
1

Efficiency Improvement
of Panel Codes

Master Thesis Presentation

10th July 2015

Ang Yun Mei Elisa (4420888)

Supervisor: Dr. ir. M.B. van Gijzen TU Delft

MARIN supervisor: Dr. ir. A. van der Ploeg MARIN

Thesis Committee: Prof. dr. ir. C. Vuik TU Delft

Dr. ir. H.X. Lin TU Delft

2

Problem Statement

 MARIN uses Panel Codes to compute flows

 Panel Codes produces a dense linear system of Equation Ax=b

 There’s a need to improve the performance of the dense linear solver

3

Presentation Overview

 Background and current status

 Strategy 1: Changing the solver

 Strategy 3: Using the hierarchical method to speedup matrix-vector

multiplication

 Strategy 4: Changing the preconditioner to hierarchical-LU preconditioner

 Conclusion and future work

4

Background

Sept 2014:
Project

Literature
Review

commence

2012 till now:

GMRES with
block Jacobi

(Work of M. de
Jong)

Before 2012:

Direct Solvers
or GMRES with

ILU

3 strategies were identified

1. Replacing Solver: GMRES

with IDR(s)

2. Updating of current block

Jacobi preconditioner to

take variable size blocks

3. Using hierarchical method

to speed up matrix-vector

multiplication

During the course of the project,

the forth strategy was found:

4. Hierarchical- LU

Preconditioner

5

Test matrices

 The same test matrices as what Martijn are used here too:

Name Size Real/Complex

Steadycav1 4620 Real

Steadycav2 4620 Real

Steadycav3 4620 Real

Steadycav4 4649 Real

Passcal 4400 Real

FATIMA_7894 7894 Complex

FATIMA_20493 20493 Complex

6

Current Status

 Code from work of Martijn de Jong were ran in our system to produce the following
baseline results (the block Jacobi size resulting in the lowest time was chosen)

Test Matrix NRHS Jacobi Block Size Time in parallel (4 cores, openmp) Time in Serial

FATIMA_20493
1 4000 87.62 s 239.8 s

7 4000 211.49 s Not ran

FATIMA_7894
1 1000 6.36 s 21.3 s

7 1000 25.74 s Not ran

PASSCAL 1 500 0.72 s 2.2 s

Steadycav1 1 500 0.57 s 1.7 s

Steadycav2 1 500 0.60 s 1.8 s

Steadycav3 1 500 0.67 s 1.9 s

Steadycav4 1 500 0.67 s 2.0 s

7

Strategy 1: Replacing GMRES with

IDR(s)

• Brief overview of GMRES & IDR(s)

• Results

8

GMRES

 By Yousef Saad and Martin H. Schultz in 1986

 Advantages

Optimality

 1 matrix vector multiplication required per iteration

 Disadvantages

 Long recurrence

 For practical reason, GMRES with restart is often implemented Extracted from: http://www-

users.cs.umn.edu/~saad/ &

http://cpsc.yale.edu/people/martin-schultz

http://www-users.cs.umn.edu/~saad/
http://cpsc.yale.edu/people/martin-schultz

9

IDR(s)

 By Peter Sonneveld and Martin van Gijzen in

2008.

 Advantages

 Short recurrence

 1 matrix vector multiplication required per iteration

 Disadvantages

Non optimal

Hence, expected to require more iterations for

convergence

Extracted from:

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

10

RESULTS of GMRES vs IDR(s)

Matrix Blocksize

GMRES IDR(s)

Wall clock time (s)
#iter Rel error

Wall clock time (s)
#iter Rel error

Solve Total Solve Total

FATIMA_204

93

1708 116.08 122.66 393 1.49E-06 73.94 80.45 260 6.20E-07

4000 34.44 87.62 103 1.17E-07 36.57 89.75 110 2.45E-07

6000 20.64 287.64 60 2.27E-07 23.07 292.51 66 1.36E-07

11

Strategy 3: Hierarchical method to

speed up matrix vector

multiplication

• Theory behind hierarchical matrices

• Low rank approximation

• How matrix-vector multiplication is speed up

• Results

12

What is the hierarchical form of a matrix?

