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Abstract

In the Netherlands, the effects of the changing climate become more and more
visible; the rain falls in higher intensities, the sea level rises and the maximum
discharge of rivers increases. The question rises what the effects will be of
these phenomena for the salt migration in the groundwater underneath the
polders near the coast. The problem description of this thesis is to investigate
the possibilities of modelling salt migrations in density dependent groundwater
with modelling environment Triwaco.

The movement of the groundwater and the transport of solutes in the sub-
surface are coupled processes and the two equations must be solved jointly. This
coupling starts with the flow equation which calculates the freshwater head for
a given density pattern, then Darcy’s law transforms the freshwater heads into
velocities of the groundwater which are given to the transport equation. The
transport equation determines the new densities for these velocities and returns
these values to the flow equation. This process is called the coupled process
and visiting both equations once is called a cycle. A new cycle can be made by
repeating the process.

The flow equation is already solved in Triwaco and uses a finite element
method for the simulation of groundwater flow in the lateral (2D) direction.
Communication between aquifers (vertically) is described with a 1D finite dif-
ference method. The numerical method used to solve the transport equation
has to fit easily in this used method for the flow equation.

For the two dimensional advective, dispersive and diffusive transport of salt,
research is done on four numerical methods; the Standard Galerkin Approach,
the SUPG pure advection algorithm by Mizukami, the SUPG classical upwind
method and the Mizukami Hughes algorithm. For the solute transport between
the aquifers (third dimension) a finite difference method is used in the simula-
tions.

Numerical experiments are done for two ways of coupling the transport and
flow equation. In the first coupling both the flow and transport equation are
solved in Matlab. The benchmark problem of the rotating brackish zone works
well with the developed software in Matlab. In the second coupling the flow
equation is solved with Triwaco and coupled to the transport equation solved
in Matlab. When some problems with calculating the velocities in Triwaco
are solved, no big problems are expected for simulation of density dependent
groundwater flow or salt migrations with Triwaco. The advantage of the flexible
finite element grid used in Triwaco can now also be used for the salt transport
of density dependent groundwater flow.
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Chapter 1

Introduction

In the Netherlands, the effects of the changing climate become more and more
visible; the rain falls in higher intensities, the sea level rises and the maximum
discharge of rivers increases. The question rises what the effects will be of
these phenomena in the future. An important issue is for example the salt
concentration in the groundwater that will change due to these effects and that
will influence the groundwater flow. It is important to be able to answer this
question on a regional scale. For a farmer it is important to know whether
ditches bordering his fields become too salt to be used as drinking water for his
cattle and for the waterworks it is interesting to know if they can still use a
certain source for tap water in ten years [1, 2].

1.1 Hydrology

The hydrological cycle is shown in Figure 1.1. From this cycle it can be seen
that a number of situations can cause salt water intrusion or extraction from the
groundwater. One of these situations is the sea level rise which can change the
boundary between the salt groundwater and the fresh groundwater. The IPCC
[3], the climate panel of the United Nations, expects a sea level rise between the
18 and 59 centimeters till 2100. The KNMI [4] on the other hand predicted a
rise of 35 − 85 centimeters for this century in the Netherlands, mainly due to
the melting of glaciers and ice caps, the change of the discharge of rivers and
the change in temperature.

Another cause for the change in salt concentration are the alternating periods
with much precipitation an no precipitation due to the climate change. During
periods with much precipitation the salt groundwater can dilute or the boundary
between the salt and freshwater can move and during dry periods large quantities
of the freshwater will evaporate. On regional scale there will not only be natural
influences in this cycle. In Figure 1.2 it can be seen that wells may have a large
influence on the density and flow of the water.

Another problem is the drop of the ground in the Netherlands due to for
example the winning of natural gas, the winning of salt and groundwater-
abstractions. According to Figure 1.3 [6] the drop of the ground will be 80
centimeters between 2007 and 2050 in some regions in the Netherlands.

The influences of these changes are mainly noticeable for the waterworks

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Hydrological cycle [5].

Figure 1.2: A well in the groundwater.
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Figure 1.3: The drop of the ground till the year 2100 in the Netherlands will be
between the 2 cm (green) and 80 cm (purple) [6].



4 CHAPTER 1. INTRODUCTION

and the ecology. The agriculture and horticulture will soon notice that the
groundwater becomes more and more brackish, rare plants will become extinct
and above a certain concentration, salt water cannot be used for drinking water.

1.2 Geology

In the subsurface aquifers are separated by aquitards, as can be seen in Figure
1.4. An aquifer is a body of rock or sediment that is sufficiently porous and
permeable to store, transmit and yield significant quantities of groundwater to
wells and springs. It is assumed that aquifers have a relatively small slope. The
flow of the water takes place in all directions in the aquifers.

An aquitard is a geologic formation that is not permeable enough to yield
significant amounts of water to wells, but on a regional scale can supply signifi-
cant water to the underlying or overlaying aquifers. In an aquitard only vertical
velocity is assumed, the horizontal velocity of the flow is zero. As shown in
Figure 1.4, the number of aquitards is assumed to be equal to the number of
aquifers minus one. Below the last aquifer an aquiclude can be found, which is
an impermeable body of rock that may absorb water slowly but does not trans-
mit it. The first aquifer is only assumed for the model to be the first subsurface
layer.

Porosity and permeability are properties of the material of the subsurface.
The porosity of a material is the percentage of the volume of that material that
can be occupied by water. For example the porosity of soil will be higher than
the porosity of rock. The typical porosity of some common sediments and rocks
can be found in Table 1.1. The permeability of a geologic formation is its ability
to transmit water. There are several factors that affect permeability, including
pore size. In general, fine grained sediments will have lower permeability than
coarse grained sediments. For some subsurface materials their permeability in
descending order can be found in Table 1.2. It is assumed that the porous
subsurface is fully saturated with water, no other fluids or gasses that cannot
mix with water are present [7, 8, 9, 10].

Table 1.1: Typical porosity of some common sediments and rocks [10].
Material Porosity

Soil 55%
Gravel and sand 20-50%

Clay 50-70%
Sandstone 5-30%
Limestone 10-30%

Fractured igneous rocks 10-40%
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Table 1.2: Some subsurface materials in descending order of permeability [10].
Gravel (High Permeability)

Sand
Silt
Clay

Shale (Low Permeability)

Figure 1.4: Aquifers and aquitards in the subsurface.
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1.3 Triwaco

Triwaco is a software package developed by Royal Haskoning. Triwaco offers an
integrated modelling environment for modelling flow through the unsaturated
and saturated zone, drainage, infiltration and surface water flow. Since the
first version in 1984 it has been developed to a modelling environment which
is used to support policy development, research and planning in the field of
groundwater, surface water and ecology.

The Triwaco package contains a finite element simulator for saturated ground
water flow which is called FLAIRS. FLAIRS calculates the groundwater heads
and fluxes in a groundwater domain of aquifers and aquitards. The resulting
system usually is non-linear due to a non-linear topsystem and aquifer trans-
missivities which depend on the head.

FLAIRS calculates the lateral flow in aquifers with a two dimensional finite
element method. Communication between aquifers (vertically) is described with
a 1D finite difference method. The finite element grid is generated by the
module TESNET. Boundaries and node densities are inputted into TESNET.
In addition it is also possible to enter points or polygons for wells or watercourses
and fault zones. Around wells so called ’support circles’ can be defined, which
are used to automatically create a very dense grid around wells. The streamlines
and velocity of the groundwater is calculated with Trace or TraWin. More
information about the used methods in Triwaco can be found in Appendix E
[11, 12].

1.4 Sustainability

In this project sustainability is an integrated part of the research beside the
mathematics, geology and hydrology. The differences in salt concentrations are
mainly due to climate changes which result in sealevel rise or different rain fall,
and human behaviour which results in a drop of the ground due to the mining
of gas or brackish water due to the mining of freshwater by the waterworks.
The simulations of salt migration in density dependent groundwater flow can
be used for research to these effects of climate changing or human behaviour.
The constructed model can also be used during the policymaking; the effects of
possible solutions in order to keep an well-balanced environment can be modeled.

A good example to illustrate the necessity of the use of the constructed
model is the freshwater lens in the dunes in the Netherlands. In Figure 1.2
can be seen that because of the lower density of freshwater compared to salt
water, a freshwater lens exists beneath the dunes on top of the salt water. When
freshwater mining takes place, the freshwater lens can be destroyed as can be
seen in the second figure of Figure 1.2. The sealevel rise can also influence the
shape of the freshwater lens and a combination of mining and sealevel rise can
destroy the freshwater lens. Solutions have to be found in order to maintain the
freshwater lens beneath the dunes for future generations. One of these possible
solutions is an injection of freshwater (rainwater for example) in the dunes in
order to repair the lens. With the constructed mathematical model the influence
of this possible solution can be modeled during the decision making in order to
decide the best location and capacity of the source.

Another sustainable application of the calculation of salt migration in den-
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sity dependent groundwater flow is the location of a new national park. The
construction of a national park takes years and is usually meant to stay there
for more than a century. It is expected that the effects of the climate change
become more and more visible and this mathematical model can predict the salt
concentrations in the groundwater in one century. In this way can be predicted
if the chosen location is a good location for the new national park or that some
plants are unable to survive when the groundwater becomes to salt.

1.5 Problem description

The problem description of this thesis is to investigate the possibilities of mod-
elling salt migration in density dependent groundwater with modelling environ-
ment Triwaco.

Dissolved salt is transported in the ground by the flow of groundwater (ad-
vection), molecular diffusion and mechanical dispersion. Dispersive transport
describes the dilution or mixing of a solute due to different velocities of ground-
water, for example friction in pores, varying travel path lengths and pore sizes.
Molecular diffusion is defined as the transport of matter solely by the random
motions of individual molecules (Brownian motion).

Advective transport can be caused by density differences of the groundwater.
Freshwater will stay on top of salt water because the density of freshwater is
less than the density of salt water, but when the salt water is on top of the
freshwater, a flow of the water will occur caused by these density differences.
Because of these density differences the flow will change and because the flow
changes, the density of the water changes again. The process of salt migration
in the groundwater is a coupled process between the transport of salt and the
flow of groundwater.

The transport of salt is described by the transport equation. In this thesis
research is done on numerical methods to solve 3D advective, dispersive and
diffusive transport of salt in the groundwater. The structure of this numerical
method has to fit in the method used to solve the flow equation in Triwaco.

Chapter 2 gives a derivation of the groundwater flow equation (Section 2.1)
and the transport equation (Section 2.2). The coupling between the flow and
transport equation is given in Section 2.5.

