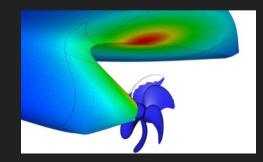
Efficiency Improvement of Panel Codes

Master Thesis Presentation 10th July 2015 Ang Yun Mei Elisa (4420888)


Supervisor:	Dr. ir. M.B. van Gijzen	TU Delft
MARIN supervisor:	Dr. ir. A. van der Ploeg	MARIN
Thesis Committee:	Prof. dr. ir. C. Vuik	TU Delft
	Dr. ir. H.X. Lin	TU Delft

TUDelft

Problem Statement

- MARIN uses Panel Codes to compute flows
- Panel Codes produces a dense linear system of Equation Ax=b
- There's a need to improve the performance of the dense linear solver

Presentation Overview

- Background and current status
- Strategy 1: Changing the solver
- Strategy 3: Using the hierarchical method to speedup matrix-vector multiplication
- Strategy 4: Changing the preconditioner to hierarchical-LU preconditioner
- O Conclusion and future work

Background

Before 2012: Direct Solvers or GMRES with ILU

2012 till now: GMRES with block Jacobi (Work of M. de Jong)

Sept 2014: Project Literature Review commence

3 strategies were identified

- 1. Replacing Solver: GMRES with IDR(s)
- 2. Updating of current block Jacobi preconditioner to take variable size blocks
- 3. Using hierarchical method to speed up matrix-vector multiplication

During the course of the project, the forth strategy was found:

> 4. Hierarchical-LU Preconditioner

Test matrices

• The same test matrices as what Martijn are used here too:

Name	Size	Real/Complex
Steadycav1	4620	Real
Steadycav2	4620	Real
Steadycav3	4620	Real
Steadycav4	4649	Real
Passcal	4400	Real
FATIMA_7894	7894	Complex
FATIMA_20493	20493	Complex

Current Status

• Code from work of Martijn de Jong were ran in our system to produce the following baseline results (the block Jacobi size resulting in the lowest time was chosen)

Test Matrix	NRHS	Jacobi Block Size	Time in parallel (4 cores, openmp)	Time in Serial
	1	4000	87.62 s	239.8 s
FATIMA_20493	7	4000	211.49 s	Not ran
	1	1000	6.36 s	21.3 s
FATIMA_7894	7	1000	25.74 s	Not ran
PASSCAL	1	500	0.72 s	2.2 s
Steadycav1	1	500	0.57 s	1.7 s
Steadycav2	1	500	0.60 s	1.8 s
Steadycav3	1	500	0.67 s	1.9 s
Steadycav4	1	500	0.67 s	2.0 s

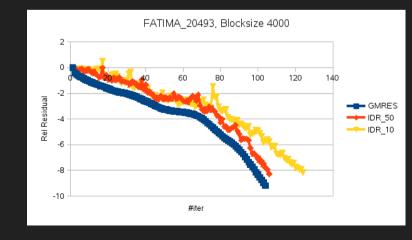
Strategy 1: Replacing GMRES with IDR(s)

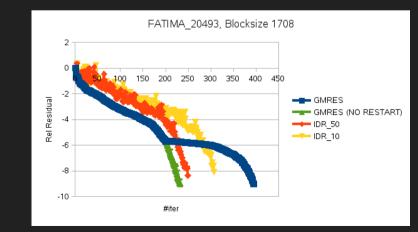
Brief overview of GMRES & IDR(s)
 Results

• By Yousef Saad and Martin H. Schultz in 1986

- O Advantages
 - Optimality
 - 1 matrix vector multiplication required per iteration
- O Disadvantages
 - O Long recurrence
 - For practical reason, GMRES with restart is often implemented

Extracted from: <u>http://www-</u> <u>users.cs.umn.edu/~saad/</u> & http://cpsc.yale.edu/people/martin-schultz


- By Peter Sonneveld and Martin van Gijzen in 2008.
- O Advantages
 - O Short recurrence
 - 1 matrix vector multiplication required per iteration
- O Disadvantages
 - O Non optimal
 - Hence, expected to require more iterations for convergence



RESULTS of GMRES vs IDR(s)

