𝑡‖1
1

1 The exact solution is known because in the test program, the right hand sides are constructed with specified

solution.

Ang Yun Mei Elisa Master Thesis Report 9

Matrix

Blocksize

for block

Jacobi

GMRES IDR(s)

Wall clock time (s)

#iter Rel error

Wall clock time (s)

#iter Rel error Prec

const

Prec

apply
Matvec Solve Total

Prec

const

Prec

apply
Matvec Solve Total

FATIMA_20493

1708 6.58 7.89 104.60 116.08 122.66 393 1.49E-06 6.51 5.08 67.26 73.94 80.45 260 6.20E-07

4000 53.19 6.74 27.19 34.44 87.62 103 1.17E-07 53.06 7.31 28.65 36.57 89.75 110 2.45E-07

6000 267.00 4.51 15.92 20.64 287.64 60 2.27E-07 266.28 5.12 17.59 23.07 292.51 66 1.36E-07

FATIMA_7894

500 0.23 0.59 8.55 9.83 10.06 231 7.03E-07 0.23 0.61 8.66 9.54 9.77 237 2.79E-07

1000 0.90 0.58 4.63 5.47 6.36 121 1.57E-07 0.88 0.64 4.90 5.68 6.55 133 1.14E-07

2000 12.56 0.67 2.81 3.58 16.14 74 1.50E-07 12.52 0.74 3.05 3.89 16.70 82 5.93E-08

Steadycav1

500 0.08 0.05 0.42 0.48 0.57 61 2.53E-04 0.08 0.06 0.47 0.54 0.62 68 5.63E-05

1000 0.40 0.10 0.31 0.42 0.82 43 2.23E-04 0.40 0.11 0.33 0.45 0.86 47 2.85E-05

1200 1.23 0.06 0.24 0.31 1.54 35 6.27E-05 1.23 0.07 0.28 0.35 1.58 39 1.41E-05

1500 1.99 0.10 0.28 0.39 2.38 41 1.74E-04 1.98 0.11 0.31 0.43 2.41 45 4.10E-04

Steadycav2

500 0.08 0.06 0.45 0.52 0.60 65 2.59E-04 0.08 0.06 0.50 0.57 0.65 72 6.73E-07

1000 0.40 0.10 0.33 0.44 0.84 47 2.39E-05 0.49 0.12 0.37 0.49 0.90 52 1.79E-04

1200 1.23 0.06 0.26 0.33 1.57 38 8.84E-06 1.23 0.08 0.31 0.39 1.62 43 1.22E-04

1500 1.99 0.11 0.30 0.42 2.40 44 7.16E-05 1.98 0.13 0.35 0.48 2.46 50 2.13E-04

Steadycav3

500 0.08 0.06 0.51 0.58 0.67 70 1.60E-02 0.08 0.06 0.51 0.59 0.67 73 1.23E-02

1000 0.41 0.11 0.34 0.46 0.87 50 2.49E-03 0.40 0.12 0.37 0.49 0.89 53 1.06E-02

1200 1.23 0.07 0.28 0.35 1.58 40 2.74E-04 1.23 0.08 0.32 0.40 1.63 45 6.79E-04

1500 1.99 0.11 0.33 0.45 2.44 47 6.92E-03 1.98 0.14 0.40 0.55 2.53 57 3.41E-03

Steadycav4

500 0.08 0.06 0.50 0.58 0.67 72 8.05E-05 0.08 0.07 0.60 0.69 0.77 87 7.80E-06

1000 0.40 0.11 0.35 0.47 0.88 50 1.09E-05 0.40 0.12 0.38 0.52 0.92 54 3.28E-05

1200 1.25 0.07 0.28 0.36 1.60 40 1.19E-05 1.24 0.08 0.33 0.42 1.67 47 6.73E-06

1500 1.99 0.11 0.33 0.45 2.44 47 3.02E-05 1.98 0.13 0.38 0.52 2.50 54 2.71E-05

Passcal

500 0.08 0.08 0.54 0.64 0.72 91 3.54E-07 0.08 0.08 0.57 0.69 0.76 96 5.19E-07

1000 0.40 0.18 0.47 0.67 1.07 81 5.59E-07 0.40 0.19 0.50 0.73 1.13 86 1.58E-06

1200 0.99 0.13 0.46 0.60 1.560 77 2.99E-07 0.99 0.14 0.50 0.67 1.65 83 2.06E-07

1500 1.83 0.17 0.43 0.62 2.45 73 1.28E-06 1.83 0.19 0.50 0.69 2.52 78 3.15E-06

Table 4 Comparison between GMRES and IDR(s). The best solve time, total time, and number of iterations required for each case is highlighted in green.

Ang Yun Mei Elisa Master Thesis Report 10

3.3.1 Number of iterations

First, attention is given to comparing the number of iterations GMRES and IDR(s) take to solve

the problem. In most cases, IDR(s) takes a few more iterations as compared to GMRES. This is

due to the fact that GMRES is optimal, thus, it is expected that GMRES uses the lowest number

of iterations required to solve the system. However, when restart is required for GMRES, it can be

seen that IDR(s) could require a significantly lower number of iterations. This is exemplified by

the FATIMA_20493 matrix, with a block Jacobi block size of 1708. GMRES requires 393

iterations, while IDR(s) requires only 260 (Refer to Table 4).

The reason for this behavior can be explained using the relative residual plots, shown in Figure 2.

The usual cases for GMRES without restart are shown in the first three plots. GMRES always

display a faster convergence, but IDR(s) stays close to this convergence behavior of GMRES. The

last figure shows the case for the FATIMA_20493 matrix with block Jacobi block size of 1708,

where a restart is required. It can be observed that at the onset of a restart, the relative residual

behavior of GMRES is to plateau, and then converge steeply again. Since restart is not required in

IDR(s), the plateau behavior is not observed and the number of iterations required is therefore

lower. Although GMRES without restart gives again the lowest number of iterations required, its

use is prohibitive due to the increase in the work and storage requirement with iterations. On the

other hand, IDR(s) do not require restart since it is a short recurrence method. Therefore, in such

cases, it is clear that IDR(s) has a distinct advantage over GMRES.

Figure 2 Relative residual plots for GMRES and IDR(s)

Ang Yun Mei Elisa Master Thesis Report 11

3.3.2 Timings

After studying the number of iterations required, the focus is now on the time required to solve the

system. One important benefit that IDR(s) have over GMRES is that less amount of work is

required per iteration. Thus in theory, IDR(s) can afford to have more iterations, and may still

perform better than GMRES in terms of timings. However, because the system here is dense, the

dominant work in every iteration is the matrix-vector multiplication. This can be seen from the

timings presented in Table 4. It can be observed that the matvec time takes up about 70% to 90%

of the solve time. Both GMRES and IDR(s) needs one matrix-vector multiplication per iteration.

Thus although each iteration of IDR(s) may require less work than GMRES, the additional few

number of iterations required for IDR(s) to solve the system dominates over this. Therefore, the

time required for IDR(s) is slightly higher as compared to GMRES in most cases.

The case for the FATIMA_7894 system preconditioned with block Jacobi block size of 500 is one

example where the gain of IDR(s) over GMRES can be observed. Although the number of

iterations for IDR(s) is slightly higher as compared to GMRES (237 and 231 respectively), the

time required for IDR(s) is 9.5s, as compared to the 9.8s required for GMRES. The time spent on

work other than matvec for GMRES is about 1.3s while that for IDR(s) is 0.9s. While this gain is

recognized, the overall effect on the total time is still not significant.

3.3.3 Memory requirement

The memory required for GMRES and IDR(s) differs in the number of vectors from previous

iterations that have to be stored. In the Fortran implementation of the GMRES method, the amount

of memory allocated to store the vectors from previous iterations is a size 𝑁 × 𝑛𝑟ℎ𝑠 ×

𝑔𝑚𝑟𝑒𝑠_𝑟𝑒𝑠𝑡𝑎𝑟𝑡 array. The term 𝑔𝑚𝑟𝑒𝑠_𝑟𝑒𝑠𝑡𝑎𝑟𝑡 defines the number of iterations at which a

restart is invoke. In the case of IDR(s), the amount of memory allocated to store the vectors from

previous iterations is three size 𝑁 × 𝑛𝑟ℎ𝑠 × 𝑠 arrays. Since 3𝑠 is expected to be smaller than

𝑔𝑚𝑟𝑒𝑠_𝑟𝑒𝑠𝑡𝑎𝑟𝑡, the amount of memory required for IDR(s) is lower.

However, as the systems here are dense, the main bulk of the memory is allocated to store the

system matrix. The reduction in memory required for IDR(s) as compared to GMRES is

insignificant in these cases.

Ang Yun Mei Elisa Master Thesis Report 12

In conclusion, the performance of IDR(s) is close to that of GMRES for most cases. From the test

matrices, it was observed that IDR(s) solver outperforms GMRES significantly in cases when

GMRES restart is required. In the case of FATIMA_20493 with block Jacobi block size of 1708,

the total time required to solve the system using GMRES is 122.7s, while that for IDR(s) is only

80.5s. Thus, using IDR(s) instead of GMRES can lead to a substantial performance gain when

restart is required, in the expense of slightly higher computational time when restart is not invoked.

Ang Yun Mei Elisa Master Thesis Report 13

4 PART 2: VARIABLE SIZE BLOCK JACOBI PRECONDITIONER

For some applications in MARIN, variable Jacobi blocks are of interest. Consider the case of

simulation of ships’ interactions. The resulting test matrix has a natural block structure, illustrated

below:

Figure 3 Structure of a typical matrix derived from ship simulations

The main diagonal has blocks with elements which represent interactions of panels belonging to

the same ship. The off diagonal blocks represent interactions between panels belonging to different

ships. For such applications, at each time step, the elements within the main diagonal blocks do

not change. Only the off diagonal elements are updated. Thus, if variable sized blocks in the block

Jacobi preconditioner can be implemented, the LU decomposition for the block Jacobi

preconditioner needs only to be done once, and can be used for the rest of the time steps.

The subsections below discusses first the implementation of variable size block Jacobi

preconditioner. The results are then discussed in the next section.

4.1 IMPLEMENTATION

To adapt the current implementation to cater to varying block Jacobi block sizes, the following

changes were made:

1. A new derived type, 𝐿𝑈_𝑏𝑙𝑜𝑐𝑘𝑠, was defined to store the variable sized block Jacobi blocks.

𝐿𝑈_𝑏𝑙𝑜𝑐𝑘𝑠 is made up of the following 1D arrays.

a. 𝑳𝑼_𝟏𝑫: used to store the elements in all the block Jacobi blocks. The size of this

array is hence ∑ 𝑠𝑖𝑧𝑒𝑗𝑎𝑐𝑜𝑏𝑖 𝑏𝑙𝑜𝑐𝑘 𝑖
2# 𝑗𝑎𝑐𝑜𝑏𝑖 𝑏𝑙𝑜𝑐𝑘𝑠

𝑖=1

Ang Yun Mei Elisa Master Thesis Report 14

b. 𝒑𝒊𝒗𝒐𝒕_𝟏𝑫: used to store the pivot array that comes from LU decomposition. The

size of this array is 𝑁.

c. 𝑳𝑼𝒑𝒐𝒔_𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓: used to store the start index of the first element of each block

in 𝐿𝑈_1𝐷. The purpose of this container is to allow the easy access of the elements

in each Jacobi block. The size of this array is the total number of block Jacobi

blocks.

d. 𝒑𝒊𝒗𝒐𝒕𝒑𝒐𝒔_𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓: used to store the start index of the first element of each

block in 𝑝𝑖𝑣𝑜𝑡_1𝐷. The purpose of this container is to allow the easy access of the

pivot element of each Jacobi block. The size of this array is the total number of

block Jacobi blocks.

 type, public :: LUblocks

 DATATYPE1, allocatable, dimension (:) :: LU_1D

 integer(kind=SHORT), allocatable, dimension (:) :: pivot_1D

 integer(kind=SHORT), allocatable, dimension (:) :: LUpos_container

 integer(kind=SHORT), allocatable, dimension (:) :: pivotpos_container

 integer(kind=SHORT) :: LU_1D_size

 integer(kind=SHORT) :: pivot_1D_size

 end type LUblocks

Figure 4 Data structure for 𝐿𝑈𝑏𝑙𝑜𝑐𝑘𝑠

2. The existing codes were updated to use this derived type instead of the 3D arrays previously

used to store the block Jacobi blocks. To illustrate how this was done, assume that a

𝐿𝑈𝑏𝑙𝑜𝑐𝑘𝑠 typed object named 𝐿𝑈𝑝𝑖𝑣𝑜𝑡 is declared and constructed. Then, the product of

the LU-factorization of each block Jacobi blocks are stored in 𝐿𝑈𝑝𝑖𝑣𝑜𝑡 by the following

code fragment.

To help understand the code fragment, some definitions are given here:

 𝑛𝑟𝑏𝑙𝑜𝑐𝑘𝑠 denotes the total number of block Jacobi blocks

 𝑙𝑤𝑏 denotes the first row or column number corresponding to a particular block

 𝑢𝑝𝑏 denotes the last row or column number corresponding to a particular block

 𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 denotes the first element corresponding to a particular block in the

𝐿𝑈_1𝐷 array

 𝑁𝑙𝑜𝑐 denotes the total number of columns or rows belonging in a block

 𝑟𝑒𝑡𝑢𝑟𝑛_𝑝𝑜𝑠 is a helper function that returns the position of an element in the

𝐿𝑈_1𝐷 array given its local index 𝑖, 𝑗 in its block Jacobi block number.

Ang Yun Mei Elisa Master Thesis Report 15

 do kw = 1,nrblocks

 lwb=LUpivot%pivotpos_container(kw)

 blockposition=LUpivot%LUpos_container(kw)

 upb = min (N,lwb-1+blocksize_container(kw))

 ! Compute actual block size: may be smaller than 'blocksize'

 ! for the last block

 ! ---------------

 Nloc = upb+1-lwb

 ! Copy the 'kw-th' main diagonal block of A to LU(:,:,kw)

 ! --

 do k = lwb,upb

 call F1COPY (Nloc,A(lwb,k),1, &

 LUpivot%LU_1D(return_pos(blockposition, Nloc, 1, k-lwb+1)),1)

 end do

 ! Compute LU-factorization of block on the main diagonal

 ! Note: sequential within the block

 ! ---

 call F1GETRF (Nloc,Nloc,LUpivot%LU_1D(blockposition), &

 blocksize_container(kw), LUpivot%pivot_1D(lwb),info)

 ! Store 1/diag element

 ! ---------------------

 do k = 1,Nloc

 LUpivot%LU_1D(return_pos(blockposition, Nloc, k, k))&

 = F1ONE / LUpivot%LU_1D(return_pos(blockposition, Nloc, k, k))

 end do

 end do

Figure 5 Code fragment illustrating the LU-factorization of the variable sized block Jacobi blocks

4.2 RESULTS AND DISCUSSION

Passcal is an example of a matrix that has the structure shown in Figure 3. It has three main

diagonal blocks, with sizes 1600, 1600 and 1200 respectively. The results obtained using the

variable size block Jacobi preconditioner is shown in Table 5, together with the best results

obtained using the fixed size block Jacobi preconditioner (block size = 500) for comparison. The

same setting as described in Section 3.3 is used here.

In this case, the variable size block Jacobi preconditioner does not provide a significant gain as

expected. It was hypothesized that by using a preconditioner that takes into account the natural

block structure, the number of iterations required could be lowered. However, it can be seen that

the number of iterations required for the variable size block Jacobi preconditioner in this case

(which is 80 for GMRES) is even slightly more than the corresponding fixed size block Jacobi

preconditioner (block size of 1200 requires 77 iterations).

Ang Yun Mei Elisa Master Thesis Report 16

Moreover, although there is only a one time effort to construct the variable size block Jacobi

preconditioner, the main diagonal blocks are usually large, hence, the time taken to apply the

preconditioner at every time step is also high. On the other hand, although there is a need to

construct the fixed size block Jacobi preconditioner at every iteration, the preconditioner that

performs best in this case has a small block size. This means that the construction and application

of the fixed size preconditioner is relatively cheap.

Table 6 shows a comparison in the time taken to solve the system with a fixed or variable size

block Jacobi preconditioner for different number of time steps required. In the case of GMRES,

only when the time steps required exceed 1000, then there will be about 1-2% gain in time. In the

case of IDR(s), since the solve time for variable size block Jacobi preconditioner is already more

than the total time required for the fixed size block Jacobi preconditioner, it can be seen that the

fixed size block Jacobi preconditioner performs better.

To sum up, for this example, the use of variable size block Jacobi preconditioner does not show a

significant gain. Since it was shown that the number of iterations did not reduce by exploiting the

natural block structure, the benefit of a variable size block Jacobi preconditioner is limited.

Ang Yun Mei Elisa Master Thesis Report 17

Matrix
Blocksize for

block Jacobi

GMRES IDR(30)

Wall clock time (s)

#iter Rel error

Wall clock time (s)

#iter Rel error Prec

const

Prec

apply
Matvec Solve Total

Prec

const

Prec

apply
Matvec Solve Total

Passcal
500 0.08 0.08 0.54 0.64 0.72 91 3.54E-07 0.08 0.088 0.57 0.69 0.76 96 5.19E-07

1600, 1600, 1200 1.54 0.21 0.47 0.71 2.25 80 4.66E-07 1.54 0.24 0.54 0.81 2.35 88 2.35E-06

Table 5 Results for variable size block Jacobi preconditioner compared with fixed size block Jacobi preconditioner. The highlighted values are used in Table 6.

 GMRES IDR(30)

Total number of

time steps

Time with fixed

sized block Jacobi

preconditioner (s)

Time with variable

sized block Jacobi

preconditioner (s)

Time with fixed

sized block Jacobi

preconditioner (s)

Time with variable

sized block Jacobi

preconditioner (s)

100 71.8 72.24 76.4 82.24

1000 718 708.54 764 808.54

10000 7180 7071.54 7640 8071.54

Table 6 Performance of fixed and variable block Jacobi blocks for different time steps

Ang Yun Mei Elisa Master Thesis Report 18

5 PART 3: HIERARCHICAL METHOD TO SPEED UP MATRIX-

VECTOR MULTIPLICATION

In the literature review [2], the theory of Fast Multipole Method was presented. The Fast Multipole

Method (FMM) is introduced by Rokhlin and Greengard in 1980s [5]. It has the benefit of allowing

matvec operations to be performed in 𝑂(𝑁) complexity, where 𝑁 is the size of the system matrix.

However, it requires kernel and domain information to build up the low rank approximation via

series expansion.

In 1999, Hackbush introduced the hierarchical matrices (H-matrices) [6]. Here, it is assumed that

the system matrix is given. The matrix is then split hierarchically, and each block is approximated

by a low rank approximation. This structure allows the method to be implemented as a black box,

without knowing any domain or kernel information. This makes it simpler to implement. In general,

the use of H-matrices brings the complexity of matrix-vector multiplication down to 𝑂(𝑁𝑙𝑜𝑔𝑁)

[7]. Because of the possibility to implement this method as a black box, this project choose to

focus on the H-matrices instead of FMM.

With the construction of H-matrix, each dense matvec performed by the solver can be replaced

with a hierarchical matvec. This is desired, since the dense matvec is the most time consuming

operation in the solver, with complexity 𝑂(𝑁2).

The following subsections discuss first the theory of hierarchical method. The implementation

details of the hierarchical matrix in Fortran and its integration in the solver are presented next. The

results are then presented and the strategy is evaluated.

5.1 THEORY

This section addresses the theory behind constructing a hierarchical form of a matrix, and how it

can be used to reduce the complexity of matvec operation from 𝑂(𝑁2) to 𝑂(𝑁𝑙𝑜𝑔𝑁) . The

construction of a H-matrix includes the hierarchical splitting of a matrix 𝐴 into blocks,

determination of whether each block is low rank, and then obtaining the low rank approximation

if they exist.

Ang Yun Mei Elisa Master Thesis Report 19

5.1.1 Hierarchical Splitting of a Matrix A

The process of hierarchically partitioning A into blocks is illustrated in Figure 6.

At level 𝑙 = 0, 𝐴 is not partitioned. At level 𝑙 = 1, A is partition into 4 blocks. At 𝑙 = 2, 𝐴 is

partition into 16 blocks and so on until 𝑙 = 𝑙𝑒𝑣𝑒𝑙𝑠, when each block is deemed to be small enough.

Each matrix block obtained from level 𝑙 is represented by the symbol 𝑀𝜎,𝜏(𝑙), where 𝜎, 𝜏 are the

local row and column block numbers of level 𝑙, and 𝜎, 𝜏 ∈ {0,1, … , 2𝑙}. Each block has row and

column size indicated by 𝑠𝑖𝑧𝑒𝜎 and 𝑠𝑖𝑧𝑒𝜏.

Figure 6 Hierarchical Partitioning of Matrix A

5.1.2 Low Rank Approximation

With A split hierarchically, the next step is to determine if each block is of low rank. There are

different ways to decide if a block is low rank, and if so, construct the low rank approximation of

the block. Two methods are studied here: the Lanzcos Bidiagonalization method and the Adaptive

Cross Approximation (ACA) method.

A block is of low rank if the matrix block can approximated as shown in Equation 1 or Equation

2.

𝑀𝜎,𝜏(𝑙) ≈ �̃�𝜎,𝜏(𝑙) = 𝑈𝜎,𝜏𝐵𝜎,𝜏𝑉𝜎,𝜏
𝑇

Equation 1

Ang Yun Mei Elisa Master Thesis Report 20

𝑀𝜎,𝜏(𝑙) ≈ �̃�𝜎,𝜏(𝑙) = ∑ 𝑢𝑘𝑣𝑘
𝑇

𝑝

𝑘=1

= 𝑈𝜎,𝜏𝑉𝜎,𝜏
𝑇

Equation 2

Where 𝑈𝜎,𝜏 ∈ ℂ𝑠𝑖𝑧𝑒𝜎×𝑝 , 𝑉𝜎,𝜏 ∈ ℂ𝑠𝑖𝑧𝑒𝜏×𝑝 , 𝐵𝜎,𝜏 ∈ ℂ𝑝×𝑝 , 𝑢𝑘 ∈ ℂ𝑠𝑖𝑧𝑒𝜎×1, 𝑣𝑘 ∈ ℂ𝑠𝑖𝑧𝑒𝜏×1 , and 𝑝 ≪

𝑠𝑖𝑧𝑒𝜎 𝑜𝑟 𝑠𝑖𝑧𝑒𝜏.

If the blocks can be approximated by Equation 1 or Equation 2, it can be said that the rank of each

block is approximately 𝑝. Lanzcos Bidiagonalization approximates a block with Equation 1, while

ACA uses Equation 2. The two methods are discussed further in the following subsections.

5.1.2.1 Lanzcos bidiagonalization

A quick summary of the Lanzcos Bidiagonalization method is first given. Consider the reduction

of 𝐴 ∈ ℂ𝑚𝑥𝑛 into bidiagonal form [8]:

𝐴 [𝑣1 |… | 𝑣𝑛] = [𝑢1 |… | 𝑢𝑚]

[

𝛼1 𝛽1

𝛼2 ⋱
⋱ 𝛽𝑛−1

𝛼𝑛]

Equation 3

Let 𝑈 = [𝑢1 |… | 𝑢𝑚] and 𝑉 = [𝑣1 |… | 𝑣𝑛] . 𝑈 and 𝑉 are required to be orthogonal

matrices. Also, let 𝐵 be the bidiagonal matrix

[

𝛼1 𝛽1

𝛼2 ⋱
⋱ 𝛽𝑛−1

𝛼𝑛]

. Thus, Equation 3 can be

written as 𝐴𝑉 = 𝑈𝐵.

For the kth column, the following can be written

𝛼𝑘𝑢𝑘 = 𝐴𝑣𝑘 − 𝛽𝑘−1𝑢𝑘−1

Equation 4

Since 𝐴𝑉 = 𝑈𝐵, then 𝐴𝐻𝑈 = 𝑉𝐵𝐻 must be also true. This provides us with another formula for

the kth column:

Ang Yun Mei Elisa Master Thesis Report 21

𝛽𝑘𝑣𝑘+1 = 𝐴𝐻𝑢𝑘 − 𝛼𝑘𝑣𝑘

Equation 5

Thus, if any unit vector 𝑣1 is specified and assume 𝛽0 is 0, then Equations 4 and 5 form the

recurrence relation required to obtain 𝑢𝑘 and 𝑣𝑘+1 at every step k. The two scalers 𝛼𝑘 and 𝛽𝑘 are

chosen to normalize 𝑢𝑘 and 𝑣𝑘+1. This algorithm is described in many literature, for example [8].

The algorithm is modified such that the decomposition is terminated after 𝑝 steps. Hence, the

dimensions of the decomposed matrix block are:

𝑈 ∈ ℂ𝑚𝑥𝑝, 𝑉 ∈ ℂ𝑛𝑥𝑝, 𝐵 ∈ ℂ𝑝𝑥𝑝

Again, let each matrix block in the hierarchical division of 𝐴 be 𝑀𝜎,𝜏(𝑙). Applying the Lanzcos

Bidiagonalization algorithm to 𝑀𝜎,𝜏(𝑙) gives us an approximation �̃�𝜎,𝜏(𝑙) = 𝑈𝐵𝑉𝐻 (Note that the

subscripts 𝜎, 𝜏 on 𝑈, 𝑉 and 𝐵 are dropped to avoid cluttering). To check if 𝑀𝜎,𝜏(𝑙) is admissible,

the pth diagonal element from 𝐵, 𝐵(𝑝, 𝑝), is checked to see if it has decreased below a tolerance,

𝑡𝑜𝑙_ℎ𝑖𝑒. The rationale for this is described in [2].

5.1.2.2 Adaptive Cross Approximation (ACA)

Bebendorf introduced the ACA method in 2000 [9]. Like the Lanzcos Bidiagonalization method,

it seeks to find an approximation to blocks that are of low rank. While Lanzcos Bidiagonalization

approximates the low rank blocks with Equation 1, ACA approximates the low rank blocks using

the outer products as described in Equation 2 [9]. In this section, the main equations governing the

ACA algorithm is first introduced. The formulation of the admissibility criterion is next presented.

Lastly, a discussion on the different ways to choose the rows and columns required during the

algorithm is discussed.

The theory behind ACA described here is referenced mainly from [7] and [9].

5.1.2.2.1 Main equations

The ACA works by first separating the matrix block 𝑀, into an approximation matrix 𝑆, and a

residual matrix 𝑅.

𝑀 = 𝑅 + 𝑆

Ang Yun Mei Elisa Master Thesis Report 22

Initially, 𝑅0 = 𝑀 and 𝑆0 = 0. At each iteration, a row 𝑖𝑘 and a column 𝑗𝑘 are chosen. It is assumed

for now that these choices are known. Let 𝑒𝑖,𝑠𝑖𝑧𝑒𝜎
 represents the 𝑖𝑡ℎ column of the identity matrix

𝐼𝑠𝑖𝑧𝑒𝜎𝑥𝑠𝑖𝑧𝑒𝜎. At each step of the iteration, 𝑅 and 𝑆 is computed based on the recursive relation:

𝛾𝑘+1 = (𝑒𝑖𝑘+1,𝑠𝑖𝑧𝑒𝜎

𝑇 𝑅𝑘 𝑒𝑗𝑘+1,𝑠𝑖𝑧𝑒𝜏
)
−1

=
1

𝑅𝑘(𝑖𝑘+1, 𝑗𝑘+1)

𝑅𝑘+1 = 𝑅𝑘 − 𝛾𝑘+1𝑅𝑘𝑒𝑗𝑘+1,𝑠𝑖𝑧𝑒𝜏
𝑒𝑖𝑘+1,𝑠𝑖𝑧𝑒𝜎

𝑇 𝑅𝑘

𝑆𝑘+1 = 𝑆𝑘 + 𝛾𝑘+1𝑅𝑘𝑒𝑗𝑘+1,𝑠𝑖𝑧𝑒𝜏
𝑒𝑖𝑘+1,,𝑠𝑖𝑧𝑒𝜎

𝑇 𝑅𝑘

Equations 6 [9]

It can be observe that 𝑅𝑘𝑒𝑗𝑘+1,𝑠𝑖𝑧𝑒𝜏
 just represents the 𝑗𝑘+1 column of 𝑅𝑘 , and 𝑒𝑖𝑘+1,𝑠𝑖𝑧𝑒𝜎

𝑇 𝑅𝑘

represents the 𝑖𝑘+1 row of 𝑅𝑘. Let:

𝑢𝑘 = 𝑅𝑘−1𝑒𝑗𝑘

𝑣𝑘 = 𝛾𝑘𝑒𝑖𝑘
𝑇 𝑅𝑘−1

Equations 7

where 𝑢𝑘 and 𝑣𝑘 are the same as in Equation 2. The relation between Equations 7 and Equation 2

can be seen by considering the set of Equations 6, which now can be written as:

𝛾𝑘+1 =
1

𝑅𝑘(𝑖𝑘+1, 𝑗𝑘+1)

𝑅𝑘+1 = 𝑅𝑘 − 𝑢𝑘+1𝑣𝑘+1

𝑆𝑘+1 = 𝑆𝑘 + 𝑢𝑘+1𝑣𝑘+1

Equations 8

Since 𝑆0 = 0 , we see that the equation for 𝑆𝑘+1 in Equations 8 corresponds to Equation 2.

Equations 7 and 8 together form the basis of the ACA algorithm.