In Chapter 3 the numerical solution methods are discussed. In Section 3.1
the numerical grid is presented, in Section 3.2 different numerical methods to
solve the transport equation spatially are discussed and in the Sections 3.3 and
3.4 the spatial discretization methods for the transport equation are presented.
The transport equation is time dependent, the temporal discretization is shown
in Setion 3.4. The numerical method that solves the flow equation in Matlab is
shown in Section 3.7.

Chapter 4 shows the numerical experiments. First, in Section 4.1 the 2D
experiments of different finite element methods for the transport equation are
presented. In Section 4.2 some 3D experiments of the combined finite element
and finite difference method for the transport equation are given. Section 4.3
presents the results of the rotating brackish zone example, which is a coupling
between the transport and flow equation. The flow equation of this coupling is
solved in Matlab (Section 4.3.1) as well as in Triwaco (Section 4.3.2). In Section
4.4 numerical experiments of an example are presented. The example consists
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of a well pumping freshwater from an aquifer fed from below with saline water.
The conclusions, recommendations and discussion are given in Chapter 5.

In the appendix a list of symbols, a list of hydrological as well as mathematical
definitions and a description of the developed software is presented.



Chapter 2

Model

Salt transport in groundwater can be described by the transport equation and
the velocity of the water by the flow equation. In order to calculate the salt
transport with time dependent velocities or in order to calculate the velocity
of the groundwater with variable and time dependent density, these equations
are coupled. The incompressible and laminar Groundwater flow equation is
derived in Section 2.1 and coupled to the transport equation in Section 2.2.
The description of this coupled process can be found in Section 2.5.

2.1 Groundwater flow

In the used model groundwater flow is expressed in terms of the equivalent
freshwater head and fluid density instead of fluid pressure and fluid density.
The freshwater head is defined as

hf =
p

ρfg
+ z,

where p is the pressure of the groundwater, ρf the density of freshwater, g
the acceleration due to gravity and z the vertical coordinate of the location
of measure. The freshwater head can be explained as the elevation above an
arbitrary datum of the water surface in a piezometer tube filled over its full
height with freshwater. In Figure 2.1 the difference between the freshwater head
and hydraulic head is explained. Fluids flow down a hydraulic gradient, from
points of higher to lower hydraulic head. The quantity of head is expressed
in terms of a length of water. Formulation of the flow equation in terms of
freshwater head causes no increase in complexity and allows the use of existing
software with relatively little modification.

2.1.1 Continuity of mass flow

The control volume in Figure 2.2 is defined in order to derive the conservation
of mass flow. The mass flow ṁ is defined as the amount of mass flowing through
the control volume per unit time. For directions x, y and z the mass flow is
respectively ṁx, ṁy and ṁz and hence the total change of mass flow in the
control volume is

ṁout − ṁin = ṁxout + ṁyout + ṁzout − ṁxin − ṁyin − ṁzin ,

9
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Figure 2.1: Two piezometers, one filled with freshwater and the other with saline
water, open to the same point in the aquifer. With hf the freshwater head, h
the hydraulic head, ρf the freshwater density, ρ the density of the saline aquifer
water and Z the elevation.
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Continuity of the mass flow for one of the directions then can be defined by the
outgoing minus incoming flux qi in the ith direction multiplied by the density ρ
of the water and the surface of the control volume in the ith direction. Consider
the mass flow in the x-direction, the continuity equation is

ṁxout − ṁxin = (ρoutqxout − ρinqxin) ∆y∆z =: ∆(ρqx)∆y∆z,

or

∆ṁx =
∆(ρqx)

∆x
∆x∆y∆z.

The mass flow in the y-direction and z-direction can be derived in an equivalent
way. Now the total change of mass flow through the control volume can be
written as:

∆ṁ =
(

∆(ρqx)
∆x

+
∆(ρqy)

∆y
+

∆(ρqz)
∆z

)
∆x∆y∆z. (2.1)

The specific storage Ss is the change in storage and is defined as the amount
of water which a given volume of aquifer will produce, provided a unit change
in hydraulic head is applied to it. It has units of inverse length. Flow in
a porous medium is considered, hence the volume of a control volume of an
aquifer (∆x∆y∆z) is not necessarily the same as the volume of water (Vw) in
the same control volume. There is porosity to relate the aquifer volume to the
water volume. The specific storage is by definition expressed in terms of Vw, h,
x, y and z:

Ss = − ∆Vw
∆h∆x∆y∆z

. (2.2)

The total change in mass flow can be defined by

∆ṁ =
∆Vw∆ρ

τ
. (2.3)

Substitution of the Equations (2.1) and (2.2) in Equation (2.3) gives

∆ṁ = −Ss∆ (ρh)
τ

∆x∆y∆z. (2.4)

Collecting both expressions for the change in mass flow (equations (2.1) and
(2.4)) and dividing by ∆x∆y∆z results into the continuity equation for the mass
flow in a control volume:

(
∆(ρqx)

∆x
+

∆(ρqy)
∆y

+
∆(ρqz)

∆z

)
= −Ss∆ (ρh)

τ
. (2.5)

If a source or sink is present Equation (2.5) becomes:

∆(ρqx)
∆x

+
∆(ρqy)

∆y
+

∆(ρqz)
∆z

+ ρq′ = −Ss∆ (ρh)
τ

, (2.6)

with q′ the volumetric flow rate per unit volume of aquifer representing sources
and sinks. It has units of inverse time. Taking limits results into:

lim
τ→0,∆x→0,∆y→0,∆z→0

(
∆(ρqx)

∆x
+

∆(ρqy)
∆y

+
∆(ρqz)

∆z
+ ρq′

)
=
∂(ρqx)
∂x

+
∂(ρqy)
∂y

+
∂(ρqz)
∂z

+ρq′,
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lim
τ→0,∆x→0,∆y→0,∆z→0

(
−Ss∆ (ρh)

τ

)
= −Ss ∂ (ρh)

∂t
.

The differential equation for the continuity of mass flow then becomes:

∂(ρqx)
∂x

+
∂(ρqy)
∂y

+
∂(ρqz)
∂z

+ ρq′ = −Ss ∂ (ρh)
∂t

. (2.7)

In order to rewrite Equation (2.7) in terms of freshwater head, define the
freshwater head

hf =
p

ρfg
+ z,

and the (hydraulic)water head

h =
p

ρg
+ z,

and eliminate the pressure in the above equations to obtain the relation

h =
ρf
ρ
hf +

ρ− ρf
ρ

z.

The right-hand side of Equation (2.7) can now be written as:

−Ss ∂ (ρh)
∂t

= −Ss
(
ρf
∂hf
∂t

+ z
∂ρ

∂t

)
.

Note that the density is written as a function of the concentration (C) of a
solute (for example salt) because the equation for Solute Transport in Chapter
2.2 is expressed in terms of concentration. The relation between those two
parameters is also explained in Chapter 2.2. Note that ρ is differentiable to C
and C is differentiable to the time t. Under isothermal conditions and use of
the Chain Rule for differentiating on ρ = ρ(C), the groundwater flow equation
expressed in terms of the freshwater head is:

−∂ (ρqx)
∂x

− ∂ (ρqy)
∂y

− ∂ (ρqz)
∂z

+ ρq′ = Ss

(
ρf
∂hf
∂t

+ z
∂ρ

∂C

∂C

∂t

)
. (2.8)

The left-hand side of Equation (2.8) is the net flux of mass through the faces
of the control volume plus the rate at which mass enters from sources or leaves
through sinks located in the control volume. The right-hand side is the time
rate of change in the mass stored in the control volume over a given period.
The recharge term q′ has dimension [1/s] and is the sum of four distinctive
components, depending on the origin of the water:

q′ = qa + ql + qr + qs,

with
ql recharge due to leakage,
qr recharge from rivers canals and drains,
qs recharge from sources or sinks,
qa recharge from the top-system (precipitations, shallow drainage system etc.),

[8, 13].
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2.1.2 Darcy’s law

Darcy’s law describes the flow of a fluid through a porous medium. For variable
density it is given by:




qx
qy
qz


 = − 1

µ




κxx κxy κxz
κyx κyy κyz
κzx κzy κzz






∂p
∂x
∂p
∂y

∂p
∂z + ρg


 , (2.9)

with κ, the intrinsic permeability. From the definition of the freshwater head,
the pressure is given by:

p = ρfg(hf − z), (2.10)

with z upward positive.
For the same reasons as for the continuity of mass flow, Darcy’s law is

rewritten in terms of freshwater head and freshwater hydraulic conductivity.
Define the freshwater hydraulic conductivity as

kfij =
κijρfg

µf
,

with µf the freshwater dynamic viscosity, ρf the freshwater density and g the
acceleration due to gravity. The derivatives of the pressure can be calculated
by

∂p

∂x
= ρfg

∂hf
∂x

,

∂p

∂y
= ρfg

∂hf
∂y

,

∂p

∂z
= ρfg

(
∂hf
∂z
− 1
)
,

hence Equation (2.9) becomes




qx
qy
qz


 = −




kfxx kfxy kfxz
kfyx kfyy kfyz
kfzx kfzy kfzz






∂hf
∂x
∂hf
∂y

∂hf
∂z + ρ−ρf

ρf


 . (2.11)

This is Darcy’s law for variable density expressed in freshwater head [7, 14].

2.1.3 Groundwater flow equation

Substitution of Darcy’s law (Equation (2.11)) in the equation for conservation
of mass (Equation (2.8)) results in the general Groundwater flow equation in
terms of fresh groundwater head and density:
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∂

∂x

(
ρ

(
kfxx

∂hf
∂x

+ kfxy
∂hf
∂y

+ kfxz

(
∂hf
∂z

+
ρ− ρf
ρf

)))
+

+
∂

∂y

(
ρ

(
kfyx

∂hf
∂x

+ kfyy
∂hf
∂y

+ kfyz

(
∂hf
∂z

+
ρ− ρf
ρf

)))
+

+
∂

∂z

(
ρ

(
kfzx

∂hf
∂x

+ kfzy
∂hf
∂y

+ kfzz

(
∂hf
∂z

+
ρ− ρf
ρf

)))
+ ρq′ =

= Ss

(
ρf
∂hf
∂t

+ z
∂ρ

∂C

∂C

∂t

)
. (2.12)

The boundary and initial conditions for the groundwater head can be found
Section 2.4.

Parameters of the flow equation

According to [9], the ranges of values of the specific storage Ss are independent
of time but depend on location. For several materials they can be found in
Table 2.1.