			GN	IRES		IDR(s)				
Matrix	Blocksize	Wall clock	c time (s)	#itor	Delerror	Wall clock	time (s)	#iter	Rel error	
		Solve	Total	#iter	Rel error	Solve	Total			
	1708	116.08	122.66	393	1.49E-06	73.94	80.45	260	6.20E-07	
FATIMA_204	4000	34.44	87.62	103	1.17E-07	36.57	89.75	110	2.45E-07	
93	6000	20.64	287.64	60	2.27E-07	23.07	292.51	66	1.36E-07	

TUDelft

Strategy 3: Hierarchical method to speed up matrix vector multiplication

Theory behind hierarchical matrices

- Low rank approximation
- How matrix-vector multiplication is speed up

Results

11

What is the hierarchical form of a matrix?

 M_{A}

 N_4

- Hierarchical matrices introduced by Wolfgang Hackbush in 1999 0
- Idea: \mathbf{O}

A

Matrices from BEM has a hierarchical structure

 M_2

Reduces total number of elements in a block from N^2 to 2Np

 $=U_{\sigma,\tau}($

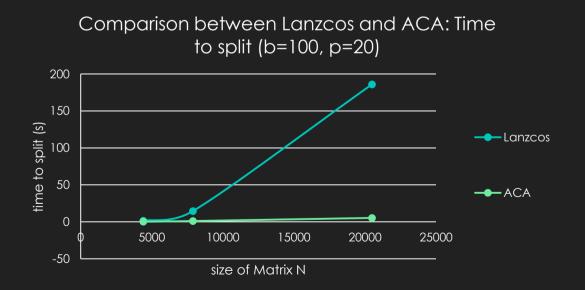
 $M_{\sigma,\tau}(l)$

 $M_{1,3}(2) \qquad \qquad M_{\sigma,\tau}(l) \approx \widetilde{M}_{\sigma,\tau}(l) = \sum_{k=1}^{p} u_k v_k^T = U_{\sigma,\tau} V_{\sigma,\tau}^T$ Reduces complexity of matrix-vector multiplication from $O(N^2)$ to O(NlogN)

 M_3

 $M_{7,1}(3)$

Low rank approximation


- Methods to perform low rank approximation
 - Singular Value Decomposition (SVD) $O(N^3)$

$$M = \begin{bmatrix} U \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \end{bmatrix} \begin{bmatrix} V \end{bmatrix}^T$$

• Lanzcos Bidiagonalization $O(N^2)$

$$M = \begin{bmatrix} U \end{bmatrix} \begin{bmatrix} b_{11} & & \\ b_{21} & \ddots & \\ & \ddots & \end{bmatrix} \begin{bmatrix} V \end{bmatrix}^T$$

• Adaptive Cross Appoximation (ACA) *O(N)*• Delft

- Introduced by Mario Bebendorf in 2000
- Approximate low rank blocks with outer products
- Main equations

$$\widetilde{M}_{\sigma,\tau}(l) = \sum_{k=1}^{p} u_k v_k^T$$

$$M = R + S, R_0 = M, S_0 = 0$$
$$\gamma_{k+1} = \frac{1}{R_k(i_{k+1}, j_{k+1})}$$

 $R_{k+1} = R_k - \gamma_{k+1} R_k (:, j_{k+1}) R_k (i_{k+1}, :)$

 $S_{k+1} = S_k + \gamma_{k+1} R_k (:, j_{k+1}) R_k (i_{k+1}, :)$

• Looking at the main equations in further details

$$M = R + S$$

$$\gamma_{k+1} = \frac{1}{R_k(i_{k+1}, j_{k+1})}$$

$$R_{k+1} = R_k - \frac{\gamma_{k+1}R_k(:, j_{k+1})R_k(i_{k+1}, :)}{S_{k+1} = S_k + \gamma_{k+1}R_k(:, j_{k+1})R_k(i_{k+1}, :)}$$