 Hierarchical matrices introduced by Wolfgang Hackbush in 1999

 Idea:

 Matrices from BEM has a hierarchical structure

 Reduces complexity of matrix-vector multiplication from 𝑂(𝑁2) to 𝑂(𝑁𝑙𝑜𝑔𝑁)

A =

𝑀2 𝑀3 𝑀4 𝑁4

𝑀𝜎,𝜏 𝑙 ≈ 𝑀𝜎,𝜏 𝑙 =

𝑘=1

𝑝

𝑢𝑘𝑣𝑘
𝑇 = 𝑈𝜎,𝜏𝑉𝜎,𝜏

𝑇

𝑀1,3(2)
𝑀7,1(3)

Reduces total

number of elements

in a block from 𝑁2 to

2𝑁𝑝

𝑀𝜎,𝜏(𝑙) =𝑈𝜎,𝜏(𝑙)

p

p

Extracted from:

www.mis.mpg.de

http://www.mis.mpg.de/institute/presse/reports.html

13

Low rank approximation

 Methods to perform low rank approximation

 Singular Value Decomposition (SVD) 𝑂(𝑁3)

 Lanzcos Bidiagonalization 𝑂(𝑁2)

 Adaptive Cross Appoximation (ACA) 𝑂(𝑁)

-50

0

50

100

150

200

0 5000 10000 15000 20000 25000

ti
m

e
 t

o
 s

p
lit

 (
s)

size of Matrix N

Comparison between Lanzcos and ACA: Time

to split (b=100, p=20)

Lanzcos

ACA

𝑀 = 𝑈
𝜎1

⋱
𝜎𝑁

𝑉 𝑇

𝑀 = 𝑈

𝑏11
𝑏21 ⋱

⋱ 𝑏𝑁𝑁

𝑉 𝑇

14

Adaptive Cross Approximation (ACA)

 Introduced by Mario Bebendorf in 2000

 Approximate low rank blocks with outer products

 Main equations

 𝑀𝜎,𝜏 𝑙 =

𝑘=1

𝑝

𝑢𝑘𝑣𝑘
𝑇

𝑀 = 𝑅 + 𝑆, 𝑅0 = 𝑀, 𝑆0 = 0

𝑅𝑘+1 = 𝑅𝑘 − 𝛾𝑘+1𝑅𝑘 : , 𝑗𝑘+1) 𝑅𝑘(𝑖𝑘+1, :)

𝛾𝑘+1 =
1

𝑅𝑘 𝑖𝑘+1, 𝑗𝑘+1

𝑆𝑘+1 = 𝑆𝑘 + 𝛾𝑘+1𝑅𝑘 : , 𝑗𝑘+1) 𝑅𝑘(𝑖𝑘+1, :)

15

Adaptive Cross Approximation (ACA)

𝑀 = 𝑅 + 𝑆

𝑅𝑘+1 = 𝑅𝑘 − 𝛾𝑘+1𝑅𝑘 : , 𝑗𝑘+1) 𝑅𝑘(𝑖𝑘+1, :)

𝛾𝑘+1 =
1

𝑅𝑘 𝑖𝑘+1, 𝑗𝑘+1

𝑆𝑘+1 = 𝑆𝑘 + 𝛾𝑘+1𝑅𝑘 : , 𝑗𝑘+1) 𝑅𝑘(𝑖𝑘+1, :)

1 2
3 4

𝑅0

𝑅𝑘 : , 𝑗𝑘+1
= R0(: , 2)

𝑅𝑘(𝑖𝑘+1, :)=

𝑅0(2, :)

𝛾𝑘+1 =
1

4

𝛾𝑘+1𝑅𝑘 : , 𝑗𝑘+1) 𝑅𝑘 𝑖𝑘+1, : =
1

4

2
4
3 4 =

3

2
2

3 4

−
1

2
0

0 0

𝑅1

 Looking at the main equations in further details 0 0
0 0

𝑆0

3

2
2

3 4

𝑆1

16

Adaptive Cross Approximation (ACA)

 Obtaining the low rank approximation

𝑀 = 𝑅 + 𝑆, 𝑅0 = 𝑀, 𝑆0 = 0

𝑅𝑘+1 = 𝑅𝑘 − 𝛾𝑘+1𝑅𝑘 : , 𝑗𝑘+1) 𝑅𝑘(𝑖𝑘+1, :)

𝛾𝑘+1 =
1

𝑅𝑘 𝑖𝑘+1, 𝑗𝑘+1

𝑆𝑘+1 = 𝑆𝑘 + 𝛾𝑘+1𝑅𝑘 : , 𝑗𝑘+1) 𝑅𝑘(𝑖𝑘+1, :)