Table 2.1: Ranges of values of Ss, adapted from Domenico 1972 [9].
Material Specific storage Ss (m−1)
Loose sand 1.0 ∗ 10−3 − 4.9 ∗ 10−4

Dense sand 2.0 ∗ 10−4 − 1.3 ∗ 10−4

Dense sandy gravel 1.0 ∗ 10−4 − 4.9 ∗ 10−5

Rock, fissured, jointed 6.9 ∗ 10−5 − 3.3 ∗ 10−6

The temperature of the groundwater is often the mean temperature of the air
during the year and hence constant. The freshwater density ρf is constant under
isothermal conditions. In Table 2.2 can be seen that the chosen groundwater
temperature does not highly influence the freshwater density.

Table 2.2: Ranges of values of ρf .
Temperature (�) Freshwater density ρf (kg/liter)
4 1.000
20 0.9982
40 0.9922
80 0.9718

The values of the freshwater hydraulic conductivity tensor kf are all known
and assumed to be continuous and differentiable. The control volume ∆x∆y∆z
is aligned with coordinate directions that are neither parallel nor normal to the
aquifer. Often the aquifers are horizontal and in that case the non-diagonal
elements are zero. But in order to be able to use this model in all cases, for
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example in the case of a lateral moraine where the groundlayers are not in the
same direction as the water flow, the complete tensor is used.

The freshwater head hf is the output variable which is determined by this
differential equation.

2.2 Solute transport

In general situations, the direction of flow is variable. Again consider the control
volume as defined in Figure 2.2 but now consider the change of mass in time (ṁ)
expressed in the Darcy velocity q and the concentration C of a solute (salt) in
the water. The control volume ∆x∆y∆z is aligned with coordinate directions
that are neither parallel nor normal to the aquifer. Thus the Darcy velocity
has components in all three dimensions. Presence of sources or sinks within the
control volume is possible.

First the change of mass in time due to advection and sources or sinks is
developed. For simplicity, it is assumed that storage effects involve only changes
in fluid density within a rigid porous framework. The net inflow of solute mass
in the x-direction for the control volume is:

ṁx = −∆(qxC)
∆x

∆x∆y∆z.

The y-direction and z-direction are derived analogously. And the total change
of mass in time due to advection and sources or sinks is:

ṁ = −
(

∆(qxC)
∆x

+
∆(qyC)

∆y
+

∆(qzC)
∆z

)
∆x∆y∆z +QsoCs. (2.13)

Cs represents the concentration of the solute in the water that is added or
withdrawn and Qso denotes the volumetric rate at which water is added or
removed, where a positive sign indicates a source and a negative sign a sink.
The term QsoCs thus represents the net rate at which solute mass is added to
or removed from the control volume by the source or sink, expressed in units of
mass per unit time.

It is assumed that the solute carried in advective transport remains com-
pletely within the moving water. In particular there is no diffusion of solute
into and from sections of the pore space that may contain (nearly) static water.
Static water is the term used for non-moving water that does not contribute to
the continuity of mass. Then the volume of water containing solute in the con-
trol volume ∆x∆y∆z is θ∆x∆y∆z. With θ the dimensionless effective porosity
independent on time but dependent on spatial coordinates. The mass of solute
in the control volume at any time is θ∆x∆y∆zC with C the average concentra-
tion in the control volume. Thus the rate at which the mass changes with time
can also be written as:

ṁ = θ
∆C
τ

∆x∆y∆z. (2.14)

Combination of the equations (2.13) and (2.14), dividing both sides by
∆x∆y∆z and taking the limits of τ , ∆x, ∆y and ∆z to 0 results in:

−∇ · (qC) + qsoCs = θ
∂C

∂t
|due to advection and sources/sinks , (2.15)
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with qso the volumetric flow rate per unit volume of the aquifer due to the fluid
source or sink.

Second, the change of mass in time due to dispersion is developed. For the
three-dimensional case, the dispersion coefficient tensor contains nine terms.
The dispersive transport in terms of mass per unit time in the control volume
is derived in [9] and given by:

ṁi = −
(
Dix

∆C
∆x

+Diy
∆C
∆y

+Diz
∆C
∆z

)
θ∆xj∆xk.

The difference between inflow and outflow of mass due to dispersion can be
derived by multiplying above equation by ∆xi

∆xi
, again using ṁ = ṁ1 + ṁ2 + ṁ3

and taking the limits for τ , ∆x, ∆y and ∆z to 0. This results in:

∇ · (θD∇C) = θ
∂C

∂t
|due to dispersion, (2.16)

Combination of the equations (2.15) and (2.16) results in the transport equa-
tion of solute mass in groundwater:

θ
∂C

∂t
= ∇ · (θD∇C)−∇ · (qC) + qsoCs. (2.17)

When the assumption of divergence free (solenoidal) groundwater is used,
Equation (2.17) becomes

θ
∂C

∂t
= ∇ · (θD∇C)−∇ · (qC) + qsoCs, (2.18)

with

D∇C =




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz






∂C
∂x
∂C
∂y
∂C
∂z


 .

2.2.1 Parameters of the solute transport equation

Solute mass is transported in porous media by the flow of groundwater (advec-
tion), molecular diffusion and mechanical dispersion. Convection is the internal
movement of mass within fluids (i.e. liquids and gases). It cannot occur in
solids due to the atoms not being able to flow freely. Convection may cause
a related phenomenon called advection, in which mass or heat is transported
by the motion of the fluid. In hydrology, advection refers to the horizontal or
vertical flow of water in a stream.

Dispersive transport describes the dilution or mixing of a solute due to dif-
ferent velocities of groundwater, which is moving at rates that are both greater
and smaller than the average advective pore velocity. Dispersion is observed on
both the microscopic and the macroscopic scale. The three main reasons for the
different velocities at the microscopic scale are friction in pores, varying travel
path lengths and pore sizes. Macroscopic dispersion is caused by variable per-
meability’s of single layers inducing different velocities. On a microscopic scale
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also a process independently from the water movement becomes important: dif-
fusion. Diffusion describes the movement of a solute from an area of greater
concentration to one of less concentration. Molecular diffusion is defined as the
transport of matter solely by the random motions of individual molecules not
moving together in coherent groups. This process is a consequence of concen-
tration gradients and described by Fick’s law.

In [14] and [15] the coefficients of the dispersive matrix D are derived and
presented in Cartesian coordinates:

Dxx =
aT
(
v2
y + v2

z

)
+ aLv

2
x

v
,

Dxy =
(aL − aT ) vxvy

v
= Dyx,

Dxz =
(aL − aT ) vxvz

v
= Dzx,

Dyy =
aT
(
v2
x + v2

z

)
+ aLv

2
y

q
,

Dyz =
(aL − aT ) vyvz

v
= Dzy,

Dzz =
aT
(
v2
x + v2

y

)
+ aLv

2
z

q
, (2.19)

with v =
√
v2
x + v2

y + v2
z the magnitude of the seepage velocity. Note that the

relation between the Darcy velocity q and the seepage velocity v is given by

q = v/θ

. Seepage velocity is defined as the percolation of water through the soil from
unlined canals, ditches, laterals, watercourses, or water storage facilities. It is
assumed that q 6= 0. The matrix D is a full matrix (anisotropic), which means
that dispersive transport in each coordinate direction depends on components
of the velocity and concentration gradient in all directions.

The dispersivity is expressed in aL and aT . aL is defined as the longitudinal
dispersivity of the porous medium, a property of the porous medium describing
dispersive transport in the direction of flow. The constant aT is the transversal
dispersivity of the porous medium, that is, normal to the direction of flow. Both
have the dimension of length. When the water completely fills the void space
in a porous medium, aL should be of the order of magnitude of a pore size.
Experiments have shown that aT is 8 to 24 times as small as aL.

The first term of the right-hand side of Equation (2.18) is a combined term
of molecular diffusion and dispersion. The order of magnitude of diffusion is
10−9 m2/day, the order of magnitude of dispersion is 3 ∗ 10−3 m2/day. The
second term of the right-hand side is the advection term and is of the order
3 ∗ 10−2 m/day. The diffusion becomes only important when the velocity field
is zero because the order of the dispersion and advection effect is much bigger
than the order of the diffusion effect. When the groundwater does not move the
dispersion coefficient or matrix D reduces to the diffusion coefficient or matrix.
Note that there is no reaction term in the differential equation because only salt
is considered.
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The Darcy velocity vector q is determined by the groundwater flow equation
(2.12). The porosity θ is a subsurface property and hence depends on the spatial
coordinates. The porosity θ and the source/sink term qsoCs are known for each
part of the ground. The concentration C as a function of time and location has
to be solved from this differential equation [14, 15].

2.3 Conversion of concentration into density

The model for solute transport will deliver the values for the concentration
C, and hence the density ρ, each time step for each location. The advection-
dispersion equation calculates the concentration of the salt in the groundwater.
The flow equation uses the density ρ in [kg/l] for the calculation of the ground-
water velocity, so a translation has to be done from C into ρ. In [16] the following
formula is experimentally derived:

ρ = 1 + 8.05 ∗ 10−7 ∗RE − 6.5 ∗ 10−6
(
T − 4 + 2.2 ∗ 10−4 ∗RE)2 , (2.20)

where T is the temperature in � and RE is the residue on evaporation at 180�
in mg/kg which can be calculated from chlorinity (mg Cl−/kg water):

RE = 1.805Cl− + 30.

The temperature of groundwater remains relatively constant throughout the
year. The ground temperature for an area is approximately equal to an area’s
annual average air temperature, which is around 10� in the Netherlands. The
earth and groundwater temperatures are much more stable than the highly
variable seasonal air temperature. Note that in freshwater C = 0 kg/m3 so
Cl− = 0 mg/kg, which results in ρ = 0.9998 kg/l or ρ = 999.8 kg/m3. The
concentration C is used instead of Cl− in mg/kg water, the difference is ap-
proximately 2.5%. Note that for C can be said: mg/kg ≈ mg/l = 1

1000kg/m
3

and for ρ: kg/l = 1
1000kg/m

3.

2.4 Boundary and initial conditions

In order to make the solution of Equations (2.12) and (2.18) unique and well-
posed, a number of conditions (boundary and initial) should be prescribed. For
a unique solution of the advection-dispersion equation or the diffusion equation
(elliptic equations), it is necessary to prescribe exactly one boundary condition
at each part of the boundary. Note that the advection term in Equation (2.18)
might strongly dominate the dispersive term. For a pure advection equation
(hyperbolic equation), boundary conditions should only be given at inflow and
not at outflow boundaries. Since for the advection-dispersion equation boundary
conditions must be given at the outflow, those boundary conditions are recom-
mended that influence the solution as little as possible. In general this means
that at the outflow boundary one usually applies natural boundary conditions.
Dirichlet boundary conditions may result in unwanted wiggles.

