

Extracted from: http://www.marin.nl

EFFICIENCY IMPROVEMENT FOR PANEL CODES LITERATURE REVIEW

30 Jan 2015, Friday

Project Overview

- Panel codes (or Boundary Element Method) are used for flow computations in MARIN
- Boundary Element Method generates dense linear system of equation
- The project aims to speed up the computation time required

Presentation Topics

- Review of what had been done
- Boundary Element Method
- Solver Methods comparison:
 GMRES vs IDR(s)
- Preconditioning:
 - Block Jacobi vs Deflation
- Fast Multipole Method
- Subsequent plan

Introduction

Current Strategy in MARIN:

Direct Solver or GMRES with incomplete LU preconditioner

Matrix Name	Size	Real/Complex	Strategy	Solve time
Steadycav	4620	Real	Direct	3.3 s (direct)
FATIMA_7894	7894	Complex	ILU	13.0 s
FATIMA_20493	20493	Complex	ILU	170.0 s

Review of what had been done

- Project was undertaken by Martijn de Jong in 2012
- The solution was GMRES with Block-Jacobi Preconditioner with OpenMP
- GPU was used to speed up the solver

Matrix Name	Size	Real/ Complex	Solve time (Old)	Solve time (Now)	Solve time (GPU)
Steadycav	4620	Real	3.3 s (Direct)	0.5s	Not tested
FATIMA_789 4	7894	Complex	1 3.0s (iLU)	4.5s	3.1s (Direct)
FATIMA_204 93	20493	Complex	170.0 s (iLU)	34.3s	22.7s (Block-Jac)

All results and diagrams extracted from: de Jong, M. 2012. Efficient Solvers For Panel Codes

6 Boundary Element Method

Kythe, K.P. 1995. An Introduction to Boundary Element Methods

Numerical method to solve boundary value problems

$$-\nabla^2 u = 0$$

- □ FEM vs BEM
 - FEM solves this by discretizing entire domain, BEM only discretizes boundary
 - **FEM** results in sparse matrix, BEM, dense

Equation

Weak Formulation

$$-\nabla^{2} u = 0 \qquad \qquad -\iiint_{V} u^{*} \nabla^{2} u \, dV = \iiint_{V} u = u_{0} \text{ on } S_{1}$$
$$q = \frac{\partial u}{\partial n} = q_{0} \text{ on } S_{2} \qquad \qquad -\iiint_{V} u \nabla^{2} u^{*} \, dV + \iint_{S} u$$

CCC

 $\nabla u^* \nabla u \, dV - \iint u^* \nabla \mathbf{u} \cdot \widehat{\boldsymbol{n}} \, ds = 0$ $u \nabla \mathbf{u}^* \cdot \widehat{\boldsymbol{n}} \, ds - \iint u^* \nabla \mathbf{u} \cdot \widehat{\boldsymbol{n}} \, ds = 0$ $u^* =$ Fundamental Solution $u^* = \frac{1}{4\pi(x - x_i)}$ $\nabla^2 u^* = -\delta(x_i)$

CCC

 $\overline{2}$

Equation

 $\nabla^2 u = 0$

$$u = u_0 \text{ on } S_1$$
$$q = \frac{\partial u}{\partial n} = q_0 \text{ on } S_2$$

Thus we have the Boundary Integral
Equation (BIE)

$$c(x_i)u(x_i) + \iint_S uq_i^* dS = \iint_S u_i^* q \, dS, \qquad S = S_1 \cup S_2$$

$$c(x_i) = \begin{cases} 1 & \text{if } x_i \text{ is inside } R \\ \frac{1}{2} & \text{if } x_i \text{ is on a smooth portion of } S \end{cases}$$