𝑢𝑘+1 = 𝑅𝑘 : , 𝑗𝑘+1
𝑣𝑘+1 = 𝛾𝑘+1𝑅𝑘(𝑖𝑘+1, :)

M ≈ 𝑀 =

𝑘=1

𝑝

𝑢𝑘𝑣𝑘
𝑇

𝑀 = 𝑅 + 𝑆, 𝑅0 = 𝑀, 𝑆0 = 0

𝑅𝑘+1 = 𝑅𝑘 − 𝑢𝑘+1𝑣𝑘+1

𝛾𝑘+1 =
1

𝑅𝑘 𝑖𝑘+1, 𝑗𝑘+1

𝑆𝑘+1 = 𝑆𝑘 + 𝑢𝑘+1𝑣𝑘+1

= 𝑆𝑝

17

Adaptive Cross Approximation (ACA)

 Choice of pivot rows and columns

 Lowest residual if most dominant element of 𝑅𝑘 is always chosen -> complete pivoting

 Expensive 𝑂(𝑁2) operation

 Instead, use partial pivoting

 Randomly set 𝑖1

 Choose the largest element from that row -> 𝑗1

 Choose the largest element from that col -> 𝑖2

 Whenever we have all zeros, choose the next available row/col

1 2
3 4

𝑖1 = 2, 𝑗1 = 2

1 2
3 4

𝑖1 = 1

𝑗1 = 2

0 0
1 0

𝑅0 𝑅1

𝑖2 = 2

0 0
0 0

𝑅2

𝑗2 = 1

18

Adaptive Cross Approximation (ACA)

 Summary of the ACA algorithm

 Initialization: 𝑅0 = 𝑀, 𝑆0 = 0, 𝑖1 = 1

 For k=0,1,2,…, p

 Find 𝑗𝑘+1

 𝛾𝑘+1 = 𝑅𝑘(𝑖𝑘+1, 𝑗𝑘+1)

 𝑣𝑘+1 = 𝛾𝑘+1𝑅𝑘(𝑖𝑘+1, :)

 𝑢𝑘+1 = 𝑅𝑘(: , 𝑗𝑘+1)

 Compute new 𝑅𝑘+1 = 𝑅𝑘 − 𝑢𝑘+1𝑣𝑘+1

 If 𝑅𝑝 ≤ 𝜀 𝑀 , then 𝑀 is low rank. Its rank p approximation is

𝑘=1

𝑝

𝑢𝑘𝑣𝑘
𝑇

19

Hierarchical form of the matrix

 With ACA, a matrix 𝐴 can be brought into its hierarchical form

 𝑀2 𝑀3 𝑀4 𝑁4𝐴 ≈ + + +

𝑈1,3 2 𝑉1,3
𝑇 (2)

20

Hierarchical matrix-vector multiplication

 Matrix Vector multiplication can be approximated:

𝐴𝑥 ≈

𝑙=2

𝑙𝑒𝑣𝑒𝑙𝑠

 𝑀𝑙𝑥 + 𝑁𝑙𝑒𝑣𝑒𝑙𝑠𝑥

 𝑀𝑙𝑥 =

 𝑀𝑙𝑥 1
⋮
 𝑀𝑙𝑥 𝜎
⋮
 𝑀𝑙𝑥 2𝑙

=

𝜏=1

2𝑙

𝑈1,𝜏𝑉1,𝜏
𝑇 𝑥𝜏

⋮

𝜏=1

2𝑙

𝑈2𝑙,𝜏𝑉2𝑙,𝜏
𝑇 𝑥𝜏

At most 𝑂 𝑁 non zero elements

→ 𝑂(𝑁)

Each 𝑈𝜎,𝜏(𝑙) and 𝑉𝜎,𝜏 𝑙 has
𝑁

2𝑙
× 𝑝 non

zero elements

Each level, O 2𝑙 admissible blocks

There are at most 𝑙𝑜𝑔𝑁 levels

→ 𝑂(𝑁𝑙𝑜𝑔𝑁)

𝑂(𝑁𝑙𝑜𝑔𝑁)