The following boundary conditions are considered:

Dirichlet boundary
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A Dirichlet boundary Γ0 is such that the value of the head or the concentration is
specified at all points along the boundary Γ0. For example, for the concentration
the Dirichlet boundary conditon is:

C(x) = g0(x), x ∈ Γ0. (2.21)

A physical example of a Dirichlet boundary might be a continuous and fast
source of salt.

Neumann boundary
On the Neumann boundary Γ1 a condition in which the gradient of the de-
pendent variable normal to the boundary is specified. For example, for the
concentration the Neumann boundary condition for the boundary Γ1 is:

(D · ∇C) · n = g1(x), x ∈ Γ1. (2.22)

For groundwater flow this boundary condition results into a specified flux of
water into or out of the modeled area. For solute transport the concentration
gradient is specified normal to the boundary. A physical example is an imper-
meable boundary where the gradients of head and concentration are zero at
the boundary. An example of a nonzero Neumann boundary in flow simulation
might be a surface-water body from which seepage occurs at a prescribed rate.

Robbins boundary
On the Robbins boundary Γ3 a mixed condition is specified:

(D · ∇C) · n + σC = g2(x), x ∈ Γ2. (2.23)

Here a flow might be prescribed in which both the dispersive and advective
contributions are taken into account.

According to Leijnse [17] four types of boundaries can be distinguished: no-
flow boundary, inflow boundary, outflow boundary and dissolving salt boundary.
A dissolving salt boundary is present where rock salt formations are in contact
with flowing groundwater. This boundary will not be used here, but more
information can be found in [17].

The boundary condition for the no-flow boundary is defined as the dispersive
salt mass flux across the boundary being zero, so an homogeneous Neumann
condition is used.

For the inflow boundary the case is considered where the boundary is within
the porous medium and separates one part of the porous medium from another
part. The assumption of continuity of salt mass flux across the boundary is

(ρCq +D∇C) · n|+ = (ρCq +D∇C) · n|−, (2.24)

where − indicates a position just outside the domain and + indicates a position
just inside the domain. This assumption is combined with the assumption that
the dispersive and diffusive fluxes in the inflow reservoir can be neglected. Or
in other words, the influx of mass takes place from a well mixed reservoir. A
combination of both assumptions results in

(ρCq +D∇C) · n = C0ρq · n, (2.25)
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with C0 the prescribed salt mass fraction in the inflowing liquid.
It is usually assumed that the salt mass fraction is continuous across the

outflow boundary. If the dispersive and diffusive mass fluxes just outside the
domain are neglected the boundary condition for the outflow boundary is

D∇C · n = 0. (2.26)

For the time dependent problem, initial conditions for the transport equation
(concentration) must be specified. The flow equation is a steady equation in
the coupled model (Section 2.5) [7, 13, 17, 18].

2.5 The coupled model

The movement of groundwater (Equation (2.12)) and the transport of solutes
(Equation(2.18)) in the aquifer are coupled processes and the two equations
must be solved as a coupled problem. A schematic representation of this coupled
process is shown in Figure 2.4 and starts with the steady flow equation. The flow
equation is taken time independent because the differences in pressure in the
groundwater are small, hence the storage of water is negligible. The velocity of
the flow is calculated instantly when the density of the water is given. Each loop
of the coupled process between the flow equation and the transport equation
is called an cycle. The density for the first cycle is a given density. The flow
equation calculates the freshwater head with this initial density of the water at
time ti. The freshwater head is converted into the flow velocity q with Darcy’s
law. Then the time dependent solute transport equation is solved with the
calculated velocity at ti, the solution of this equation is the concentration at
time ti+1. The initial concentration for the transport equation of the first cycle
of the coupled process is determined by a conversion of the initial density ρ of
the flow equation into concentration by the inverse formula of Equation (2.20).
The concentration at ti+1 is converted into the density at t + 1 and returned
to the flow equation which calculates the new freshwater head at ti+1. The
initial condition of the transport equation at ti+1 is now the final concentration
calculated at ti by the transport equation. The course of time of this process is
shown in Figure 2.3.

In order to increase the accuracy or stability of the coupled system, inner
iterations can be used. An inner iteration is an coupling between the steady flow
equation and the time dependent transport equation in the same way as shown
in Figure 2.4, but in this case without the time passing by. Inner iterations
are made until stable solutions appear for both equations. After this stable
solution is reached, a new cycle is made for the next time step. If necessary,
again inner iterations are done for this new time step. This process increases
the computational time significantly.

A better accuracy can also be obtained by decreasing the time step of one
cycle, and increasing the number of cycles. In Chapter 4 research is done on the
impact of the time step of the Transport equation, the time step of the coupled
process and the number of cycles.
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Figure 2.3: The timesteps and interaction within the coupled model.



2.5. THE COUPLED MODEL 23

Flow Equation (2.12)

Free parameters:
x, y, z

Known parameters:
kf , Ss, q′, ρf

Parameter from Solute Transport:
ρ(ti, x, y, z)

Output:
hf (ti, x, y, z)

Convert C(ti+1, x, y, z)
to ρ(ti+1, x, y, z)
with Equation (2.20)

Convert hf (ti, x, y, z)
to q(ti, x, y, z)
with Darcy’s law

Solute Transport (2.18)

Free parameters:
t, x, y, z

Known parameters:
D(x, y, z), θ(x, y, z), qsoCs

Parameter from flow equation :
q(ti, x, y, z)

Output:
C(ti+1, x, y, z)

¾

-

?

6

Figure 2.4: The coupled process for the solving of the equations for solute
transport (2.18) and groundwater flow (2.12).
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Chapter 3

Numerical solution methods

The Solute transport equation is solved with a numerical method. In Section 3.1
the model and grid for the transport equation (Equation (2.18)) is explained.
The spatial discretization of the transport equation is done by a combination
of different numerical methods. The Finite Element Methods (FEM) that solve
this equation in the two dimensional horizontal direction can be found in Section
3.2. For the third dimension, in the vertical direction, the used Finite Difference
and Finite Volume Methods can be found in Section 3.3. In Section 3.4 the
temporal discretization scheme for the transport equation can be found. In
Section 3.5 some notes are made on behalf of the stability and accuracy of the
used methods. Section 3.6 gives the method that solves the system of equations
formed by the spatial and temporal discretization schemes.

The flow equation is solved by Triwaco, an introduction into Triwaco can
be found in Section 1.3. The transport equation and the flow equation are
coupled in order to calculate the salt transport with variable velocities or the
groundwater flow with variable density. In Section 2.5 information is shown
about the coupled model that solves the density dependent groundwater flow
or the salt migrations in time.

3.1 Grid transport equation

The transport equation





−∇ · (θD∇C) + q · ∇C + θ ∂C∂t = qsoCs,

C|Γ1 = g1(x),

((θD∇C) · n) |Γ2 = g2(x),

(σC + (θD∇C · n)) |Γ3 = g3(x), σ ≥ 0,

C(x, t0) = C0(x),

(3.1)

25
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with D the symmetric dispersivity matrix

D =




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 ,

is numerically solved in three dimensions. Γ1 is empty, Γ2 is defined at the
no-flow and outflow boundaries and Γ3 is defined at the inflow boundary. The
quantity σ is taken 0 or 0.5 and g2(x)=g3(x)=0. (In the experiments there is no
clear dependence of the concentration on the values of σ, g2(x) and g3(x).) Note
that the differential equation is linear, because the coefficients are independent
of the solution.

From a geological point of view (see Figure 1.4) the subsurface is divided into
aquifers and (geological) aquitards. The three dimensional problem of Equation
(3.1) holds for the aquifers. But in the aquitards, there is no horizontal flow
because the permeability in the horizontal direction is zero. Since the intrinsic
permeabilities in the horizontal direction in Darcy’s law (Equation (2.9)) are

κxx = κxy = κxz = κyx = κyy = κyz = 0,

it can be seen from Darcy’s law that indeed

qx = qy = 0.

The dispersion coefficients in the aquitards can be calculated with the Equations
(2.19). The zero horizontal velocity, qx = qy = 0, results in

Dxy = Dxz = Dyx = Dyz = Dzx = Dzy = 0.

Hence the transport equation for the geological aquitards becomes

θ
∂C

∂t
= ∇ · (θD∇C)− ∂qzC

∂z
+ qsoCs, (3.2)

with

D =



Dxx 0 0

0 Dyy 0
0 0 Dzz


 ,

with
Dxx = aT qz, Dyy = aT qz, Dzz = aLqz.

A difference has to be made between model aquitards and real (geological)
aquitards. A model aquitard is a very small horizontal layer within an aquifer
used to solve the flow equation with a finer grid in the vertical direction. In
geological aquitards (called aquitards in this thesis) Equation (3.2) holds. Model
aquitards are only used to solve the flow equation, they are skipped in the
numerical solution of the transport equation.

When no model aquitards are used, the cell size of the grid in the vertical
direction equals half the height of an aquifer plus half the height of the neighbour
aquitard, as can be seen in Figure 3.1. Often aquitards are much smaller than
aquifers, the magnitude of aquitards in the Netherlands is 5 − 10 meters and
the magnitude of aquifers is 20− 50 meters. This increases the numerical error
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in the vertical direction because of the different cell sizes. It may be better to
use model aquitards in this case in order to split the aquifer into aquifers with
the same height as the aquitards and infinitely small model aquitards. The grid
of the model aquitards is not used in the numerical method for the transport
equation. An example can be found in Figure 3.2.

u u u u u
C1
D1
θ1

C2
D2
θ2
qz2

C3
D3
θ3

C4
D4
θ4
qz4

C5
D5
θ5

qz1/2 qz3/2 qz5/2 qz7/2 qz9/2 qz11/2

aquifer 1 aquitard 1 aquifer 2 aquitard 2 aquifer 3

Figure 3.1: The one dimensional grid in the vertical direction with the known
parameters.

u uu
aquifer 1 aquitard 1 aquifer 2

u uu
aquifer 1

aquitard 1

aquifer 2

r b r b r r brbr r

aquifer 3

aquitard 1

aquifer 4

aquifer 5aquifer 2

aquifer 1 aquifer 6

Figure 3.2: The one dimensional grid in the vertical direction. a) All grid cells
have the same size. b) The aquitard is smaller than the aquifer, but the grid cells
are just a bit smaller than in situation a. c) Modified grid such that the aquifers
have the same size as the aquitards. The small layers are model aquitards, which
are only used in the flow equation, not in the transport equation.