$$M = R + S$$

$$\gamma_{k+1} = \frac{1}{4}$$

$$S_0$$

$$R_k(i_{k+1}, :) = R_0(2, :)$$

$$\gamma_{k+1}R_k(:, j_{k+1})R_k(i_{k+1}, :) = \frac{1}{4}\begin{bmatrix}2\\4\end{bmatrix}\begin{bmatrix}3 & 4\end{bmatrix} = \begin{bmatrix}\frac{3}{2} & 2\\3 & 4\end{bmatrix}$$

$$\begin{bmatrix}-\frac{1}{2} & 0\\0 & 0\end{bmatrix}$$

$$\begin{bmatrix}\frac{3}{2} & 2\\3 & 4\end{bmatrix}$$

$$\begin{bmatrix}\frac{3}{2} & 2\\3 & 4\end{bmatrix}$$

 $R_k(:, j_{k+1})$ = R₀(:, 2)

Γ0

01

2

 R_1

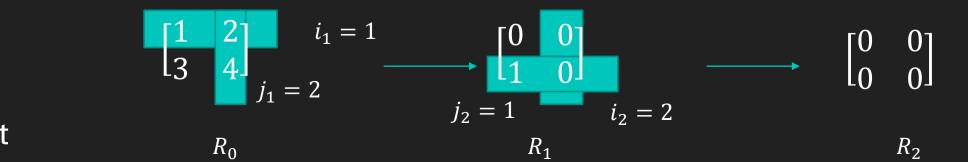
ŤUDelft

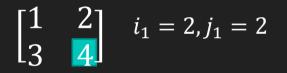
15

 $M \approx$

• Obtaining the low rank approximation

$$\widetilde{M} = \sum_{k=1}^{p} u_k v_k^T = S_p$$


$$M = R + S, R_0 = M, S_0 = 0$$
$$\gamma_{k+1} = \frac{1}{R_k(i_{k+1}, j_{k+1})}$$
$$R_{k+1} = R_k - \gamma_{k+1}R_k(:, j_{k+1})R_k(i_{k+1}, :)$$
$$S_{k+1} = S_k + \gamma_{k+1}R_k(:, j_{k+1})R_k(i_{k+1}, :)$$


elft

$$M = R + S, R_0 = M, S_0 = 0$$
$$\gamma_{k+1} = \frac{1}{R_k(i_{k+1}, j_{k+1})}$$
$$R_{k+1} = \gamma_{k+1}R_k(i_{k+1}, :)$$
$$R_{k+1} = R_k - u_{k+1}v_{k+1}$$
$$S_{k+1} = S_k + u_{k+1}v_{k+1}$$

• Choice of pivot rows and columns

- O Lowest residual if most dominant element of R_k is always chosen -> complete pivoting
 - Expensive $O(N^2)$ operation
- O Instead, use partial pivoting
 - Randomly set i_1
 - O Choose the largest element from that row $-> j_1$
 - O Choose the largest element from that col -> i_2
 - Whenever we have all zeros, choose the next available row/col

17

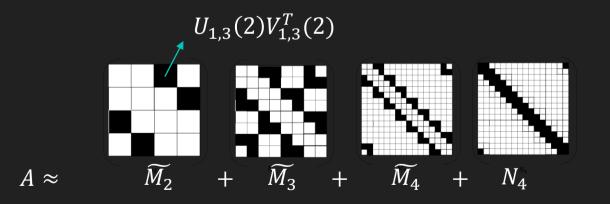
• Summary of the ACA algorithm

- O Initialization: $R_0 = M$, $S_0 = 0$, $i_1 = 1$
- For k=0,1,2,..., p
 - Find j_{k+1}

$$\circ \ \gamma_{k+1} = R_k(i_{k+1}, j_{k+1})$$

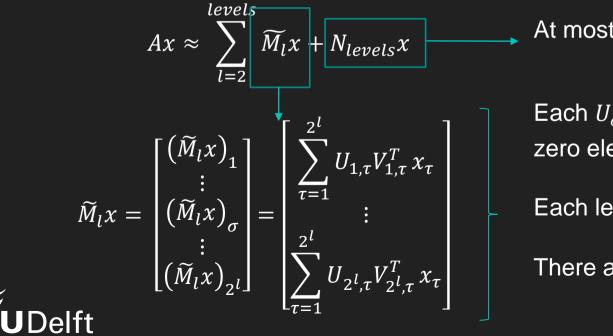
$$o v_{k+1} = \gamma_{k+1} R_k(i_{k+1}, :)$$