□ Discretization of BIE gives:

$$c(x_i)u(x_i) + \iint_S uq_i^* dS = \iint_S u_i^* q \, dS,$$

Boundary Element Method

BEM test matrices from MARIN

Name	Size	Real/Complex	System
Steadycav1	4620	Real	PROCAL
Steadycav2	4620	Real	PROCAL
Steadycav3	4620	Real	PROCAL
Steadycav4	4649	Real	PROCAL
DIFFRAC_1828	1828	Complex	DIFFRAC
FATIMA_7894	7894	Complex	FATIMA
FATIMA_20493	20493	Complex	FATIMA

¹³ Solver

GMRES vs IDR(s)

www.allacronyms.com

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

Solver Method

- Advantage of GMRES:
 - Optimality
 - matrix vector multiplication required per iteration
- Advantage of IDR(s):
 - short recurrence
 - less matrix vector multiplication required as compared to bi-CG

Solver Method

Search for solution within increasing Krylov Subspace

□ IDR(s)

Concept of nested subspace

$$G_{j} \subset G_{j-1} \quad \text{with} \quad G_{0} = \mathcal{K}(A, r_{0})$$

$$G_{j} = (I - \omega_{j}A)(G_{j-1} \cap S)$$

$$\int_{\text{Scalar value}}^{\mathcal{K}} |\text{eft null space of some N x s matrix P}$$

 $\mathcal{G}_j = \{\mathbf{0}\}, for some j \leq N$

Solver Method

Numerical Results

	Matrix	GMRES	IDR(10)	Bi-CG
Timing (s)	Stondycomy 1	5.4	5.9	16
Iteration	N=4620	237	379	490

	Matrix	GMRES with block jacobi preconditioned matrix	IDR(10) with block jacobi preconditioned matrix
Timing for solving (s)	FATIMA_20493	1948	894.3
Iteration		96	115

- Martijn did a thorough comparison between ILU and Block Jacobi
- Can deflation further reduce the iterations required for convergence?

- Short review of Deflation
 - Split solution space into 2 complementary subspaces through projection

$$x = (I - Q_D)x + Q_D x$$

Define the projectors

 $x = (I - Q_D)x + Q_D x$ $P_D = I - AZE^{-1}Y^T$ $Q_D = I - ZE^{-1}Y^T A$

Consider
Ax = (I - P_D)Ax + P_DAx
P_DAx = P_Db
x = ZE⁻¹Y^Tb + Q_Dx

 $x = (I - Q_D)x + Q_D x$ $P_D = I - AZE^{-1}Y^T$ $Q_D = I - ZE^{-1}Y^T A$ \downarrow $P_D A x = P_D b$

Choice of deflation subspace Z and Y
 Space spanned by eigenvectors of A corresponding to smallest eigenvalues
 Effect is to shift the small eigenvalues to 0 while leaving the other eigenvalues unchanged

 $x = (I - Q_D)x + Q_D x$ $P_D = I - AZE^{-1}Y^T$ $Q_D = I - ZE^{-1}Y^T A$ \downarrow $P_D A x = P_D b$

Choice of deflation subspace Z and Y Subdomain decomposition

Numerical Results

Further analysis of why deflation do not provide any improvement

Further analysis of why deflation do not provide any improvement

Numerical Results

	Matrix	IDR(10) with block jacobi	IDR(10) with subdomain deflation	IDR(10) with eigenvectors deflation		need to improve the time to
Timing for preconditioning (s)	Steadycav1 N=4620	0.65	0.69 BJ 0.13 D	0.69 BJ 2.25 D	*	construct the
Timing for solving (s)		0.49	0.44	0.29	de de	deflation space
Total time (s)		1.13	1.26	3.23		
Iteration		45 <	41	24		Reduction!
Timing for preconditioning (s)	FATIMA 7894 N=7894	7.7	8.0 BJ 1.1 D	8.0BJ 52.5D		
Timing for solving (s)		10.1	10.2	7.8		
Total time (s)		17.8	19.3	68.3		
Iteration		84 <	86	66		

But there's a

Leslie GreengardVladimir RokhlinNew York UniversityYale University

1996

- Speed up matrix-vector multiplication from O(N²) to O(NlogN) or O(N)
- Exploit the hierarchical structure of the matrix
- What is the hierarchical structure?