In order to simplify the calculations and to adapt the numerical method
to the used method for the flow equation, the numerical method is split. In
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the middle of the aquifers the solute transport is calculated into the horizontal
directions x and y with the Finite Element Method (FEM). For this method
triangular shaped elements are taken. The two dimensional version of Equation
(3.1) has to be solved with

D =
[
Dxx Dxy

Dyx Dyy

]
.

The numerical method to solve this equation can be found in Section 3.2.
In the middle of the aquitards also the Finite Element Method with trian-

gular shaped elements is used to solve the two dimensional transport equation.
Because there is no flow in the horizontal direction in the aquitards the equation

θ
∂C

∂t
= ∇ · (θD∇C) + qsoCsxy , (3.3)

with

D =
[
Dxx 0

0 Dyy

]
,

is solved with the FEM. The shapes of the triangles are determined by the
method that solves the flow equation. These triangles can have angles of more
than 90 degrees.

The different layers of the Finite Element grids are in the vertical direction
coupled by the Finite Difference Method (FDM) or the Finite Volume Method
(FVM). So in the vertical direction an one dimensional grid is used. These
methods can be found in Section 3.3. All grid points in the vertical direction
are exactly above or beneath each other. The grid and known parameters are
shown in Figure 3.3.

3.2 Spatial discretization transport equation: 2D
FEM

In the Interim Master’s thesis [19] the numerical spatial discretization methods
Finite Differences (FDM), Finite Volumes (FVM) and Finite Elements (FEM)
and the semi-analytical IFALT method are compared for the one dimensional
transport equation. Numerical experiments of these numerical methods can be
found in [19]. The advantage of the FDM is that it is easy to implement, a
disadvantage is the numerical dispersion which smears out the solution. The
advantage of the FVM is the existence of higher order methods which are rela-
tively easy to implement for 1D problems. For higher dimensions this advantage
may disappear. The semi-analytical IFALT method has no Courant or Peclet
conditions, no time-stepping, is computationally efficient and has low numerical
dispersion but is probably less accurate when applied to advective dominated
flow.

For advective dominated flow problems in complex domains with sharp fresh-
salt fronts in the initial condition the FEM gave the best results. In addition
to that the transport equation will be coupled to the flow equation in Triwaco
which already uses a grid with triangular cells. Aquifers often have complex
shapes and Triwaco already uses the FEM for the flow equation in the x- and
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y-direction, hence the conclusion of the Interim Master’s thesis [19] was that
the FEM is the best method to use for the transport equation.

First, in Section 3.2.1 the Standard Galerkin Approach (SGA) is derived
for the two dimensional grid with triangular shaped elements and linear basis
functions. In Section 3.2.2 the Streamline Upwind Petrov Galerkin (SUPG)
method is discussed and in Section 3.2.3 more information can be found about
the Mizukami Hughes algorithm.

3.2.1 SGA

Basis functions

In the ideal situation basis functions are chosen according to the eigenfunctions
of the continuous eigenvalue problem corresponding to the advection-dispersion
equation. Then an inner product of the eigenfunctions can be defined such that
all non-diagonal elements of the coefficient matrix will be zero. So the coefficient
matrix will be diagonal, and therefore the solution of the system of equations
is trivial. Unfortunately in practice it is almost impossible to find an analytical
expression for the eigenfunctions. Numerical computation of the eigenfunctions
is in general a harder task than solving the matrix-vector system obtained by
the numerical method. Choosing an arbitrary set of basis functions leads to a
full coefficient matrix, which costs a lot of computational time.

Basis functions have to be found that satisfy some requirements. First, the
basis functions must be linearly independent. Secondly, the basis functions must

qz7/2
TH2

θ3 qx2 , qy2

qz5/2

Aquifer 2

Aquitard 1

RL2

qz2 , DC1

Aquifer 1

qz3/2
TH1

θ1 qx1 , qy1

qz1/2

RL1 = 0

¡¡@@

¡¡@@

¡¡@@

Figure 3.3: The 3D grid: the vertices of the numerical grid lie on the dotted
lines within the aquifers and aquitards. qik is a known velocity in vertex k in
the direction of i (i ∈ {x, y, z}), θk the porosity in vertex k and RLj and THj
are the heights of the top and bottom of aquifer j.



30 CHAPTER 3. NUMERICAL SOLUTION METHODS

approximate the complete space Σ, which is defined as

Σ = {C : C sufficiently smooth and C|Γ1 = 0},
with Γ1 the boundary where C|Γ1 = g1(x). The third requirement is that
the basis functions should be ”nearly orthogonal”, so most of the integrals∫

Ω
∇φi ·∇φjdx should be 0. The last requirement is that arbitrary functions in

Σ must be approximated by a limited number of basis functions (
∑
n →

∑
as

n→∞).
Note that a set of vectors which is linearly independent and spans some

vector space, forms a basis for that vector space. This is equivalent to saying
that this basis is a minimal generating set of the vector space or to saying that
this basis is a maximal set of linearly independent vectors.

Basis functions are constructed that satisfy the described requirements. In
order to construct these basis functions, first a linear polynomial is constructed.
In order to construct this linear polynomial, on each triangle three parameters
are needed. A natural choice is to use the function values of the concentration
C in the three vertices of the triangle. This has added the benefit of making the
approximation continuous across element boundaries. Call the three vertices of
a triangle x1 = (x1, y1), x2 = (x2, y2) and x3 = (x3, y3).

Each point x on the triangle can be written as

x = x1 + l2
(
x2 − x1

)
+ l3

(
x3 − x1

)
(3.4)

= l1x1 + l2x2 + l3x3, (3.5)

with
l1 = 1− (l2 + l3),

or
l1 + l2 + l3 = 1.

To constrain x inside the triangular shaped element assume 0 ≤ l1, l2, l3 ≤ 1.
In order to determine l1, l2 and l3 the system of 3 linear equations given by

x = l1x1 + l2x2 + l3x3, (3.6)
y = l1y1 + l2y2 + l3y3, (3.7)

l1 + l2 + l3 = 1 (3.8)

has to be solved. This results in

l1(x) = 1− (l2 + l3), (3.9)

l2(x) =
y1 − y3

∆
x+

x3 − x1

∆
y +

x1y3 − x3y1

∆
(3.10)

l3(x) =
y2 − y1

∆
x+

x1 − x2

∆
y +

x2y1 − x1y2

∆
(3.11)

with
∆ = −x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2.

Note that ∆ equals two times the area of the triangle.
It is clear that l1, l2 and l3 are linear functions per element and are defined

by the relations
li(xj) = δij . (3.12)
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The linear interpolation polynomial for the kth element in 2D can now be con-
structed by

Ck(x) = l1C(x1) + l2C(x2) + l3C(x3), (3.13)

From the Equations (3.12) and (3.13) it is clear that Cn is a linear function
of C0, C1, ..., Cn so

Cn(x, t) =
n∑

j=0

Cj(t)φj(x). (3.14)

In order to determine the basis functions, take Ck = 0 for i 6= j and Ci = 1 in
Equation (3.14). This results in

φi(xj) = li(xj) = δij . (3.15)

So the basis function φi is only non-zero in the elements that contain the node
xi. The conclusion is that the basis functions φi are defined by:

Definition 1 The linearly independent basis functions φj are defined as:

1. φi(x) linear per triangle,

2. φi(xj) = δij.

Under the conditions of Definition 1, {φi} are linearly independent, {φi} span
a complete function space, and hence limn→∞Cn(x, t) = C(x, t) ∀x ∈ R2,
provided C is continuous. The number n is the number of nodes, which equals
nv × nl with nv the number of nodes for each aquifer and nl the number of
aquifers in the model.

The gradients of the basis functions can be determined with the aid of Equa-
tions (3.9), (3.10) and (3.11).

∇φ1(x) =

[
∂φ1(x)
∂x

∂φ1(x)
∂y

]
=
[

y3−y2
∆

x2−x3
∆

]
, (3.16)

∇φ2(x) =

[
∂φ2(x)
∂x

∂φ2(x)
∂y

]
=
[

y1−y3
∆

x3−x1
∆

]
, (3.17)

∇φ3(x) =

[
∂φ3(x)
∂x

∂φ3(x)
∂y

]
=
[

y2−y1
∆

x1−x2
∆

]
. (3.18)

Element matrices

The spatial discretization is based on the Finite Element Method. Consider a
bounded domain Ω in R2 and subdivide it into triangles. Define the approxi-
mation Cn of the unknown solution C by a finite linear combination of basis
functions:

Cn(x, t) =
n∑

j=1

Cj(t)φj(x), (3.19)

with n the number of nodes, which equals nv ×nl with nv the number of nodes
for each aquifer and nl the number of aquifers in the model.
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Galerkin’s method for the spatial discretization is derived and results into a
system of n linear ordinary differential equations which can be represented by:

M
dC

dt
= SC + f,

with the mass matrix M and the stiffness matrix S n × n-matrices with n the
number of nodes and dC

dt , C and f a n× 1-vectors.
In order to derive the system of ordinary differential equations, start with

multiplying the differential equation in (3.1) by a time-independent test function
η. This function η satisfies the homogeneous essential boundary condition η|Γ1 =
0 and has to be an element of the Sobolev space H1. The L2 space is defined as

L2(Ω) = {f : Ω→ R :
∫

Ω

f2dµ <∞}.

This means ∫

Ω

‖∇φ‖2dΩ <∞,
φ measurable,

∇φ ∈ L2(Ω)⇒ φ ∈ H1(Ω).

More information about this space can be found in [20].
Then, integrate over the domain Ω:

∫

Ω

{
−∇ · (θD∇C) + q · ∇C + θ

∂C

∂t
− qsoCs

}
ηdΩ = 0. (3.20)

Apply Green’s theorem only to the second derivative. Application to the first
order term would not result in lower order derivatives, since the first derivative
of the concentration would be replaced by a first derivative of the test function.

Green’s theorem:
Let Ω be the bounded domain with piecewise smooth boundary Γ. Let c, u be
sufficiently smooth, and n the outward normal. Then

∫

Ω

c∇ · udΩ = −
∫

Ω

(∇c) · udΩ +
∫

Γ

cu · ndΓ. (3.21)

With Green’s theorem the second order derivative in Equation (3.20) becomes:

−
∫

Ω

{∇ · (θD∇C)} ηdΩ =
∫

Ω

(∇η) · (θD∇C)dΩ−
∫

Γ

ηθD∇C · ndΓ.

So Equation (3.20) becomes:
∫

Ω

(
(∇η) · (θD∇C) +

(
q · ∇C + θ

∂C

∂t
− qsoCs

)
η

)
dΩ−

∫

Γ

ηθD∇C ·n dΓ = 0.