- $u_{k+1} = \overline{R_k(:,j_{k+1})}$
- O Compute new $R_{k+1} = R_k u_{k+1}v_{k+1}$


O If $||R_p|| \le \varepsilon ||M||$, then *M* is low rank. Its rank p approximation is

*f***U**Delft

Hierarchical form of the matrix


• With ACA, a matrix *A* can be brought into its hierarchical form

Hierarchical matrix-vector multiplication

• Matrix Vector multiplication can be approximated:

At most O(N) non zero elements $\rightarrow O(N)$

Each $U_{\sigma,\tau}(l)$ and $V_{\sigma,\tau}(l)$ has $\frac{N}{2^l} \times p$ non zero elements

Each level, $O(2^l)$ admissible blocks

There are at most logN levels

 $\rightarrow O(NlogN)$

O(NlogN)

Results

FATIMA_20493												
Block	Wall cloc	ck time (s)	//•1	Delerrer	Wall cloc	ck time (s)	#iter	Delerror				
Jacobi	Solve	Total	#iter	Rel error	Solve	Total		Rel error				
block size		DR(50) with c	lense matve	с	IDR	(50) with hier	archical matvec					
1708	1708248.87255.464000111.30164.81600068.48335.77		259	2.47E-07	109.23	123.10	258	6.15E-01				
4000			109 1.6	1.66E-07	53.60	113.88	113	6.15E-01				
6000			66 1.36E-07		31.68 304.75		65	6.15E-01				

Solve time drops by

half

But accuracy is unacceptable...

TUDelft

Strategy 4: Hierarchical LUpreconditioner

Theory

22

Integration with solver


Results in Serial

Results in parallel

• Idea: decompose a hierarchical matrix A into hierarchical lower and upper triangular matrix L and U

Extracted from: Börm, S., Grasedyck, L. & Hackbush, W. 2005. Hierarchical Matrices (Lecture Notes).

• This is done recursively. Imagine the matrix A split into 4 blocks

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \times \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} = \begin{bmatrix} L_{11}U_{11} & L_{11}U_{12} \\ L_{21}U_{11} & L_{21}U_{12} + L_{22}U_{22} \end{bmatrix}$$

Theory

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \times \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} = \begin{bmatrix} L_{11}U_{11} & L_{11}U_{12} \\ L_{21}U_{11} & L_{21}U_{12} + L_{22}U_{22} \end{bmatrix}$$

- The problem of solving for L and U is divided into four sub problems
 - $1. \quad A_{11} = L_{11} U_{11} \quad \longrightarrow \quad$
 - 2. $A_{12} = L_{11}U_{12}$
 - 3. $A_{21} = L_{21}U_{11}$
 - 4. $A_{22} L_{21}U_{12} = L_{22}U_{22}$

Recursively do hierarchical LU decomposition

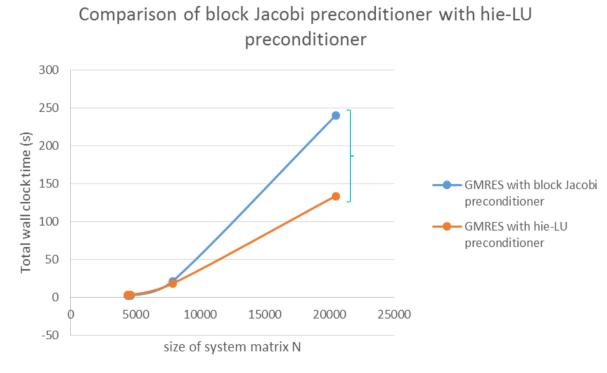
Hierarchical Lower Triangular Solver

Hierarchical Upper Triangular Solver

Rounded Subtraction Recursively do hierarchical LU decomposition

Theory

Hierarchical Matrix Arithmetic have to be defined


Integration with solver

 $(LU)^{-1}Ax = (LU)^{-1}b$

- First apply hierarchical lower triangular solver to obtain $L^{-1}b$
- Then apply hierarchical upper triangular solver to obtain $U^{-1}L^{-1}b$
- Same goes for vector Ax