For an efficient implementation, 𝑆 and 𝑅 matrices should not be explicitly built. This is because

the building of these matrices require outer products, which is expensive (𝑂(𝑁2)). Instead,

throughout the algorithm, only 𝑢𝑘 and 𝑣𝑘 are considered, and the entire matrices of 𝑅 and 𝑆 are

not needed . The column vector 𝑢𝑘 is basically the 𝑗𝑘 column of 𝑅𝑘−1. Consequently, only

Ang Yun Mei Elisa Master Thesis Report 23

information regarding the 𝑗𝑘 column of 𝑅𝑘−1 needs to be known. Similarly, only information

regarding the 𝑖𝑘 row of 𝑅𝑘−1 is required to compute 𝑣𝑘. With this in mind, we can reformulate the

set of equations as:

𝑢𝑘 = 𝑅𝑘−1(: , 𝑗𝑘) = 𝑀 − ∑ 𝑣𝑖(𝑗𝑘)

𝑘−1

𝑖=1

∗ 𝑢𝑖

𝛾𝑘 =
1

𝑅𝑘−1(𝑖𝑘, 𝑗𝑘)

𝑣𝑘 = 𝛾𝑘𝑅𝑘−1(𝑖𝑘, :) = 𝛾𝑘 (𝑀 − ∑ 𝑢𝑖(𝑖𝑘) ∗ 𝑣𝑖

𝑘−1

𝑖=1

)

Equation 9 [9]

5.1.2.2.2 Admissibility criterion

What is still lacking is an admissibility criterion to determine if the approximation 𝑆𝑝 to 𝑀 is good

enough. The naïve implementation of ‖𝑅𝑝‖
𝐹

≤ 𝜀‖𝑀‖𝐹 is not feasible, since this requires again

the expensive operation of building up of the matrix 𝑅𝑝. In addition, computation of the Frobenius

norm of a matrix is also an 𝑂(𝑁2) operation. Instead, ‖𝑢𝑝𝑣𝑝‖
𝐹

 provides a good approximation to

‖𝑅𝑝‖
𝐹
 [9]. The outer product 𝑢𝑝𝑣𝑝 can be avoided by using the following identity:

‖𝑢𝑝𝑣𝑝‖
𝐹

= ‖𝑢𝑝‖
2
‖𝑣𝑝‖

2

‖𝑀‖𝐹 can be approximated by ‖𝑆𝑝‖
𝐹
, which can also be computed without explicitly constructing

the outer product using the recurrence relation [7]:

‖𝑆𝑘+1‖
2
𝐹

= ‖𝑆𝑘‖
2
𝐹

+ 2 ∑|𝑢𝑖
𝑇𝑢𝑘|

𝑘−1

𝑖=1

∙ |𝑣𝑖𝑣𝑘
𝑇| + ‖𝑢𝑘‖2

2‖𝑣𝑘‖2
2

With these, the appropriate admissibility criterion is ‖𝑢𝑝‖
2
‖𝑣𝑝‖

2
≤ 𝜖‖𝑆𝑝‖

𝐹
.

5.1.2.2.3 Choice of rows 𝑖𝑘 and columns 𝑗𝑘 at iteration 𝑘

The above equations were formulated based on the assumption that the choice of 𝑖𝑘 and 𝑗𝑘 is

known at every iteration. This choice must be addressed to formulate the algorithm. One obvious

Ang Yun Mei Elisa Master Thesis Report 24

choice is to choose 𝑖𝑘 and 𝑗𝑘 to coincide at the most dominant element in the matrix 𝑅𝑘 at each

step 𝑘. This is known as the Fully Pivoted ACA [10]. Choosing 𝑖𝑘 and 𝑗𝑘 this way ensures that the

most dominant element of the matrix block is always included first in the approximation, making

sure that the approximation is good if the block is low rank. Also, in this way, the approximation

for ‖𝑅𝑝‖
𝐹

 is always valid and the admissibility criterion always works. However, the Fully

Pivoted ACA requires the search for the maximum element of a matrix, which is an 𝑂(𝑁2)

operation. This makes it too expensive for practical use.

Instead, the Partially Pivoted ACA shows potential for practical implementations [10]. This

algorithm works by choosing an arbitrary starting row 𝑖1. 𝑗𝑘 is then selected such that 𝑅𝑘−1(𝑖𝑘, 𝑗𝑘)

is the largest element for the row 𝑅𝑘−1(𝑖𝑘,:). Then the next row 𝑖𝑘+1 is selected such that

𝑅𝑘(𝑖𝑘+1, 𝑗𝑘) is the largest element for the column 𝑅𝑘(: , 𝑗𝑘). In the Partially Pivoted ACA, it could

happen that no pivot column or row can be chosen because 𝑅𝑘−1(𝑖𝑘, ∶) or 𝑅𝑘(: , 𝑗𝑘) has available

elements all equal to zero. In this case, a different non-zero row or column should be selected.

Because the Partially Pivoted ACA only needs to search through a column or a row, it has

computational complexity 𝑂(𝑁).

5.1.3 Matrix Vector Multiplication using the H-matrix Structure

The use of Lanzcos Bidiagonalization or ACA allows each block to be checked if it is admissible

or inadmissible. This test for admissibility is applied from level 𝑙 = 2 onwards. Pictorially, the

result of this operation can look like Figure 7. Black boxes represents blocks that become

admissible at that level, grey boxes indicates blocks that was already admissible in previous levels,

and white boxes are blocks that are still inadmissible at that level.

Ang Yun Mei Elisa Master Thesis Report 25

Figure 7 The hierarchically split matrix A

Define now 𝑀𝑙 as the matrix made up of admissible blocks at that level, 𝑀�̃� is the matrix with the

same structure as 𝑀𝑙, but with each blocks approximated by their low rank approximation as given

in Equation 1 or 2. 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 is the matrix made up of all the inadmissible blocks at the finest level.

Refer to Figure 8 for an illustration of the sparsity structure of 𝑀𝑙 and 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 based on Figure 7.

Figure 8 Sparsity structure of Matrix 𝑀𝑙 and 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 for a hierarchical matrix shown in Figure 7. White boxes indicates blocks

which have elements all zeros.

With this, an approximation for the matrix vector product 𝐴𝑥 can be written as:

𝐴𝑥 = ∑ 𝑀𝑙𝑥

𝑙𝑒𝑣𝑒𝑙𝑠

𝑙=2

+ 𝑁𝑙𝑒𝑣𝑒𝑙𝑠𝑥 ≈ ∑ �̃�𝑙𝑥

𝑙𝑒𝑣𝑒𝑙𝑠

𝑙=2

+ 𝑁𝑙𝑒𝑣𝑒𝑙𝑠𝑥

Consider �̃�𝑙𝑥. First partition the vector 𝑥 with respect to the column partition of �̃�𝑙, and the vector

�̃�𝑙𝑥 with respect to the row partition of �̃�𝑙. Each partition of the vector 𝑥 is represented by 𝑥𝜏,

and each partition of vector �̃�𝑙𝑥 by (�̃�𝑙𝑥)
𝜎

.

Ang Yun Mei Elisa Master Thesis Report 26

If Equation 2 is used, the vector �̃�𝑙𝑥 can be written as:

�̃�𝑙𝑥 =

[

(�̃�𝑙𝑥)

1

⋮
(�̃�𝑙𝑥)

𝜎

⋮
(�̃�𝑙𝑥)

2𝑙]

=

[

∑𝑈1,𝜏𝐵1,𝜏𝑉1,𝜏
𝑇

2𝑙

𝜏=1

𝑥𝜏

⋮

∑ 𝑈2𝑙,𝜏𝐵2𝑙,𝜏𝑉2𝑙,𝜏
𝑇

2𝑙

𝜏=1

𝑥𝜏
]

For Equation 3, the following is used instead:

�̃�𝑙𝑥 =

[

(�̃�𝑙𝑥)

1

⋮
(�̃�𝑙𝑥)

𝜎

⋮
(�̃�𝑙𝑥)

2𝑙]

=

[

∑𝑈1,𝜏𝑉1,𝜏

𝑇

2𝑙

𝜏=1

𝑥𝜏

⋮

∑𝑈2𝑙,𝜏𝑉2𝑙,𝜏
𝑇

2𝑙

𝜏=1

𝑥𝜏
]

5.2 IMPLEMENTATION DETAILS

To implement the hierarchical method in Fortran, a data structure must first be defined to store the

H-matrix. This is named the hierarchy_class object. With the data structure defined, subroutines

that are required to handle the H-matrix must be formulated. Subsequently, the hierarchy_class

object must be integrated with the current solver codes such that the dense matvec operations are

replaced by hierarchical matvec. This section discusses all these implementations, and ends with

some comments on the implementation issues faced.

5.2.1 Data structure of a Hierarchical Matrix (H-matrix)

A data structure needs to be defined to store the H-matrix. In this section, it is assumed that

Equation 2 is used. The data structure can be adapted for Equation 1 with minor modifications.

The data structure for the H-matrix is given in Figure 9 below.

Ang Yun Mei Elisa Master Thesis Report 27

type, public :: hierarchy

 ! List of arrays

 ! --

 DATATYPE1, allocatable, dimension(:) :: U

 DATATYPE1, allocatable, dimension(:) :: V

 integer(kind=SHORT), allocatable, dimension(:) :: index_con

 integer(kind=SHORT), allocatable, dimension(:) :: index_lvl_con

 integer(kind=SHORT), allocatable, dimension(:) :: adm_row

 integer(kind=SHORT), allocatable, dimension(:) :: adm_col

 integer(kind=SHORT), allocatable, dimension(:) :: inadm_row

 integer(kind=SHORT), allocatable, dimension(:) :: inadm_col

 integer(kind=SHORT), allocatable, dimension(:) :: block_lvl_con

 integer(kind=SHORT), allocatable, dimension(:) :: Ublockpos_con

 integer(kind=SHORT), allocatable, dimension(:) :: Vblockpos_con

 ! List of variables

 ! --

 integer(kind=SHORT) :: p !rank of admissible block

 integer(kind=SHORT) :: b !minimum block size

 integer(kind=SHORT) :: N !size of original array

 integer(kind=SHORT) :: levels

 real :: tol !tolerance of low rank approximation

 end type hierarchy

Figure 9 Data structure of H-matrix

Some definitions need to be specified here before delving into the details.

Firstly, the global block number is defined as the block number of a block with respect to all blocks

at all levels, starting from level 2. The global block number starts from level 2 because the low

rank approximation of blocks begin at level 2. Figure 10 below depicts the concept of global block

number.

Figure 10 Definition of global block number. The first block at level 3 for instance have global block number 17

Ang Yun Mei Elisa Master Thesis Report 28

On the other hand, the local block number is defined as the block number of the block with respect

to the blocks at that level. For example, the local block number of the blocks at level 3 are shown

in Figure 11 below.

Figure 11 Local block number at level 3

Next, the 1D global indices at level 𝑙 is the set of row or column indices that defines how the row

or column is divided at that level. It can be assumed that the original matrix is square, hence, the

row and column division is the same. Taking the example of the FATIMA_7894 matrix, the

hierarchy division of the matrix from level 1 to 3 is shown in Figure 12. The 1D global indices for

this matrix at 𝑙 = 2 is {1, 1975, 3948, 5922, 7895}. Note that the last element stored is purely for

computational reasons. Similarly, at 𝑙 = 3 , the 1D global indices are

{1, 988, 1975, 2962, 3948, 4935, 5922, 6909, 7895}.

Figure 12 Hierarchical division of FATIMA_7894 from level 1 to 3

With these defined, each element in the data structure for H-matrix, as shown in Figure 9, is

elaborated in the subsections below.

5.2.1.1 𝑼 and 𝑽

The 𝑈 and 𝑉 1D arrays specified in the data structure of H-matrix are used to store the elements

from the low rank approximation of admissible blocks. Before calling Lanzcos Bidiagonalization

Ang Yun Mei Elisa Master Thesis Report 29

or ACA to hierarchically split the matrix, there is no way of knowing which blocks are admissible.

Hence, memory is be allocated for 𝑈𝜎,𝜏 and 𝑉𝜎,𝜏 for all 2𝑙 × 2𝑙 blocks at each level 𝑙. Let the finest

recursion level be named 𝑙𝑒𝑣𝑒𝑙𝑠 . Then the size of the 1D array required for 𝑈 or 𝑉 is

𝑁𝑝(2𝑙𝑒𝑣𝑒𝑙𝑠+1 − 4), since the total number of elements can be computed as follows:

∑ 𝑁 × 2𝑙 × 𝑝

𝑙𝑒𝑣𝑒𝑙𝑠

𝑙=2

= 𝑁𝑝(
(1 − 2𝑙𝑒𝑣𝑒𝑙𝑠+1)

1 − 2
− 20 − 21) = 𝑁𝑝(2𝑙𝑒𝑣𝑒𝑙𝑠+1 − 4)

The 1D arrays store the low rank approximation of each block according to the global block

number. That is, the matrix block corresponding to global block 1 is stored first in a column major

format, followed by the matrix block corresponding to global block 2 and so on. This is illustrated

in Figure 13 below:

Figure 13 Storage of admissible U or V matrix

Blocks that are admissible have the respective 𝑈𝜎,𝜏 and 𝑉𝜎,𝜏 elements computed either by ACA or

Lanzcos Bidiagonalization (in which case a third 1D array, 𝐵, is required). The resulting 𝑈𝜎,𝜏 and

𝑉𝜎,𝜏 are then stored in their respective position in the 1D array. Blocks that are inadmissible have

all zero elements in the 1D arrays.

5.2.1.2 𝒂𝒅𝒎_𝒓𝒐𝒘 and 𝒂𝒅𝒎_𝒄𝒐𝒍

It is helpful to know which blocks are admissible at each level without the need to sieve through

the 1D arrays of 𝑈 or 𝑉 for non-zero blocks. Therefore, a data structure is required to store

Ang Yun Mei Elisa Master Thesis Report 30

information regarding which blocks are admissible. Two 1D arrays named 𝑎𝑑𝑚_𝑟𝑜𝑤 and

𝑎𝑑𝑚_𝑐𝑜𝑙 are used to store this information. Each of these arrays are of size
4𝑙𝑒𝑣𝑒𝑙𝑠+1−1

3
− 5, since

∑ 2𝑙 × 2𝑙

𝑙𝑒𝑣𝑒𝑙𝑠

𝑙=2

=
4𝑙𝑒𝑣𝑒𝑙𝑠+1 − 1

3
− 40 − 41 =

4𝑙𝑒𝑣𝑒𝑙𝑠+1 − 1

3
− 5

Each element of the 1D array 𝑎𝑑𝑚_𝑟𝑜𝑤 or 𝑎𝑑𝑚_𝑐𝑜𝑙 corresponds to a global block. This means

that the first element of the 1D array corresponds to global block 1, the second corresponds to

global block 2, and so on. If the block is admissible, the local block row or local block column

number is stored. Else, 0 is stored. Figure 14 below shows how 𝑎𝑑𝑚_𝑟𝑜𝑤 and 𝑎𝑑𝑚_𝑐𝑜𝑙 looks like

for the FATIMA_7894 matrix with 𝑙𝑒𝑣𝑒𝑙𝑠 = 3, 𝑝 = 50. The corresponding admissible blocks are

depicted in Figure 15.

adm_row

 0 0 3 4

 0 0 0 0

 1 0 0 0

 1 2 0 0

 0 0 0 4 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 6 7 8

 1 0 0 0 0 0 7 8

 0 0 0 0 0 0 0 0

 0 0 3 4 0 0 0 0

 0 0 0 0 5 0 0 0

 0 0 0 0 0 0 0 0

 adm_col

 0 0 1 1

 0 0 0 0

 3 0 0 0

 4 4 0 0

 0 0 0 1 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 3 3 3

 4 0 0 0 0 0 4 4

 0 0 0 0 0 0 0 0

 0 0 6 6 0 0 0 0

 0 0 0 0 7 0 0 0

 0 0 0 0 0 0 0 0

Figure 14 Example of how “adm_row” and “adm_col” looks like for FATIMA_7894 with levels = 3 , p = 50

Figure 15 Corresponding admissible blocks (in orange) of the FATIMA_7894 matrix with reference to Figure 14

Ang Yun Mei Elisa Master Thesis Report 31

5.2.1.3 𝑼𝒃𝒍𝒐𝒄𝒌𝒑𝒐𝒔_𝒄𝒐𝒏 and 𝑽𝒃𝒍𝒐𝒄𝒌𝒑𝒐𝒔_𝒄𝒐𝒏

As a link between the global block number and the 𝑈/𝑉 arrays, two 1D arrays are defined to store

the index of the first element in the 𝑈/𝑉 arrays corresponding to every global block. This allows

the easy access of the required 𝑈𝜎,𝜏 or 𝑉𝜎,𝜏 matrix blocks. These are known as 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛

and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛. For instance, global block 1 always has its first element in the U and V

container retrieved using 𝑈(1) and 𝑉(1). Global block 2 will have its first elements retrieved using

𝑈 (1 + ⌈
𝑁

22⌉ × 𝑝) and 𝑉 (1 + ⌈
𝑁

22⌉ × 𝑝). The index used to access the first element of every global

block is stored in 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛.

An example of how 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 look like, again using the example of

FATIMA_7894 with 𝑙𝑒𝑣𝑒𝑙𝑠 = 3, is shown below:

Ublockpos_con

 1 98701 197351 296051

 394701 493401 592051 690751

 789401 888101 986751 1085451

 1184101 1282801 1381451 1480151

 1578801 1628151 1677501 1726851 1776151 1825501 1874851 1924201

 1973501 2022851 2072201 2121551 2170851 2220201 2269551 2318901

 2368201 2417551 2466901 2516251 2565551 2614901 2664251 2713601

 2762901 2812251 2861601 2910951 2960251 3009601 3058951 3108301

 3157601 3206951 3256301 3305651 3354951 3404301 3453651 3503001

 3552301 3601651 3651001 3700351 3749651 3799001 3848351 3897701

 3947001 3996351 4045701 4095051 4144351 4193701 4243051 4292401

 4341701 4391051 4440401 4489751 4539051 4588401 4637751 4687101

 4736401

 Vblockpos_con

 1 98701 197401 296101

 394801 493451 592101 690751

 789401 888101 986801 1085501

 1184201 1282851 1381501 1480151

 1578801 1628151 1677501 1726851 1776201 1825551 1874901 1924251

 1973601 2022951 2072301 2121651 2171001 2220351 2269701 2319051

 2368401 2417751 2467101 2516451 2565801 2615151 2664501 2713851

 2763201 2812501 2861801 2911101 2960401 3009701 3059001 3108301

 3157601 3206951 3256301 3305651 3355001 3404351 3453701 3503051

 3552401 3601751 3651101 3700451 3749801 3799151 3848501 3897851

 3947201 3996551 4045901 4095251 4144601 4193951 4243301 4292651

 4342001 4391301 4440601 4489901 4539201 4588501 4637801 4687101

 4736401

Figure 16 Example of how “Ublockpos_con” and “Vblockpos_con” looks like for FATIMA_7894 with levels = 3

5.2.1.4 𝒃𝒍𝒐𝒄𝒌_𝒍𝒗𝒍_𝒄𝒐𝒏

To convert from the local block numbers to global block numbers, repeated computations

involving powers are required. To reduce this need, an auxiliary array 𝑏𝑙𝑜𝑐𝑘_𝑙𝑣𝑙_𝑐𝑜𝑛 with size

(𝑙𝑒𝑣𝑒𝑙𝑠 − 1) is defined. This array simply stores the global block number of the first block at every

level from level 2 till 𝑙𝑒𝑣𝑒𝑙𝑠 . Thus, 𝑏𝑙𝑜𝑐𝑘_𝑙𝑣𝑙_𝑐𝑜𝑛 consist of elements {1, 1 + (22 × 22), 1 +

(23 × 23), … , 1 + (2𝑙𝑒𝑣𝑒𝑙𝑠−1 × 2𝑙𝑒𝑣𝑒𝑙𝑠−1)}.

Ang Yun Mei Elisa Master Thesis Report 32

5.2.1.5 Example to illustrate how to retrieve a block 𝑼𝝈,𝝉/𝑽𝝈,𝝉

With these in place, it is now easy to retrieve the low rank approximation of an admissible block.

Assume that the level 𝑙 and the local block row and column numbers 𝑖, 𝑗 are known. The global

block number, 𝑏𝑙𝑜𝑐𝑘_𝑛𝑢𝑚𝑏𝑒𝑟, can be easily computed with the help of 𝑏𝑙𝑜𝑐𝑘_𝑙𝑣𝑙_𝑐𝑜𝑛. The 𝑈𝜎,𝜏

and 𝑉𝜎,𝜏 matrix corresponding to this block can be retrieved from the 1D arrays 𝑈 and 𝑉 with the

help of 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛. The code fragment below illustrates how 𝑈𝜎,𝜏 and

𝑉𝜎,𝜏 corresponding to a block defined by 𝑙, 𝑖 𝑎𝑛𝑑 𝑗 can be retrieved and called in a function:

 !Read out the global block number of the first block of this level

 ! --

 start_block_lvl = this%block_lvl_con(level-1)

 !Compute the global block number

 ! --

 block_number = start_block_lvl + i + (j-1)*2**l-1

 !Retrieve the start and end position of 𝑈𝜎 ,𝜏 and 𝑉𝜎 ,𝜏

 ! --

 start_U_block = this%Ublockpos_con(block_number)

 end_U_block = this%Ublockpos_con(block_number+1)-1

 start_V_block = this%Vblockpos_con(block_number)

 end_V_block = this%Vblockpos_con(block_number+1)-1

 !Do work with this admissible block

 ! --

call sample_function(this%U(start_U_block:end_U_block), &

 this%V(start_V_block:end_V_block),…)

Figure 17 Code fragment depicting how to retrieve 𝑈𝜎,𝜏 and 𝑉𝜎,𝜏 for a particular block

5.2.1.6 𝒊𝒏𝒂𝒅𝒎_𝒓𝒐𝒘 and 𝒊𝒏𝒂𝒅𝒎_𝒄𝒐𝒍

Notice that the data structure of the H-matrix does not include an array for the inadmissible matrix

𝑁𝑙𝑒𝑣𝑒𝑙𝑠 (Refer to Figure 9). This is because the full matrix 𝐴 is already stored, and the matrix

elements in 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 can be extracted from 𝐴. For this purpose, two 1D arrays named 𝑖𝑛𝑎𝑑𝑚_𝑟𝑜𝑤

and 𝑖𝑛𝑎𝑑𝑚_𝑐𝑜𝑙 are created. In this case, the two arrays are of size 2𝑙𝑒𝑣𝑒𝑙𝑠 × 2𝑙𝑒𝑣𝑒𝑙𝑠 , since

inadmissible blocks only occur at the finest recursion level. Each element of the array corresponds

to a local block at 𝑙 = 𝑙𝑒𝑣𝑒𝑙𝑠. If the block is inadmissible, the block row number and column

number are stored. Else, 0 is stored. Refer to Figure 18 for an example of how these arrays look

like.

Ang Yun Mei Elisa Master Thesis Report 33

inadm_row

 1 2 3 0 0 0 0 0

 1 2 3 4 0 0 0 0

 1 2 3 4 5 0 0 0

 0 2 3 4 5 6 0 0

 0 0 3 4 5 6 7 8

 0 0 0 0 5 6 7 8

 0 0 0 0 0 6 7 8

 0 0 0 0 5 6 7 8

 inadm_col

 1 1 1 0 0 0 0 0

 2 2 2 2 0 0 0 0

 3 3 3 3 3 0 0 0

 0 4 4 4 4 4 0 0

 0 0 5 5 5 5 5 5

 0 0 0 0 6 6 6 6

 0 0 0 0 0 7 7 7

 0 0 0 0 8 8 8 8

Figure 18 Example of how “inadm_row” and “inadm_col” looks like for FATIMA_7894 with levels = 3 , p = 50

5.2.1.7 𝒊𝒏𝒅𝒆𝒙_𝒄𝒐𝒏

For the easy retrieval of inadmissible matrix blocks, 1D global indices can be used to specify the

exact indices in the system matrix 𝐴 corresponding to an inadmissible block. An auxiliary 1D array

is defined to store the 1D global indices at every level from level 1 till 𝑙𝑒𝑣𝑒𝑙𝑠. This is named

𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑛, with size 𝑙𝑒𝑣𝑒𝑙𝑠 + 2𝑙𝑒𝑣𝑒𝑙𝑠+1 − 2, since

∑ 2𝑙 + 1 = 𝑙𝑒𝑣𝑒𝑙𝑠 + 2𝑙𝑒𝑣𝑒𝑙𝑠+1 − 2

𝑙𝑒𝑣𝑒𝑙𝑠

𝑙=1

As an illustration, the 𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑛 array for the FATIMA_7894 matrix, with 𝑙𝑒𝑣𝑒𝑙𝑠 = 3, looks

like:

index_con

 1 3948 7895

 1 1975 3948 5922 7895

 1 988 1975 2962 3948 4935 5922 6909 7895
Figure 19 Example of how “index_con” looks like for FATIMA_7894 with levels = 3

Thus, given an inadmissible block at 𝑙 = 3, with 𝑖, 𝑗 = 2,2, the indices of this block in the system

matrix 𝐴 starts from (988,988).

5.2.1.8 𝒊𝒏𝒅𝒆𝒙_𝒍𝒗𝒍_𝒄𝒐𝒏

To reduce the need to compute powers repeatedly, another auxiliary array of size 𝑙𝑒𝑣𝑒𝑙𝑠 will be

used to store the start position in the 𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑛 array of the first block of every level. This array

is called 𝑖𝑛𝑑𝑒𝑥_𝑙𝑣𝑙_𝑐𝑜𝑛 . Its elements will simply be {1, 1 + (21 + 1), 1 + (22 + 1),… , 1 +

(2𝑙𝑒𝑣𝑒𝑙𝑠−1 + 1)}.

Ang Yun Mei Elisa Master Thesis Report 34

5.2.1.9 Example to illustrate how to retrieve an inadmissible block in 𝑵𝒍𝒆𝒗𝒆𝒍𝒔

Assume that the local block row 𝑖, local block column 𝑗, and the level 𝑙 are known. Two steps are

required to retrieve an inadmissible block. First, a 1D array is used to store the 1D global indices

at level 𝑙. Then, the global indices corresponding to this block can be found by simply reading out

the respective elements in this 1D array. With the range of indices corresponding to this block

known, the relevant block from the matrix 𝐴 can be extracted to perform work. The code fragment

below illustrates how this can be done.

 !Read out the global indices of all blocks at this level

index_global = this%index_con(this%index_lvl_con(l):

this%index_lvl_con(l+1)-1)

 !Read out the global index of this block

 i_start_global = index_global(block_start_i)

 i_end_global = index_global(block_start_i+1)-1

 j_start_global = index_global(block_start_j)

 j_end_global = index_global(block_start_j+1)-1

 !Do work with this inadmissible block

 ! --

call sample_function(A(i_start_local:i_end_local,

j_start_local:j_end_local),…)

Figure 20 Code fragment depicting how to retrieve an inadmissible block

5.2.1.10 Other variables

Apart from the 1D arrays defined, some constants need to be defined:

 p: rank of admissible block

 b: minimum block size

 N: size of matrix A

 levels: Depth of recursion

 tol: tolerance we set to determine if a block is admissible or not in ACA

5.2.2 Subroutines

The subroutines required to handle H-matrix include:

 Hierarchy_construct: to allocate memory and initialize the hierarchy_class object

 Hierarchy_destruct: to clean up memory

 Hierarchy_split: to split a matrix hierarchically and store the relevant information in the

H-matrix

 ACA: contains the ACA algorithm.Called within hierarchy_split to check if a block is

admissible and return 𝑈𝜎,𝜏 and 𝑉𝜎,𝜏

Ang Yun Mei Elisa Master Thesis Report 35

 Lanzcos_bidiag: contains the Lanzcos Bidiagonalization algorithm. Called within

hierarchy_split to check if a block is admissible and return 𝑈𝜎,𝜏 and 𝑉𝜎,𝜏

 Hie_matvec_A: performs hierarchical matvec

The implementation details for the subroutines for hierarchy_split, ACA, lanzcos_bidiag and

hie_matvec_A are elaborated in this section.

5.2.2.1 Hierarchy_split

The hierarchy_split subroutine is a recursive subroutine that takes the following argument as input:

 The matrix block to be split hierarchically: 𝑀(: , :)

 The level at which 𝑀 is at: 𝑙𝑒𝑣𝑒𝑙

 The current row and column block number of 𝑀: 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗

It returns a hierarchy_class object as output.

The pseudo-code for hierarchy_split subroutine is given below:

1) Compute the 4 block row and column numbers corresponding to the 4 sub-blocks of

M at the next level. This can be obtained easily from 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖 and 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗
as depicted in the figure below.

2) If 𝑙 = 0
a) Do for blocks 1 to 4

i) Recursively call hierarchy_split

3) Else

a) Do for blocks 1 to 4

i) Call ACA or Lanzcos_Bidiag to determine if block is admissible

(1) If admissible, store 𝑈𝜎 ,𝜏 and 𝑉𝜎 ,𝜏 in the 1D array 𝑈 and 𝑉 and update

𝑎𝑑𝑚_𝑟𝑜𝑤 and 𝑎𝑑𝑚_𝑐𝑜𝑙
(2) Else

(a) If 𝑙 =finest recursion level, update 𝑖𝑛𝑎𝑑𝑚_𝑟𝑜𝑤 and 𝑖𝑛𝑎𝑑𝑚_𝑐𝑜𝑙
(b) Else, recursively call hierarchy_split

Algorithm 1 Hierarchy_split

Ang Yun Mei Elisa Master Thesis Report 36

5.2.2.2 ACA

The input to subroutine ACA consist of:

 The matrix block in which ACA is called: 𝑀(: , :)

 The rank of each low rank approximated block: 𝑝

 The row and column size of the matrix block 𝑀: 𝑠𝑖𝑧𝑒_𝑈_𝑟𝑜𝑤 and 𝑠𝑖𝑧𝑒_𝑉_𝑟𝑜𝑤

 The tolerance below which the block is deemed admissible: 𝑡𝑜𝑙

The output of the subroutine consist of:

 A flag which is 0 if the block is inadmissible, and 1 if admissible: 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒

 The matrix 𝑈𝜎,𝜏 and 𝑉𝜎,𝜏: 𝑈(:), 𝑉(:)

The pseudo-code for ACA routine is given below, extracted from [11]:

Algorithm 2 Pseudo-code for ACA [11]

Ang Yun Mei Elisa Master Thesis Report 37

5.2.2.3 Lanzcos_Bidiag

The input and output arguments for the Lanzcos_Bidiag routine is the same as ACA. The pseudo-

code is given below, adapted from [8].