(3.22)
Substituting the boundary conditions on Γ2 and Γ3 (see (3.1)) as well as the
essential boundary condition for the test function η|Γ1 = 0 leads to:

∫

Ω

(
(∇η) · (θD∇C) + (q · ∇C)η + θ

∂C

∂t
η

)
dΩ +

∫

Γ3

σCηdΓ =

=
∫

Ω

qsoCsηdΩ +
∫

Γ2

g2ηdΓ +
∫

Γ3

g3ηdΓ. (3.23)
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Equation (3.23) together the initial condition (C(x, t0) = C0(x)), forms the
weak formulation of (3.1). Approximate C by Cn and substitute (3.19) into
(3.23) and substitute η = φi(x) for i from 1 to n. This yields the following
system of ordinary differential equations (the Galerkin formulation):

d

dt

n∑

j=1

Cj

∫

Ω

θ(x)φjφidΩ =

= −
n∑

j=1

Cj

(∫

Ω

(∇φi · (θ(x)D(x)∇φj) + (q(x) · ∇φj)φi) dΩ+

∫

Γ3

σ(x)φjφidΓ
)

+
∫

Ω

(qsoCs)(x)φidΩ +
∫

Γ2

g2(x)φidΓ +
∫

Γ3

g3(x)φidΓ,

for i ∈ 1, ..., n. (3.24)

This system of n linear ordinary differential Equations with n unknowns can be
written in the form

M
dC

dt
= SC + f,

with M and S n× n-matrices and dC
dt , C and f n× 1-vectors. The elements of

M , S and f are:

M(i, j) =
∫

Ω

θ(x)φjφidΩ, (3.25)

S(i, j) = −
∫

Ω

(∇φi · (θ(x)D(x)∇φj) + (q(x) · ∇φj)φi) dΩ−
∫

Γ3

σφjφidΓ,

(3.26)

f(i) =
∫

Ω

(qsoCs)(x)φidΩ +
∫

Γ2

g2(x)φidΓ +
∫

Γ3

g3(x)φidΓ. (3.27)

The above integrals over the domain are split into integrals over the elements
in order to make the computations less complicated. With ne the number of
elements, ek a typical element, nbe the number of boundary elements and Ωek
the area of element ek the Equations (3.25), (3.26) and (3.27) become:

M(i, j) =
ne∑

k=1

∫

Ωek
θ(x)φjφidΩ, (3.28)

S(i, j) = −
ne∑

k=1

∫

Ωek
(∇φi · (θ(x)D(x)∇φj) + (q(x) · ∇φj)φi) dΩ−

nbe3∑

k=1

∫

Γ
ek
3

σφjφidΓ,

(3.29)

f(i) =
ne∑

k=1

∫

Ωek
(qsoCs)(x)φidΩ +

nbe2∑

k=1

∫

Γ
ek
2

g2(x)φidΓ +
nbe3∑

k=1

∫

Γ
ek
3

g3(x)φidΓ.

(3.30)
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It is assumed that the boundary of the domain equals the outer boundary of
the elements.

Only those basis functions corresponding to nodal points in the element ek
have a non-zero contribution to the integrals for this element. So for a triangular
shaped element ek only a small number of the integrals over the element is
unequal to zero. These integrals are computed and stored in an element matrix.
For a linear triangle such an element matrix is a 3 × 3 matrix. The element
vector corresponding to qi reduces to a 3× 1 vector.

The elements of the element matrix and element vector are computed with
a numerical integration rule. The Newton-Cotes rule is based upon exact inte-
gration of the basis functions

func(x) ≈
d+1∑

k=1

func(xk)φk(x), (3.31)

with d+ 1 the number of basis functions in the element, and application of the
general rule:

Theorem 1
∫

simplex

φm1
1 φm2

2 ...φ
md+1
d+1 dΩ =

m1!m2!...md+1!
(m1 +m2 + ...+md+1 + d)!

|∆|, (3.32)

where d denotes the dimension of space [13].

|∆| = | − x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2|, (3.33)

represents two times the area of a triangle (for d = 2).
From (3.31) and (3.32) it follows that the Newton-Cotes rule for the triangle

is defined by: ∫

Ωek

f(x)dΩ =
|∆|
6

3∑

l=1

f(xl), (3.34)

where xl is the lth vertex of the triangle. The Newton-Cotes rule for the bound-
ary element is defined by:

∫

Γek

f(x)dΓ =
|∆̃|
2

2∑

l=1

f(xl), (3.35)

with |∆̃| the length of the boundary side of the triangle. For example, if x2 and
x1 are the vertices on the boundary, then the boundary element is [x1,x2] and

|∆̃| =
√

(x2 − x1)2 + (y2 − y1)2. (3.36)

A graphical representation of an element and a boundary element can be found
in Figure 3.4.

Application of the Newton-Cotes rule results in the element matrices and
vector (with 1,2,3 the vertices of the triangle). The mass-matrix M is

Mek =



Mek(1, 1) Mek(1, 2) Mek(1, 3)
Mek(2, 1) Mek(2, 2) Mek(2, 3)
Mek(3, 1) Mek(3, 2) Mek(3, 3)


 , (3.37)
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with

Mek(i, j) =
|∆|
6
θ(xi)δij . (3.38)

For the stiffness-matrix S internal elements and boundary elements are consid-
ered separately. The element matrix for the internal element is a 3× 3-matrix

Sek =



Sek(1, 1) Sek(1, 2) Sek(1, 3)
Sek(2, 1) Sek(2, 2) Sek(2, 3)
Sek(3, 1) Sek(3, 2) Sek(3, 3)


 , (3.39)

with

Sek(i, j) = −|∆|
6

(
(∇φi · ∇φj)

3∑

l=1

(θ(xl)D(xl)) +∇φj · q(xi)

)
, (3.40)

when D is a scalar. When D is the matrix

D =
(
Dxx Dxy

Dyx Dyy

)
, (3.41)

the elements of the element matrices of S are

Sek(i, j) = −|∆|
6

(
3∑

l=1

(
θ(xl)(∇φj)TD(xl)∇φi

)
+∇φj · q(xi)

)
, (3.42)

or

Sek(i, j) = − |∆|6

(∑3
l=1

(
θ(xl)

{(
Dxx(xl)

∂φj
∂x +Dyx(xl)

∂φj
∂y

)
∂φi
∂x +

(
Dxy(xl)

∂φj
∂x +Dyy(xl)

∂φj
∂y

)
∂φi
∂y

})
+∇φj · q(xi)

)
.

(3.43)
Since linear triangles are used, the boundary is approximated by straight

lines. A boundary element is the line (a side) of an element that corresponds to
the boundary. Both elements can be found in Figure 3.4. The element matrices
for the boundary elements on the Robbins boundary, Γ3, are the 2× 2-matrix

Sel =
[
Sel(1, 1) Sel(1, 2)
Sel(2, 1) Sel(2, 2)

]
, (3.44)
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Figure 3.4: Internal element Ωek and boundary element Γek .
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with

Sel(i, j) = −|∆̃|
2
σ(xi)δij , (3.45)

For the vector f again internal and boundary elements are considered. For
the internal elements the vector f is the 3× 1-vector

fek =



fek(1)
fek(2)
fek(3)


 , (3.46)

with

fek(i) =
|∆|
6
qso(xi)Cs(xi). (3.47)

For the boundary elements, the vector f is the 2× 1-vector

fel =
[
fel(1)
fel(2)

]
, (3.48)

with

fel(i) =
|∆̃|
2
g2(xi), (3.49)

for the natural boundary condition at Γ2. And

fel(i) =
|∆̃|
2
g3(xi), (3.50)

for the natural boundary condition at Γ3. Note that there is no essential bound-
ary condition because Γ1, the boundary with the Dirichlet boundary condition,
is empty.

SGA for the aquitards

In Section 3.1 the transport equation for the aquitards is derived. The transport
equation for the geological aquitards becomes

θ
∂C

∂t
= ∇ · (θD∇C)− ∂qzC

∂z
+ qsoCs, (3.51)

with

D =



Dxx 0 0

0 Dyy 0
0 0 Dzz


 ,

and
Dxx = aT qz, Dyy = aT qz, Dzz = aLqz.

The element matrices of the Standard Galerkin Approach for the aquitards
are derived equivalent to the element matrices for the aquifers. The mass-matrix
M for the aquitards is equal to the mass matrix for the aquifers

Mek =



Mek(1, 1) Mek(1, 2) Mek(1, 3)
Mek(2, 1) Mek(2, 2) Mek(2, 3)
Mek(3, 1) Mek(3, 2) Mek(3, 3)


 , (3.52)
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with

Mek(i, j) =
|∆|
6
θ(xi)δij . (3.53)

For the stiffness-matrix S internal elements and boundary elements are consid-
ered separately. The element matrix for the internal element is a 3× 3-matrix

Sek =



Sek(1, 1) Sek(1, 2) Sek(1, 3)
Sek(2, 1) Sek(2, 2) Sek(2, 3)
Sek(3, 1) Sek(3, 2) Sek(3, 3)


 , (3.54)

the elements of the element matrices of S are

Sek(i, j) = −|∆|
6

3∑

l=1

θ(xl)
{(

Dxx(xl)
∂φj
∂x

)
∂φi
∂x

+
(
Dyy(xl)

∂φj
∂y

)
∂φi
∂y

}
.

(3.55)
The element matrices for the boundary elements on the Robbins boundary,

Γ3, are the 2× 2-matrix

Sel =
[
Sel(1, 1) Sel(1, 2)
Sel(2, 1) Sel(2, 2)

]
, (3.56)

with

Sel(i, j) = −|∆̃|
2
σ(xi)δij , (3.57)

For the vector f again internal and boundary elements are considered. For
the internal elements the vector f is the 3× 1-vector

fek =



fek(1)
fek(2)
fek(3)


 , (3.58)

with

fek(i) =
|∆|
6
qso(xi)Cs(xi). (3.59)

For the boundary elements, the vector f is the 2× 1-vector

fel =
[
fel(1)
fel(2)

]
, (3.60)

with

fel(i) =
|∆̃|
2
g2(xi), (3.61)

for the natural boundary condition at Γ2. And

fel(i) =
|∆̃|
2
g3(xi), (3.62)

for the natural boundary condition at Γ3.



38 CHAPTER 3. NUMERICAL SOLUTION METHODS

3.2.2 SUPG

According to [18] it can be shown that the Standard Galerkin Approach in
combination with the FEM yields an accuracy of O(hk+1), where h is some rep-
resentative diameter of the triangles and k is the degree of the polynomials used
in the aproximation per element (for linear shaped elements k = 1). However,
this is only true for problems where advection does not dominate dispersion. As
soon as the advection dominates, the accuracy strongly deteriorates. Inspired
by upwind finite differences, upwind finite elements have been developed to pre-
clude wiggles. These upwind methods can represent a significant improvement
over the Standard Galerkin Approach, but problems have been observed with
the treatment of source terms, time dependent behavior and with the general-
ization to multidimensions. In these cases, pronounced dispersion corrupts the
true solution. For more information about these techniques and their problems,
see [21].