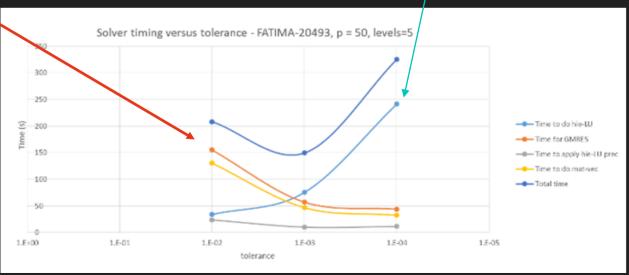
Results in Serial

- Time required to solve the largest FATIMA_20493 is 44% less
- Block Jacobi scales with

$$O\left(\left(\frac{N}{number of blocks}\right)^3\right)$$

- Hie-LU scales with $O(N(logN)^2)$
- Time saved is expected to increase with increase in problem size

Results in Serial

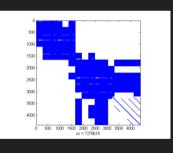

	Results using block	(Jacobi	Preconditioner	Results using hie-LU preconditioner							
	GMRES		IDR(s)		Variables for	GMRES		IDR(s)			
DIOCK-SIZE	Wall clock time (s)	# iters	Wall clock time (s)	# iters	hie_LU	Wall clock time (s)	# iters	Wall clock time (s)	# iters		
					Tol: 1e-03						
4000	239.8	103	249.836	110	b = 200	134.74	51	140.35	55		
					p = 50						
					Tol: 1e-03						
1000	21.3	121	23.23	133	b = 200	18.72	11	19.03	11		
					p = 50						
L 500	500 2.2		2.7	106	Tol: 1e-02						
		91			b = 100	2.62	44	2.72	46		
					p = 20						
					Tol: 1e-02						
500	1.7	61	1.9	68	b = 100	2.65	32	2.86	37		
					p = 30						
	1000	Block-size GMRES Wall clock time (s) Wall clock time (s) 4000 239.8 1000 21.3 500 2.2	Block-size GMRES Wall clock time (s) # iters 4000 239.8 103 1000 21.3 121 500 2.2 91	Block-size Wall clock time (s) # iters Wall clock time (s) 4000 239.8 103 249.836 1000 21.3 121 23.23 500 2.2 91 2.7	Block-size GMRES IDR(s) Wall clock time (s) # iters Wall clock time (s) # iters 4000 239.8 103 249.836 110 1000 21.3 121 23.23 133 500 2.2 91 2.7 106	Block-sizeGMRESVariables for hie_LUBlock-sizeWall clock time (s)# itersWall clock time (s)# itersMaideles for hie_LU4000239.8103249.836110500100021.312123.231133500100021.312123.231335005002.2912.71065005001.7611.968500	$\begin{array}{c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$		

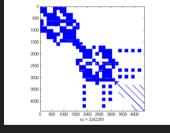
Influence of tolerance tol-hie

• Tol_hie controls how accurate the low rank approximation is to each matrix block

O The lower it is, the more the number of admissible blocks

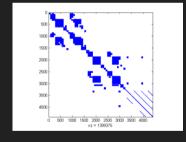
O But the less accurate it is, hence, the more the number of iterations required for convergence





Influence of minimum block size b

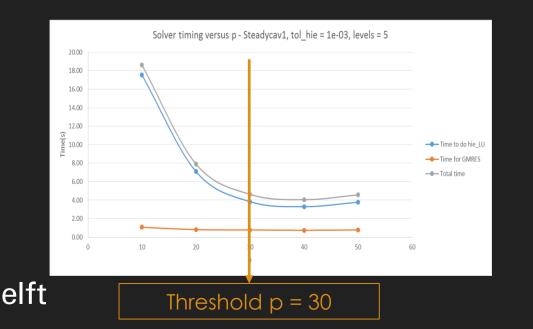
• The minimum block size b controls the depth of recursion