Hierarchical Structure

First, this is an example of the hierarchical splitting of a

Hierarchical Structure

All test matrices have the same hierarchical structure

1000 2000 3000 4000 5000 5000

12 = 19574967

2000 3000 4000

1000 2000 3000 4000 50

17 = 14901954

1000 2000 3000 4000 5000 600. nz = 20450640

- Why is the blocks of low rank?
- How can we use the fact that the blocks are low rank?

Recall that each element of our matrix A is:

 $a(x_i, x_j) = \int_{S_i} q^*(x_i, x_j) dS \text{ or } \int_{S_i} u^*(x_i, x_j) dS$

$$\Box \text{ Let K}(\mathbf{x},\mathbf{y}) = \mathbf{a}(x_i, x_j)$$

□ And apply Taylor Expansion, centred around (c_{σ}, c_{τ})

$$K(x,y) = \sum_{l=0}^{p-1} \frac{1}{l!} \left[(x - c_{\sigma})\partial_{x} + (y - c_{\tau})\partial_{y} \right]^{l} K(c_{\sigma} - c_{\tau}) + R_{p}(x,y)$$

$$\approx 0 \ if$$

$$\frac{|(x - c_{\sigma}) + (y - c_{\tau})|}{|x - y|} < 1$$

Applying binomial expansion and simplifying:

Applying binomial expansion and simplifying:

$$K(x,y) = \sum_{m=0}^{l+m} \sum_{l=-m}^{p-1-m} \frac{1}{m! \, l!} \partial_x^l \partial_y^m K(c_\sigma - c_\tau) (x - c_\sigma)^l (y - c_\tau)^m$$

Thus for each block, we can define upper triangular matrix $S^{\sigma,\tau} \in \mathbb{C}^{pxp}$

$$s_{l,m} = \begin{cases} \frac{1}{l!\,m!} \partial_x^l \partial_y^m K(c_\sigma, c_\tau) & if & if \ 0 \le l+m \le p-1 \\ 0 & else \end{cases}$$

Applying binomial expansion and simplifying:

$$K(x,y) = \sum_{m=0}^{l+m} \sum_{l=-m}^{p-1-m} \frac{1}{m! \, l!} \partial_x^l \partial_y^m K(c_\sigma - c_\tau) (x - c_\sigma)^l (y - c_\tau)^m \qquad b_y$$

Then we define 2 matrices, $\Psi^{\tau} \in \mathbb{C}^{b_{\mathcal{Y}} x p}$, $\Psi^{\sigma} \in \mathbb{C}^{b_{\mathcal{X}} x p}$

$$\psi_{i \times l}^{\sigma} = (x - c_{\sigma})^{l}, \qquad x = X(i),$$

where $\frac{\sigma N}{2^{l}} \le i \le \frac{\sigma N}{2^{l}} + b$

 $\psi_{j \times m}^{\tau} = (y - c_{\tau})^{m}, \qquad y = X(j),$ where $\frac{\sigma N}{2^{l}} \le j \le \frac{\sigma N}{2^{l}} + b$

Ν

 $M_l \approx \sum \widetilde{M}_{\sigma,\tau}(l)$

Each admissible block can be written as: $M_{\sigma,\tau}(l) \approx \widetilde{M}_{\sigma,\tau}(l) = (\Psi^{\sigma})S^{\sigma,\tau}(\Psi^{\tau})^{T}$

Each block in the same row has the same Ψ^{σ} , and in the same col with the same Ψ^{τ}