An example of a class of upwind methods is the class of Petrov-Galerkin
methods (PG), that can be used in order to obtain a better accuracy and fewer
wiggles for advection dominated flows. The results of the accuracy of both the
methods SGA and SUPG can be found in Chapter 4. PG methods are methods
in which the test functions and the basis functions for the solution have different
shapes. Split the testfunction η(x) into two parts:

η(x) = w(x) + b(x), (3.63)

where w(x) is the classical test function from the same function space as the
solution and b(x) is used to take care of the upwind behavior. The w(x) part
ensures the consistency of the scheme. This function must be sufficiently smooth
to allow integration by parts. The function b(x) on the other hand will be
defined elementwise, which means that it may be discontinuous over the element
boundaries. Rewrite the weak formulation before the application of Green’s
theorem (Equation (3.20)) by substitution of (3.63):

∫

Ω

{
−∇ · (θD∇C) + q · ∇C + θ

∂C

∂t
− qsoCs

}
(w + b)dΩ = 0. (3.64)

The function b(x) can be discontinuous over the elements, hence Green’s
theorem (see (3.21)) can only be applied to the w(x) part of (3.64). After the
application of this theorem, Equation (3.64) becomes:

∫

Ω

(
(∇w) · (θD∇C) + (q · ∇C)w + θ

∂C

∂t
w

)
dΩ +

∫

Γ3

σCwdΓ +

+
∫

Ω

{
−∇ · (θD∇C) + q · ∇C + θ

∂C

∂t
− qsoCs

}
bdΩ =

=
∫

Ω

qsoCswdΩ +
∫

Γ2

g2wdΓ +
∫

Γ3

g3wdΓ. (3.65)

It is possible that ∇·(θD∇C) does not exist over the element boundaries and
that the integral containing the b term can only be computed by a summation
over the elements. In order to solve this problem the integral containing b is split
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into a sum of integrals over the elements, and the inter-element contributions
are neglected. Reformulation of Equation (3.65) results in:

∫

Ω

(
(∇w) · (θD∇C) + (q · ∇C)w + θ

∂C

∂t
w

)
dΩ +

∫

Γ3

σCwdΓ +

+
ne∑

k=1

∫

Ωek

{
−∇ · (θD∇C) + q · ∇C + θ

∂C

∂t

}
bdΩ =

=
∫

Ω

qsoCswdΩ +
∫

Γ2

g2wdΓ +
∫

Γ3

g3wdΓ +

+
ne∑

k=1

∫

Ωek
qsoCsbdΩ. (3.66)

Note that

−∇ · (θD∇C) = ∂
∂x

{
θDxx

∂C
∂x + θDxy

∂C
∂y

}
+ ∂

∂y

{
θDyx

∂C
∂x + θDyy

∂C
∂y

}

= ∂(θDxx)
∂x

∂C
∂x + ∂(θDxy)

∂x
∂C
∂y + ∂(θDyx)

∂y
∂C
∂x + ∂(θDyy)

∂y
∂C
∂y

= −∇T (θD)∇C,
(3.67)

where the second derivative of the concentration C disappears because C is a
linear combination of the (linear) basis functions.

After substituting the approximation for the concentration and the basis-
functions for the testfunction w, the Galerkin formulation for the PG method
can be derived. This results in a system of equations, M dC

dt = SC + f , with

M(i, j) =
ne∑

k=1

∫

Ωek
θ(x)φj (φi + b(x)) dΩ, (3.68)

For D ∈ R2×2:

S(i, j) = −
ne∑

k=1

∫

Ωek

[∇φi · (θ(x)D(x)∇φj)− (∇T (θ(x)D(x))∇φj)b(x)+

(q(x) · ∇φj) (φi + b(x))] dΩ−
nbe3∑

k=1

∫

Γ
ek
3

σ(x)φjφidΓ, (3.69)

f(i) =
ne∑

k=1

∫

Ωek
(qsoCs)(x)(φi+b(x))dΩ+

nbe2∑

k=1

∫

Γ
ek
2

g2(x)φidΓ+
nbe3∑

k=1

∫

Γ
ek
3

g3(x)φidΓ.

(3.70)
The choice of the function b(x) is completely free but actually defines the

type of the PG method.
Brooks and Hughes [21] tried to apply upwind only in the direction of the

velocity of the flow of a more dimensional problem. They achieved this by giving
the perturbation parameter b a tensor character:

b(x) =
hξ

2
∇φi · q
||q|| ,
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with ∇φi·q
||q|| the inner product of the gradient of the basis function and the

direction of the velocity and h =
√

∆x2 + ∆y2 some representative distance in
the element, preferably in the direction of q.

This choice of b(x) is called the Streamline Upwind Petrov Galerkin method
(SUPG), since streamlines (lines which are everywhere tangent to the velocity
of the flow) are always in the direction of the velocity. The explanation in two
dimensions is given. Call Ψ = constant a streamline, φ the potential and qx
the x-component of the velocity vector q. By definition, qx = ∂φ

∂x and qy = ∂φ
∂y .

Also by definition, qx = ∂Ψ
∂y and qy = −∂Ψ

∂x . Hence

∇Ψ =
[ ∂Ψ

∂x
∂Ψ
∂y

]
=
[ −qy

qx

]
.

The inner product (∇Ψ,∇φ) = 0. So if Ψ = constant, the level curves of φ and
Ψ are orthogonal. The conclusion is that Ψ = constant is the direction of the
velocity for two dimensional cases.

The following values of ξ are commonly proposed;

Classical upwind scheme
ξ = sign(α), (3.71)

Il’in scheme
ξ = coth(α)− 1/α, (3.72)

Double asymptotic approximation

ξ =
{
α/3, −3 ≤ α ≤ 3,
sign(α), |α| > 3, (3.73)

Critical approximation

ξ =




−1− 1/α, α ≤ −1,
0, −1 ≤ α ≤ 1,
1− 1/α, α ≥ 1,

(3.74)

α is the element Peclet number and is defined as

α =
q ·∆x
2Dθ

. (3.75)

Provided that the dispersion matrix D is symmetric (DT = D) and positive
definite,

||D||p = sup
x∈R2

||Dx||p
||x||p ,

can be used in Equation (3.75). Note that if p = 2

||D||2 = max
λ

(|λ(D)|),

for symmetric matrices. Note that

max
λ

(|λ(D)|) = Spec(D),
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with Spec(D) the spectral radius of the matrix D, which is defined as the radius
of the smallest circle in the complex plane that contains all eigenvalues of D.
Hence ||D||2 = Spec(D) for symmetric matrices [22, 23].

Call Mek
u the element matrix of the mass matrix corresponding to the upwind

part with parameter b such that Mek = Mek
g + Mek

u , with Mek
g the element

matrix of the mass matrix corresponding to the SGA (see Equation (3.52)).
Then

Mek
u (i, j) =

|∆|
6

3∑

l=1

θ(xl)φj(xl)b(xl) =
|∆|
6
θ(xj)

hjξ(xj)
2

∇φi · q(xj)
||q(xj)|| , (3.76)

with ||q|| =
√
q2
x + q2

y. The representative distance of an element in the direction
of the velocity q, hj is determined by the following algorithm developed by A.
Segal:

Algorithm to determine hj , the representative distance of an element in the
direction of q :

For each vertex i within the element
φmax = maxk (|qi| · ∇φk|)
if φmax > ε

h(i) = ||qi||
φmax

else
h(i) = 0.

Some examples of this algorithm are given in Appendix D.
If the Classical upwind scheme is used, ξ(xj) = sign(α) = sign

(
qj ·∆x
2Dθ

)
,

ξ(xj) can be written as
ξ(xj) = sign(qj ·∆x),

because the dispersion coefficient D and the porosity θ are always positive. The
distances ∆x in the element can be determined by

∆x = max(|x3 − x2|, |x3 − x1|, |x2 − x1|),
∆y = max(|y3 − y2|, |y3 − y1|, |y2 − y1|).

Numerical experiments have shown that for a regular grid, taking sign(α) = 1
for all nodes gives the best results, independent on the direction of q. Hence,
in the experiments the Classical Upwind scheme is chosen with ξ = 1.

Call S1eku the element matrix of the dispersion part of the stiffness matrix
corresponding to the upwind part with parameter b such that S1ek = S1ekg +
S1eku , with S1ekg the element matrix of the stiffness matrix corresponding to the
SGA (see Equation (3.40)). In the same way the matrices S2eku and S2ekg (see
Equation (3.40)) are defined for the advective part of the stiffness matrix.

S1eku (i, j) =
∫

Ωek
∇T (θ(x)D(x))∇φjb(x)dΩ =

=
|∆|
6

3∑

l=1

(∇T (θD))(xl)∇φj hlξ(xl)2
∇φi · q(xl)
||q(xl)|| . (3.77)
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The derivatives ∇T (θD) are determined by the information available in the
element:

∇T (θD) ≈
3∑

i=1

θ(xi)D(xi)∇φi(x). (3.78)

S2eku (i, j) = −
∫

Ωek
(q(x) · ∇φj)b(x)dΩ =

= −|∆|
6

3∑

l=1

(q(xl) · ∇φj) hlξ(xl)2
∇φi · q(xl)
||q(xl)|| . (3.79)

And the elements of the element vector corresponding to the upwind part
are

feku (i) =
|∆|
6

3∑

l=1

qso(xl)Cs(xl)b(xl), (3.80)

The representative area |∆| equals two times the area of a triangle and is
defined as

|∆| = | − x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2|, (3.81)

as presented in Equation (3.33).

SUPG for pure advection

Mizukami [24] derived the SUPG method for linear triangular elements for the
pure advection equation by taking

ξ = 1− 1
α+ 1

, (3.82)

in the perturbation parameter

b(x) =
hξ

2
∇φi · q
||q|| ,

where α is the element Peclet number which is defined as

α =
q ·∆x
2Dθ

. (3.83)

The parameter ∆x is not defined in [24], the advantage of this method is that
it is not needed to determine this representative distance in the element. So for
pure advection this results in ξ = 1 and for pure dispersion (i.e. diffusion) in
ξ = 0. In [24] another methode to determine hj , which represents the maximum
element dimension in the direction of q, is presented. The coefficient τ̃ has
the dimension of time and is a function of element parameters (e.g. element
dimension, element Peclet number). The formula for τ̃ is

τ̃i =
1
2

(
M(i, i)

maxj |S2(i, j)|+ S1(i, i)

)
, (3.84)
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where M(i, j) is the Galerkin-type element lumped (row sum) mass matrix.
S2(i, j) is the Galerkin-type element advection matrix and S1(i, i) is the Galerkin-
type element dispersion matrix. The indices i and j denote element node num-
bers (1, 2 or 3). The index i of τ̃i means that the values of τ̃ generally vary with
element nodes. The validity of Formula (3.84) is shown in [24].