Algorithm 3 Lanzcos_Bidiag [8]

The only changes made to the pseudo-code to adapt to this application is the loop-stopping criteria.

The loop is stopped when 𝑘 > 𝑝 or 𝛽𝑘 < 𝑡𝑜𝑙.

5.2.2.4 Hie_matvec_A

This is a recursive subroutine. The input to this subroutine are:

 A hierarchy_type object that contains the hierarchical form of A: ℎ𝑖𝑒

 The original system matrix: 𝐴(: , :)

 The bock row and block column number at which the multiplication is currently carried

out: 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖 and 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗

 A flag to indicate if the current block is admissible: 𝑎𝑑𝑚_𝐴

 The current level: 𝑙

 The vector to be multiplied: 𝑀_𝑖𝑛(:)

The output to this subroutine is the result of the matrix-vector multiplication 𝑀_𝑜𝑢𝑡(:).

To illustrate how this algorithm works, consider a block of the hierarchical form of A that is not

at its finest level, and is not admissible. In this case, matrix vector multiplication can be performed

using the following equation:

Ang Yun Mei Elisa Master Thesis Report 38

𝑀_𝑜𝑢𝑡 = [
𝑀_𝑜𝑢𝑡1
𝑀_𝑜𝑢𝑡2

] = [
𝐴11 𝐴12

𝐴21 𝐴22
] [

𝑀_𝑖𝑛1

𝑀_𝑖𝑛2
] = [

𝐴11𝑀_𝑖𝑛1 + 𝐴12𝑀_𝑖𝑛2

𝐴21𝑀_𝑖𝑛1 + 𝐴22𝑀_𝑖𝑛2
]

Equation 10 Hierarchical matrix vector multiplication

With Equation 10, one can construct the algorithm. If 𝐴𝑖𝑗 is a block at the finest level, the

individual matrix-vector multiplication can be carried out in either of the following ways:

1. If 𝐴𝑖𝑗 is admissible, then its low rank approximation is to be used for the matrix-vector

multiplication. 𝐴𝑖𝑗 𝑀_𝑖𝑛𝑗 = 𝑈𝑖𝑗𝑉𝑖𝑗
𝑇 𝑀_𝑖𝑛𝑗 . This is known as low rank matrix-vector

multiplication

2. Otherwise, dense matrix vector multiplication is carried out instead.

Thus we have the following pseudo-code for hie_matvec_A:

1) If 𝑙 = finest recursion level

a) If 𝑎𝑑𝑚_𝐴 is inadmissible (0)
i) Dense matrix-vector multiplication is carried out

b) Else

i) Low rank matrix-vector multiplication is carried out

2) Else

i) If 𝑎𝑑𝑚_𝐴 is admissible (1)
(1) low rank matrix-vector multiplication is carried out

ii) Else

(1) The block is split into 4 sub-blocks. The subroutine hie_matvec_A is

recursively called on each sub-blocks, with the results compiled

according to Equation 10.

Algorithm 4 Pseudo-code for hie_matvec_A

5.2.3 Adapting the solver to use hie_matvec_A instead of dense matvec

Both GMRES and IDR(s) solver calls one dense matvec per iteration. Hence, one just have to

replace this matvec subroutine with hie_matvec_A in the solver routine. To do this, the data

structure of the solver_class object is edited to include a hierarchy_class object. Before calling the

solver, the hierarchy_class object is constructed and updated to contain the hierarchical form of

the matrix.

5.2.4 Implementation issues and fixes

5.2.4.1 Skipping ACA or Lanzcos_Bidiag for blocks next to the main diagonal

It can be inferred from the theory of BEM [2] and verified from experience that the blocks near

the main diagonal is not admissible. As such, instead of calling the ACA or Lanzcos_Bidiag

Ang Yun Mei Elisa Master Thesis Report 39

routine for these blocks, it is cheaper to just assume the blocks are inadmissible. This is done in

the hierarchy_split routine as shown in the code fragment below:

 !if block near main diagonal, skip ACA check

 if (ABS(block_no_row(i) - block_no_col(j)) <= 1) then

 admissible =0

 else

 call ACA(M(i_start_local:i_end_local, j_start_local:j_end_local), &

 this%p, &

 this%U(start_U_block:end_U_block), &

 this%V(start_V_block:end_V_block), &

 i_end_global - i_start_global+1, &

 j_end_global - j_start_global+1, &

 this%tol,&

 admissible)

 end if

Figure 21 Code fragment from hierarchy_split showing how the blocks next to the main diagonal are skipped

5.2.4.2 Issues in ACA sub-routine

Although the computational complexity of the partially pivoted ACA is much needed, it proves to

have an issue with the admissibility criterion for certain matrices. Specifically, the approximation

of ‖𝑅𝑝‖
𝐹
 with ‖𝑢𝑝𝑣𝑝‖

𝐹
. In our case, the Steadycav matrices and the Passcal matrix proves to be

problematic with partially pivoted ACA.

Focusing first on the Steadycav matrices, all of these matrices have blocks whose sparsity structure

is shown in Figure 22. White region indicates zero elements. It can be seen that the last few

columns of this matrix are completely filled with zeros, with the exception of four elements. These

four elements have values that are order of magnitudes larger than the rest of the matrix elements.

Imagine now that the ACA subroutine is applied to one such matrix.

Figure 22 Sample matrix block from Steadycav1 matrix and an example of the selection of pivot columns and rows

Ang Yun Mei Elisa Master Thesis Report 40

A sample of how the first three pivot columns and rows can be selected is shown in yellow in the

above figure. There is a high chance that the dominant elements will not be selected, and the

admissibility criterion could be fulfilled, when in actual fact ‖𝑅𝑝‖
𝐹

> 𝜀‖𝑀‖𝐹.

To correct this, the Partially Pivoted ACA can be supplemented with an admissibility criterion

based on the Completely Pivoted ACA. This will ensure that no blocks that are not admissible are

wrongly classified as admissible. As this incur additional cost, it is only implemented for the

Steadycav matrices.

Next, for the Passcal matrices, the sparsity structure for a block from the matrix can be as shown:

Figure 23 Sample matrix block from Passcal matrix

The entire matrix is almost zero, except for the element at the top right corner. In this case, partial

pivoted ACA will fail because the algorithm as it is cannot detect that the entire matrix is almost

zero, and division by zero will occur. To prevent this, the algorithm is updated so that it breaks out

of the function whenever it detects that there are no more non-zero pivot elements to choose from.

5.3 RESULTS

In this section, the results for the hierarchical method are presented. First, the performance of

Lanzcos Bidiagonalization and ACA are discussed. Next, the performance of the solver with

hierarchical matvec is compared against the solver with dense matvec. This section then concludes

with an assessment of this strategy.

Ang Yun Mei Elisa Master Thesis Report 41

5.3.1 Lanzcos Bidiagonalization versus ACA

Hierarchical splitting was performed using first Lanzcos Bidiagonalization, then ACA, for

different levels of recursion 𝑙𝑒𝑣𝑒𝑙𝑠 (defined by minimum block size allowed 𝑏) and rank of low

rank approximation 𝑝. The results are tabulated in Table 7-10. The results for all the Steadycav

matrices are similar, and therefore only the results for Steadycav 1 are shown.

The explanation of what each column in Table 7-10 represents are given below:

 Time for normal matvec: time for dense matrix-vector multiplication

 Time split: time taken to hierarchically split the matrix

 Time for hie_matvec_A: time for hierarchical matrix-vector multiplication

 ‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖: 2-norm of the error defined by the result of the hierarchical matvec

based on the result from dense matvec

 Number of matvec to break even: The number of matvec operations required to start

gaining from the reduced time taken to do hierarchical matrix-vector multiplication. When

the time taken for hierarchical matvec is more than or equal to that for dense matrix-vector

multiplication, this is marked with “NA”.

Looking at Table 8, 9 and 10, which depicts the result for Passcal, FATIMA_7894 and

FATIMA_20493 respectively, it can be seen that ACA is the clear winner. The time required to

perform hierarchical splitting by Lanzcos Bidiagonalization is simply too high. This can be seen

also in Figure 24 below, which plots the time required to split using Lanzcos and ACA. An average

of about 200 matvec operation is required to break even for Lanzcos Bidiagonalization, but for the

ACA, the average is at about 30.

Figure 24 Comparison between Lanzcos Bidiagonalization an ACA on the time required to do hierarchical splitting

Ang Yun Mei Elisa Master Thesis Report 42

The graph in Figure 25 below compares the time required to do hierarchical matvec based on

Lanzcos Bidiagonalization, ACA with an admissibility criterion based on complete pivoting and

ACA (without complete pivoting in the admissibility criterion). It is clear that all three methods

reduce the matvec time significantly as compared to the dense matvec operation. ACA has the

lowest time required out of the three methods. This is because ACA is generally more relaxed in

its admissibility criterion, and more blocks are deemed as admissible. Lanzcos Bidiagonalization

comes in second, and ACA with one complete pivoting has the worst performance out of the three.

This is expected, since ACA with an admissibility criterion based on complete pivoting causes less

blocks to be admissible, and the time to do hierarchical matvec therefore increases.

Figure 25 Comparison between Lanzcos Bidiagonalization an ACA on the time required to do hierarchical matvec

Referring to Table 7 for Steadycav1, it can be observed that ACA with one last iteration of

complete pivoting does not work very well. Because of the final check with complete pivoting, too

many blocks are inadmissible. This causes the hierarchical matvec time to be not competitive with

the time required to do dense matrix-vector multiplication. Therefore, it can be concluded that this

strategy is not suitable for the Steadycav type matrices.

In conclusion, ACA is preferred over Lanzcos Bidiagonalization due to its much lower time

required to perform hierarchical splitting. Hence, ACA is used in hierarchy_split subroutine from

this point on. It was assessed that this strategy is not applicable for the Steadycav matrices, and

therefore, the next section does not address this class of matrices.

Ang Yun Mei Elisa Master Thesis Report 43

Steadycav1

 Lanzcos Bidiagonalization ACA with one last iteration of complete pivoting

p b
time for normal

matvec

Time_

split

time for

hie_matvec_A
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖

Number of

matvec to

break even

Time_

split

time for

hie_matvec_A
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖

Number of

matvec to

break even

10

60

0.024 1.47 0.028 2.28E-05 NA 0.15 0.04 6.20E-06 NA

20 0.024 2.52 0.016 1.45E-05 316 0.43 0.036 1.60E-05 NA

30 0.024 3.28 0.016 1.13E-05 411 0.77 0.032 3.52E-05 NA

40 0.024 3.71 0.02 8.89E-06 928 1.23 0.032 2.46E-05 NA

10

100

0.024 1.11 0.024 1.24E-05 NA 0.072 0.028 4.24E-15 NA

20 0.024 2.07 0.016 9.62E-06 259 0.20 0.024 1.45E-06 NA

30 0.024 2.83 0.012 9.05E-06 236 0.37 0.024 1.24E-05 NA

40 0.024 3.14 0.016 6.85E-06 784 0.60 0.02 2.43E-05 150

10

200

0.024 0.78 0.024 2.96E-06 NA 0.028 0.024 4.23E-05 NA

20 0.024 1.51 0.02 4.60E-06 378 0.084 0.024 1.27E-05 NA

30 0.024 2.12 0.016 6.07E-06 266 0.17 0.024 1.13E-05 NA

40 0.024 2.57 0.016 5.26E-06 321 0.26 0.024 2.36E-05 NA

50 0.024 2.78 0.012 5.14E-06 231 0.38 0.024 1.16E-05 NA

Table 7 Comparison between Lanzcos Bidiagonalization and ACA (with one last iteration of complete pivoting) for Steadycav1. The lowest time or number of iterations recorded

for each column are highlighted in green.

Passcal

 Lanzcos Bidiagonalization ACA

p b
time for normal

matvec

Time_

split

time for

hie_matvec_A
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖

Number of

matvec to

break even

Time_

split

time for

hie_matvec_A
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖

Number of

matvec to

break even

10

60

0.02 0.988 0.012 9.87E-06 124 0.096 0.016 4.65E-05 24

20 0.02 1.408 0.012 5.12E-06 176 0.18 0.012 1.54E-05 23

30 0.02 1.772 0.008 5.15E-06 148 0.272 0.012 4.76E-05 34

10

100

0.02 0.836 0.012 7.04E-06 105 0.052 0.016 3.80E-06 13

20 0.02 1.304 0.012 3.35E-06 163 0.108 0.012 1.30E-05 14

30 0.02 1.724 0.012 3.98E-06 216 0.184 0.012 1.94E-05 23

10

200

0.02 0.676 0.02 4.09E-06 NA 0.02 0.02 2.71E-6 NA

20 0.02 0.964 0.016 2.65E-06 241 0.052 0.016 7.66E-6 13

30 0.02 1.304 0.012 3.36E-06 163 0.104 0.012 7.01E-6 13

Table 8 Comparison between Lanzcos Bidiagonalization and ACA for Passcal. The lowest time or number of iterations recorded for each column are highlighted in green.

Ang Yun Mei Elisa Master Thesis Report 44

FATIMA_7894

 Lanzcos Bidiagonalization ACA

p b

time for

normal

matvec

Time_split
time for

hie_matvec_A
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖

Number of

matvec to

break even

Time_split
time for

hie_matvec_A
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖

Number of

matvec to

break even

10

60

0.132 9.62 0.1 3.86E-07 301 1.05 0.12 1.23E-03 87

20 0.132 16.75 0.092 2.22E-07 419 1.89 0.088 1.42E-03 43

30 0.132 23.29 0.096 1.99E-07 647 3.06 0.084 1.24E-03 64

40 0.132 29.94 0.108 1.93E-07 1248 4.40 0.088 2.39E-05 100

10

100

0.132 8.16 0.104 3.65E-07 291 0.56 0.108 1.20E-03 23

20 0.132 14.52 0.084 2.06E-07 303 1.04 0.076 1.42E-03 19

30 0.132 20.42 0.08 1.92E-07 393 1.70 0.076 1.24E-03 30

40 0.132 26.51 0.084 1.84E-07 552 2.46 0.072 2.39E-04 41

10

200

0.132 6.39 0.116 2.91E-07 400 0.30 0.124 5.25E-07 37

20 0.132 11.36 0.092 1.50E-07 258 0.55 0.084 2.92E-04 11

30 0.132 15.87 0.084 1.37E-07 331 0.88 0.08 3.53E-04 17

40 0.132 20.24 0.084 1.40E-07 422 1.34 0.076 1.67E-04 24

Table 9 Comparison between Lanzcos Bidiagonalization and ACA for Fatima_7894. The lowest time or number of iterations recorded for each column are highlighted in green.

FATIMA_20493

 Lanzcos Bidiagonalization ACA

p b

time for

normal

matvec

Time_split
time for

hie_matvec_A
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖

Number of

matvec to

break even

Time_split
time for

hie_matvec_A
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖

Number of

matvec to

break even

10 70 0.932 111.68 0.30 1.19E-04 176 4.20 0.29 1.73E-03 7

10
100

0.932 108.68 0.40 1.65E-05 203 3.04 0.39 1.70E-03 6

20 0.932 186.05 0.37 1.65E-05 332 5.24 0.32 4.60E-03 9

10

200

0.932 80.17 0.70 9.81E-07 352 1.75 0.71 1.62E-03 8

20 0.932 182.41 0.56 9.80E-07 496 3.14 0.45 4.51E-03 7

30 0.932 250.39 0.53 9.79E-07 623 4.79 0.40 1.26E-03 9

Table 10 Comparison between Lanzcos Bidiagonalization and ACA for FATIMA_20493. The lowest time or number of iterations recorded for each column are highlighted in

green.

Ang Yun Mei Elisa Master Thesis Report 45

5.3.2 Results after integration with solver

The hierarchy_class object using ACA is integrated with the current solver and the performance

of the solver with hierarchical matvec as compared to dense matvec is shown in the Table 11-13.

For clarity, the results are also illustrated in Figure 26 below. Note that in this section, the codes

were ran in serial, and the tolerance 𝜖 in the admissibility criterion for the hierarchy_class object

is set to 1e-4. The columns in Table 11-13 has the same definition as that stated in Section 3.3.

Figure 26 Performance of solver with hierarchical matvec as compared to dense matvec

Regardless of whether IDR(s) or GMRES is used, the time to solve the system using hierarchical

matvec instead of dense matvec is significantly lower. This can be seen clearly In Figure 26. The

larger the matrix, the more the gain in time when using hierarchical matvec. With Passcal, the

solve time drops by about 30% when hierarchical matvec is used. For FATIMA_7894, the solve

time drops by about 40%, and for FATIMA_20493, the solve time drops further by about 50%.

While this is true, the accuracy of the solution is not acceptable with hierarchical matvec. When

each dense matvec is replaced with the hierarchical matvec, the effect is that the system matrix is

perturbed. How well the solution of this approximate system estimates the exact solution depends

on the condition of the system matrix. The accuracy at which this perturbed matrix approximates

Ang Yun Mei Elisa Master Thesis Report 46

the system matrix is determined by the tolerance of the admissibility criterion. In the case when

this tolerance is set to 1e-4, relative errors of about 1e-03, 1e-02 and 1e-01 are obtained for Passcal,

FATIMA_7895 and FATIMA_20493 respectively.

To improve the situation, the tolerance of the admissibility criterion can be raised. The effect of

raising this criterion for the case of FATIMA_20493 matrix with b=200, p=50 is shown in Table

14. As the tolerance is raised, the number of inadmissible blocks increases. This caused the time

to do hierarchical matvec to increase. At a tolerance of 1e-5, the number of inadmissible blocks is

so high that the hierarchical matvec becomes even more expensive than the matvec due to the

overheads involved.

Therefore, it can be concluded that this method is not favorable for this application. The idea is

that if this approximation can be constructed as a preconditioner instead, it may be more applicable.

The next section explores the use of Hierarchical-LU decomposition as a preconditioner.

Ang Yun Mei Elisa Master Thesis Report 47

Passcal

Block Jacobi

block size

Wall clock time (s)
#iter Rel error

Wall clock time (s)
#iter Rel error

Solve Total Solve Total

GMRES with dense matvec GMRES with hierarchical matvec

500 2.02 2.20 91 3.54E-07 1.34 1.68 91 3.99E-03

1000 1.96 2.68 81 5.59E-07 1.28 2.22 81 3.99E-03

1200 1.83 2.83 77 2.99E-07 1.2 2.40 77 4.00E-03

 IDR(30) with dense matvec IDR(30) with hierarchical matvec

500 2.16 2.34 96 5.19E-07 1.42 1.76 96 3.99E-003

1000 2.04 2.81 86 1.58E-06 1.38 2.31 86 4.00E-003

1200 2.01 3.00 78 2.06E-07 1.38 2.52 83 4.00E-003
Table 11 Comparison of results between solvers with with dense matvec as compared to hierarchical matvec for Passcal. The results were obtained based on b=200, p=40.

FATIMA_7894

Block Jacobi

block size

Wall clock time (s)
#iter Rel error

Wall clock time (s)
#iter Rel error

Solve Total Solve Total

GMRES with dense matvec GMRES with hierarchical matvec

500 33.08 33.89 231 7.03E-07 19.47 22.02 232 6.51E-02

1000 18.07 21.28 121 1.57E-07 10.87 15.76 121 6.51E-02

2000 12.05 22.91 74 1.50E-07 7.74 21.99 75 6.51E-02

 IDR(30) with dense matvec IDR(30) with hierarchical matvec

500 33.64 34.47 236 3.86E-07 19.04 21.59 232 6.51E-02

1000 19.99 23.18 132 1.43E-07 12.11 17.00 135 6.51E-02

2000 13.87 26.38 83 1.08E-07 8.50 22.73 81 6.51E-02
Table 12 Comparison of results between solvers with with dense matvec as compared to hierarchical matvec for FATIMA_7894. The results were obtained based on b=200, p=50.

FATIMA_20493

Block Jacobi

block size

Wall clock time (s)
#iter Rel error

Wall clock time (s)
#iter Rel error

Solve Total Solve Total

GMRES with dense matvec GMRES with hierarchical matvec

1708 379.60 386.19 393 1.49E-06 161.77 175.04 396 6.15E-01

4000 103.22 156.81 103 1.17E-07 47.67 107.57 104 6.15E-01

6000 60.70 327.70 60 2.27E-07 31.34 304.33 61 6.15E-01

 IDR(50) with dense matvec IDR(50) with hierarchical matvec

1708 248.87 255.46 259 2.47E-07 109.23 123.10 258 6.15E-01

4000 111.30 164.81 109 1.66E-07 53.60 113.88 113 6.15E-01

6000 68.48 335.77 66 1.36E-07 31.68 304.75 65 6.15E-01
Table 13 Comparison of results between solvers with with dense matvec as compared to hierarchical matvec for FATIMA_20493. The results were obtained based on b=200,

p=40.

Ang Yun Mei Elisa Master Thesis Report 48

ε
Number of inadm

blocks
Time for hie matvec

Time for normal

matvec
‖𝑨𝒙𝒉𝒊𝒆 − 𝑨𝒙𝒆𝒙𝒂𝒄𝒕‖

1e-4 1270 0.392 0.928 7.36E-04

5e-5 1393 0.448 0.928 3.80E-04

2e-5 3234 0.912 0.928 1.59E-04

1e-5 3572 1.032 0.928 5.25E-07

Table 14 Effect of increasing tolerance for admissibility criterion for the FATIMA_20493 matrix with b=200, p=50. The total

number of inadmissible blocks at this level is 4096

Ang Yun Mei Elisa Master Thesis Report 49

6 PART 4: HIERARCHICAL LU-DECOMPOSITION

In the previous section, the implementation of the solver with hierarchical matvec was explored.

However, the large relative error prohibits its use. Despite this, it has been shown that operations

using the hierarchical form is indeed much cheaper as compared to the dense form. In this section,

the use of hierarchical-LU decomposition to construct a hierarchical-LU preconditioner is explored.

It is hopeful that this method will allow us to reap the benefits from the cheaper hierarchical

operations while maintaining the accuracy of the computed solution.

The hierarchical-LU decomposition are discussed in various text. The ones referred to in this report

are given in [7] and [12]. This section begins with a theoretical review of hierarchical LU

decomposition. The implementation details and results follow after.

6.1 THEORY

The hierarchical-LU decomposition is a process that decomposed a hierarchical matrix 𝐴 into a

lower triangular hierarchical matrix 𝐿 and an upper triangular hierarchical matrix 𝑈 . This is

illustrated in the figure below:

Figure 27 Illustration of the Hierarchical LU decomposition [12]

Note that 𝐿 and 𝑈 have the same hierarchical structure as 𝐴.

To formulate the algorithm for hierarchical-LU decomposition, first split the matrix 𝐴, 𝐿 and 𝑈

into four blocks:

𝐴 = [
𝐴11 𝐴12

𝐴21 𝐴22
] = [

𝐿11 0
𝐿21 𝐿22

] × [
𝑈11 𝑈12

0 𝑈22
]

Equation 11

Thus, the problem of solving for 𝐿 and 𝑈 is divided into four sub-problems [7]:

Ang Yun Mei Elisa Master Thesis Report 50

1. Compute 𝐿11, 𝑈11 from the hierarchical-LU decomposition of 𝐴11. Since 𝐿11 is in general

not a lower triangular matrix unless a pivot 𝑃11 is used, thus, in general, 𝐿11 = 𝑃11
−1�̂�11,

where �̂�11 is lower triangular.

2. Compute 𝑈12 from the lower triangular equation �̂�11𝑈12 = 𝑃11𝐴12

3. Compute 𝐿21 from the upper triangular equation 𝐿21𝑈11 = 𝐴21

4. Compute 𝐿22, 𝑈22 from the hierarchical-LU decomposition of 𝐴22 − 𝐿21𝑈12. Again

𝐿22 = 𝑃22
−1�̂�22

Each sub-block of 𝐴 is again a hierarchical matrix. Therefore, it can be seen now that the following

major hierarchical matrix operations need to be defined:

1. Multiplication and Subtraction to obtain 𝐴 = 𝐴 − 𝐿𝑈. We shall term this operation

rounded subtraction. This is elaborated in Section 6.1.2.

2. Lower triangular Solver 𝐿𝐵 = 𝐴. This is elaborated in Section 6.1.3.

3. Upper triangular Solver 𝐵𝑈 = 𝐴. This is elaborated in Section 6.1.4.

To define these major operations, some basic operations with hierarchical matrix are needed. These

are elaborated in the next sub-section. The subsequent sub-sections then elaborate on the three

major operations. This section then ends by bringing together all the operations defined into the

final hierarchical-LU decomposition algorithm.

6.1.1 Basic Hierarchical Matrix Operations

All hierarchical matrices have a recursive structure, where the main matrix is split into four blocks,

and each block is further split into four blocks until the finest level of recursion 𝑙𝑒𝑣𝑒𝑙𝑠. At this

finest level, there exist essentially either low rank matrix operations or full matrix operations. Full

matrix operations are well understood. Hence the first part of this section deals with how to handle

low rank matrix operations. Namely, multiplication and addition (or subtraction) are considered.

The remaining parts of this section focuses on some of the operations that need to be defined for

the three major operations required for hierarchical LU decomposition. These operations are

hierarchical matrix multiplication, truncation of a hierarchical matrix into its low rank

approximation, and addition (or subtraction) of a hierarchical matrix with low rank matrices.

Ang Yun Mei Elisa Master Thesis Report 51

6.1.1.1 Low rank matrix operations

6.1.1.1.1 Low rank matrix multiplication

Given a low rank matrix 𝑅 = 𝐴𝐵𝑇 ∈ ℂ𝑁×𝑀 of rank 𝑝, and a full rank matrix 𝑀 ∈ ℂ𝑀×𝐿 , the result

of the multiplication 𝑅𝑀 will be another rank 𝑝 matrix, since 𝑅𝑀 = 𝐴𝐵𝑇𝑀 = 𝐴(𝑀𝑇𝐵)𝑇.

Similarly, given another full rank matrix 𝑁 ∈ ℂ𝐿×𝑁, 𝑁𝑅 is yet another rank 𝑝 matrix, since 𝑁𝑅 =

(𝑁𝐴)𝐵𝑇.

 Two rank 𝑝 matrix multiplication also gives another rank 𝑝 matrix. Let = 𝑈𝑉𝑇 ∈ ℂ𝑀×𝐿 , then

𝑅𝑇 = (𝐴(𝑈𝑇𝐵)𝑇)𝑉𝑇 [12].

6.1.1.1.2 Formatted addition

Given two low rank matrix 𝑅 = 𝐴𝐵𝑇 ∈ ℂ𝑁×𝑀 and 𝑇 = 𝑈𝑉𝑇 ∈ ℂ𝑁×𝑀 of rank 𝑝, the result of 𝑅 +

𝑇 is a rank 2𝑝 matrix. This is because 𝑀 = 𝑅 + 𝑇 = [𝐴 𝑈] [𝐵
𝑇

𝑉𝑇] = [𝐴 𝑈][𝐵 𝑉]𝑇. To obtain

the rank 𝑝 approximation to 𝑀, the truncation operation which truncates a rank 2𝑝 matrix to a rank

𝑝 matrix must be performed. This is termed here as RK-truncation, and is described in the next

section. The addition operation, followed by RK-truncation, is termed as a whole as formatted

addition.

6.1.1.1.3 RK-truncation: truncation of a rank k matrix to a rank p matrix

It is assumed here that 𝑝 < 𝑘 . Given a rank 𝑘 matrix in the form 𝑉𝑇 ∈ ℂ𝑁×𝑀 , the rank 𝑝

approximation �̃� = 𝑈′𝑉′𝑇 can be obtained using a reduced singular value decomposition (SVD)

operation [12]:

1. Perform QR-factorization of 𝑈 = 𝑄𝑢𝑅𝑢 and 𝑉 = 𝑄𝑣𝑅𝑣. Note that 𝑄𝑢 ∈ ℂ𝑁×𝑘, 𝑅𝑢, 𝑅𝑣 ∈

ℂ𝑘×𝑘 and 𝑄𝑣 ∈ ℂ𝑀×𝑘. Thus 𝑀 = 𝑄𝑢𝑅𝑢𝑅𝑣
𝑇𝑄𝑣

𝑇.

2. Next, perform reduced SVD on 𝑅𝑢𝑅𝑣
𝑇. This is can be done using the SVD, Lanzcos

Bidiagonalization, or ACA. In our case, ACA is chosen since it is the cheapest option.

This gives 𝑅𝑢𝑅𝑣
𝑇 ≈ 𝑈𝑅𝑉𝑅

𝑇, 𝑈𝑅𝑉𝑅
𝑇 is of rank 𝑝.

3. Lastly, set 𝑈′ = 𝑄𝑢𝑈𝑅 and 𝑉′ = 𝑄𝑣𝑉𝑅

Ang Yun Mei Elisa Master Thesis Report 52

Because of the truncation operation, it is expected that formatted addition introduces an error. The

error introduced by the truncation operation is discussed in [7] and [12]. Since the hierarchical-LU

decomposition is to be used as a preconditioner, the elaborated error analysis is not presented here.

6.1.1.2 Hierarchical matrix multiplication

The result of the multiplication of a hierarchical matrix 𝐴 ∈ ℂ𝑁×𝑀 with a full matrix 𝑀 ∈ ℂ𝑀×𝐿 is

another full matrix 𝐴𝑀 ∈ ℂ𝑁×𝐿. The multiplication can be carried out recursively. At the finest

level, 𝐴 is either a low rank or a full matrix. Thus 𝐴𝑀 can be obtained either by low rank matrix

multiplication, or by full matrix-matrix multiplication. If not at the finest level and 𝐴 is not

admissible, 𝐴 is divided into four sub-blocks, and 𝑀 into two:

𝐴𝑀 = [
𝐴11 𝐴12

𝐴21 𝐴22
] [

𝑀1

𝑀2
] = [

𝐴11𝑀1 + 𝐴12𝑀2

𝐴21𝑀1 + 𝐴22𝑀2
]

Equation 12

The hierarchical matrix multiplication operation is then called recursively accordingly to Equation

12.