39

Consider now the matrix vector multiplication Ax

Consider now the matrix vector multiplication Ax

 $Ax \approx \sum_{l=2}^{n} \widetilde{M}_{l} x + N_{n} x$

It can be shown that N_n is a sparse matrix with at most cxN non zero elements

Consider now the matrix vector multiplication Ax

$$Ax \approx \sum_{l=2}^{n} \widetilde{M}_{l} x + N_{n} x$$

Ax is now a O(N) operation

□ Other ways to obtain low rank approximation $M_{\sigma,\tau}(l) \approx \widetilde{M}_{\sigma,\tau}(l) = (\Psi^{\sigma}) S^{\sigma,\tau} (\Psi^{\tau})^{T}$

Without domain & kernel information, we can use lanzcos bidiagonalization to check for admissibility and obtain low rank approximation

$$M_{\sigma,\tau}(l) \approx \widetilde{M}_{\sigma,\tau}(l) = U_{\sigma,\tau} B_{\sigma,\tau} V_{\sigma,\tau}^{H}$$

But we can't form block diag matrix for M(l)
 Matrix vector multiplication has to be done like this:

$$\widetilde{M}_{l}x = \begin{bmatrix} \left(\widetilde{M}_{l}x\right)_{1} \\ \vdots \\ \left(\widetilde{M}_{l}x\right)_{2^{l}} \end{bmatrix} = \begin{bmatrix} \sum_{\tau=1}^{2^{l}} \widehat{U}_{1,\tau}B_{1,\tau}\widehat{V}_{1,\tau}^{H} x_{\tau} \\ \vdots \\ \sum_{\tau=1}^{2^{l}} \widehat{U}_{2^{l},\tau}B_{2^{l},\tau}\widehat{V}_{2^{l},\tau}^{H} x_{\tau} \end{bmatrix}$$

□ O(NlogN)

Numerical Results

			Steadycav1					FATIM	A_7894	
b	P	(t _{m-full}	t _{m-hie}	%	<i>t</i> _{split}	t _{m-full}	t _{m-hie}	%	t _{split}
				\smile	reduction				reduction	
100		10	0.043	0.034	20.93%	1.35	0.3	0.14	53.33%	11.03
	20		0.028	34.88%	2.22		0.12	60.00%	18.7	
		35		0.024	44.19%	3.79		0.13	56.67%	31.46
		50		0.024	44.19%	5.07		0.12	60.00%	48.6
200		10	0.034	0.032	5.88%	0.91		0.15	40.00%	9.4
		20		0.0286	15.88%	1.5		0.13	48.00%	15.01
		35		0.02	41.18%	2.34		0.11	56.00%	24.33
		50		0.018	47.06%	3.32	0.25	0.11	56.00%	33.25

.

Numerical Results – Storage Requirement

	Steadycav1	Steadycav2	Steadycav3	Steadycav4	FATIMA_7894
Storage requirement	0.17 GB	0.17 GB	0.17 GB	0.17 GB	0.99 GB
for full matrix					
Storage requirement	N: 0.086 GB	N: 0.085 GB	N: 0.084 GB	N: 0.08 GB	N: 0.56 GB
in hierarchical form	B: 3.71e-4 GB	B: 3.74e-4 GB	B: 3.81e-4 GB	B: 3.82e-4 GB	B: 5.28e-4 GB
(b=100, p=50)	U: 0.038 GB	U: 0.038 GB	U: 0.038 GB	U: 0.04 GB	U: 0.078 GB
	V: 0.037 GB	V: 0.037 GB	V: 0.038 GB	V: 0.039 GB	V: 0.077 GB
	Total: 0.16 GB	Total: 0.16 GB	Total: 0.16 GB	Total: 0.16 GB	Total: 0.72 GB
Decrease in storage	5.88%	5.88%	5.88%	5.88%	27.3%
required					

" We're under a lot of time-pressure here, so we'll need to jump to conclusions. "

Conclusion & Subsequent Plan

- Implement IDR(s) in place of GMRES
- Explore efficient implementation of deflation with eigenvectors
- □ Explore use of GPU
- Fast Multipole Method with lanzcos bidiagonalization
- Fast Multipole Method with domain and kernel information