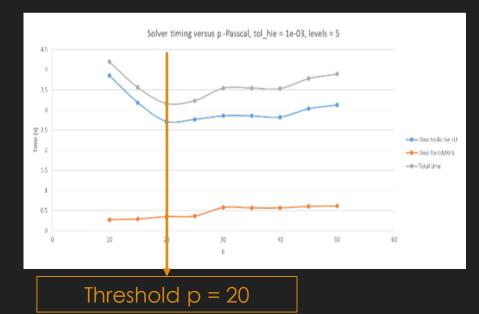

- An additional level of recursion implies additional work and storage
- O But it also implies more blocks become admissible

Levels = 4 Hie-LU time = 4.89s

Levels = 5 Hie-LU time = 4.02s

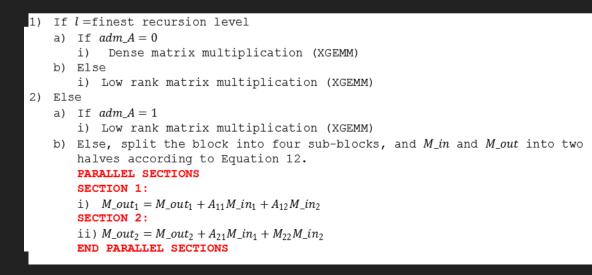
Levels = 6 Hie-LU time = 5.64s


Passcal, p = 35, tol_hie = 1e-4


Influence of rank of low rank approximation p

• Value of p is very dependent on the inherent rank of the off diagonal blocks

• For example, Steadycav and PASSCAL shown


• As p increases beyond threshold p, time could increase or decrease slightly

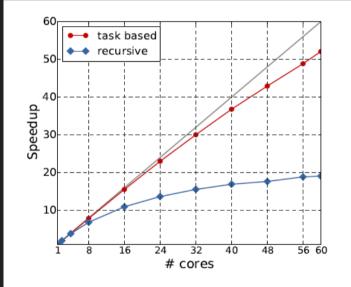
Parallel implementation

- Because block Jacobi's main benefit is its parallelizability, it is of interest to compare the parallel performance
- Hie-LU is parallelized as follow
- Other routines are also parallelized using the "Sections" construct

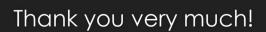
Results in parallel

		Resul	ts using block	Jacobi pr	econditioner		Results using hie-LU preconditioner					
			GMRE	S	IDR((s)) / auticula la a fa r	GMR	ES	IDR	(s)	
Matrix	nrhs	Block-size	Wall clock time (s)	# iters	Wall clock time (s)	# iters	Variables for hie_LU	Wall clock time (s)	# iters	Wall clock time (s)	# iters	
FATIMA_2049	1	4000 for GMRES 1708 for IDR(s)	87.62	103	80.45	260	Tol: 1e-03 b = 200 p = 50	47.48	51	50.14	55 —	40 % savings
3	7	4000	211.49	103	220.48	112	Tol: 1e-04 b = 100 p = 30	108.96	30	116.20	32 —	48 % savings
	1	1000	6.36	121	6.55	133	Tol: 1e-03 b = 200 p = 50	6.44	11	6.57	11	
FATIMA_7894	7	1000	25.74	121	28.18	136	Tol: 1e-03 b = 200 p = 40	9.17	11	9.74	11	65 % savings
PASSCAL	1	500	0.72	91	0.76	96	Tol: 1e-03 b = 100 p = 20	1.42	11	1.49	11	
STEADYCAV1	1	500	0.57	61	0.58	62	Tol: 1e-02 b = 100 p = 30	1.934	32	2.12	37	33

Conclusion


Conclusion

Final strategy recommended: IDR(s) with hierarchical LU preconditioner


Recommendations

- Better parallelization strategy
 - Task based parallelization
 - Work by Ronald Kriemann has shown that optimal speedup with good scaling behaviour is possible using task-based parallelization strategy
 - Use of GPUs
 - The most expensive parts of the hie-LU algorithm is at its leaves, where dense matrix operations need to be carried out
 - If MAGMA library can be used, it could reduce the time significantly
- To reduce the complexity further, consider Fast Multipole Method or H2 matrix

Extracted from: Kriemaan, R. 2014. H-LU Factorization on Many-Core Systems. Computing and Visualization in Science, Vol 16, Issue 3.