6.1.1.3 Truncation: truncation of hierarchical matrix A to a low rank matrix

The operation to truncate a hierarchical matrix to its low rank approximation is required for the

rounded-subtraction operation. The truncation operation can be illustrated with the diagram below

[12]:

Figure 28 Illustration of truncation operation [12]

The hierarchical matrix in this case consists of full matrix blocks 𝐹 and low rank matrix blocks 𝑅.

Starting from the finest level (represented by matrix 𝑀 in Figure 28), each 𝐹 block is truncated to

a low rank matrix block 𝑅 using reduced SVD. Next, combine four low rank matrix sub-blocks

into one low rank matrix block by formatted addition (note that here, 𝑅𝑖 = 𝑈𝑖𝑉𝑖
𝑇):

Ang Yun Mei Elisa Master Thesis Report 53

[
𝑅1 𝑅2

𝑅3 𝑅4
] = [

𝑅1 0
0 0

] + [
0 𝑅2

0 0
] + [

0 0
𝑅3 0

] + [
0 0
0 𝑅4

]

= [
𝑈1

0
] [𝑉1

𝑇 0] + [
𝑈2

0
] [0 𝑉2

𝑇] + [
0
𝑈3

] [𝑉3
𝑇 0] + [

0
𝑈4

] [0 𝑉4
𝑇] = [𝑅]

This is performed until the coarsest level, level 0. By this time, a low rank approximation is

attained for the entire hierarchical matrix.

6.1.1.4 Subtract-lowrank: Addition (or Subtraction) of a Hierarchical Matrix with a low rank

matrix

Consider here the operation 𝐴 = 𝐴 + 𝑈𝑉𝑇, where 𝐴 is a hierarchical matrix. At the finest level, 𝐴

is either a full matrix or a low rank matrix. If 𝐴 is a full matrix, 𝑈𝑉𝑇 has to be formed explicitly

and added to the full matrix. Otherwise, formatted addition is performed.

At coarser levels, if 𝐴 is admissible, formatted addition is performed. If A is not admissible, then

the function has to be recursively called. 𝐴 is split into four blocks, while 𝑈 and 𝑉 are split into

two blocks as follows:

[
𝐴11 𝐴12

𝐴21 𝐴22
] = [

𝐴11 𝐴12

𝐴21 𝐴22
] + [

𝑈1

𝑈2
] [𝑉1

𝑇 𝑉2
𝑇]

= [
𝐴11 + 𝑈1𝑉1

𝑇 𝐴12 + 𝑈1𝑉2
𝑇

𝐴21 + 𝑈2𝑉1
𝑇 𝐴22 + 𝑈2𝑉2

𝑇]

Equation 13

The function is then recursively called in each of the four sub-blocks according to Equation 13.

The operation 𝐴 = 𝐴 − 𝑈𝑉𝑇 is defined similarly.

6.1.2 Rounded subtraction Operation 𝑨 = 𝑨 – 𝑳𝑼

The implementation of the rounded subtraction operation uses the functions that have been defined

till now. It is assumed that 𝐴, 𝐿 and 𝑈 are all hierarchical matrices, but they may not be of the same

hierarchical structure. This assumption is required because although the full 𝐴, 𝐿 and 𝑈 matrices

share the same hierarchical structure, in rounded subtraction, 𝐴, 𝐿 and 𝑈 represent different sub-

blocks of their respective full hierarchical matrices.

Ang Yun Mei Elisa Master Thesis Report 54

First consider the case when rounded subtraction function is called at the finest level. In this case,

there are eight scenarios, depicted in the figure below.

Figure 29 Cases to consider for rounded subtraction at the finest level

For Cases 1 to 4, since 𝐴 is low rank, the result of 𝐴 − 𝐿𝑈 is also low rank. Now consider case 1

2 and 3, low rank matrix multiplication is first used to compute the product 𝐿𝑈. Next, formatted

addition is used to compute the rank 𝑝 approximation to 𝐴 − 𝐿𝑈.

For Case 4, both 𝐿 and 𝑈 are full matrices. To subtract a full matrix from a low rank matrix

efficiently, 𝐿 and 𝑈 have to be truncated into their low rank approximation. With the

approximation, this case can then proceed like in Case 1, 2 or 3.

For Cases 4 to 8, the result of 𝐴 − 𝐿𝑈 is a full matrix. In all cases, either low rank multiplication

or full multiplication is performed, followed by full matrix subtraction to arrive at the result.

When rounded subtraction is called at a higher level, the following cases have to be considered:

Figure 30 Cases to consider for rounded subtraction not at the finest level

A
t

th
e

fi
n
es

t
le

v
el

A is low rank

L is low rank

U is low rank Case 1

U is full Case 2

L is full

U is low rank Case 3

U is full Case 4

A is full

L is low rank

U is low rank Case 5

U is full Case 6

L is full

U is low rank Case 7

U is full Case 8

N
o
t

A
t

th
e

fi
n

es
t

le
v
el

A is admissible

L is admissible

U is admissible Case 9

U is not
admissible

Case 10

L is not
admissible

U is admissible Case 11

U is not
admissible

Case 12

A is not
admissible

L is admissible

U is admissible Case 13

U is not
admissible

Case 14

L is not
admissible

U is admissible Case 15

U is not
admissible

Case 16

Ang Yun Mei Elisa Master Thesis Report 55

If 𝐴 is admissible, as it is for Case 9 to 12, this is very similar to Case 1 to 4. If 𝐿 and 𝑈 are both

not admissible, then they have to be truncated to their low rank approximation. Otherwise,

hierarchical matrix multiplication can be carried out. Once 𝐴 and 𝐿𝑈 are both in their low rank

form, then formatted addition can be applied to obtain 𝐴 − 𝐿𝑈.

When 𝐴 is not admissible, the result of the rounded subtraction operation is another hierarchical

matrix with the same structure as 𝐴. Consider Case 13. Since 𝐿 and 𝑈 are both admissible, the

product 𝐿𝑈 is another low rank matrix. The subtract-lowrank operation can then be used to subtract

a low rank matrix from a hierarchical matrix 𝐴.

When either 𝐿 or 𝑈 becomes admissible, as in Case 14 or 15, the recursive hierarchical matrix

multiplication is called to form another low rank matrix. For instance, when 𝑈 is admissible, 𝑈 =

𝐶𝐷𝑇 , thus the operation becomes 𝐴 = 𝐴 − (𝐿𝐶)𝐷𝑇 .Since 𝐿 is a hierarchical matrix, recursive

hierarchical matrix multiplication can be used to evaluate 𝐿𝐶, which is of size 𝑁 × 𝑝. Thus, the

operation is again reduced to the subtraction of a low rank matrix (𝐿𝐶)𝐷𝑇 from a hierarchical

matrix 𝐴. This can be evaluated by the subtract-lowrank operation.

Lastly, Case 16 occurs when all three matrices are hierarchical. In this case the rounded subtraction

function has to be recursively called. All three matrices can be split into four blocks as shown:

[
𝐴11 𝐴12

𝐴21 𝐴22
] = [

𝐴11 𝐴12

𝐴21 𝐴22
] − [

𝐿11 𝐿12

𝐿21 𝐿22
] [

𝑈11 𝑈12

𝑈21 𝑈22
]

= [
𝐴11 − 𝐿11𝑈11 − 𝐿12𝑈21 𝐴12 − 𝐿11𝑈12 − 𝐿12𝑈22

𝐴21 − 𝐿21𝑈11 − 𝐿22𝑈21 𝐴22 − 𝐿21𝑈12 − 𝐿22𝑈22
]

Equation 14

For each block, rounded subtraction is first called on 𝐴𝑖𝑗 = 𝐴𝑖𝑗 − 𝐿𝑖1𝑈1𝑗 , then on 𝐴𝑖𝑗 = 𝐴𝑖𝑗 −

𝐿𝑖2𝑈2𝑗.

6.1.3 Lower Triangular Solver 𝑳𝑩 = 𝑨

A lower triangular solver solves for 𝐵 in 𝐿𝐵 = 𝐴, where 𝐿, 𝐵 and 𝐴 are all hierarchical matrices

and 𝐿 is lower triangular. With respect to our application, it can be assumed that 𝐵 and 𝐴 share the

same hierarchical structure, while 𝐿 need not. Again, the lower triangular solver is a recursive

Ang Yun Mei Elisa Master Thesis Report 56

solver. Like all recursive functions, it is easier to deal first with the case at the finest level of

recursion.

All lower triangular matrices lie on the diagonal. Therefore, at the finest level of recursion, 𝐿 can

only be a full rank matrix. Therefore, there are essentially only 2 cases to consider: first, when

𝐴/𝐵 is low rank, and second when 𝐴/𝐵 is full rank.

Figure 31 Cases to consider for lower triangular solver at the finest level

If 𝐴/𝐵 is full, then the usual lower triangular solver can be called to solve the lower triangular

system. Otherwise, first, express 𝐴 = 𝑈𝑉𝑇 , 𝐵 = 𝐶𝐷𝑇 to arrive at 𝐿𝐶𝐷𝑇 = 𝑈𝑉𝑇 . The aim is to

solve for matrix 𝐶 and 𝐷. In this case, 𝐷 can be solved by just letting 𝐷 = 𝑉, and employ a lower

triangular solver to the subsystem 𝐿𝐶 = 𝑈.

Consider now the case where the recursion level is not at the finest. There are again two cases:

𝐴/𝐵 is not admissible and 𝐴/𝐵 is admissible.

Figure 32 Cases to consider for lower triangular solver not at the finest level

When A/B is admissible, the case is handled similarly as that at the finest level. If 𝐴/𝐵 is not

admissible, consider the following equation:

[
𝐿11 0
𝐿21 𝐿22

] × [
𝐵11 𝐵12

𝐵21 𝐵22
] = [

𝐴11 𝐴12

𝐴21 𝐴22
]

Equation 15

The lower triangular solver has to be recursively called as follows to solve for B [7]:

At the finest level

A/B is low rank,

L is full

A/B is full,

L is full

Not at the finest level

A/B is low rank,

L is full

A/B is not
admissible,

L is full

Ang Yun Mei Elisa Master Thesis Report 57

1. Solve for 𝐵11 by calling lower triangular solver on 𝐿11𝐵11 = 𝐴11.

2. Solve for 𝐵12 by calling lower triangular solver on 𝐿11𝐵12 = 𝐴12.

3. Solve for 𝐵21 by first calling rounded subtraction to obtain 𝐴21 − 𝐿21𝐵11, then calling

lower triangular solver on 𝐿22𝐵21 = 𝐴21 − 𝐿21𝐵11.

4. Solve for 𝐵22 by first calling rounded subtraction to obtain 𝐴22 − 𝐿21𝐵12, then calling

lower triangular solver on 𝐿22𝐵22 = 𝐴22 − 𝐿21𝐵12.

6.1.4 Upper Triangular Solver 𝑩𝑼 = 𝑨

The upper triangular solver is very similar to the lower triangular solver. At the finest level, if 𝐴/𝐵

is full, dense upper triangular solver is used to solve for 𝐵. Otherwise, let 𝐴 = 𝐸𝐹𝑇 , 𝐵 = 𝐶𝐷𝑇 to

arrive at 𝐶𝐷𝑇𝑈 = 𝐸𝐹𝑇, where 𝐶 and 𝐷 are the unknowns. In this case, let 𝐶 = 𝐸, and solve the

smaller upper triangular system 𝐷𝑇𝑈 = 𝐹𝑇 .

For the two cases when the level of recursion is not the finest, the case when 𝐴/𝐵 is admissible is

handled the same way as at the finest level of recursion. The case when 𝐴/𝐵 is not admissible is

solved by considering the following equation:

[
𝐵11 𝐵12

𝐵21 𝐵22
] × [

𝑈11 𝑈12

0 𝑈22
] = [

𝐴11 𝐴12

𝐴21 𝐴22
]

Equation 16

The upper triangular solver is called recursively as follows [7]:

1. Solve for 𝐵11 by calling upper triangular solver on 𝐵11𝑈11 = 𝐴11.

2. Solve for 𝐵21 by calling upper triangular solver on 𝐵21𝑈11 = 𝐴21.

3. Solve for 𝐵12 by first calling rounded subtraction to obtain 𝐴12 − 𝐵11𝑈12, then calling

upper triangular solver on 𝐵12𝑈22 = 𝐴12 − 𝐵11𝑈12.

4. Solve for 𝐵22 by first calling rounded subtraction to obtain 𝐴22 − 𝐵21𝑈12, then calling

lower triangular solver on 𝐵22𝑈22 = 𝐴22 − 𝐵21𝑈12.

6.1.5 Hierarchical LU Decomposition – the Algorithm

Now with all the building blocks in place, it is time to put everything together into the hierarchical-

LU decomposition algorithm introduced at the start of this section. At the finest level, there is only

Ang Yun Mei Elisa Master Thesis Report 58

the case when 𝐴 is full, since this algorithm is called only on diagonal blocks. Thus, the usual LU-

decomposition routine is called to solve for 𝐿 and 𝑈.

When not at the finest level, again only the case when 𝐴 is hierarchical is considered (since A

cannot be admissible as it is a diagonal block). Thus, 𝐴 is split into four sub-blocks, and the

hierarchical LU decomposition function, hierarchical lower triangular solver, and the hierarchical

upper triangular solver is applied to the respective sub-blocks, according to Equation 11.

6.2 PROGRAM IMPLEMENTATION DETAILS

This section discusses how the hierarchical-LU decomposition is implemented and integrated with

the solver. The hierarchy_class object data structure must first be updated to accommodate for the

additional storage required for hierarchical-LU decomposition. Its subroutines must also be

expanded to include the operations defined in Section 6.1. The resulting hierarchcial upper

triangular 𝑈 and lower triangular 𝐿 matrix are then applied as a preconditioner to the solver. These

are discussed in the subsections below:

6.2.1 Update to the data structure of a H-matrix for hierarchical-LU decomposition

The data structure of the hierarchy_class object is updated as shown below. The updates are

explained in the following subsections.

Ang Yun Mei Elisa Master Thesis Report 59

 type, public :: hierarchy

 !private

 ! List of arrays

 ! --

 DATATYPE1, allocatable, dimension(:) :: U

 DATATYPE1, allocatable, dimension(:) :: V

 integer(kind=SHORT), allocatable, dimension(:) :: index_con

 integer(kind=SHORT), allocatable, dimension(:) :: index_lvl_con

 integer(kind=SHORT), allocatable, dimension(:) :: adm_row

 integer(kind=SHORT), allocatable, dimension(:) :: adm_col

 integer(kind=SHORT), allocatable, dimension(:) :: inadm_row

 integer(kind=SHORT), allocatable, dimension(:) :: inadm_col

 integer(kind=SHORT), allocatable, dimension(:) :: block_lvl_con

 integer(kind=SHORT), allocatable, dimension(:) :: Ublockpos_con

 integer(kind=SHORT), allocatable, dimension(:) :: Vblockpos_con

 DATATYPE1, allocatable, dimension(:) :: matrix_N

 integer(kind=SHORT), allocatable, dimension(:) :: Nblockpos_con

 DATATYPE1, allocatable, dimension(:) :: U_compressed

 integer(kind=SHORT), allocatable, dimension(:) :: Ublockpos_com_con

 DATATYPE1, allocatable, dimension(:) :: V_compressed

 integer(kind=SHORT), allocatable, dimension(:) :: Vblockpos_com_con

 DATATYPE1, allocatable, dimension(:) :: LU

 DATATYPE1, allocatable, dimension(:) :: LU_U

 DATATYPE1, allocatable, dimension(:) :: LU_V

 integer(kind=SHORT), allocatable, dimension(:) :: Pivot

 ! List of variables

 ! --

 integer(kind=SHORT) :: p

 integer(kind=SHORT) :: b

 integer(kind=SHORT) :: N

 integer(kind=SHORT) :: levels

 integer(kind=SHORT) :: alloc_stat

 real :: tol

 end type hierarchy

Figure 33 Updated data structure of the hierarchy_class object to cater for the hierarchical-LU decomposition

6.2.1.1 Compression

In the hierarchical-LU decomposition routine, there is a need to alter the hierarchical matrix 𝐴,

since 𝐴 = 𝐴 − 𝐿𝑈 have to be performed during the algorithm. In order to not change the original

𝐴 matrix, which is required for the matrix-vector multiplication in the solver, there is a need to

make a copy of this matrix to form the inadmissible matrix 𝑁𝑙𝑒𝑣𝑒𝑙𝑠. It is however too expensive to

make a copy of the entire matrix 𝐴. Instead, only the inadmissible blocks should be stored. In the

same way, it is also helpful to compress the 1D arrays 𝑈 and 𝑉 after hierarchical splitting have

been performed, since 𝑈 and 𝑉 are non zeros only in parts where the blocks become admissible.

Therefore, the following new items are added to the hierarchy class data structure. The rationale

behind each item is described below.

Ang Yun Mei Elisa Master Thesis Report 60

 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁(:): contains the inadmissible blocks that made up 𝑁𝑙𝑒𝑣𝑒𝑙𝑠

 𝑁𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛(:): contains the index of the first element in 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁 corresponding to

the local block number at the finest level

 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑(:): contains the compressed 𝑈 array

 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛(:) : contains the index of the first element in the

𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 array corresponding to the global block number

 𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑(:): contains the compressed 𝑉 array

 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛(:) : contains the index of the first element in the

𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 array corresponding to the global block number

To construct 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁, the size of matrix_N required must first be computed. This is just the sum

of the block sizes of all inadmissible blocks, ∑ 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒𝑖𝑛𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑏𝑙𝑜𝑐𝑘𝑠 . The inadmissible

blocks are then stored in ascending order of the local block number at the finest recusion level

𝑙𝑒𝑣𝑒𝑙𝑠, again, in column major format. Figure 34 below illustrates the structure of the 1D array

used to store 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁.

Figure 34 Structure of 𝑀𝑎𝑡𝑟𝑖𝑥_𝑁 when the finest recursion level is 3. Purple boxes indicate inadmissible blocks, while green

blocks indicate admissible ones.

To easily retrieve the matrix block corresponding to a local block number, the 𝑁𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛

array is defined. This is an array of size 2𝑙𝑒𝑣𝑒𝑙𝑠 × 2𝑙𝑒𝑣𝑒𝑙𝑠 , and each element within the array

corresponds to one local block at level 𝑙𝑒𝑣𝑒𝑙𝑠. If the block is inadmissible, the position of the first

element of that block in 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁 is stored in 𝑁𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 array. Else, a 0 is stored. An

example of how 𝑁𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 looks like for the FATIMA_7894 matrix at 𝑙𝑒𝑣𝑒𝑙𝑠 = 3 and 𝑝 =

50 is shown below:

Ang Yun Mei Elisa Master Thesis Report 61

 Nblockpos_con

 1 974170 0 0 0 0 0 0

 1948339 2922508 3896677 0 0 0 0 0

 0 4870846 5845015 6819184 0 0 0 0

 0 0 7792366 8765548 9737744 0 0 0

 0 0 0 10710926 11684108 12658277 0 0

 0 0 0 0 13632446 14606615 15580784 16554953

 0 0 0 0 0 17528135 18502304 19476473

 0 0 0 0 0 0 20449655 21422837

 22395033

Figure 35 Example of how 𝑁𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 looks like for FATIMA_7894 matrix with 𝑙𝑒𝑣𝑒𝑙𝑠 = 3 and 𝑝 = 50

Next, arrays 𝑈 and 𝑉 are compressed into 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and 𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 arrays. The size

of the arrays required to store the inadmissible blocks can be computed as

∑ ∑ 𝑏𝑙𝑜𝑐𝑘_𝑟𝑜𝑤_𝑠𝑖𝑧𝑒 × 𝑝𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑏𝑙𝑜𝑐𝑘𝑠
𝑙𝑒𝑣𝑒𝑙𝑠
𝑙=2 for 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and

∑ ∑ 𝑏𝑙𝑜𝑐𝑘_𝑐𝑜𝑙_𝑠𝑖𝑧𝑒 × 𝑝𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑏𝑙𝑜𝑐𝑘𝑠
𝑙𝑒𝑣𝑒𝑙𝑠
𝑙=2 for V_compressed. After 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and

𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 array are allocated with this size, the low rank approximations for the admissible

blocks are stored in ascending order of the global block number. The figure below illustrates the

structure of the compressed arrays.

Figure 36 Structure of Array U and V after compression

Similar to 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 for the 𝑈 and 𝑉 1D arrays, the

𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 serves as a link between the global block number

and their respective blocks in the 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and 𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 1D array. There is an

element allocated in 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 for every global block from

level 2 onwards. If the global block is admissible, the element is equal to the index of the first

element of the block in the 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 or 𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 container. Otherwise, it is just set

to 0. An example of how the 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 looks like for the

FATIMA_7894 matrix with 𝑙𝑒𝑣𝑒𝑙𝑠 = 3 and 𝑝 = 50 is shown below:

Ang Yun Mei Elisa Master Thesis Report 62

 Ublockpos_com_con

 0 0 1 98701

 0 0 0 197351

 296001 0 0 0

 394701 493401 0 0

 0 0 592051 641401 0 0 0 0

 0 0 0 690701 0 0 0 0

 740001 0 0 0 789351 838701 0 0

 888051 937401 0 0 0 986751 0 0

 0 0 1036101 0 0 0 1085451 1134801

 0 0 1184101 1233451 0 0 0 0

 0 0 0 0 1282751 0 0 0

 0 0 0 0 1332101 1381451 0 0

 1430801

 Vblockpos_com_con

 0 0 1 98701

 0 0 0 197401

 296051 0 0 0

 394751 493401 0 0

 0 0 592051 641401 0 0 0 0

 0 0 0 690751 0 0 0 0

 740101 0 0 0 789451 838801 0 0

 888151 937451 0 0 0 986751 0 0

 0 0 1036051 0 0 0 1085401 1134751

 0 0 1184101 1233451 0 0 0 0

 0 0 0 0 1282801 0 0 0

 0 0 0 0 1332151 1381451 0 0

 1430751

Figure 37 Example of what 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 looks like for FATIMA_7894 with 𝑙𝑒𝑣𝑒𝑙𝑠 = 3 and

𝑝 = 50

After these arrays are constructed, the arrays 𝑈(:), 𝑉(:), 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛(:), and

𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛(:) can be deallocated to free up memory.

6.2.1.2 Arrays to store result of LU-decomposition

The arrays required to store the results of the LU decomposition are named 𝐿𝑈, 𝐿𝑈_𝑈, 𝐿𝑈_𝑉 and

𝑃𝑖𝑣𝑜𝑡 . Note that the upper triangular matrix 𝑈and lower triangular matrix 𝐿 H-matrix are stored

together to save storage space. Since 𝐿 and 𝑈 have the same hierarchical structure as 𝐴, the

𝐿𝑈, 𝐿𝑈_𝑈 and 𝐿𝑈_𝑉 arrays have the same size as 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁, 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and 𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

respectively. In addition, a 1D array named 𝑃𝑖𝑣𝑜𝑡 is required to store the pivoting elements formed

with the LU decomposition of the inadmissible blocks. This is of size N.

6.2.2 Additional subroutines

In addition to the subroutines already defined in Section 5.2.2, subroutines required to perform

hierarchical-LU decomposition are listed. The theory behind these subroutines are provided in

Section 6.1.

 Hierarchy_compress: to construct the compressed arrays to free up memory

 RK_truncation: truncates a matrix with rank 2𝑝 to rank 𝑝

Ang Yun Mei Elisa Master Thesis Report 63

 truncate: truncates a matrix block from 𝐿 or 𝑈 into its rank 𝑝 approximation

 subtract_lowrank: performs 𝐴 = 𝐴 − 𝑈𝑉𝑇, where 𝐴 is a H-matrix and 𝑈𝑉𝑇 is a rank 𝑝

matrix

 hie_matmul_A: performs 𝑀_𝑜𝑢𝑡 = 𝑀_𝑜𝑢𝑡 + 𝐴𝑀_𝑖𝑛, where 𝐴 is a H-matrix

 hie_matmul_L: performs 𝑀_𝑜𝑢𝑡 = 𝑀_𝑜𝑢𝑡 + 𝐿𝑀_𝑖𝑛, where 𝐿 is a lower triangular H-

matrix

 hie_matmul_U: performs 𝑀_𝑜𝑢𝑡 = 𝑀_𝑜𝑢𝑡 + 𝑈𝑀_𝑖𝑛, where 𝑈 is an upper triangular H-

matrix

 hie_matmul_U_T: performs 𝑀_𝑜𝑢𝑡 = 𝑀_𝑜𝑢𝑡 + 𝑈𝑇𝑀_𝑖𝑛, where U is an upper triangular

H-matrix

 rounded_subtraction: performs 𝐴 = 𝐴 − 𝐿𝑈, 𝐴 is a H-matrix, 𝐿 is a lower triangular H-

matrix and 𝑈 is an upper triangular H-matrix

 hie_LTS: solves 𝐵 in 𝐿𝐵 = 𝐴, 𝐴 and B are H-matrices, 𝐿 is a lower triangular H-matrix

 hie_LTS_RK: solves 𝐶 𝑖𝑛 𝐿𝐶 = 𝑈, 𝐶 and 𝑈 are full matrices, 𝐿 is a lower triangular H-

matrix

 hie_UTS: solves 𝐵 in 𝐵𝑈 = 𝐴, 𝐴 and 𝐵 are H-matrices, 𝑈 is an upper triangular H-matrix

 hie_UTS_RK: solves 𝐷 in 𝐷𝑈 = 𝐹, 𝐷 and 𝐹 are full matrices, 𝑈 is an upper triangular H-

matrix

 hie_LU: solves 𝐿 and 𝑈 in 𝐴 = 𝐿𝑈, 𝐴 is a H-matrix, 𝐿 is a lower triangular H-matrix and

𝑈 is an upper triangular H-matrix

The following subsections describe the implementation details of these subroutines, namely their

input, output and pseudo-codes. Optimized library routines from LAPACK are used as much as

possible. The routines name are provided where applicable.

6.2.2.1 Hierarchy_compress

The input to this subroutine are:

 A hierarchy_class object

 the size of the system: 𝑁

 The original system matrix: 𝐴

Ang Yun Mei Elisa Master Thesis Report 64

The hierarchy_class object is returned as an output, with the compressed arrays constructed and

assigned.

The pseudo-code of this subroutine can be found below.

1. Compute the sum of all inadmissible blocks (𝑠𝑖𝑧𝑒_𝑁)and fill up 𝑁𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛

2. Allocate 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁 with 𝑠𝑖𝑧𝑒_𝑁

3. Copy the appropriate inadmissible blocks from 𝐴 to 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁 according to
global block numbers

4. Compute the sum of the size of 𝑈𝜎 ,𝜏 and 𝑉𝜎 ,𝜏 for all admissible blocks (𝑠𝑖𝑧𝑒_𝑈,

𝑠𝑖𝑧𝑒_𝑉)and fill up 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑚_𝑐𝑜𝑛

5. Allocate 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 with 𝑠𝑖𝑧𝑒_𝑈 and 𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 with 𝑠𝑖𝑧𝑒_𝑉

6. Copy the appropriate admissible blocks from 𝑈 and 𝑉 to 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and

𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 respectively

7. Deallocate 𝑈, 𝑉, 𝑈𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛 and 𝑉𝑏𝑙𝑜𝑐𝑘𝑝𝑜𝑠_𝑐𝑜𝑛

Algorithm 5 Hierarchy_compress

6.2.2.2 RK_truncation

The inputs to this subroutine are

 two arrays that define the rank 2𝑝 matrix, 𝐴𝑡𝑒𝑚𝑝 ∈ ℂ𝑠𝑖𝑧𝑒_𝑟𝑜𝑤×2𝑝, 𝐵𝑡𝑒𝑚𝑝 ∈ ℂ𝑠𝑖𝑧𝑒_𝑐𝑜𝑙×2𝑝

 the integer 𝑝 that defines the rank of the low rank approximation

 tolerance 𝑡𝑜𝑙_ℎ𝑖𝑒 that defines the tolerance of the ACA algorithm

The subroutine outputs two arrays that define the truncated matrix of rank 𝑝, 𝑈 ∈ ℂ𝑠𝑖𝑧𝑒_𝑟𝑜𝑤×𝑝 and

𝑉 ∈ ℂ𝑠𝑖𝑧𝑒_𝑐𝑜𝑙×𝑝.

The pseudo-code for this subroutine is already outlined in Section 6.1.1.1.3.

6.2.2.3 Truncate

The inputs to this subroutine are:

 A hierarchy_class object for which defines 𝐿 or 𝑈

 The local row and column block number that defines which block of 𝐿 or 𝑈 is to be

truncated: 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗

 A flag to define if the block is admissible or not: 𝑎𝑑𝑚_𝐿𝑈. 𝑎𝑑𝑚_𝐿𝑈 is 0 if block is

inadmissible, and 1 if block is admissible.

 The level at which the block belongs to: 𝑙

Ang Yun Mei Elisa Master Thesis Report 65

 A flag to define if the block belongs to the 𝐿 or 𝑈: 𝐿_𝑓𝑙𝑎𝑔. 𝐿_𝑓𝑙𝑎𝑔 is 0 if block belongs to

𝑈, and 1 if block belongs to 𝐿.

The output to this subroutine are two arrays that define the truncated matrix of rank p, 𝑈 ∈

ℂ𝑠𝑖𝑧𝑒_𝜎×𝑝 and 𝑉 ∈ ℂ𝑠𝑖𝑧𝑒_𝜏×𝑝.

With reference to the concept presented in Section 6.1.1.3, the pseudo-code for truncate subroutine

is given below.

1) If 𝑎𝑑𝑚_𝐿𝑈 = 1
i) The block is already low rank. Return its low rank approximation

2) Else

a) If 𝑙 = finest recursion level
i) call ACA to obtain its low rank approximation

b) Else

i) If this is a diagonal block

(1) If 𝐿_𝑓𝑙𝑎𝑔 = 1
(a) Split the block into three lower triangular sub-blocks and

recursively call truncate on each of these sub-blocks. Formatted

addition are then done on low rank approximations for the three

sub-blocks

(2) Else

(a) Split the block into three upper triangular sub-blocks and

recursively call truncate on each of these sub-blocks. Formatted

addition are then done on low rank approximations for the three

sub-blocks

ii) Else

(1) Split the block into four sub-blocks and recursively call truncate on

each of these sub-blocks. Formatted addition are then done on low rank

approximations for the four sub-blocks.