21

Results

FATIMA_20493

Block

Jacobi

block size

Wall clock time (s)
#iter Rel error

Wall clock time (s)
#iter Rel error

Solve Total Solve Total

IDR(50) with dense matvec IDR(50) with hierarchical matvec

1708 248.87 255.46 259 2.47E-07 109.23 123.10 258 6.15E-01

4000 111.30 164.81 109 1.66E-07 53.60 113.88 113 6.15E-01

6000 68.48 335.77 66 1.36E-07 31.68 304.75 65 6.15E-01

Solve time drops by

half

But accuracy is

unacceptable…

22

Strategy 4: Hierarchical LU-

preconditioner

Theory

Integration with solver

Results in Serial

Results in parallel

23

Theory

 Idea: decompose a hierarchical matrix A into hierarchical lower and upper triangular
matrix L and U

 This is done recursively. Imagine the matrix A split into 4 blocks

𝐴 =
𝐴11 𝐴12
𝐴21 𝐴22

=
𝐿11 0
𝐿21 𝐿22

×
𝑈11 𝑈12
0 𝑈22

=
𝐿11𝑈11 𝐿11𝑈12
𝐿21𝑈11 𝐿21𝑈12 + 𝐿22𝑈22

Extracted from: Börm, S., Grasedyck, L. & Hackbush, W. 2005. Hierarchical

Matrices (Lecture Notes).

24

Theory

 The problem of solving for L and U is divided into four sub problems

1. 𝐴11 = 𝐿11𝑈11

2. 𝐴12 = 𝐿11𝑈12

3. 𝐴21 = 𝐿21𝑈11

4. 𝐴22 − 𝐿21𝑈12 = 𝐿22𝑈22

𝐴 =
𝐴11 𝐴12
𝐴21 𝐴22

=
𝐿11 0
𝐿21 𝐿22

×
𝑈11 𝑈12
0 𝑈22

=
𝐿11𝑈11 𝐿11𝑈12
𝐿21𝑈11 𝐿21𝑈12 + 𝐿22𝑈22

Recursively do hierarchical LU decomposition

Hierarchical Lower Triangular Solver

Hierarchical Upper Triangular Solver

Rounded Subtraction
Recursively do hierarchical LU decomposition

25

Theory

ℎ𝑖𝑒_𝐿𝑈 ℎ𝑖𝑒_𝐿𝑇𝑆

ℎ𝑖𝑒_𝐿𝑈ℎ𝑖𝑒_𝑈𝑇𝑆

ℎ𝑖𝑒_𝐿𝑈 ℎ𝑖𝑒_𝐿𝑇𝑆

ℎ𝑖𝑒_𝐿𝑈ℎ𝑖𝑒_𝑈𝑇𝑆

ℎ𝑖𝑒_𝐿𝑈 ℎ𝑖𝑒_𝐿𝑇𝑆

ℎ𝑖𝑒_𝐿𝑈ℎ𝑖𝑒_𝑈𝑇𝑆

ℎ𝑖𝑒_𝐿𝑈 ℎ𝑖𝑒_𝐿𝑇𝑆

ℎ𝑖𝑒_𝑈𝑇𝑆 ℎ𝑖𝑒_𝐿𝑈

ℎ𝑖𝑒_𝐿𝑈 ℎ𝑖𝑒_𝐿𝑇𝑆

ℎ𝑖𝑒_𝑈𝑇𝑆 ℎ𝑖𝑒_𝐿𝑈

ℎ𝑖𝑒_𝐿𝑈 ℎ𝑖𝑒_𝐿𝑇𝑆

ℎ𝑖𝑒_𝑈𝑇𝑆 ℎ𝑖𝑒_𝐿𝑈

ℎ𝑖𝑒_𝐿𝑈 ℎ𝑖𝑒_𝐿𝑇𝑆

ℎ𝑖𝑒_𝑈𝑇𝑆 ℎ𝑖𝑒_𝐿𝑈

Hierarchical Matrix Arithmetic have to be defined

1. 𝐴11 = 𝐿11𝑈11

2. 𝐴12 = 𝐿11𝑈12

3. 𝐴21 = 𝐿21𝑈11

4. 𝐴22 − 𝐿21𝑈12 = 𝐿22𝑈22

26

Integration with solver

 First apply hierarchical lower triangular solver to obtain 𝐿−1𝑏

 Then apply hierarchical upper triangular solver to obtain 𝑈−1𝐿−1𝑏

 Same goes for vector 𝐴𝑥

𝐿𝑈 −1𝐴𝑥 = 𝐿𝑈 −1𝑏

27

Results in Serial

 Time required to solve the

largest FATIMA_20493 is 44% less

 Block Jacobi scales with

𝑂
𝑁

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠

3

 Hie-LU scales with 𝑂 𝑁 𝑙𝑜𝑔𝑁 2

 Time saved is expected to
increase with increase in
problem size

28

Results in Serial

Results using block Jacobi Preconditioner Results using hie-LU preconditioner

Matrix Block-size
GMRES IDR(s) Variables for

hie_LU

GMRES IDR(s)