Algorithm 6 truncate

6.2.2.4 Subtract_lowrank

The inputs to this subroutine are:

 A hierarchy_class object which defines 𝐴 in 𝐴 = 𝐴 − 𝑈𝑉𝑇

 The local row and column block number that defines the block in 𝐴 : 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖 ,

𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗

 A flag to define if the block is admissible or not: 𝑎𝑑𝑚_𝐴 . 𝑎𝑑𝑚_𝐴 is 0 if block is

inadmissible, and 1 if block is admissible.

 The level at which the block belongs to: 𝑙

 Two arrays which define 𝑈, 𝑉

Ang Yun Mei Elisa Master Thesis Report 66

The output to this subroutine is to update the hierarchy_class object 𝐴 with 𝐴 − 𝑈𝑉𝑇.

The pseudo-code is given by:

1) If 𝑎𝑑𝑚_𝐴 = 1
i) Perform formatted addition

2) Else

a) If 𝑙 = finest recursion level

i) Construct the product 𝑈𝑉𝑇 explicitly (XGEMM) and subtract A with

the product

b) Else

i) Split the block into four sub-blocks, 𝑈 and 𝑉 into halves as
shown in Equation 13. Update each sub-blocks by recursively

calling subtract-lowrank.

Algorithm 7 Subtract_lowrank

6.2.2.5 Hie_matmul_A, hie_matmul_L, hie_matmul_U

These are hierarchical matrix multiplications for a general H-matrix, lower or upper triangular H-

matrix respectively. The input, output and pseudo-codes of these routines are similar, and therefore

are discussed together in this section.

The inputs to these routines consist of:

 A hierarchy_class object which defines 𝐴, 𝐿 or 𝑈

 The local row and column block number that defines which block is to be multiplied:

𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗

 A flag to define if the block is admissible or not: 𝑎𝑑𝑚_𝐴, 𝑎𝑑𝑚_𝐿 or 𝑎𝑑𝑚_𝑈. These are 0

if block is inadmissible, and 1 if block is admissible.

 The level at which the block belongs to: 𝑙

 An array which defines the input matrix 𝑀_𝑖𝑛

The output to this routine is the matrix 𝑀_𝑜𝑢𝑡.

The pseudo-code to these routines are given:

Ang Yun Mei Elisa Master Thesis Report 67

1) If 𝑎𝑑𝑚_𝐴, 𝑎𝑑𝑚_𝐿 or 𝑎𝑑𝑚_𝑈 = 1
a) Low rank matrix multiplication (XGEMM

2) Else

a) If 𝑙 =finest recursion level

i) For A, dense matrix multiplication for 𝐴 (XGEMM)

ii) For 𝐿 and 𝑈, if this is a diagonal block
(1) Dense upper or lower triangular matrix multiplication (XTRMM)

iii) Else

(1) Dense matrix multiplication (XGEMM)

b) Else

i) For A, Split the block into four sub-blocks, and 𝑀_𝑖𝑛 and 𝑀_𝑜𝑢𝑡 into two
halves according to Equation 12.Recursively call hie_matmul_A on each of

the sub-blocks and update 𝑀_𝑜𝑢𝑡 according to Equation 12.
ii) For L and U, if this is a diagonal block

(1) Split the block into three lower or upper triangular blocks instead.

Recursively call hie_matmul_L or hie_matmul_U on each of these sub-

blocks and update 𝑀_𝑜𝑢𝑡.
iii) Else

(1) Split the block into four sub-blocks like in 2.b.i.

Algorithm 8 hie_matmul_A, hie_matmul_L or hie_matmul_U

6.2.2.6 Hie_matmul_U_T

𝑈𝑇 is essentially a lower triangular matrix that looks like the following in block form:

𝑈𝑇 = [
𝑈11

𝑇 0

𝑈12
𝑇 𝑈22

𝑇]

Thus, the pseudo-code for hie_matmul_U_T looks like that for hie_matmul_L, just that the

transpose matrix multiplication is called instead. The inputs and output are also the same.

6.2.2.7 Rounded_subtraction

The subroutines defined before this are put together here to complete the operation 𝐴 = 𝐴 − 𝐿𝑈.

The inputs to this subroutine are:

 The hierarchy_class object that contains information on 𝐴, 𝐿 and 𝑈

 The local row and column block number that defines the block in 𝐴 to be updated:

𝑏𝑙𝑜𝑐𝑘_𝐴_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑗

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐴 . 𝑎𝑑𝑚_𝐴 is 0 if block 𝐴 is

inadmissible, and 1 if block is admissible.

 The local row and column block number that defines the block in 𝐿: 𝑏𝑙𝑜𝑐𝑘_𝐿_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐿_𝑗

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐿

 The local row and column block number that defines the block in 𝑈: 𝑏𝑙𝑜𝑐𝑘_𝑈_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝑈_𝑗

Ang Yun Mei Elisa Master Thesis Report 68

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝑈

 The level at which all these blocks belong to: 𝑙

The output is that the hierarchy_class object will have its 𝑚𝑎𝑡𝑟𝑖𝑥_𝑁 , 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and

𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 updated according to 𝐴 = 𝐴 − 𝐿𝑈.

The pseudo-code for this subroutine is given below. The cases referred to here are defined in

Figures 30 and 31.

1) Case 1:

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM)

b) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈
2) Case 2:

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM)

b) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈
3) Case 3:

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM)

b) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈
4) Case 4:

a) Truncate 𝐿 and 𝑈 to obtain their low rank approximation

b) Low rank multiplication between the low rank approximations of 𝐿 and 𝑈 to

obtain a low rank 𝐿𝑈 (XGEMM)

c) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈
5) Case 5:

a) Low rank multiplication of 𝐿 and 𝑈. The full matrix 𝐿𝑈 is explicitly formed
from the low rank multiplication (XGEMM)

b) Dense matrix subtraction between 𝐴 and 𝐿𝑈
6) Case 6:

a) Low rank multiplication of 𝐿 and 𝑈. The full matrix 𝐿𝑈 is explicitly formed
from the low rank multiplication (XGEMM)

b) Dense matrix subtraction between 𝐴 and 𝐿𝑈
7) Case 7:

a) Low rank multiplication of 𝐿 and 𝑈. The full matrix 𝐿𝑈 is explicitly formed
from the low rank multiplication(XGEMM)

b) Dense matrix subtraction between 𝐴 and 𝐿𝑈
8) Case 8:

a) Dense matrix multiplication of 𝐿 and 𝑈 to form full matrix 𝐿𝑈 (XGEMM)

b) Dense matrix subtraction between 𝐴 and 𝐿𝑈
9) Case 9:

a) Low rank multiplication of L and U to obtain low rank 𝐿𝑈 (XGEMM)

b) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈
10) Case 10

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM)

b) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈

Ang Yun Mei Elisa Master Thesis Report 69

11) Case 11

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM)

b) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈
12) Case 12:

a) Truncate 𝐿 and 𝑈 to obtain their low rank approximation

b) Low rank multiplication between the low rank approximation of 𝐿 and 𝑈 to

obtain low rank 𝐿𝑈 (XGEMM)

c) Formatted subtraction between low rank matrices 𝐴 and 𝐿𝑈
13) Case 13

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM)

b) Call subtract_lowrank to update 𝐴 with 𝐴 − 𝐿𝑈
14) Case 14

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM)

b) Call subtract_lowrank to update 𝐴 with 𝐴 − 𝐿𝑈
15) Case 15

a) Low rank multiplication of 𝐿 and 𝑈 to obtain low rank 𝐿𝑈 (XGEMM)

b) Call subtract_lowrank to update 𝐴 with 𝐴 − 𝐿𝑈
16) Case 16

a) Split all three 𝐴, 𝐿 and 𝑈 blocks into four sub-blocks each and apply
rounded-subtraction recursively according to Equation 14.

Algorithm 9 rounded_subtraction

6.2.2.8 Hie_LTS and hie_LTS_RK

The subroutine hie_LTS is as described in Section 6.1.3.

An additional helper routine hie_LTS_RK is defined is for the case when block 𝐴/𝐵 becomes

admissible at level 𝑙, while 𝐿 is still hierarchical. In this case, there is the problem that 𝐴/𝐵 and 𝐿

does not belong to the same level. While 𝐿 has to be hierarchically divided into finer levels, the

admissible blocks to be read from or to be updated in 𝐴 or 𝐵 belongs to level 𝑙. In addition, when

this happens, a smaller lower triangular system, 𝐿𝐶 = 𝑈 , where 𝐶, 𝑈 ∈ ℂ𝑠𝑖𝑧𝑒𝜏×𝑝 needs to be

solved. 𝐶 and 𝑈 are dense matrices, not hierarchical matrices. Therefore, Equation 15 should not

be used. Instead, the following equation can be used instead:

[
𝐿11 0
𝐿21 𝐿22

] (
𝐶1

𝐶2
) = (

𝑈1

𝑈2
)

(
𝐿11𝐶1

𝐿21𝐶1 + 𝐿22𝐶2
) = (

𝑈1

𝑈2
)

Equation 17

Because of these reasons, a separate sub-routine hie_LTS_RK is created to deal with the case when

block 𝐴/𝐵 becomes admissible while 𝐿 is still hierarchical.

Ang Yun Mei Elisa Master Thesis Report 70

Hie_LTS have the following inputs:

 A hierarchy_class object that contains information for 𝐿, 𝐵 and 𝐴. Note that 𝐵 is a non-

diagonal block that belongs to 𝑈.

 The local row and column block number that defines the block in 𝐴: 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑗

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐴 . 𝑎𝑑𝑚_𝐴 is 0 if block 𝐴 is

inadmissible, and 1 if block is admissible.

 The local row and column block number that defines the block in 𝐿: 𝑏𝑙𝑜𝑐𝑘_𝐿_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐿_𝑗

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐿

 The level at which all these blocks belong to: 𝑙

Note that the local row and column block number for block 𝐵 is the same as 𝐴.

The output to hie_LTS is an updated upper triangular hierarchical matrix 𝑈 in the hierarchy_class

object.

The inputs to hie_LTS_RK consist of:

 A hierarchy_class object that contains information for 𝐿

 An array that defines the matrix 𝑈 in 𝐿𝐶 = 𝑈

 The local row and column block number that defines the block in 𝐿: 𝑏𝑙𝑜𝑐𝑘_𝐿_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐿_𝑗

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐿

 The level at which block 𝐿 belongs to: 𝑙

The output to hie_LTS_RK consist of the array defining 𝐶.

The pseudo-code for hie_LTS_RK and hie_LTS are given below:

1) If 𝑙 = finest recursion level

a) Swap the rows in 𝑈 according to 𝑃𝑖𝑣𝑜𝑡 (XLASWP)
b) Solve the lower triangular system (XTRTRS)

2) Else

a) Split 𝐿 into 3 sub-blocks and 𝑈/𝐶 into halves according to Equation 17.

b) Recursively call hie_LTS_RK on the first sub-block to solve 𝐶1

c) Call hie_matmul_L to obtain 𝐿21𝐶1

d) Dense matrix subtraction to obtain 𝑈2 = 𝑈2 − 𝐿21𝐶1

e) Recursively call hie_LTS_RK on the third sub-block to solve 𝐶2

Algorithm 10 hie_LTS_RK

Ang Yun Mei Elisa Master Thesis Report 71

1) If 𝑙 =finest recursion level

a) If 𝑎𝑑𝑚_𝐴 = 0

i) Swap the rows in the dense matrix 𝐴 according to 𝑃𝑖𝑣𝑜𝑡(XLASWP)
ii) Solve the lower triangular system (XTRTRS)

b) Else

i) Let 𝐵 = 𝐶𝐷𝑇, 𝐴 = 𝑈𝑉𝑇. Solve for 𝐷 using 𝐷 = 𝑉

ii) Swap the rows in the matrix 𝑈 according to 𝑃𝑖𝑣𝑜𝑡(XLASWP)

iii) Solve the lower triangular system 𝐿𝐶 = 𝑈 (XTRTRS)
2) Else

a) If 𝑎𝑑𝑚_𝐴 = 0

i) Split block 𝐴, 𝐵 and 𝐿 into four sub-blocks each according to Equation 15.

ii) Solve for 𝐵11 by recursively calling hie_LTS

iii) Solve for 𝐵12 by recursively calling hie_LTS

iv) Call rounded_subtraction to update 𝐴21 with 𝐴21 − 𝐿21𝐵11 and 𝐴22 with 𝐴22 −

𝐿21𝐵12

v) Solve for 𝐵21 and 𝐵22 by recursively calling hie_LTS

b) Else

i) Let 𝐵 = 𝐶𝐷𝑇, 𝐴 = 𝑈𝑉𝑇. Solve for 𝐷 using 𝐷 = 𝑉

ii) Call hie_LTS_RK to solve for 𝐶.

Algorithm 11 hie_LTS

6.2.2.9 Hie_UTS and hie_UTS_RK

The upper triangular solver differs from the lower triangular solver mainly because an additional

step is required to use the LAPACK routine. To solve a system 𝐵𝑈 = 𝐴 for 𝐵, one needs to

transpose the system to obtain 𝑈𝑇𝐵𝑇 = 𝐴𝑇. This becomes then a lower triangular system and the

same concept is applied.

The need to define hie_UTS_RK is similar to the reasons described in the previous section for the

lower triangular solver. The inputs and outputs are very similar as well, and are stated here for

completion.

The inputs to hie_UTS are:

 A hierarchy_class object that contains information for 𝑈, 𝐵 and 𝐴. Note that 𝐵 is a non-

diagonal block that belongs to 𝐿.

 The local row and column block number that defines the block in 𝐴: 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑗

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐴 . 𝑎𝑑𝑚_𝐴 is 0 if block 𝐴 is

inadmissible, and 1 if block is admissible.

 The local row and column block number that defines which the block in 𝑈: 𝑏𝑙𝑜𝑐𝑘_𝑈_𝑖,

𝑏𝑙𝑜𝑐𝑘_𝑈_𝑗

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝑈

Ang Yun Mei Elisa Master Thesis Report 72

 The level at which all these blocks belong to: 𝑙

The output to hie_UTS is an updated lower triangular matrix 𝐿 in the hierarchy_class object.

The inputs to hie_UTS_RK are:

 A hierarchy_class object that contains information for 𝑈 in 𝐷𝑇𝑈 = 𝐹𝑇

 An array that defines the matrix 𝐹

 The local row and column block number that defines the block in 𝑈: 𝑏𝑙𝑜𝑐𝑘_𝑈_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝑈_𝑗

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝑈

 The level at which block 𝑈 belongs to: 𝑙

The pseudo-code is given below:

1) If 𝑙 = finest recursion level

a) Solve the upper triangular system 𝑈𝑇𝐷 = 𝐹 (XTRTRS)
2) Else

a) Split block 𝑈 into three upper triangular sub-blocks, 𝐷/F into halves

b) Recursively call hie_UTS_RK on the first sub-block to solve 𝐷1

c) Call hie_matmul_U_T to obtain 𝑈12
𝑇 𝐷1

d) Dense matrix subtraction to obtain 𝐹2 = 𝐹2 − 𝑈12
𝑇 𝐷1

e) Recursively call hie_UTS_RK on the third sub-block to solve 𝐷2

Algorithm 12 hie_UTS_RK

1) If 𝑙 =finest recursion level

a) If 𝑎𝑑𝑚_𝐴 = 0

i) Solve the upper triangular system 𝑈𝑇𝐵𝑇 = 𝐴𝑇(XTRTRS)

b) Else

i) Let 𝐵 = 𝐶𝐷𝑇, 𝐴 = 𝐸𝐹𝑇. Solve for 𝐶 using 𝐶 = 𝐸

ii) Solve the upper triangular system 𝑈𝑇𝐷 = 𝐹 (XTRTRS)
2) Else

a) If 𝑎𝑑𝑚_𝐴 = 0

i) Split block 𝐴, 𝐵 and 𝑈 into four sub-blocks each according to Equation 16.

ii) Solve for 𝐵11 by recursively calling hie_UTS

iii) Solve for 𝐵21 by recursively calling hie_UTS

iv) Call rounded_subtraction to update 𝐴12 with 𝐴12 − 𝐵11𝑈12 and 𝐴22 with 𝐴22 −

𝐵21𝑈12

v) Solve for 𝐵12 and 𝐵22 by recursively calling hie_UTS

b) Else

i) Let 𝐵 = 𝐶𝐷𝑇, 𝐴 = 𝐸𝐹𝑇. Solve for 𝐶 using 𝐶 = 𝐸

ii) Call hie_UTS_RK to solve for 𝐷.

Algorithm 13 hie_UTS

Ang Yun Mei Elisa Master Thesis Report 73

6.2.2.10 Hie_LU

The final algorithm of hie_LU has inputs:

 A hierarchy_class object that contains information on 𝐴 in 𝐴 = 𝐿𝑈.

 The local row and column block number that defines the block in 𝐴: 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑖, 𝑏𝑙𝑜𝑐𝑘_𝐴_𝑗

 A flag to define if this block is admissible or not: 𝑎𝑑𝑚_𝐴 . 𝑎𝑑𝑚_𝐴 is 0 if block 𝐴 is

inadmissible, and 1 if block is admissible.

 The level at which block A belongs to: 𝑙

The output to this routine is an updated hierarchy_class object that now contains information in

𝐿𝑈, 𝐿𝑈_𝑈, 𝐿𝑈_𝑉 and 𝑃𝑖𝑣𝑜𝑡.

The pseudo-code is given below:

1) If 𝑙 = finest recursion levels
a) Dense matrix LU-decomposition (XGETRF)

2) Else

a) Split block A into 4 sub-blocks according to Equation 11.

b) Recursively call hie_LU on the first sub-block 𝐴11

c) Call hie_LTS on the second sub-block 𝐴12

d) Call hie_UTS on the third sub-block 𝐴21

e) Call rounded_subtraction to update 𝐴22 with 𝐴22 = 𝐴22 − 𝐿21𝑈12

f) Recursively call hie_LU on the last sub-block 𝐴22

Algorithm 14 hie_LU

6.2.3 Integration with the solver

To use the result of the hierarchical-LU decomposition as a preconditioner, the original system is

transformed into:

(𝐿𝑈)−1𝐴𝑥 = (𝐿𝑈)−1𝑏

where 𝐿 and 𝑈 are hierarchical lower and upper triangular matrix respectively. Therefore, one

needs to define a hierarchical lower triangular solver that solves 𝐿𝑦 = 𝑧 for 𝑦 , and an upper

triangular solver that solves 𝑈𝑥 = 𝑦 for 𝑥 . Before the start of the iterative solver, the lower

triangular solver is first applied to 𝑏, then the upper triangular solver is applied to obtain (𝐿𝑈)−1𝑏.

In each iteration, the lower triangular and upper triangular solver is applied in the same way to the

vector/matrix (𝐴𝑥) . Here, the lower triangular solver is named hie_LTS_vec and the upper

triangular solver is named hie_UTS_vec.

Ang Yun Mei Elisa Master Thesis Report 74

The following subroutines are added to the hierarchy_class object to be able to perform lower and

upper triangular solve in the solver:

 hie_matvec_L: This is similar to hie_matvec_A described in Section 5.2.2.4, but for a

lower triangular matrix instead. This is used in hie_LTS_vec.

 hie_matvec_U: This is again similar to hie_matvec_A, but for an upper triangular matrix

instead. This is used in hie_UTS_vec.

 hie_LTS_vec: Lower triangular solver to be called in the solver routine

 hie_UTS_vec: Upper triangular solver to be called in the solver routine

This subroutine hie_LTS_vec and hie_UTS_vec are very similar to the subroutines hie_LTS_RK

and hie_UTS_RK. Therefore, one can refer to the pseudo-codes defined for hie_LTS_RK and

hie_UTS_RK in algorithm 10 and 12. The only difference is that the hie_LTS_vec and

hie_UTS_vec must cater for mixed precision, where the matrix 𝐴𝑥 or 𝑏 is of double precision,

while 𝐿 and 𝑈 are of single precision. The reason for the mixed precision is detailed in [1].

For hie_matvec_L and hie_matvec_U, one can refer to the pseudo-code defined for hie_matvec_A

in Section 5.2.2.4. The only difference is that the two new routines are modified for lower or upper

triangular matrix multiplication instead.

With these subroutines defined, the hierarchical-LU preconditioner is constructed and applied as

follows. First, hierarchy_split, hierarchy_compress and hie_LU subroutines are called to construct

the preconditioner. To apply the preconditioner, hie_LTS_vec is called first, followed by

hie_UTS_vec.

6.2.4 Parallelization

The hierarchical-LU preconditioner is parallelized using OpenMP. This is a preliminary attempt

made so that the performance of parallel hierarchical-LU preconditioner can be compared to

parallel block Jacobi. The comparison is desired, since the main benefit of block Jacobi lies in its

parallelizability. However, there are better parallelizing strategies available where near optimal

speedup can be attained. The implementation of these more complicated strategies are however

not within the scope of this project. These are discussed in Section 7 as part of the recommendation

for future works.

Ang Yun Mei Elisa Master Thesis Report 75

The main consideration for parallelizing the codes here is to ensure that the tasks distributed to the

processor is large enough to justify the overhead required to run OpenMP on these routines. In

addition, the routines associated with the hierarchy_class object is recursive in nature. Hence, one

has to enable nested parallelism in OpenMP to achieve reasonable results. With this in mind, the

following subroutines are parallelized:

 hierarchy_split

 subtract_lowrank

 hie_matmul_A

 hie_matmul_L

 hie_matmul_U

 hie_matmul_U_T

 rounded_subtraction

 hie_LTS

 hie_UTS

 hie_LU

 hie_matvec_A

 hie_matvec_L

 hie_matvec_U

Subroutines like truncate are not parallelized because results showed that the tasks distributed to

each processor is too small. Thus, the amount of overhead involved in setting up OpenMP

dominates over the benefit of parallelism. Other subroutines hie_LTS_RK, hie_UTS_RK, are

intrinsically sequential. Hence, they are not parallelized as well.

The following subsections discussed how the subroutines are parallelized. All parallel regions are

enclosed in red.

6.2.4.1 Hierarchy_split

Here, each block can be assigned to a processor. The level of nested parallelism is limited to 𝑙 = 2

here because the amount of work required to hierarchically split a block of matrix is relatively

small. Hence, if the work is reduced to pieces that are too small, the overhead required to parallelize

dominates over the gain in performance.

Ang Yun Mei Elisa Master Thesis Report 76

1) Compute the 4 block row and column numbers corresponding to the 4 sub-blocks of

M at the next level. This can be obtained easily from 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑖 and 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑗
as depicted in the figure below.

2) If 𝑙 = 0
PARALLEL DO

a) Do for block 1 to 4

i) Recursively call hierarchy_split

END PARALLEL DO

3) Else

PARALLEL DO IF(𝒍 ≤ 𝟐)
a) Do for block 1 to 4

i) Call ACA or Lanzcos_Bidiag to determine if block is admissible

(1) If admissible, store 𝑈𝜎 ,𝜏 and 𝑉𝜎 ,𝜏 in the 1D array 𝑈_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and

𝑉_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and update 𝑎𝑑𝑚_𝑟𝑜𝑤 and 𝑎𝑑𝑚_𝑐𝑜𝑙
(2) Else

(a) If 𝑙 =finest recursion level, update 𝑖𝑛𝑎𝑑𝑚_𝑟𝑜𝑤 and 𝑖𝑛𝑎𝑑𝑚_𝑐𝑜𝑙
(b) Else, recursively call hierarchy_split

 END PARALLEL DO

Algorithm 15 Parallel hierarchy_split

6.2.4.2 Subtract_lowrank

The level of nested parallelism is again limited.

Ang Yun Mei Elisa Master Thesis Report 77

1) If 𝑙 = finest recursion level

a) If 𝑎𝑑𝑚_𝐴 = 0

i) Construct the product 𝑈𝑉𝑇 explicitly and subtract A with the product

b) Else

i) Perform formatted addition

2) Else

a) If 𝑎𝑑𝑚_𝐴 = 1
i) Perform formatted addition

b) Else, split the block into four sub-blocks, 𝑈 and 𝑉 into halves as shown in
Equation 13.

PARALLEL SECTIONS if (𝒍 ≤ 𝟑)
SECTION 1:

i) 𝐴11 = 𝐴11 − 𝑈1𝑉1
𝑇

SECTION 2:

ii) 𝐴12 = 𝐴12 − 𝑈1𝑉2
𝑇

SECTION 3:

iii) 𝐴21 = 𝐴21 − 𝑈2𝑉1
𝑇

SECTION 4:

iv) 𝐴22 = 𝐴22 − 𝑈2𝑉2
𝑇

END PARALLEL SECTIONS

Algorithm 16 Parallel subtract_lowrank

6.2.4.3 Hie_matmul_A, hie_matmul_L, hie_matmul_U, hie_matmul_U_T, hie_matvec_A,

hie_matvec_L, hie_matvec_U

All these subroutines are parallelized in the same way. Hence, only the pseudo-code for

hie_matmul_A is shown. Note that the level of nested parallelism is not limited in this case, since

the amount of work required at the leaf nodes is high.

1) If 𝑙 =finest recursion level

a) If 𝑎𝑑𝑚_𝐴 = 0
i) Dense matrix multiplication (XGEMM)

b) Else

i) Low rank matrix multiplication (XGEMM)

2) Else

a) If 𝑎𝑑𝑚_𝐴 = 1
i) Low rank matrix multiplication (XGEMM)

b) Else, split the block into four sub-blocks, and 𝑀_𝑖𝑛 and 𝑀_𝑜𝑢𝑡 into two
halves according to Equation 12.

PARALLEL SECTIONS

SECTION 1:

i) 𝑀_𝑜𝑢𝑡1 = 𝑀_𝑜𝑢𝑡1 + 𝐴11𝑀_𝑖𝑛1 + 𝐴12𝑀_𝑖𝑛2
SECTION 2:

ii) 𝑀_𝑜𝑢𝑡2 = 𝑀_𝑜𝑢𝑡2 + 𝐴21𝑀_𝑖𝑛1 + 𝑀22𝑀_𝑖𝑛2

END PARALLEL SECTIONS

Algorithm 17 Parallel hie_matmul_A

Ang Yun Mei Elisa Master Thesis Report 78

6.2.4.4 Rounded_subtraction

In the case of rounded_subtraction, only case 16 is parallelized, since the rest of the cases are leaf

nodes. The algorithm below thus shows only case 16.

…

16) Case 16: Split all three 𝐴, 𝐿 and 𝑈 blocks into 4 sub-blocks each and apply
rounded-subtraction recursively according to Equation 14.

PARALLEL SECTIONS

SECTION 1:

a) 𝐴11 = 𝐴11 − 𝐿11𝑈11 − 𝐿12𝑈21

SECTION 2:

b) 𝐴12 = 𝐴12 − 𝐿11𝑈12 − 𝐿12𝑈22

SECTION 3:

c) 𝐴21 = 𝐴21 − 𝐿21𝑈11 − 𝐿22𝑈21

SECTION 4:

d) 𝐴22 = 𝐴22 − 𝐿21𝑈12 − 𝐿22𝑈22

END PARALLEL SECTIONS

Algorithm 18 Parallel rounded_subtraction

6.2.4.5 Hie_LTS and Hie_UTS

The parallelization of hie_LTS and hie_UTS is again similar. Hence, only hie_LTS is shown here.

1) If 𝑙 =finest recursion level

a) If 𝑎𝑑𝑚_𝐴 = 0

i) Swap the rows in the dense matrix 𝐴 according to 𝑃𝑖𝑣𝑜𝑡(XLASWP)
ii) Solve the lower triangular system (XTRTRS)

b) Else

i) Let 𝐵 = 𝐶𝐷𝑇, 𝐴 = 𝑈𝑉𝑇. Solve for 𝐷 using 𝐷 = 𝑉

ii) Swap the rows in the matrix 𝑈 according to 𝑃𝑖𝑣𝑜𝑡 (XLASWP)

iii) Solve the lower triangular system 𝐿𝐶 = 𝑈 (XTRTRS)
2) Else

a) If 𝑎𝑑𝑚_𝐴 = 0

i) Split block 𝐴, 𝐵 and 𝐿 into four sub-blocks each according to Equation 15.
PARALLEL SECTIONS

SECTION 1:

ii) Solve for 𝐵11 by recursively calling hie_LTS

iii) Call rounded_subtraction to update 𝐴21 with 𝐴21 − 𝐿21𝐵11

iv) Solve for 𝐵21 by recursively calling hie_LTS

SECTION 2:

ii) Solve for 𝐵12 by recursively calling hie_LTS

iii) Call rounded_subtraction to update 𝐴22 with 𝐴22 − 𝐿21𝐵12

iv) Solve for 𝐵22 by recursively calling hie_LTS

END PARALLEL SECTIONS

b) Else

ii) Let 𝐵 = 𝐶𝐷𝑇, 𝐴 = 𝑈𝑉𝑇. Solve for 𝐷 using 𝐷 = 𝑉

iii) Call hie_LTS_RK to solve for 𝐶.

Algorithm 19 Parallelized hie_LTS

Ang Yun Mei Elisa Master Thesis Report 79

6.2.4.6 Hie_LU

The algorithm for hie_LU is intrinsically sequential in the sense that work described in (2c) and

(2d) can only start when (2b) is completed, and (2e) can only begin when (2c) and (2d) are done.

Hence, only (2c) and (2d) can be parallelized here.