Wall clock time (s) # iters Wall clock time (s) # iters Wall clock time (s) # iters Wall clock time (s) # iters

FATIMA_20493 4000 239.8 103 249.836 110

Tol: 1e-03

b = 200

p = 50

134.74 51 140.35 55

FATIMA_7894 1000 21.3 121 23.23 133

Tol: 1e-03

b = 200

p = 50

18.72 11 19.03 11

PASSCAL 500 2.2 91 2.7 106

Tol: 1e-02

b = 100

p = 20

2.62 44 2.72 46

STEADYCAV1 500 1.7 61 1.9 68

Tol: 1e-02

b = 100

p = 30

2.65 32 2.86 37

29

Influence of tolerance tol-hie

 Tol_hie controls how accurate the low rank approximation is to each matrix block

 The lower it is, the more the number of admissible blocks

 But the less accurate it is, hence, the more the number of iterations required for convergence

30

Influence of minimum block size b

 The minimum block size b controls the depth of recursion

 An additional level of recursion implies additional work and storage

 But it also implies more blocks become admissible

Passcal, p = 35, tol_hie = 1e-4

Levels = 4 Levels = 5 Levels = 6

Hie-LU time = 4.89s Hie-LU time = 4.02s Hie-LU time = 5.64s

31

Influence of rank of low rank

approximation p

 Value of p is very dependent on the inherent rank of the off diagonal blocks

 For example, Steadycav and PASSCAL shown

 As p increases beyond threshold p, time could increase or decrease slightly

Threshold p = 30 Threshold p = 20

32

Parallel implementation

 Because block Jacobi’s main benefit is its parallelizability, it is of interest to compare the
parallel performance

 Hie-LU is parallelized as follow

 Other routines are also parallelized using the “Sections” construct

33

Results in parallel
Results using block Jacobi preconditioner Results using hie-LU preconditioner

Matrix nrhs Block-size

GMRES IDR(s)
Variables for

hie_LU

GMRES IDR(s)

Wall clock

time (s)
iters

Wall clock

time (s)
iters

Wall clock

time (s)
iters

Wall clock

time (s)
iters

FATIMA_2049

3

1
4000 for GMRES

1708 for IDR(s)
87.62 103 80.45 260

Tol: 1e-03

b = 200

p = 50

47.48 51 50.14 55

7 4000 211.49 103 220.48 112

Tol: 1e-04

b = 100

p = 30

108.96 30 116.20 32

FATIMA_7894

1 1000 6.36 121 6.55 133

Tol: 1e-03

b = 200

p = 50

6.44 11 6.57 11

7 1000 25.74 121 28.18 136

Tol: 1e-03

b = 200

p = 40

9.17 11 9.74 11

PASSCAL 1 500 0.72 91 0.76 96

Tol: 1e-03

b = 100

p = 20

1.42 11 1.49 11

STEADYCAV1 1 500
0.57

61
0.58 62

Tol: 1e-02

b = 100

p = 30

1.934 32 2.12 37

65 %

savings

48 %

savings

40 %

savings

34

Conclusion

35

Conclusion

Final strategy recommended:

IDR(s) with hierarchical LU preconditioner

36

Recommendations

 Better parallelization strategy

 Task based parallelization

 Work by Ronald Kriemann has shown that optimal speedup with

good scaling behaviour is possible using task-based parallelization

strategy

 Use of GPUs

 The most expensive parts of the hie-LU algorithm is at its leaves, where

dense matrix operations need to be carried out

 If MAGMA library can be used, it could reduce the time significantly

 To reduce the complexity further, consider Fast Multipole
Method or H2 matrix

Extracted from: Kriemaan, R. 2014. H-LU Factorization on

Many-Core Systems. Computing and Visualization in

Science, Vol 16, Issue 3.

37

The End

Thank you very much!