1) If 𝑙 = finest recursion levels
a) Dense matrix LU-decomposition (XGETRF)

2) Else

a) Split block A into 4 sub-blocks according to Equation 11.

b) Recursively call hie_LU on the first sub_block 𝐴11

PARALLEL SECTIONS

SECTION 1

c) Call hie_LTS on the second sub-block 𝐴12

SECTION 2

d) Call hie_UTS on the third sub-block 𝐴21

END PARALLEL SECTIONS

e) Call rounded_subtraction to update 𝐴22 with 𝐴22 = 𝐴22 − 𝐿21𝑈12

f) Recursively call hie_LU on the last sub-block 𝐴22

Algorithm 20 Parallel hie_LU

6.3 RESULTS

This section presents the results obtain from solving the test problems with hierarchical-LU

preconditioner. There are three main parameters that can be varied to influence the performance

of the hierarchical-LU preconditioner, the tolerance below which the blocks are admissible 𝑡𝑜𝑙_ℎ𝑖𝑒,

the level of recursion determined by the minimum block length allowed 𝑏 and the rank of the low

rank approximation 𝑝. These parameters are varied, and the results are recorded. The best results

obtained from these tests are then compared against the best results obtained using block Jacobi

preconditioner. Results for both GMRES and IDR(s) are presented in this section.

This section is organized such that the results obtained using sequential computations are first

presented. This is then followed by the results obtained when OpenMP is enabled. In view of the

long test time involved for sequential computations with multiple RHS, results for multiple RHS

are only obtained with OpenMP enabled.

6.3.1 Results based on sequential computations

The solve times obtained using the hierarchical-LU decomposition is shown in Table 17-20.

Ang Yun Mei Elisa Master Thesis Report 80

The columns in Table 17-20 has the same definitions as those in Section 3.3. The only difference

is the Prec const is now the time required to perform hierarchy_split, hierarchy_compress and

hie_LU, and Prec apply is now the time to apply the hie_LU preconditioner through calling

hie_LTS_vec and hie_UTS_vec. Note that when the number of iteration exceeds 500, the results

are not recorded.

Before discussing the many test results recorded in Table 17-20, the performance of the

hierarchical-LU preconditioner as compared to the block Jacobi preconditioner is first studied.

Table 15 below shows the best solve time obtained sequentially with block Jacobi preconditioner

for the test matrices. This is the baseline results with which the solve times for hierarchical-LU

decomposition are compared against.

Matrix

Block-size for

Block Jacobi

Preconditioner

GMRES IDR(s)

Wall clock time (s) # iters Wall clock time (s) # iters

FATIMA_20493 4000 239.8 103 249.836 110

FATIMA_7894 1000 21.3 121 23.23 133

PASSCAL 500 2.2 91 2.7 106

STEADYCAV1

(representing all

steadycav matrices)

500 1.7 61 1.9 68

Table 15 Baseline results using block Jacobi preconditioner – Sequential. Results that are better than those obtained with

hierarchical-LU preconditioner are highlighted in green

The best solve time attained using hierarchical-LU decomposition is shown in the table below:

Matrix
Variables for

hie_LU

GMRES IDR(s)

Wall clock time (s) # iters Wall clock time (s) # iters

FATIMA_20493

Tol: 1e-03

b = 200

p = 50

134.74 51 140.35 55

FATIMA_7894

Tol: 1e-03

b = 200

p = 50

18.72 11 19.03 11

PASSCAL

Tol: 1e-02

b = 100

p = 20

2.62 44 2.72 46

STEADYCAV1

(representing all

steadycav matrices)

Tol: 1e-02

b = 100

p = 30

2.65 32 2.86 37

Table 16 Best results obtained using hierarchical-LU preconditioner - Sequential. Results that are better than those obtained

with block Jacobi preconditioner are highlighted in green

Although for the smaller matrices, hierarchical-LU preconditioner takes slightly more time as

compared to block Jacobi, as the size of the system grows, hierarchical-LU preconditioner

Ang Yun Mei Elisa Master Thesis Report 81

outperforms block Jacobi. The time required to solve the larger FATIMA_20493 system is 44%

less when using the hierarchical-LU preconditioner as compared to the block Jacobi preconditioner.

The advantage of the hierarchical-LU preconditioner is illustrated more clearly by looking at

Figure 38. As the size of the matrix increases, the time required to solve the system using

hierarchical-LU preconditioner becomes much cheaper, as compared to that required for the block

Jacobi preconditioner. This can be explained by the fact that with the block Jacobi preconditioner,

the time to construct the preconditioner scales with 𝑂 ((
𝑁

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠
)
3

), while that required

for the hierarchical-LU preconditioner scales with 𝑂(𝑁(𝑙𝑜𝑔𝑁)2) [12]. In addition, the use of the

hierarchical-LU preconditioner with a reasonable tolerance preconditions the system very well, as

can be seen by the low number of iterations required to solve the system. This reduces the number

of dense matvec operations required, and therefore, improves the performance of the solver.

Figure 38 Comparison of block Jacobi preconditioner with hie-LU preconditioner

For the Steadycav matrices, it was mentioned in Section 5 that due to their structure, ACA

algorithm with partial pivoting is unable to approximate the Steadycav matrices well. Using the

hierarchical matrices as a preconditioner instead of an approximation to the system matrix, allows

the ACA algorithm with partial pivoting to be used for the Steadycav matrices. One can still

observe a significant reduction in number of iterations required.

Having established the success of the hierarchical-LU preconditioner, its dependence on the 3

parameters, 𝑡𝑜𝑙_ℎ𝑖𝑒, 𝑏 and 𝑝 is now discussed.

Ang Yun Mei Elisa Master Thesis Report 82

FATIMA_20493

Tol_

hie
b p

GMRES IDR(s)

Wall clock time (s)

#iter
Rel

error

Wall clock time (s)

#iter Rel error Prec

const

Prec

apply

Matve

c
Solve Total

Prec

const

Prec

apply
Matvec Solve Total

1.00E

-02

100

10 27.69 >500 27.66 40.87 393.99 436.77 467.70 420 1.65E-05

20 24.38 >500 24.34 34.22 348.55 384.47 409.27 371 8.07E-06

30 25.46 >500 25.55 38.43 396.99 437.35 463.56 421 1.30E-05

40 29.32 >500 29.30 >500

50 39.51 >500 37.64 >500

200

10 70.71 22.88 132.57 156.32 227.48 142 2.06E-05 70.80 28.94 152.99 182.72 256.75 162 8.03E-06

20 42.82 22.03 169.20 192.61 235.93 181 6.12E-06 43.04 29.78 211.33 242.18 285.54 223 2.59E-06

30 36.60 40.99 332.65 376.62 413.82 354 4.85E-06 36.62 29.33 237.33 267.84 304.79 252 4.00E-06

40 35.18 >500 35.22 42.96 331.30 375.88 411.55 352 9.42E-07

50 34.03 >500 34.09 50.84 405.45 458.26 492.92 431 3.43E-06

600

10 122.61 24.91 97.79 123.18 246.21 105 6.54E-06 122.59 32.18 114.83 147.62 273.32 121 2.71E-06

20 73.18 25.65 129.12 155.59 229.20 138 4.69E-06 73.41 32.72 151.51 185.01 258.59 160 1.24E-06

30 61.04 22.29 121.27 144.29 205.82 130 1.32E-06 60.94 27.13 136.56 164.40 225.60 145 6.38E-07

40 58.34 23.66 128.32 152.79 211.66 137 1.53E-06 58.43 27.22 147.52 175.49 237.28 156 7.10E-07

50 53.55 23.62 131.11 155.58 209.68 140 4.49E-06 53.86 27.13 151.22 179.13 236.33 160 2.45E-06

60 53.79 25.52 140.33 166.81 220.91 150 1.24E-06 53.86 32.38 168.32 201.56 255.78 179 1.77E-06

1.00E

-03

100

10 136.41 >500 136.51 >500

20 72.66 13.39 88.90 102.69 176.10 95 2.86E-06 72.64 15.63 103.84 120.00 193.37 109 7.43E-07

30 65.83 8.88 63.56 72.64 139.39 68 3.27E-07 65.85 10.00 71.68 82.06 148.90 75 1.30E-07

40 70.87 8.63 61.39 70.53 142.58 66 5.84E-07 68.99 9.79 69.82 79.99 150.13 73 2.21E-07

50 77.50 8.06 63.90 72.55 151.81 61 5.52E-07 90.65 9.54 78.48 88.39 180.63 68 1.99E-07

200

10 406.40 42.51 110.88 154.00 560.90 119 2.08E-05 408.53 48.88 129.48 179.03 588.90 137 5.86E-06

20 126.00 14.81 65.46 80.50 207.08 70 1.99E-06 125.88 18.39 74.55 93.33 219.55 78 8.32E-07

30 87.70 10.42 57.94 68.54 156.63 62 5.84E-07 88.19 12.73 65.67 78.77 167.33 69 5.20E-07

40 81.47 8.53 49.62 58.28 140.58 53 1.84E-07 81.47 9.41 54.22 63.94 145.85 57 1.84E-07

50 77.97 8.00 47.76 55.88 134.74 51 1.22E-07 77.99 8.85 52.70 61.84 140.35 55 1.80E-07

60 81.33 8.31 48.69 57.13 139.44 52 2.21E-07 81.37 9.83 53.59 63.73 145.78 56 1.64E-07

600

10 963.87 32.20 53.34 85.70 1050.11 57 3.63E-06 971.32 35.79 59.34 98.66 1070.51 62 1.40E-06

20 276.34 15.22 43.98 59.30 336.18 47 6.47E-07 276.69 16.32 47.21 64.10 340.96 49 4.33E-07

30 164.34 14.52 52.45 67.12 231.99 56 1.66E-06 164.63 17.95 59.20 77.49 245.42 62 4.70E-07

Ang Yun Mei Elisa Master Thesis Report 83

40 121.25 12.09 49.67 61.90 183.72 53 7.22E-08 121.33 13.60 55.62 69.54 191.12 58 3.06E-08

50 92.82 10.04 46.87 57.04 150.46 50 1.28E-07 92.83 11.10 51.88 63.28 156.40 54 6.58E-08

60 92.79 10.15 46.83 57.11 150.57 50 1.03E-06 92.67 12.14 52.54 64.99 158.03 55 4.17E-07

1.00E

-04

100

10 331.32 >500 331.14 111.20 340.50 453.36 784.77 362 6.18E-05

20 215.48 11.71 44.88 56.71 272.98 48 3.53E-07 214.12 13.07 50.05 63.41 277.99 52 8.84E-08

30 194.35 6.77 28.06 34.88 229.94 30 1.34E-08 193.96 7.52 31.32 39.04 236.76 32 8.20E-09

40 218.94 7072.00 31.70 39.14 259.01 31 2.28E-08 222.17 7.87 37.37 45.44 271.60 33 9.93E-09

50 264.96 7.43 43.49 54.14 320.32 33 1.29E-08 271.13 8.05 50.39 58.78 334.16 34 3.85E-08

200

10 1111.75 31.11 50.46 84.87 1197.17 54 9.13E-07 1123.46 33.89 58.13 92.34 1219.34 58 1.34E-06

20 371.70 14.74 41.06 55.89 428.21 44 2.72E-07 371.99 15.90 44.51 60.68 432.95 46 3.46E-07

30 301.42 8.83 27.15 36.03 337.90 29 3.29E-08 301.80 9.86 30.34 40.40 342.57 31 3.00E-08

40 279.68 8.25 26.20 34.50 314.76 28 1.75E-08 279.79 8.98 28.49 37.66 317.94 29 2.78E-08

50 247.97 8.01 27.17 35.36 283.88 29 1.92E-08 248.11 9.28 31.16 40.64 292.41 32 6.09E-09

60 244.93 8.10 28.07 36.21 281.84 30 2.47E-08 244.82 8.76 30.23 39.19 287.76 31 1.92E-08

600

20 697.21 16.64 31.67 48.37 745.84 34 2.97E-07 700.10 17.85 33.97 52.04 752.36 35 2.52E-07

30 396.08 11.30 27.95 39.30 435.65 30 1.62E-07 397.48 12.60 31.24 44.05 441.78 32 9.26E-08

40 338.43 10.24 27.16 37.45 376.19 29 1.39E-08 339.97 11.21 29.45 40.86 381.11 30 3.22E-08

50 282.32 11.50 32.80 44.36 327.05 35 9.54E-08 282.99 12.64 35.89 48.75 332.06 37 3.43E-08

60 266.34 11.45 33.46 44.99 311.11 36 1.76E-07 267.18 12.70 36.82 49.74 317.29 38 1.97E-07

Table 17 Results using hierarchy-LU preconditioner for FATIMA_20493. The best results obtained for GMRES and IDR(s) are highlighted in green

Ang Yun Mei Elisa Master Thesis Report 84

FATIMA_7894

Tol_

hie
b p

GMRES IDR(s)

Wall clock time (s)

#iter
Rel

error

Wall clock time (s)

#iter Rel error Prec

const

Prec

apply

Matve

c
Solve Total

Prec

const

Prec

apply
Matvec Solve Total

1.00E

-02

100

10 19.47 7.93 23.18 31.60 51.08 173 9.19E-05 19.59 11.10 32.40 43.77 63.38 243 3.73E-05

20 9.47 12.01 52.96 66.23 75.74 395 1.40E-05 9.38 9.93 41.16 51.42 60.84 305 7.94E-06

30 8.51 >500 8.51 >500

40 9.38 10.57 47.49 59.10 68.56 355 2.22E-06 9.35 9.38 40.30 50.00 59.43 301 1.41E-06

50 10.45 10.64 45.88 57.51 68.06 343 1.67E-06 10.38 8.60 36.97 45.86 56.34 278 1.25E-06

60 11.73 10.80 44.01 55.73 67.57 328 4.64E-06 11.72 9.38 36.89 46.56 58.41 277 7.50E-07

200

10 29.46 2.42 5.43 7.89 37.36 41 1.11E-07 29.41 2.67 5.99 8.72 38.14 44 6.89E-08

20 12.52 2.05 7.15 9.26 21.79 53 1.16E-06 12.37 2.58 8.37 11.03 23.41 61 1.00E-07

30 9.64 1.97 7.56 9.59 19.26 57 4.20E-07 9.71 2.43 9.53 12.04 21.78 68 2.93E-07

40 9.45 2.25 8.81 11.14 20.62 65 5.41E-07 9.47 2.65 10.31 13.05 22.57 75 6.44E-07

50 9.32 3.33 13.07 16.56 25.93 98 6.85E-07 9.35 3.78 15.02 18.93 28.33 109 4.87E-07

60 9.88 3.69 14.11 17.98 27.92 105 5.23E-07 9.81 4.30 16.37 20.80 30.67 122 2.42E-07

250

10 40.39 1.70 3.03 4.74 45.14 23 1.16E-08 40.16 2.03 3.35 5.41 45.58 24 1.12E-08

20 19.69 1.62 3.97 5.62 25.32 30 1.92E-08 19.80 1.83 4.50 6.37 26.18 32 4.72E-08

30 13.42 1.49 4.14 5.65 19.08 31 1.52E-07 13.45 1.69 4.75 6.49 19.96 34 8.04E-08

40 13.14 1.53 4.43 5.98 19.14 33 8.79E-08 13.16 1.73 5.04 6.82 20.00 36 2.51E-08

50 12.56 1.88 5.49 7.40 19.99 41 9.98E-08 12.58 2.03 5.96 8.04 20.64 43 9.29E-08

60 12.34 1.85 5.35 7.23 19.60 40 1.30E-07 12.31 2.11 6.05 8.21 20.55 44 2.50E-08

1.00E

-03

100

10 58.01 4.10 7.25 11.40 69.43 54 9.71E-08 57.71 4.91 8.05 13.03 70.76 58 1.62E-07

20 23.62 1.17 3.32 4.50 28.17 25 2.59E-08 23.63 1.33 3.80 5.17 28.84 27 6.91E-09

30 18.52 1.08 3.46 4.55 23.13 26 1.09E-08 18.58 1.19 3.81 5.03 23.67 27 1.09E-08

40 17.73 0.98 3.21 4.20 22.01 24 9.54E-09 17.68 1.08 3.53 4.64 22.41 25 2.05E-08

50 18.70 1.00 3.18 4.19 23.00 24 1.80E-08 18.82 1.14 3.64 4.82 23.73 26 8.13E-09

60 20.84 1.04 3.19 4.24 25.21 24 8.27E-09 20.76 1.20 3.51 4.75 25.63 25 1.92E-08

200

10 77.57 1.32 1.86 3.18 80.76 14 8.07E-08 77.61 1.53 2.17 3.73 81.34 15 6.92E-08

20 28.11 0.81 1.86 2.68 30.81 14 3.47E-09 28.21 0.95 2.21 3.18 31.41 15 1.16E-09

30 19.27 0.49 1.32 1.82 21.12 10 1.77E-08 19.39 0.60 1.67 2.30 21.72 11 3.49E-09

40 16.93 0.50 1.46 1.97 18.94 11 9.19E-10 17.03 0.57 1.67 2.26 19.33 11 2.09E-09

50 16.69 0.51 1.47 1.98 18.72 11 1.81E-09 16.71 0.57 1.68 2.27 19.03 11 3.61E-09

60 17.30 0.56 1.59 2.15 19.51 12 5.70E-09 17.32 0.67 1.92 2.61 19.99 13 2.77E-09

250
10 103.16 1.07 1.19 2.26 105.43 9 2.47E-10 103.03 1.21 1.37 2.61 105.64 9 2.31E-09

20 37.98 0.55 0.92 1.47 39.46 7 1.10E-08 38.00 0.65 1.12 1.79 39.80 7 6.15E-09

Ang Yun Mei Elisa Master Thesis Report 85

30 24.57 0.52 1.06 1.59 26.17 8 3.11E-09 24.61 0.60 1.26 1.88 26.51 8 1.23E-08

40 20.02 0.54 1.19 1.73 21.77 9 1.36E-09 19.91 0.61 1.39 2.02 21.95 9 3.08E-09

50 18.23 0.53 1.22 1.75 20.01 9 5.76E-09 18.34 0.65 1.57 2.24 20.60 10 1.38E-09

60 18.86 0.57 1.35 1.93 20.81 10 3.29E-09 18.81 0.65 1.55 2.23 21.07 10 1.28E-08

1.00E

-04

100

10 93.57 2.36 3.18 5.56 99.15 24 1.14E-08 93.72 2.59 3.51 6.14 99.88 25 9.39E-09

20 49.68 2.03 3.99 6.04 55.76 30 2.39E-08 49.72 2.25 4.43 6.72 56.49 32 5.23E-08

30 38.47 2.06 4.94 7.03 45.56 37 3.72E-08 38.42 2.29 5.57 7.92 46.40 40 2.31E-08

40 36.94 1.40 3.51 4.92 41.95 26 2.86E-08 37.05 1.53 3.77 5.33 42.46 27 7.67E-08

50 37.98 1.03 2.52 3.56 41.64 19 2.39E-08 37.95 1.24 3.02 4.30 42.35 21 9.76E-09

60 40.90 0.58 1.34 1.93 42.95 10 3.43E-09 40.99 0.67 1.51 2.20 43.32 10 9.19E-09

200

10 121.17 0.88 0.93 1.81 122.99 7 1.47E-09 121.26 1.04 1.12 2.17 123.44 7 2.96E-09

20 53.50 0.96 1.60 2.57 56.09 12 1.65E-08 53.44 1.14 1.93 3.10 56.56 13 7.23E-09

30 36.90 0.91 1.86 2.78 39.71 14 7.13E-09 36.96 1.07 2.20 3.29 40.28 15 3.24E-09

40 32.80 0.79 1.73 2.52 35.36 13 3.25E-09 32.80 0.93 2.06 3.01 35.85 14 1.42E-09

50 31.49 0.64 1.46 2.11 33.65 11 6.42E-08 31.54 0.78 1.79 2.59 34.18 12 1.38E-08

60 31.27 0.48 1.08 1.57 32.89 8 4.31E-10 31.34 0.56 1.25 1.83 33.22 8 1.90E-09

250

10 153.53 0.75 0.66 1.41 154.94 5 3.93E-10 153.37 0.93 0.85 1.79 155.17 5 1.89E-09

20 68.42 0.81 1.06 1.87 70.30 8 3.65E-08 68.61 1.04 1.39 2.45 71.07 9 2.47E-09

30 44.48 0.82 1.33 2.15 46.65 10 2.11E-09 44.46 0.94 1.54 2.50 46.98 10 3.20E-09

40 39.12 0.56 0.94 1.50 40.64 7 3.41E-10 39.22 0.68 1.12 1.81 41.05 7 1.06E-09

50 34.66 0.60 1.07 1.67 36.36 8 6.03E-09 34.66 0.78 1.38 2.18 36.87 9 4.87E-10

60 32.31 0.39 0.67 1.06 33.40 5 1.13E-08 32.25 0.55 0.99 1.56 33.84 6 7.72E-10

Table 18 Results using hierarchy-LU preconditioner for FATIMA_7894. The best results obtained for GMRES and IDR(s) are highlighted in green.

Ang Yun Mei Elisa Master Thesis Report 86

PASSCAL

Tol_

hie
b p

GMRES IDR(s)

Wall clock time (s)

#iter
Rel

error

Wall clock time (s)

#iter Rel error Prec

const

Prec

apply

Matve

c
Solve Total

Prec

const

Prec

apply
Matvec Solve Total

1.00E

-02

100

10 2.37 0.25 0.47 0.73 3.10 23 4.62E-08 2.38 0.27 0.52 0.81 3.19 24 1.33E-08

20 1.37 0.34 0.91 1.25 2.62 44 3.34E-08 1.36 0.36 0.98 1.36 2.72 46 2.38E-07

30 1.46 0.35 0.97 1.33 2.80 47 1.01E-06 1.48 0.40 1.08 1.49 2.98 51 1.69E-07

40 1.70 0.40 1.12 1.53 3.24 49 7.71E-07 1.70 0.45 1.13 1.59 3.30 53 3.33E-07

50 1.85 0.44 1.03 1.48 3.35 50 7.72E-07 1.85 0.48 1.14 1.65 3.51 54 3.60E-07

200

10 5.22 0.30 0.41 0.72 5.94 20 1.68E-07 5.18 0.35 0.49 0.85 6.03 22 2.42E-08

20 2.20 0.40 0.79 1.19 3.40 38 9.54E-08 2.21 0.46 0.89 1.37 3.58 42 3.45E-07

30 1.74 0.43 0.95 1.39 3.13 46 7.41E-07 1.74 0.48 1.07 1.56 3.31 50 2.57E-07

40 1.70 0.44 0.99 1.44 3.15 48 1.14E-06 1.71 0.51 1.13 1.66 3.38 53 2.27E-07

50 1.84 0.48 1.04 1.53 3.37 50 9.29E-07 1.85 0.53 1.17 1.72 3.58 55 2.36E-06

1.00E

-03

100

10 3.99 0.12 0.17 0.29 4.28 8 4.87E-09 3.97 0.15 0.22 0.37 4.35 9 3.60E-10

20 2.82 0.13 0.23 0.36 3.18 11 1.01E-08 2.84 0.15 0.26 0.41 3.26 11 1.14E-08

30 2.98 0.19 0.39 0.59 3.58 19 7.42E-09 3.03 0.23 0.46 0.70 3.74 21 1.34E-09

40 3.01 0.18 0.37 0.56 3.58 18 1.78E-08 3.02 0.21 0.42 0.64 3.67 19 6.54E-09

50 3.26 0.21 0.41 0.62 3.89 20 1.21E-08 3.31 0.24 0.46 0.71 4.04 21 9.70E-09

200

10 7.45 0.10 0.10 0.21 7.66 5 3.62E-10 7.45 0.13 0.13 0.27 7.71 5 6.93E-09

20 4.92 0.17 0.23 0.40 5.32 11 6.88E-10 4.97 0.19 0.26 0.45 5.43 11 2.65E-09

30 3.58 0.24 0.37 0.61 4.19 18 2.50E-08 3.63 0.29 0.45 0.74 4.38 20 1.40E-08

40 2.96 0.21 0.39 0.61 3.57 19 8.70E-09 2.96 0.23 0.42 0.67 3.63 19 2.41E-08

50 2.91 0.22 0.39 0.61 3.53 19 2.29E-08 2.92 0.25 0.49 0.74 3.67 20 2.58E-08

1.00E

-04

100

10 6.15 0.13 0.15 0.28 6.42 7 3.20E-09 6.12 0.15 0.18 0.33 6.46 7 5.80E-09

20 3.96 0.10 0.14 0.25 4.21 7 4.46E-09 3.95 0.12 0.17 0.30 4.26 7 1.22E-08

30 3.87 0.10 0.17 0.27 4.15 8 2.27E-09 3.90 0.12 0.20 0.32 4.23 8 8.58E-09

40 4.81 0.09 0.14 0.24 5.06 7 1.78E-10 4.67 0.11 0.17 0.29 4.97 7 4.19E-10

50 4.97 0.09 0.15 0.24 5.22 7 3.12E-10 4.96 0.11 0.18 0.30 5.27 7 7.20E-10

200

10 12.88 0.13 0.10 0.24 13.12 5 4.08E-09 12.88 0.19 0.15 0.35 13.24 6 3.52E-11

20 6.92 0.08 0.08 0.17 7.09 4 8.12E-12 6.94 0.11 0.11 0.22 7.17 4 9.60E-12

30 4.73 0.11 0.14 0.26 4.99 7 3.87E-09 4.78 0.15 0.20 0.35 5.14 8 1.01E-10

40 4.18 0.10 0.15 0.25 4.43 7 3.68E-09 4.18 0.12 0.17 0.30 4.49 7 6.46E-09

50 4.41 0.09 0.12 0.21 4.63 6 1.56E-09 4.41 0.11 0.15 0.27 4.68 6 1.04E-08

Table 19 Results using hierarchy-LU preconditioner for PASSCAL. The best results obtained for GMRES and IDR(s) are highlighted in green

Ang Yun Mei Elisa Master Thesis Report 87

STEADYCAV1

Tol_

hie
b p

GMRES IDR(s)

Wall clock time (s)

#iter
Rel

error

Wall clock time (s)

#iter Rel error Prec

const

Prec

apply

Matve

c
Solve Total

Prec

const

Prec

apply
Matvec Solve Total

1.00E

-02

100

10 5.76 0.57 0.78 1.35 7.12 34 3.78E-06 5.77 0.70 0.94 1.65 7.43 40 6.09E-07

20 1.98 0.34 0.73 1.07 3.06 32 5.76E-05 1.99 0.38 0.96 1.35 3.34 37 3.48E-05

30 1.63 0.28 0.73 1.01 2.65 32 9.35E-05 1.63 0.34 0.88 1.22 2.86 37 1.43E-06

40 1.61 0.28 0.78 1.06 2.69 34 1.58E-05 1.61 0.33 0.99 1.33 2.96 38 1.98E-05

50 1.93 0.30 0.78 1.08 3.02 34 1.37E-05 1.94 0.34 0.88 1.22 3.17 37 7.82E-05

200

10 7.66 0.60 0.73 1.34 9.00 32 2.52E-05 7.65 0.71 0.86 1.57 9.23 36 2.54E-06

20 2.36 0.32 0.66 0.98 3.34 29 3.45E-05 2.36 0.36 0.72 1.08 3.44 30 5.53E-06

30 1.85 0.32 0.73 1.05 2.90 32 8.87E-05 1.85 0.38 0.85 1.23 3.08 36 4.83E-05

40 1.67 0.31 0.73 1.04 2.72 32 2.36E-05 1.66 0.36 0.86 1.22 2.89 36 3.86E-05

50 1.78 0.31 0.73 1.05 2.83 32 5.50E-05 1.78 0.36 0.83 1.19 2.97 35 3.77E-05

1.00E

-03

100

10 17.54 0.59 0.48 1.07 18.61 21 3.66E-05 17.55 0.73 0.58 1.31 18.86 24 2.53E-05

20 7.09 0.36 0.45 0.81 7.90 20 4.02E-06 7.09 0.41 0.53 0.95 8.05 22 2.12E-06

30 3.84 0.28 0.50 0.78 4.63 22 1.41E-05 3.84 0.32 0.57 0.90 4.75 24 2.75E-06

40 3.29 0.24 0.50 0.74 4.05 22 3.18E-05 3.30 0.28 0.58 0.87 4.18 24 5.85E-05

50 3.77 0.25 0.52 0.78 4.57 23 1.12E-05 3.76 0.30 0.60 0.90 4.67 25 1.92E-05

200

10 18.02 0.42 0.34 0.76 18.78 15 8.97E-06 18.02 0.51 0.42 0.93 18.96 17 2.59E-06

20 8.57 0.41 0.46 0.87 9.44 20 6.35E-05 8.55 0.49 0.56 1.05 9.61 23 2.92E-06

30 3.91 0.29 0.45 0.74 4.65 20 1.82E-05 3.92 0.35 0.56 0.91 4.83 23 2.05E-06

40 2.97 0.24 0.45 0.70 3.68 20 7.27E-06 2.95 0.28 0.53 0.82 3.77 22 6.69E-05

50 3.06 0.24 0.46 0.70 3.76 20 4.04E-05 3.04 0.28 0.53 0.81 3.86 22 4.23E-05

1.00E

-04

100

10 20.68 0.40 0.30 0.70 21.38 13 4.78E-07 20.83 0.48 0.35 0.83 21.67 14 3.24E-06

20 13.75 0.55 0.50 1.05 14.81 22 1.56E-05 13.78 0.67 0.62 1.30 15.08 26 2.21E-06

30 11.30 0.50 0.54 1.05 12.36 24 5.53E-05 11.21 0.61 0.67 1.28 12.50 28 1.43E-05

40 9.58 0.38 0.48 0.86 10.45 21 1.68E-05 9.57 0.46 0.58 1.05 10.63 24 4.42E-06

50 9.39 0.29 0.39 0.68 10.08 17 9.41E-06 9.42 0.35 0.46 0.81 10.25 19 6.34E-06

200

10 19.49 0.35 0.27 0.62 20.11 12 3.53E-06 19.50 0.42 0.33 0.75 20.25 13 9.52E-06

20 14.60 0.43 0.39 0.82 15.42 17 6.95E-06 14.62 0.50 0.44 0.94 15.57 18 7.93E-07

30 11.09 0.47 0.48 0.95 12.04 21 2.27E-05 11.09 0.61 0.62 1.23 12.33 26 1.26E-06

40 8.22 0.35 0.41 0.76 8.99 18 1.37E-05 8.27 0.40 0.47 0.87 9.15 19 1.55E-05

50 7.21 0.28 0.36 0.65 7.86 16 7.98E-07 7.23 0.34 0.44 0.79 8.03 18 2.68E-06

60 7.01 0.26 0.34 0.60 7.62 15 4.53E-06 7.02 0.30 0.40 0.70 7.73 16 2.36E-08

Table 20 Results using hierarchy-LU preconditioner for STEADYCAV1. The best results obtained for GMRES and IDR(s) are highlighted in green

Ang Yun Mei Elisa Master Thesis Report 88

6.3.1.1 Effect of tol_hie on the performance of hierarchical-LU preconditioner

The tolerance 𝑡𝑜𝑙_ℎ𝑖𝑒 affects the accuracy of how well the hierarchical- 𝐿𝑈 preconditioner

approximates the original system matrix 𝐴 . Therefore, the general trend expected is that the

number of iterations required to solve the system increase as 𝑡𝑜𝑙_ℎ𝑖𝑒 decreases. This can be

observed from the results shown in Table 17-20. For FATIMA_20493 at 𝑏 = 100, when 𝑡𝑜𝑙_ℎ𝑖𝑒

drops to 1e-2, the preconditioner became so inaccurate that the number of iterations required

exceeds 500. When 𝑡𝑜𝑙_ℎ𝑖𝑒 is increased to 1e-4, the average number of iterations required is only

about 35 (disregarding the case when p=10).

However, the lower the tolerance, the cheaper it is to perform hierarchical-LU decomposition. This

is because more blocks are allowed to be admissible. Again using FATIMA_20493 matrix at 𝑏 =

100 as an example, the average time required to construct the preconditioner when 𝑡𝑜𝑙_ℎ𝑖𝑒 is 1e-

4 is roughly 245 s, while that required when 𝑡𝑜𝑙_ℎ𝑖𝑒 is 1e-2 is only about 30 s. Hence, there is a

tradeoff between the time to construct the preconditioner and the solve time required.

From Table 17 -20, one can obtain the graphs in Figure 39 below by looking at the various timings

recorded for a fixed 𝑝 and 𝑏 while varying the tolerance. The same trends were observed for

GMRES and IDR(s) solver, hence, only results for GMRES are plotted. The tradeoff between hie-

LU time and GMRES solver time as 𝑡𝑜𝑙_ℎ𝑖𝑒 increases is clearly shown for FATIMA_20493.

Because of this trade-off, the optimal tolerance for FATIMA_20493 is around 1e-3.

As the size of the matrix decreases, the time to perform dense matvec decreases with complexity

𝑂(𝑁2). As such, the substantial decrease in time required to construct the preconditioner as

𝑡𝑜𝑙_ℎ𝑖𝑒 decreases dominates over the increase in number of iterations required. This can be

observed from the results of the smallest test matrix Passcal. The optimal tolerance here is found

to be 1e-2.

Ang Yun Mei Elisa Master Thesis Report 89

Figure 39 Solver timings versus tolerance for the test matrices

Ang Yun Mei Elisa Master Thesis Report 90

6.3.1.2 Effect of b on the performance of hierarchical-LU preconditioner

The smaller 𝑏 is, the deeper the recursion. There is an optimal 𝑏, because while deeper recursion

implies additional work and storage, it also means more blocks can become admissible. This is

illustrated using Figure 40, which shows the sparsity plot of 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 at different 𝑙𝑒𝑣𝑒𝑙𝑠 for Passcal.

When 𝑙𝑒𝑣𝑒𝑙𝑠 increase from 4 to 5, a large part of the matrix becomes admissible. One can then

expect the amount of work save from the additional admissible blocks to dominate over the extra

work required from the deeper level of recursion. However, if 𝑙𝑒𝑣𝑒𝑙𝑠 increase to 6, the proportion

of the matrix that becomes admissible is relatively smaller. In this case, the additional admissible

blocks may not justify the deeper level of recursion. Because of this reason, it is not surprising to

find that the time required to perform the hierarchy-LU decomposition in this case is 4.89s for

𝑙𝑒𝑣𝑒𝑙𝑠 = 4, 4.02s for 𝑙𝑒𝑣𝑒𝑙𝑠 = 5 and 5.64 for 𝑙𝑒𝑣𝑒𝑙𝑠 = 6.

Figure 40 Sparsity of the inadmissible matrix N for recursion levels 4 (left), 5 (middle) and 6(right) - (Passcal, p=35, tol_hie=1e-

4)

In general, the trend observed is that the optimal 𝑙𝑒𝑣𝑒𝑙𝑠 is between 5 or 6 for all the test matrices.

6.3.1.3 Effect of p on the performance of hierarchical-LU preconditioner

The optimal value of 𝑝 depends very much on the physics of the system, reflected through the

inherent rank of the off diagonal blocks of the system matrix. It can be observed from Figure 41

that as 𝑝 approaches a threshold value, the time required for hierarchical-LU decomposition drops

drastically. As 𝑝 increases beyond this threshold, the time required increase or decrease only

slightly. The increase can be explained by the fact that as 𝑝 increases, the work required for every

low rank operation increases. In addition, it can also cause more approximation since more blocks

become admissible, and therefore, possibly increasing the number of iterations required to solve.

However, increase in 𝑝 can also result in a more accurate low rank approximation to each low rank

block. In this case, a slight drop in iteration can be observed, with a corresponding drop in time

Ang Yun Mei Elisa Master Thesis Report 91

required for GMRES/IDR(s). A combination of these effects result in the unstructured behavior

observed above the threshold 𝑝 value.

Figure 41 Solver timings versus rank p for the test matrices

This threshold value of 𝑝 is observed to be about 30 for FATIMA_20493 and FATIMA_7894, 20

for PASSCAL, and 30 for Steadycav1.

Ang Yun Mei Elisa Master Thesis Report 92

6.3.2 Results based on parallel computations

The previous section has demonstrated the success of the hierarchical-LU preconditioner when

operated sequentially. In this section, the performance of the hierarchical-LU preconditioner in

parallel is evaluated. First, the baseline results for block Jacobi preconditioner when OpenMP is

enabled is shown in Table 21.

Matrix nrhs

Block-size for

Block Jacobi

Preconditioner

GMRES IDR(s)

Wall clock

time (s)
iters

Wall clock

time (s)
iters

FATIMA_20493

1
4000 for GMRES

1708 for IDR(s)
87.62 103 80.45 260

7 4000 211.49 103 220.48
112

FATIMA_7894
1 1000 6.36 121 6.55 133

7 1000 25.74 121 28.18 136

PASSCAL 1 500 0.72 91 0.76 96

STEADYCAV1

(representing all

steadycav

matrices)

1 500
0.57

61

0.58

62

Table 21 Baseline results using block Jacobi preconditioner – Parallel. Results that are better than those obtained with

hierarchical-LU preconditioner are highlighted in green

Matrix Nrhs
Variables for

hie_LU

GMRES IDR(s)

Wall clock

time (s)
iters

Wall clock time

(s)

iters

FATIMA_20493

1

Tol: 1e-03

b = 200

p = 50

47.48 51 50.14 55

7

Tol: 1e-04

b = 100

p = 30

108.96 30 116.20 32

FATIMA_7894

1

Tol: 1e-03

b = 200

p = 50

6.44 11 6.57 11

7

Tol: 1e-03

b = 200

p = 40

9.17 11 9.74 11

PASSCAL 1

Tol: 1e-03

b = 100

p = 20

1.42 11 1.49 11

STEADYCAV1

(representing all

steadycav

matrices)

1

Tol: 1e-02

b = 100

p = 30

1.934 32 2.12 37

Table 22 Best results obtained using hierarchical-LU preconditioner - Parallel. Results that are better than those obtained with

block Jacobi preconditioner are highlighted in green

Ang Yun Mei Elisa Master Thesis Report 93

The best solve time attained using hierarchical-LU decomposition with OpenMP is shown in the

Table 22. For both Tables 21 and 22, the better solve times attained when comparing the block

Jacobi preconditioner with the hierarchical-LU preconditioner, are highlighted in green.

In parallel, the hierarchical-LU preconditioner still outperforms the block Jacobi preconditioner

for the large size matrix FATIMA_20493. The time required to solve the system using

hierarchical-LU preconditioner is still about 40% lower than block Jacobi for the case with 1 RHS.

The time taken to solve the FATIMA_7894 system in parallel with 1 RHS is comparable between

the two methods.

With multiple RHS, the benefit of the hierarchical-LU preconditioner over block Jacobi is even

more pronounce. For the FATIMA_20394, the improvement is about 48%, while that for

FATIMA_7894 is about 65%. The reason for the sharp drop in time for FATIMA_7894 is due to

the fact that the hierarchical-LU preconditioner conditions the system very well. The number of

iterations required for convergence for FATIMA_7894 is only 11, as compared to the 121

iterations required for block Jacobi preconditioner. This results in significantly less dense matrix-

matrix multiplication required, hence, the large improvement of 65%.

For the smaller matrices, just like in the sequential case, block Jacobi preconditioner performs

better than hierarchical-LU preconditioner. The advantage of the block Jacobi preconditioner in

parallel is more obvious due to its near-optimal speedup and the non-optimal speedup for the

hierarchical-LU preconditioner. Even so, because of the much lower time required to solve the

small system as compared to the large system, this slight setback on the hierarchical-LU

preconditioner is not substantial.

The complete results recorded when the program is ran with OpenMP for different

𝑡𝑜𝑙_ℎ𝑖𝑒, 𝑏 𝑎𝑛𝑑 𝑝 are shown in Tables 23 to 28. The column speedup is measured in

preconditioner construct time (time to construct the hierarchical LU preconditioner

sequentially/time to construct the hierarchical-LU preconditioner in parallel). The same trends as

the results computed sequentially can be observed. The sub-sections below discuss the results

unique to parallel implementation, namely speedup and the results obtained for systems with

multiple RHS.

Ang Yun Mei Elisa Master Thesis Report 94

6.3.2.1 Comments on speedup

The speedup attained for the construction of the hierarchical-LU preconditioner ranges from about

1.5 to about 3.6. The average speedup attained for FATIMA_20493, FATIMA_7894 and

PASSCAL matrices ranges from about 2.7 to 3.0. This is as expected, since some parts of the

hierarchical LU decomposition algorithm have to run sequentially. The lower end of the speedup

occurs mostly in the test cases involving Steadycav1 matrices. This indicates that the load

balancing with the recursive parallelism is not good with the Steadycav1 matrices. A closer look

at the sparsity diagram of the final inadmissible matrix for Steadycav1 as compared to the other

matrices explains this bad load balancing. An example with 𝑏 = 100, 𝑝 = 30 and 𝑡𝑜𝑙_ℎ𝑖𝑒 = 1𝑒 −

4 is shown in Figure 42 below. Recall that the hie-LU code is parallelized such that the main

diagonals have to be dealt with in a sequential way. With the main diagonal almost completely

inadmissible, this means that more work have to be performed sequentially for Steadycav1 matrix.

This explains the low speedup observed.

Figure 42 Sparsity diagram of the 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 for Passcal (left) and Steadycav1(right) with b=100, p=30, tol_hie=1e-4.

6.3.2.2 Comment on results for multiple RHS.

An interesting observation can be made when looking at the results for multiple RHS. While higher

tolerance (𝑡𝑜𝑙ℎ𝑖𝑒 = 1𝑒 − 04) does not seem to work well when there is only one RHS, this setting

performs well when applied to a system with multiple RHS. The reason for this is that the matrix-

matrix multiplication is significantly more expensive than matrix-vector multiplication. Therefore,

lowering the number of iterations drives the time down by a big amount, which dominates over

the time increase to construct the preconditioner due to the higher tolerance setting. It can therefore

be concluded that with multiple RHS, one can afford a longer time to construct the preconditioner

if the system turns out to be better conditioned such that the number of iterations is reduced by a

significant amount.

Ang Yun Mei Elisa Master Thesis Report 95

To sum up Section 6, it has been shown that hierarchical-LU preconditioner works very well for

the test matrices. By exploiting the hierarchical structure of these matrices, the construction of the

hierarchical-LU preconditioner can be done relatively cheaply with almost linear complexity. Test

results have shown that the hierarchical-LU preconditioner conditions the system very well,

reducing the number of iterations significantly more than block Jacobi preconditioner with

reasonable block size. Therefore, the use of hierarchical-LU preconditioner over block Jacobi

preconditioner is definitely recommended.

Ang Yun Mei Elisa Master Thesis Report 96

 FATIMA_20493

Tol_h

ie
b p

GMRES IDR(s)

Speedup
Wall clock time (s)

#iter Rel error

Wall clock time (s)

#iter Rel error Prec

const

Prec

apply
Matvec Solve Total

Prec

const

Prec

apply
Matvec Solve Total

1.00E

-02

100

10 10.13 >500 10.75 54.61 113.68 170.28 181.56 420 1.65E-05 2.73

20 8.70 >500 9.76 39.76 98.21 139.71 149.92 371 8.07E-06 2.80

30 9.05 >500 9.77 43.40 112.05 157.39 167.82 421 1.30E-05 2.81

40 10.74 >500 10.67 >500 2.73

50 22.73 >500 26.71 >500 1.74

200

10 23.08 22.33 37.34 60.60 83.83 142 2.06E-05 23.58 25.47 43.02 69.28 93.31 162 8.03E-06 3.06

20 15.60 25.40 47.69 74.59 90.40 181 6.12E-06 15.84 31.23 59.17 91.47 107.85 223 2.59E-06 2.75

30 14.43 47.50 93.18 144.17 158.96 354 4.85E-06 14.67 33.74 67.07 101.99 117.05 252 4.00E-06 2.54

40 14.31 >500 14.20 47.09 93.19 141.91 156.86 352 9.42E-07 2.46

50 14.25 >500 14.04 55.68 114.29 171.95 186.55 431 3.43E-06 2.39

600

10 48.93 27.56 27.74 55.82 105.14 105 6.54E-06 49.09 31.10 32.20 63.90 113.42 121 2.71E-06 2.51

20 34.54 33.13 36.24 70.25 104.93 138 4.69E-06 34.45 38.07 42.47 81.32 115.89 160 1.24E-06 2.12

30 31.88 29.69 34.57 65.05 97.11 130 1.32E-06 32.07 33.77 39.37 73.85 106.09 145 6.38E-07 1.91

40 31.16 31.16 36.06 68.09 99.77 137 1.53E-06 31.23 35.71 41.61 78.08 109.55 156 7.10E-07 1.87

50 29.86 31.58 36.97 69.45 99.60 140 4.49E-06 29.77 35.79 43.18 79.75 110.10 160 2.45E-06 1.79

60 29.29 33.44 39.51 73.98 103.61 150 1.24E-06 29.37 39.98 48.41 89.27 118.96 179 1.77E-06 1.84

1.00E

-03

100

10 42.01 >500 43.44 >500 3.25

20 23.03 14.86 24.86 40.16 63.64 95 2.86E-06 23.35 16.92 29.10 46.56 70.39 109 7.43E-07 3.15

30 20.84 9.01 17.86 27.10 48.88 68 3.27E-07 21.51 10.46 20.07 30.92 53.46 75 1.30E-07 3.16

40 22.09 8.66 17.33 26.26 49.49 66 5.84E-07 22.03 9.83 19.95 30.17 53.10 73 2.21E-07 3.21

50 45.08 7.92 28.73 39.16 85.68 61 5.52E-07 66.19 8.92 36.96 46.28 113.96 68 1.99E-07 1.72

200

10 113.45 29.14 31.19 60.99 174.64 119 2.08E-05 113.78 32.77 36.29 69.73 183.73 137 5.86E-06 3.58

20 37.86 12.81 18.29 31.34 69.47 70 1.99E-06 38.42 14.57 20.77 35.75 74.45 78 8.32E-07 3.33

30 27.91 10.11 16.25 26.56 54.80 62 5.84E-07 28.05 11.37 18.79 30.53 58.92 69 5.20E-07 3.14

40 26.33 8.34 13.88 22.37 49.19 53 1.84E-07 26.42 9.17 15.41 24.90 51.78 57 1.84E-07 3.09

50 25.32 7.73 13.46 21.33 47.48 51 1.22E-07 23.86 8.59 14.96 25.44 50.14 55 1.80E-07 3.08

60 26.85 8.14 13.82 22.10 49.65 52 2.21E-07 26.84 8.96 15.09 24.36 51.86 56 1.64E-07 3.03

600

10 285.75 21.15 15.34 36.71 325.68 57 3.63E-06 285.20 23.48 16.58 40.41 328.96 62 1.40E-06 3.37

20 88.83 13.86 12.30 26.27 115.28 47 6.47E-07 89.02 14.39 13.38 28.05 117.30 49 4.33E-07 3.11

30 59.89 14.93 14.77 29.86 90.26 56 1.66E-06 59.57 16.69 16.72 33.75 93.86 62 4.70E-07 2.74

40 47.73 13.94 13.92 28.01 76.01 53 7.22E-08 48.18 15.16 15.87 31.35 80.08 58 3.06E-08 2.54

50 41.50 12.58 13.18 25.90 67.68 50 1.28E-07 40.97 13.72 14.87 28.89 70.18 54 6.58E-08 2.24

Ang Yun Mei Elisa Master Thesis Report 97

60 41.54 12.34 13.18 25.65 67.83 50 1.03E-06 41.16 13.76 14.94 29.01 70.54 55 4.17E-07 2.23

1.00E

-04

100

20 62.73 10.20 13.01 23.64 87.13 48 3.53E-07 63.87 11.15 14.20 25.63 90.31 52 8.84E-08 3.43

30 58.21 5.89 7.88 13.83 73.00 30 1.34E-08 57.64 6.58 8.81 15.59 73.93 32 8.20E-09 3.34

40 69.32 5.88 15.38 21.63 91.84 31 2.28E-08 70.48 6.66 15.67 22.56 94.27 33 9.93E-09 3.16

50 134.27 6.31 26.39 32.81 168.21 33 1.29E-08 121.08 6.63 29.21 36.08 158.60 34 3.85E-08 1.97

200

10 311.85 16.71 19.75 36.67 351.87 54 9.13E-07 304.73 18.52 17.70 36.54 344.73 58 1.34E-06 3.56

20 104.28 10.40 11.55 22.05 126.94 44 2.72E-07 103.88 10.83 12.53 23.62 127.86 46 3.46E-07 3.56

30 85.41 6.40 7.68 14.13 99.91 29 3.29E-08 85.34 7.18 8.58 15.96 101.74 31 3.00E-08 3.53

40 79.72 5.96 7.30 13.31 93.48 28 1.75E-08 79.59 6.44 8.03 14.66 94.82 29 2.78E-08 3.51

50 72.04 6.00 7.66 13.71 86.31 29 1.92E-08 71.71 6.80 8.88 15.88 88.19 32 6.09E-09 3.44

60 72.58 6.11 7.91 14.07 87.61 30 2.47E-08 72.63 6.55 8.58 15.33 88.97 31 1.92E-08 3.37

600

20 208.03 11.96 8.87 20.89 232.11 34 2.97E-07 207.93 12.52 9.58 22.32 230.47 35 2.52E-07 3.35

30 121.90 9.46 7.89 17.39 139.81 30 1.62E-07 122.47 10.47 8.79 19.47 142.18 32 9.26E-08 3.25

40 106.68 8.84 7.62 16.51 124.02 29 1.39E-08 106.12 9.52 8.26 17.98 124.37 30 3.22E-08 3.17

50 91.59 10.48 9.12 19.66 111.88 35 9.54E-08 91.83 11.29 10.14 21.66 114.10 37 3.43E-08 3.08

60 87.93 10.64 9.59 20.30 108.87 36 1.76E-07 87.92 11.47 10.32 22.03 110.35 38 1.97E-07 3.03

Table 23 Results using hierarchy-LU preconditioner for FATIMA_20493 with nrhs=1. The best results obtained for GMRES and IDR(s) are highlighted in green

Ang Yun Mei Elisa Master Thesis Report 98

FATIMA_20493

Tol_h

ie
b p

GMRES IDR(s)

Wall clock time (s)

#iter Rel error

Wall clock time (s)

#iter Rel error Prec

const

Prec

apply
Matvec Solve Total

Prec

const

Prec

apply
Matvec Solve Total

1.00E

-02

200

10 23.46 75.80 154.43 236.55 260.16 142 2.06E-05 23.25 86.74 175.15 267.79 291.22 161 1.58E-05

20 15.85 86.57 196.66 293.22 309.63 181 6.12E-06 15.98 103.19 235.95 346.95 363.18 217 4.31E-06

30 14.52 168.71 385.26 573.05 588.00 354 4.85E-06 14.81 121.70 278.48 409.28 424.44 256 2.33E-06

600

10 49.23 92.11 113.60 209.39 258.81 105 6.54E-06 49.38 92.53 114.49 211.00 260.52 105 6.54E-06

20 34.57 109.45 150.42 265.88 300.95 138 4.69E-06 34.49 125.38 174.72 306.01 340.68 160 1.91E-06

30 31.99 97.12 141.28 243.78 276.28 130 1.32E-06 32.05 110.62 158.89 274.91 307.18 145 3.87E-07

40 30.94 102.06 148.61 256.58 287.80 137 1.53E-06 31.29 121.23 168.26 295.18 326.75 155 6.10E-07

50 29.83 100.55 151.65 258.36 288.84 140 4.49E-06 29.62 124.85 180.35 311.26 341.19 165 2.35E-06

60 29.58 110.67 163.02 280.70 310.70 150 1.24E-06 29.81 130.87 190.04 327.34 357.53 175 2.61E-06

1.00E

-03

100

20 23.88 41.59 102.56 147.24 171.60 95 2.86E-06 22.77 46.83 115.75 166.63 189.88 106 1.19E-06

30 21.72 29.04 73.27 104.37 126.81 68 3.27E-07 21.83 32.98 83.04 118.98 141.85 76 1.16E-07

40 23.24 28.26 71.01 101.28 125.44 66 5.84E-07 27.38 31.26 79.01 113.09 141.34 72 2.63E-07

200

20 38.66 43.91 76.84 122.60 161.54 70 1.99E-06 38.27 47.58 82.00 132.54 171.13 75 7.20E-07

30 27.98 35.51 67.08 104.12 132.48 62 5.84E-07 28.00 40.23 76.27 119.26 147.93 69 8.58E-07

40 26.13 29.98 57.08 88.26 114.84 53 1.84E-07 26.22 32.70 63.02 98.08 124.77 57 1.77E-07

50 25.42 28.99 54.83 84.97 110.94 51 1.22E-07 25.25 32.74 62.59 97.59 123.69 57 3.04E-08

60 26.66 29.98 56.35 87.51 114.86 52 2.21E-07 26.90 33.76 62.78 98.82 126.68 57 2.66E-07

600

20 89.04 48.75 52.76 102.55 191.80 47 6.47E-07 89.75 50.58 52.91 105.59 195.51 48 5.13E-07

30 59.31 51.89 60.55 113.76 173.31 56 1.66E-06 59.60 58.40 67.82 128.75 188.56 62 3.15E-07

40 47.86 46.33 57.60 105.16 153.31 53 7.22E-08 48.19 52.71 63.44 118.55 166.99 58 8.97E-08

50 41.19 42.69 54.31 98.13 139.63 50 1.28E-07 41.36 45.84 59.45 107.56 149.49 54 7.12E-08

60 41.27 41.83 54.28 97.24 138.88 50 1.03E-06 41.48 48.84 62.30 113.47 155.60 56 8.15E-08

1.00E

-04

100

20 62.16 29.92 51.81 83.10 145.80 48 3.53E-07 63.59 32.86 57.20 92.22 156.58 52 1.67E-07

30 56.85 18.12 32.33 51.11 108.96 30 1.34E-08 57.95 20.08 35.68 57.23 116.20 32 2.15E-08

40 75.91 19.02 39.49 59.31 136.42 31 2.28E-08 73.26 21.22 41.20 64.13 138.63 33 1.04E-08

50 135.83 20.56 52.71 74.31 211.56 33 1.29E-08 122.88 22.16 48.41 72.40 196.39 34 3.08E-08

200

20 103.81 36.05 47.54 84.53 188.65 44 2.72E-07 104.04 38.93 50.81 91.76 196.12 46 2.64E-07

30 85.25 22.83 31.10 54.24 139.88 29 3.29E-08 84.87 24.46 33.56 59.46 145.06 30 5.13E-08

40 79.58 21.66 30.13 52.08 132.16 28 1.75E-08 79.46 24.06 33.64 59.13 139.08 30 1.04E-08

50 71.76 21.84 31.49 53.64 126.00 29 1.92E-08 72.08 24.41 34.58 60.44 133.43 31 3.58E-08

60 72.48 22.67 32.25 55.56 129.06 30 2.47E-08 72.76 25.22 35.81 62.55 136.25 32 8.94E-09

600 20 207.68 43.93 37.13 84.53 292.71 34 2.97E-07 207.65 49.03 41.14 91.86 299.70 37 1.74E-08

Ang Yun Mei Elisa Master Thesis Report 99

30 122.24 33.98 32.87 67.19 189.66 30 1.62E-07 122.08 36.54 34.76 72.77 195.08 31 7.45E-08

40 106.19 31.78 31.33 63.42 170.19 29 1.39E-08 106.36 35.19 34.80 71.46 178.08 31 9.68E-09

50 91.77 37.29 37.64 75.37 167.47 35 9.54E-08 91.25 42.78 43.60 88.15 179.72 39 1.85E-08

60 88.09 38.95 39.03 78.74 167.51 36 1.76E-07 88.19 42.01 42.23 85.97 174.56 38 8.54E-08

Table 24 Results using hierarchy-LU preconditioner for FATIMA_20493 with nrhs=7. The best results obtained for GMRES and IDR(s) are highlighted in green

Ang Yun Mei Elisa Master Thesis Report 100

FATIMA_7894

Tol_h

ie
b p

GMRES IDR(s)

Speedup
Wall clock time (s)

#iter Rel error

Wall clock time (s)

#iter Rel error Prec

const

Prec

apply
Matvec Solve Total

Prec

const

Prec

apply
Matvec Solve Total

1.00E

-02

100

10 6.30 9.84 7.04 17.38 23.99 173 9.19E-05 6.34 13.86 9.42 23.56 29.92 243 3.73E-05 3.09

20 3.49 16.89 15.92 34.11 37.64 395 1.40E-05 3.43 13.17 11.57 25.09 28.56 305 7.94E-06 2.71

30 3.06 >500 3.08 2.78

40 3.40 12.90 14.46 28.42 31.90 355 2.22E-06 3.37 10.90 11.28 22.52 25.96 301 1.41E-06 2.76

50 3.62 11.85 13.96 26.82 30.55 343 1.67E-06 3.69 9.91 10.92 21.14 24.93 278 1.25E-06 2.88

60 4.09 11.82 13.39 26.15 30.36 328 4.64E-06 4.09 10.12 10.76 21.20 25.41 277 7.50E-07 2.87

200

10 8.87 2.22 1.65 3.90 12.78 41 1.11E-07 8.90 2.49 1.86 4.41 13.32 44 6.89E-08 3.32

20 4.33 2.29 2.15 4.50 8.85 53 1.16E-06 4.38 2.72 2.55 5.35 9.75 61 1.00E-07 2.89

30 3.66 2.35 2.33 4.74 8.44 57 4.20E-07 3.65 2.87 2.91 5.86 9.53 68 2.93E-07 2.63

40 3.56 2.58 2.54 5.19 8.79 65 5.41E-07 3.59 3.06 3.08 6.23 9.86 75 6.44E-07 2.66

50 3.57 3.78 4.03 7.98 11.60 98 6.85E-07 3.52 4.19 4.69 9.02 12.59 109 4.87E-07 2.61

60 3.77 3.95 4.34 8.48 12.30 105 5.23E-07 3.64 4.63 5.20 9.97 13.67 121 2.42E-07 2.62

250

10 14.36 1.80 0.92 2.74 17.11 23 1.16E-08 14.11 1.70 1.05 2.78 16.90 24 1.12E-08 2.81

20 8.67 2.09 1.20 3.31 11.99 30 1.92E-08 8.50 2.34 1.39 3.78 12.29 32 4.72E-08 2.27

30 7.09 2.07 1.23 3.33 10.43 31 1.52E-07 7.13 1.95 1.41 3.41 10.55 34 8.04E-08 1.89

40 6.98 2.17 1.36 3.56 10.55 33 8.79E-08 6.96 2.45 1.53 4.03 11.01 36 2.51E-08 1.88

50 6.82 2.68 1.71 4.42 11.26 41 9.98E-08 6.84 2.37 1.79 4.22 11.08 43 9.29E-08 1.84

60 6.72 2.66 1.62 4.31 11.06 40 1.30E-07 6.73 2.44 1.80 4.30 11.06 44 2.50E-08 1.84

1.00E

-03

100

10 17.01 4.20 2.12 6.37 23.40 54 9.71E-08 17.09 4.64 2.25 6.96 24.07 58 1.62E-07 3.41

20 7.41 1.41 0.97 2.39 9.84 25 2.59E-08 7.29 1.66 1.12 2.82 10.15 27 6.91E-09 3.19

30 5.84 1.29 1.00 2.31 8.21 26 1.09E-08 5.79 1.28 1.00 2.29 8.14 26 1.09E-08 3.17

40 5.55 1.17 0.92 2.10 7.73 24 9.54E-09 5.51 1.32 1.04 2.40 7.98 25 2.05E-08 3.19

50 5.83 1.11 0.92 2.05 7.98 24 1.80E-08 5.88 1.29 1.06 2.39 8.37 26 8.13E-09 3.21

60 6.35 1.15 0.92 2.09 8.56 24 8.27E-09 6.35 1.29 1.07 2.40 8.87 25 1.92E-08 3.28

200

10 21.74 0.99 0.52 1.51 23.26 14 8.07E-08 21.85 1.19 0.65 1.86 23.73 15 6.92E-08 3.57

20 8.43 0.76 0.53 1.29 9.74 14 3.47E-09 8.42 0.92 0.73 1.67 10.12 15 1.16E-09 3.34

30 6.10 0.52 0.39 0.91 7.04 10 1.77E-08 6.13 0.64 0.52 1.18 7.33 11 3.49E-09 3.16

40 5.53 0.54 0.42 0.96 6.53 11 9.19E-10 5.51 0.63 0.53 1.18 6.74 11 2.09E-09 3.06

50 5.44 0.53 0.42 0.96 6.44 11 1.81E-09 5.39 0.60 0.51 1.13 6.57 11 3.61E-09 3.07

60 5.65 0.56 0.47 1.04 6.75 12 5.70E-09 5.56 0.67 0.58 1.28 6.90 13 2.77E-09 3.06

250
10 30.67 0.86 0.36 1.23 31.91 9 2.47E-10 30.74 1.01 0.45 1.48 32.22 9 2.31E-09 3.36

20 12.95 0.62 0.28 0.90 13.86 7 1.10E-08 13.02 0.62 0.35 0.99 14.02 7 6.15E-09 2.93

Ang Yun Mei Elisa Master Thesis Report 101

30 9.62 0.64 0.33 0.97 10.61 8 3.11E-09 9.57 0.75 0.41 1.18 10.76 8 1.23E-08 2.55

40 8.80 0.69 0.39 1.08 9.90 9 1.36E-09 8.68 0.79 0.41 1.22 9.92 9 3.08E-09 2.27

50 8.51 0.48 0.36 0.84 9.37 9 5.76E-09 8.48 0.61 0.45 1.08 9.58 10 1.38E-09 2.14

60 8.46 0.74 0.41 1.15 9.64 10 3.29E-09 8.53 0.71 0.48 1.21 9.77 10 1.28E-08 2.23

1.00E

-04

100

10 26.69 2.32 0.89 3.23 29.95 24 1.14E-08 26.72 2.64 0.99 3.67 30.42 25 9.39E-09 3.51

20 14.56 2.16 1.19 3.36 17.97 30 2.39E-08 14.50 2.39 1.31 3.74 18.28 32 5.23E-08 3.41

30 11.33 2.30 1.49 3.82 15.20 37 3.72E-08 11.40 2.54 1.65 4.24 15.70 40 2.31E-08 3.40

40 10.98 1.52 1.01 2.54 13.60 26 2.86E-08 11.07 1.77 1.14 2.95 14.10 27 7.67E-08 3.37

50 11.38 1.06 0.74 1.80 13.28 19 2.39E-08 11.54 1.25 0.86 2.15 13.78 21 9.76E-09 3.34

60 12.01 0.55 0.39 0.94 13.06 10 3.43E-09 12.03 0.66 0.46 1.14 13.29 10 9.19E-09 3.41

200

10 33.54 0.62 0.26 0.88 34.43 7 1.47E-09 33.44 0.74 0.37 1.12 34.57 7 2.96E-09 3.61

20 15.25 0.83 0.52 1.36 16.62 12 1.65E-08 15.33 0.95 0.65 1.62 16.98 13 7.23E-09 3.51

30 10.94 0.83 0.53 1.37 12.34 14 7.13E-09 10.82 0.82 0.69 1.54 12.39 15 3.24E-09 3.37

40 9.81 0.72 0.50 1.23 11.08 13 3.25E-09 9.68 0.87 0.66 1.55 11.27 14 1.42E-09 3.34

50 9.45 0.60 0.43 1.03 10.53 11 6.42E-08 9.45 0.73 0.56 1.31 10.81 12 1.38E-08 3.33

60 9.44 0.45 0.31 0.76 10.26 8 4.31E-10 9.40 0.54 0.39 0.95 10.40 8 1.90E-09 3.31

250

10 44.36 0.55 0.19 0.74 45.11 5 3.93E-10 44.43 0.63 0.27 0.92 45.35 5 1.89E-09 3.46

20 21.25 0.74 0.32 1.05 22.31 8 3.65E-08 21.34 0.83 0.43 1.28 22.63 9 2.47E-09 3.22

30 14.62 0.85 0.38 1.24 15.87 10 2.11E-09 14.86 0.84 0.50 1.36 16.24 10 3.20E-09 3.04

40 13.61 0.61 0.28 0.89 14.52 7 3.41E-10 13.39 0.63 0.36 1.01 14.42 7 1.06E-09 2.87

50 12.33 0.67 0.32 1.00 13.35 8 6.03E-09 12.24 0.74 0.42 1.18 13.44 9 4.87E-10 2.81

60 11.75 0.44 0.20 0.64 12.41 5 1.13E-08 11.70 0.54 0.31 0.87 12.60 6 7.72E-10 2.75

Table 25 Results using hierarchy-LU preconditioner for FATIMA_7894 with nrhs=1. The best results obtained for GMRES and IDR(s) are highlighted in green

Ang Yun Mei Elisa Master Thesis Report 102

FATIMA_7894

Tol_h

ie
B p

GMRES IDR(s)

Wall clock time (s)

#iter Rel error

Wall clock time (s)

#iter Rel error Prec

const

Prec

apply
Matvec Solve Total

Prec

const

Prec

apply
Matvec Solve Total

1.00E

-02

200

10 8.77 7.30 6.60 14.12 22.91 41 1.11E-07 8.82 8.25 7.42 16.07 24.91 45 4.62E-08

20 4.29 7.58 8.49 16.43 20.74 53 1.16E-06 4.41 8.79 10.06 19.36 23.79 59 9.72E-07

30 3.60 7.36 9.28 17.06 20.69 57 4.20E-07 3.68 9.63 11.25 21.43 25.17 67 1.76E-07

40 3.51 9.09 10.77 20.39 23.95 65 5.41E-07 3.57 10.49 12.40 23.50 27.15 74 3.44E-07

50 3.57 13.70 16.01 30.86 34.48 98 6.85E-07 3.51 15.81 18.62 35.31 38.87 112 5.86E-07

60 3.71 14.71 17.40 33.45 37.22 105 5.23E-07 3.74 16.86 19.90 37.70 41.51 119 3.49E-07

250

10 14.34 6.02 3.78 9.88 24.22 23 1.16E-08 14.48 6.88 4.41 11.55 26.04 25 3.35E-09

20 8.58 6.91 4.98 12.02 20.60 30 1.92E-08 8.60 7.67 5.52 13.49 22.10 32 2.68E-08

30 7.10 6.69 5.29 12.12 19.24 31 1.52E-07 7.13 7.55 5.90 13.77 20.91 34 1.21E-07

40 7.00 7.09 5.45 12.69 19.71 33 8.79E-08 7.01 7.84 6.54 14.72 21.75 36 7.11E-08

50 6.89 8.60 6.70 15.53 22.44 41 9.98E-08 6.85 9.41 7.46 17.27 24.15 44 7.50E-08

60 6.75 7.98 6.55 14.75 21.52 40 1.30E-07 6.72 9.64 7.49 17.53 24.28 44 3.39E-08

1.00E

-03

100

10 17.05 11.03 8.87 20.28 37.35 54 9.71E-08 17.14 12.13 9.58 22.20 39.36 58 7.35E-08

20 7.35 3.70 4.11 7.90 15.30 25 2.59E-08 7.40 4.05 4.51 8.82 16.26 26 1.57E-08

30 5.92 3.61 4.29 8.00 13.99 26 1.09E-08 5.86 4.15 4.81 9.23 15.15 28 5.60E-09

40 5.58 3.35 3.98 7.41 13.07 24 9.54E-09 5.52 3.83 4.43 8.52 14.12 26 3.47E-09

50 5.95 3.45 4.07 7.61 13.66 24 1.80E-08 5.85 3.99 4.47 8.72 14.67 26 3.49E-09

60 6.42 3.57 3.99 7.65 14.19 24 8.27E-09 6.43 3.78 4.17 8.19 14.74 24 2.25E-08

200

10 21.92 3.31 2.26 5.61 27.54 14 8.07E-08 21.88 3.90 2.59 6.67 28.56 15 2.32E-08

20 8.47 2.57 2.31 4.92 13.40 14 3.47E-09 8.52 2.97 2.66 5.81 14.35 15 8.22E-10

30 6.15 1.71 1.66 3.39 9.57 10 1.77E-08 6.13 2.09 2.01 4.25 10.41 11 5.80E-09

40 5.46 1.81 1.84 3.68 9.17 11 9.19E-10 5.51 2.05 1.99 4.19 9.74 11 5.43E-09

50 5.47 1.85 1.82 3.69 9.21 11 1.81E-09 5.46 2.09 2.01 4.25 9.75 11 3.82E-09

60 5.60 2.03 1.98 4.04 9.69 12 5.70E-09 5.62 2.44 2.32 4.92 10.60 13 5.59E-09

250

10 30.76 3.00 1.44 4.46 35.23 9 2.47E-10 30.76 3.40 1.65 5.18 35.95 9 1.06E-09

20 13.11 2.03 1.14 3.19 16.31 7 1.10E-08 13.00 2.61 1.49 4.23 17.24 8 8.51E-10

30 9.43 2.08 1.32 3.42 12.86 8 3.11E-09 9.58 2.39 1.51 4.02 13.61 8 9.38E-09

40 8.88 2.26 1.48 3.77 12.66 9 1.36E-09 8.80 2.56 1.70 4.39 13.21 9 3.53E-09

50 8.40 2.05 1.50 3.57 12.00 9 5.76E-09 8.42 2.74 1.87 4.74 13.19 10 9.40E-10

60 8.53 2.45 1.63 4.10 12.66 10 3.29E-09 8.52 2.98 2.00 5.13 13.68 11 1.12E-09

1.00E

-04
100

10 26.72 6.08 3.87 10.05 36.79 24 1.14E-08 26.89 6.58 4.17 11.01 37.92 25 9.89E-09

20 14.65 5.60 4.91 10.64 25.33 30 2.39E-08 14.60 6.29 5.42 12.01 26.65 32 3.44E-08

Ang Yun Mei Elisa Master Thesis Report 103

30 11.38 6.17 6.08 12.43 23.87 37 3.72E-08 11.36 7.00 6.95 14.32 25.74 41 1.05E-08

40 10.91 4.28 4.35 8.73 19.72 26 2.86E-08 10.98 4.55 4.52 9.34 20.40 26 8.50E-08

50 11.51 3.17 3.22 6.46 18.07 19 2.39E-08 11.30 3.71 3.58 7.51 18.90 21 3.30E-09

60 12.02 1.77 1.63 3.42 15.56 10 3.43E-09 11.98 2.05 1.84 4.04 16.15 10 1.44E-08

200

10 33.57 2.06 1.14 3.22 36.80 7 1.47E-09 33.48 2.44 1.31 3.87 37.37 7 3.02E-09

20 15.42 2.64 1.93 4.60 20.04 12 1.65E-08 15.34 3.16 2.40 5.73 21.09 13 4.40E-09

30 10.86 2.83 2.41 5.27 16.17 14 7.13E-09 10.90 3.23 2.67 6.07 17.01 15 4.82E-09

40 9.83 2.51 2.23 4.78 14.65 13 3.25E-09 9.85 2.69 2.35 5.20 15.10 13 8.55E-09

50 9.56 2.09 1.83 3.95 13.56 11 6.42E-08 9.47 2.51 2.16 4.82 14.34 12 4.94E-09

60 9.47 1.55 1.32 2.89 12.42 8 4.31E-10 9.48 1.80 1.48 3.42 12.95 8 1.48E-09

250

10 44.45 1.94 0.82 2.77 47.23 5 3.93E-10 44.63 2.37 1.00 3.48 48.11 5 2.16E-09

20 21.45 2.52 1.28 3.82 25.29 8 3.65E-08 21.45 3.13 1.63 4.89 26.35 9 1.11E-09

30 14.78 2.85 1.63 4.50 19.30 10 2.11E-09 14.75 3.23 1.92 5.29 20.05 10 3.65E-09

40 13.60 2.08 1.17 3.26 16.88 7 3.41E-10 13.45 2.48 1.37 3.97 17.44 7 1.96E-09

50 12.32 2.28 1.37 3.67 16.02 8 6.03E-09 12.39 2.84 1.73 4.71 17.12 9 1.16E-09

60 11.71 1.48 0.88 2.37 14.11 5 1.13E-08 11.65 2.08 1.18 3.37 15.05 6 8.89E-10

Table 26 Results using hierarchy-LU preconditioner for FATIMA_7894 with nrhs=7. The best results obtained for GMRES and IDR(s) are highlighted in green

Ang Yun Mei Elisa Master Thesis Report 104

PASSCAL

Tol_h

ie
b P

GMRES IDR(s)

Speedup
Wall clock time (s)

#iter Rel error

Wall clock time (s)

#iter Rel error Prec

const

Prec

apply
Matvec Solve Total

Prec

const

Prec

apply
Matvec Solve Total

1.00E

-02

100

10 0.97 0.44 0.13 0.58 1.55 23 4.62E-08 0.92 0.49 0.16 0.66 1.58 24 1.33E-08 2.46

20 0.64 0.62 0.28 0.91 1.55 44 3.34E-08 0.62 0.63 0.29 0.94 1.56 46 2.38E-07 2.15

30 0.66 0.54 0.30 0.85 1.52 47 1.01E-06 0.65 0.62 0.36 1.00 1.66 51 1.69E-07 2.22

40 0.72 0.58 0.30 0.89 1.62 49 7.71E-07 0.73 0.68 0.33 1.03 1.77 53 3.33E-07 2.36

50 0.73 0.46 0.34 0.81 1.55 50 7.72E-07 0.72 0.53 0.35 0.90 1.64 54 3.60E-07 2.55

200

10 1.74 0.32 0.12 0.44 2.19 20 1.68E-07 1.71 0.40 0.15 0.56 2.28 22 2.42E-08 3.00

20 0.94 0.53 0.23 0.76 1.71 38 9.54E-08 0.93 0.57 0.26 0.86 1.79 42 3.45E-07 2.33

30 0.80 0.55 0.29 0.85 1.66 46 7.41E-07 0.80 0.62 0.31 0.94 1.74 50 2.57E-07 2.17

40 0.76 0.58 0.29 0.88 1.65 48 1.14E-06 0.77 0.65 0.34 1.01 1.79 53 2.27E-07 2.23

50 0.83 0.54 0.31 0.86 1.70 50 9.29E-07 0.79 0.60 0.34 0.96 1.76 55 2.36E-06 2.22

1.00E

-03

100

10 1.41 0.22 0.05 0.27 1.69 8 4.87E-09 1.43 0.27 0.07 0.35 1.78 9 3.60E-10 2.82

20 1.10 0.24 0.08 0.32 1.42 11 1.01E-08 1.10 0.29 0.08 0.38 1.49 11 1.14E-08 2.56

30 1.17 0.29 0.12 0.42 1.59 19 7.42E-09 1.12 0.38 0.14 0.53 1.66 21 1.34E-09 2.56

40 1.15 0.27 0.11 0.38 1.54 18 1.78E-08 1.12 0.30 0.12 0.44 1.57 19 6.54E-09 2.62

50 1.22 0.28 0.13 0.41 1.64 20 1.21E-08 1.21 0.30 0.14 0.46 1.68 21 9.70E-09 2.68

200

10 2.28 0.10 0.03 0.13 2.41 5 3.62E-10 2.28 0.13 0.04 0.18 2.45 5 6.93E-09 3.27

20 1.67 0.20 0.07 0.27 1.94 11 6.88E-10 1.66 0.22 0.09 0.31 1.97 11 2.65E-09 2.95

30 1.30 0.26 0.12 0.37 1.68 18 2.50E-08 1.31 0.30 0.13 0.44 1.75 20 1.40E-08 2.75

40 1.17 0.26 0.11 0.38 1.55 19 8.70E-09 1.19 0.27 0.12 0.40 1.59 19 2.41E-08 2.52

50 1.16 0.25 0.11 0.37 1.53 19 2.29E-08 1.14 0.28 0.13 0.42 1.57 20 2.58E-08 2.51

1.00E

-04

100

10 2.05 0.20 0.04 0.25 2.30 7 3.20E-09 2.11 0.23 0.05 0.29 2.40 7 5.80E-09 3.00

20 1.40 0.17 0.05 0.22 1.62 7 4.46E-09 1.36 0.20 0.05 0.26 1.63 7 1.61E-09 2.84

30 1.46 0.17 0.05 0.21 1.68 8 2.27E-09 1.40 0.20 0.06 0.27 1.68 8 8.58E-09 2.65

40 1.61 0.15 0.05 0.20 1.82 7 1.78E-10 1.60 0.17 0.05 0.23 1.84 7 4.19E-10 2.99

50 1.70 0.13 0.05 0.18 1.90 7 3.12E-10 1.73 0.16 0.06 0.23 1.98 7 7.20E-10 2.92

200

10 3.71 0.11 0.03 0.14 3.85 5 4.08E-09 3.73 0.17 0.05 0.22 3.95 6 3.52E-11 3.47

20 2.15 0.08 0.02 0.11 2.26 4 8.12E-12 2.17 0.11 0.04 0.16 2.33 4 9.60E-12 3.22

30 1.60 0.12 0.05 0.17 1.78 7 3.87E-09 1.61 0.17 0.06 0.23 1.84 8 1.01E-10 2.95

40 1.47 0.12 0.04 0.16 1.64 7 3.68E-09 1.45 0.15 0.05 0.21 1.66 7 6.46E-09 2.85

50 1.50 0.10 0.04 0.14 1.65 6 1.56E-09 1.49 0.12 0.05 0.18 1.67 6 1.04E-08 2.94

Table 27 Results using hierarchy-LU preconditioner for PASSCAL with nrhs=1. The best results obtained for GMRES and IDR(s) are highlighted in green

Ang Yun Mei Elisa Master Thesis Report 105

STEADYCAV1

Tol_h

ie
b p

GMRES IDR(s)

Speedup
Wall clock time (s)

#iter Rel error

Wall clock time (s)

#iter Rel error Prec

const

Prec

apply
Matvec Solve Total

Prec

const

Prec

apply
Matvec Solve Total

1.00E

-02

100

20 1.17 0.39 0.74 1.13 2.31 32 5.76E-05 1.18 0.46 0.88 1.35 2.53 37 3.48E-05 1.69

30 0.92 0.26 0.74 1.00 1.93 32 9.35E-05 0.92 0.31 0.87 1.19 2.12 37 1.43E-06 1.77

40 0.90 0.26 0.78 1.04 1.95 34 1.58E-05 0.90 0.31 0.91 1.22 2.13 38 1.98E-05 1.79

50 1.07 0.32 0.78 1.11 2.20 34 1.37E-05 1.06 0.27 0.88 1.16 2.24 37 7.82E-05 1.80

200

10 4.25 0.60 0.73 1.34 5.59 32 2.52E-05 4.23 0.69 0.85 1.54 5.77 36 2.54E-06 1.80

20 1.52 0.40 0.67 1.07 2.60 29 3.45E-05 1.51 0.44 0.72 1.16 2.67 30 5.53E-06 1.55

30 1.20 0.40 0.73 1.13 2.33 32 8.87E-05 1.19 0.47 0.85 1.33 2.53 36 4.83E-05 1.54

40 1.06 0.42 0.73 1.16 2.23 32 2.36E-05 1.07 0.50 0.85 1.36 2.44 36 3.86E-05 1.58

50 1.12 0.28 0.74 1.02 2.15 32 5.50E-05 1.11 0.44 0.83 1.28 2.39 35 3.77E-05 1.59

1.00E

-03

100

10 7.53 0.36 0.48 0.84 8.37 21 3.66E-05 7.53 0.46 0.58 1.04 8.57 24 2.53E-05 2.33

20 3.24 0.26 0.46 0.71 3.96 20 4.02E-06 3.21 0.30 0.53 0.83 4.05 22 2.12E-06 2.19

30 2.40 0.23 0.50 0.73 3.15 22 1.41E-05 2.43 0.27 0.59 0.86 3.30 24 2.75E-06 1.60

40 2.01 0.20 0.50 0.71 2.73 22 3.18E-05 2.00 0.25 0.58 0.83 2.84 24 5.85E-05 1.64

50 2.26 0.19 0.52 0.72 2.99 23 1.12E-05 2.26 0.26 0.60 0.87 3.15 25 1.92E-05 1.67

200

10 7.74 0.33 0.34 0.67 8.42 15 8.97E-06 7.75 0.41 0.42 0.83 8.58 17 2.59E-06 2.33

20 4.10 0.36 0.46 0.83 4.93 20 6.35E-05 4.10 0.46 0.56 1.02 5.13 23 2.92E-06 2.09

30 2.53 0.30 0.46 0.76 3.30 20 1.82E-05 2.52 0.37 0.56 0.93 3.46 23 2.05E-06 1.54

40 1.89 0.27 0.46 0.73 2.63 20 7.27E-06 1.89 0.23 0.53 0.77 2.67 22 6.69E-05 1.57

50 1.93 0.29 0.46 0.75 2.69 20 4.04E-05 1.93 0.25 0.54 0.79 2.73 22 4.23E-05 1.58

1.00E

-04

100

10 8.47 0.26 0.30 0.55 9.02 13 4.78E-07 8.46 0.28 0.35 0.64 9.10 14 3.24E-06 2.44

20 6.31 0.36 0.50 0.87 7.18 22 1.56E-05 6.28 0.45 0.63 1.09 7.38 26 2.21E-06 2.18

30 4.98 0.35 0.55 0.90 5.89 24 5.53E-05 4.98 0.43 0.67 1.11 6.10 28 1.43E-05 2.27

40 5.08 0.29 0.48 0.77 5.86 21 1.68E-05 5.04 0.33 0.58 0.92 5.97 24 4.42E-06 1.89

50 4.79 0.22 0.39 0.61 5.41 17 9.41E-06 4.78 0.26 0.46 0.72 5.53 19 6.34E-06 1.96

200

10 8.19 0.29 0.28 0.56 8.76 12 3.53E-06 8.15 0.27 0.33 0.60 8.75 13 9.52E-06 2.38

20 6.55 0.33 0.43 0.76 7.31 17 6.95E-06 6.56 0.41 0.44 0.85 7.42 18 7.93E-07 2.23

30 5.19 0.41 0.48 0.90 6.09 21 2.27E-05 5.19 0.54 0.63 1.17 6.37 26 1.26E-06 2.14

40 4.35 0.26 0.41 0.67 5.03 18 1.37E-05 4.37 0.36 0.47 0.83 5.21 19 1.55E-05 1.89

50 3.58 0.27 0.37 0.63 4.22 16 7.98E-07 3.59 0.25 0.44 0.70 4.30 18 2.68E-06 2.01

60 3.41 0.26 0.34 0.61 4.03 15 4.53E-06 3.40 0.29 0.40 0.70 4.10 16 6.84E-07 2.06

Table 28 Results using hierarchy-LU preconditioner for STEADYCAV1 with nrhs=1. The best results obtained for GMRES and IDR(s) are highlighted in green

Ang Yun Mei Elisa Master Thesis Report 106

7 CONCLUSION

In this report, four strategies to improve the efficiency of the dense linear solver used in panel

codes were explored. These are

1. The use of the IDR(s) solver instead of GMRES

2. The choice to use variable size block Jacobi preconditioner in suitable scenarios

3. Replacing dense matvec in the solver with hierarchical matvec

4. The use of hierarchical-LU preconditioner instead of block Jacobi preconditioner

With these, many tests were conducted with the test matrices. The best strategy, together with the

timing attained, are summarized in the table below:

Test Matrix nrhs Strategy Time(s)

FATIMA_20493

1
GMRES with Hierarchical-LU preconditioner

OpenMP enabled
47.48

7
GMRES with Hierarchical-LU preconditioner

OpenMP enabled
108.96

FATIMA_7894

1
GMRES with block Jacobi Preconditioner

OpenMP enabled
6.36

7
GMRES with Hierarchical-LU preconditioner

OpenMP enabled
9.17

PASSCAL 1
GMRES with block Jacobi Preconditioner

OpenMP enabled
0.718

Steadycav1 1
GMRES with block Jacobi Preconditioner

OpenMP enabled
0.565

Steadycav2 1
GMRES with block Jacobi Preconditioner

OpenMP enabled
0.599

Steadycav3 1
GMRES with block Jacobi Preconditioner

OpenMP enabled
0.667

Steadycav4 1
GMRES with block Jacobi Preconditioner

OpenMP enabled
0.665

Table 29 Final best timings attained in this Project

While it may seem at first glance that GMRES with block Jacobi appears to provide the best

solution for many of the test matrices, the author proposes the use of strategies 1 and 4 over this

solution.

The reason for the recommendation to use IDR(s) instead of GMRES stems from the fact that it

generally outperforms GMRES significantly when restart is required. When restart is not required,

IDR(s) usually requires only a few more iterations when compared with GMRES. This is evident

Ang Yun Mei Elisa Master Thesis Report 107

from the results presented in Section 3.3. Thus, from a practical point of view, it may be more

beneficial to use IDR(s).

The reason to propose the use of hierarchical-LU preconditioner over the block Jacobi

preconditioner is due to its scalability. It has the major advantage of having almost linear

complexity of 𝑂(𝑁(𝑙𝑜𝑔𝑁)2). Thus, even though for smaller systems, block Jacobi may perform

slightly better than the hierarchical-LU preconditioner, at large sizes or with multiple RHS, the

performance of hierarchical-LU preconditioner outshines the block Jacobi preconditioner. In

addition, it conditions the system very well, reducing the number of dense matvec required

significantly. The reduction in time both sequentially and in parallel has been shown to be about

40-50% for the large FATIMA_20493 test matrix.

There are many improvements that can be made to the hierarchical-LU decomposition codes as

introduced in this report. One major improvement that can be made is to improve its parallelization.

The parallelization strategy used in this report was rudimentary at best. It was done to give an idea

of how the hierarchical-LU preconditioner compares with the block Jacobi preconditioner in a

parallel environment. To properly make the code efficient in parallel, much more work and time

are required, and is not within the scope of this project. To this, the author would like to propose

two approaches that could be taken to improve the parallelization.

In [1], M. de Jong had shown that the use of GPU with block Jacobi preconditioner was able to

significantly lower the total time required to solve the largest test problem. In a similar way, the

use of GPU with hierarchical-LU preconditioner can also reduce the total time required

significantly. The same MAGMA library mentioned in [1] can be employed in this case.

Alternatively, there are available literatures which suggest that task based approach to parallelizing

the hierarchical-LU preconditioner can provide almost optimal speedup and good scaling behavior

up to many cores. One such literature is that written by Kriemann, R. in [14]. By using the task

based approach with a directed acyclic graph for efficient scheduling, the hierarchical-LU

decomposition algorithm can be redesigned to provide a speedup behavior as illustrated in Figure

43 below. In the figure, the blue line indicates the speedup behavior should the recursive approach

be used. This recursive approach is much like the approach taken in this project. The task based

approach is seen to provide a near optimal performance with many cores.

Ang Yun Mei Elisa Master Thesis Report 108

Figure 43 Speedup of task-based H-LU factorization obtained in [14] for Laplace kernel on a sphere

With proper parallelization in placed, the author believes that the efficiency of the panel codes can

be significantly improve by the use of IDR(s) with hierarchical-LU preconditioner. The

improvement will be especially significant for large matrices and for systems with multiple RHS.

To improve the efficiency even more from this point on, the use of Fast Multipole Method to bring

the complexity down to 𝑂(𝑁) can be explored.

Ang Yun Mei Elisa Master Thesis Report 109

8 REFERENCES

1. de Jong, M. & van der Ploeg, A. 2012. Efficient Solvers for Panel Codes. MARIN Report

No. 21750-2-RD.

2. Ang, Y.M.E. 2015. Master Thesis Literature Review: Efficiency Improvement for Panel

Codes.

3. Sonneveld, P. & van Gijzen, M.B. 2008. IDR(s): A Family of Simple and Fast Algorithms

for Solving Large Nonsymmetric Stsrems of Linear Equations. SIAM Journal for Scientific

Computing Vol. 31, No. 2, pp. 1035-1062.

4. van Gijzen, M.B. & Sonneveld, P. 2011. Algorithm 913: An Elegant IDR(s) Variant that

Efficiently Exploits Biorthogonality Properties. ACM Trans. Math. Softw. 38, 1, Article 5

(November 2011), 19 pages.

5. Greengard, L. & Rokhlin, V. 1988. On the Efficient Implementation of the Fast Multipole

Algorithm. Research Report YALEU/DCS/RR-602.

6. Brunner, D. et al. 2010. Comparison of the Fast Multipole Method and Hierarchical

Matrices for the Helmholtz-BEM. CMES, vol 58, no.2., pp. 131-158, 2010.

7. Bebendorf, M. 2008. Hierarchical Matrices – A Means to Efficiently Solve Elliptic

Boundary Value Problems. Springer-Verlag Berlin Hedelberg.

8. Demmel, J. 2000. Iterative Algorithms: Golub-Kahan-Lanczos Method. In Bai, Z.,

Demmel, J., Dongarra, J., Ruhe, A., & van der Vorst, H., editors. Templates for the Solution

of Algebraic Eigenvalue Problems: A Practical Guide. Philadelphia, SIAM.

9. Bebendorf, M. 2000. Approximation of Boundary Element Matrices. Numer. Math. (2000)

86: 565=589

10. Rjasanow, S. 2002. Adaptive Cross Approximation of Dense Matrices. International

Association for Boundary Element Methods 2002.

11. Zhao K, Vouvakis, M.N. & Lee J. 2005. The Adaptive Cross Approximation Algorithm

for Accelerated Method of Moments Computations of EMC problems. IEEE Transactions

on Electromagnetic Compatibility, Vol. 47, No. 4, Nov 2005.

12. Börm, S., Grasedyck, L. & Hackbush, W. 2005. Hierarchical Matrices (Lecture Notes).

Ang Yun Mei Elisa Master Thesis Report 110

13. Ting, W., Zhao, N.J., & Yi, J.S. 2011. Hierarchical Matrix Techniques Based on Matrix

Decomposition Algorithm for the Fast Analysis of Planar Layered Structures. IEEE

Transactions on Antennas and Propagation, Vol 59, No.11.

14. Kriemaan, R. 2014. H-LU Factorization on Many-Core Systems. Computing and

Visualization in Science, Vol 16, Issue 3.