Let,

b(xl) =
hξ

2
∇φi · q
||q|| = τ̃l∇φi · ql.

Hence
τ̃l =

ξ

2
hl
||ql|| . (3.85)

First, determine the element matrices of the SGA in order to calculate τ̃ in
Equation (3.84). Then use this value for τ̃ in order to determine the repre-
sentative distance h of the element with the aid of Equation (3.85) and the
information that ξ = 1 for the pure advection equation [24].

3.2.3 Mizukami-Hughes algorithm

The SUPG method does not preclude small nonphysical oscillations localized in
narrow regions along sharp layers. Shock capturing methods were developed in
order to obtain a method which is monotone or which at least reduces the oscil-
lations. A basic problem of most of these methods is the design of appropriate
stabilization parameters which lead to sufficiently small nonphysical oscillations
without deterioration of accuracy. Mizukami and Hughes [25] introduced an
interesting method for solving the steady advection-dispersion equation.

One property of this algorithm is that the solutions always satisfy the discrete
maximum principle when the magnitude of the angles of the triangles of the grid
are less than or equal to π/2. This is called a triangulation of the weakly acute
type. When the discrete maximum principle is satisfied no spurious oscillations
appear, not even in the vicinity of sharp layers. Another property is that the
scheme is conservative and since it is a Petrov-Galerkin method, it is consistent.
The third important property is the nonlinearity of the method, because it
depends on the unknown discrete solution.

Mizukami and Hughes showed that the streamline is not always the appro-
priate upwind direction. First define v by

v =

{
(q·∇C)∇C
‖∇C‖2 , if ∇C 6= 0,

q, if ∇C = 0,
(3.86)

then the following equation can be obtained:

v · ∇C = q · ∇C. (3.87)

More generally, if q̃ is defined by

q̃ = q + k, (3.88)

where k is perpendicular to ∇C, but otherwise arbitrary, then Equation (3.87)
may be generalized to

q̃ · ∇C = q · ∇C. (3.89)
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This suggests that the streamline may not always be the appropriate two-
dimensional generalization of the one-dimensional upwind direction.

The Mizukami-Hughes method is a Petrov-Galerkin method (see Section
3.2.2) with weighting functions

η(x) = w(x) +
∑

ek∈Th
beki χek , i = 1, · · · ,Mh. (3.90)

with Th the triangulation consisting of a finite number of triangular elements
ek.

χek(x) =
{

1 x ∈ ek,
0 x /∈ ek.

w(x) is again the classical testfunction.
The weighting function in an element is defined as

ηi = wi + bi, (3.91)

where wi are the linear basis functions and bi are constants which satisfy the
following conditions:

bi ≥ − 1
3 ,

b1 + b2 + b3 = 0. (3.92)

These conditions result in:
∫

Ωek
ηidΩ ≥ 0,

η1 + η2 + η3 = 1,
(3.93)

where Ωek is again the domain of an element.
Call Mek

mh the element matrix of the mass matrix corresponding to the
Mizukami Hughes part such that Mek = Mek

g + Mek
mh, with Mek

g the element
matrix of the mass matrix corresponding to the SGA (see Equation (3.52)).
Then, by substitution of ηi = φi(x),

Mek
mh(i, j) =

|∆|
6

3∑

l=1

θ(xl)φj(xl)bi =
|∆|
6
θ(xj)bi. (3.94)

S2ekmh is the element matrix of the advective part of the stiffness matrix
corresponding to the Mizukami Hughes algorithm such that S2ekmh = S2ekg +
S2ekmh, with S2ekg the element matrix corresponding to the SGA.

S2ekmh(i, j) =
∫

Ωek
ηiq · ∇wjdΩ

=
∫

Ωek
ηidΩ (q · ∇wj)

= − |∆|2 (q · ∇φj)bi.

(3.95)

with q the average (centroid) velocity in an element

q =
q(x1) + q(x2) + q(x3)

3
.

As
∫

Ωek
ηidΩ ≤ 0, the sign of each S2ekmh(i, j) is determined by the sign of q·∇ηj .
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Figure 3.5: Definition of edge zones (EZi) and vertex zones (V Zi) [25].

Now, define the vertex zones and the edge zones of an element, see Figure 3.5
for the definition of the vertex and element zones and [25] for more information.
The boundary of two adjacent zones is included in the vertex zone. It is assumed
that q points into the vertex zone or the edge zone of node 1 without loss of
generality. If q lies in the vertex zone of node 1, then

q · ∇φ1 > 0, q · ∇φ2 ≤ 0, q · ∇φ3 ≤ 0. (3.96)

If q lies in the edge zone of node 1, then

q · ∇φ1 < 0, q · ∇φ2 > 0, q · ∇φ3 > 0. (3.97)

This vertex is called number 1. Vertex number 2 is the first vertex anticlockwise
and vertex number 3 the second vertex anticlockwise in the element. In the case
of (3.96), by setting the coefficients bi as

b1 =
2
3
, b1 =

−1
3
, b1 =

−1
3
,

the signs of the element matrix S2ekmh(i, j) become

sign(S2ekmh(i, j)) =




+ − −
0 0 0
0 0 0


 ,

where sign(a) is defined as

sign(a) =





+, if a > 0,
−, if a < 0,
0, if a = 0.

This matrix is of nonnegative type (i.e. off-diagonal entries of the matrix are
nonpositive and the sum of the entries in each row is nonnegative).
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On the other hand, in the case of (3.97), it is impossible to obtain any matrix
of the nonnegative type because of the conditions (3.92). This is also the reason
why the SUPG method does not satisfy the discrete maximum principle. Thus,
define another convection matrix ˜S2ekmh(i, j) by

˜S2ekmh(i, j) =
∫

Ωek

ηidΩ(q̃i · ∇wj), (3.98)

where q̃1 is defined by
q̃1 = q, (3.99)

q̃2 by
q̃2 = q + k2, k2 ⊥ ∇C, (3.100)

and q̃3 by
q̃3 = q + k3, k3 ⊥ ∇C. (3.101)

k2 ⊥ ∇C is equivalent to k2 · ∇C = 0 where

k2 =
[
k2x

k2y

]
.

Apart from k2 ⊥ ∇C, k2 can be chosen arbitrary. For example take k2x = 1,
which results in k2y = −∂C/dx

∂C/dy . In general,

k2y = −k2x

∂C/dx

∂C/dy
.

Note that C =
∑3
j=1 Cjφj , hence

∇C =
3∑

j=1

Cj∇φj .

∇φj can be found in the Equations (3.16), (3.17) and (3.18).
If there exists q̃2 which lies in the vertex zone of node 2, i.e., which satisfies

q̃2 · ∇φ1 > 0, q̃2 · ∇φ2 ≤ 0, q̃2 · ∇φ3 ≤ 0, (3.102)

then by substituting such q̃2 into (3.98) the element matrix of the advective
part is again of nonnegative type. The values for b can be found in Figure 3.6.
Information about all other possibilities can be found in [25].

Substitution of ηj = φj(x) results in ∇wj = ∇φj because bj are constant:
∇ηj = ∇(wj + bj) = ∇wj . The element matrix of the stiffness matrix of the
advective part in this case becomes

S2ekmh(i, j) = −|∆|
6

3∑

l=1

(q̃i · ∇φj)bi = −|∆|
2

(q̃i · ∇φj)bi, (3.103)

Note that the element matrix of the dispersive part of the stiffness matrix
corresponding to the Mizukami Hughes algorithm S1ekmh = 0 when θD is con-
stant within an element.
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Equivalently, the right hand side can be defined as

fekmh(i) =
|∆|
2
qsoCsbi, (3.104)

with
qsoCs = qsoCs(x1) + qsoCs(x2) + qsoCs(x3).

The full algorithm for the determination of bi can be found in Figure 3.6. In
this figure

(A) q · ∇φ1 > 0, q · ∇φ2 ≤ 0, q · ∇φ3 ≤ 0,

(B) q · ∇φ1 < 0, q · ∇φ2 > 0, q · ∇φ3 > 0,

(C) q̃2 · ∇φ1 < 0, q̃2 · ∇φ2 > 0, q̃2 · ∇φ3 < 0,

(D) q̃3 · ∇φ1 < 0, q̃3 · ∇φ2 < 0, q̃3 · ∇φ3 > 0.

(3.105)

Figure 3.6: Flow chart - an algorithm for the determination of bi [25]. See the
Equations (3.105) for the definitions of (A), (B), (C) and (D).
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3.3 Spatial discretization transport equation: ver-
tical direction

3.3.1 FVM

Consider the solute transport equation in one dimension:

θ
∂C

∂t
+
∂qzC

∂z
− ∂

∂z

(
θD

∂C

∂z

)
= qsoCs, z ∈ Ω = [0,H] and t ∈ [0, T ].

(3.106)
The domain Ω equals the hight of the subsurface and is subdivided into

segments Ωj , j = 1, ..., J corresponding to the aquifers and aquitards, as shown
in the Figures 3.1 and 3.2. The segments are called cells and the cell-length,
denoted by ∆zj for the jth cell, is called the mesh width. Integrate equation
(3.106) over Ωj and approximate this integral by

∆zjθj
∂C

∂t
− F |j+1/2

j−1/2 = ∆zj (qsoCs)j , j = 1, ..., J, (3.107)

with
F |j+1/2

j−1/2 = Fj+1/2 − Fj−1/2,

Fj+1/2 = F (zj+1/2),

F (z) = θD
∂C

∂z
− qC. (3.108)

Here F (z) is called the flux, Fa(z) = −qC the advective flux and Fd(z) = θD ∂C
∂z

the dispersive flux. Equation (3.107) can be rewritten as

θj
∂C

∂t
+
−Fj+1/2 + Fj−1/2

∆zj
= (qsoCs)j . (3.109)

The flux Fj+1/2 has to be approximated in terms of neighboring grid func-
tions. The dispersive flux Fd is discretized in space with central differences

Fdj+1/2 =
(
θD dC

dx

)
j+1/2

≈ (θD)j+1/2

(
Cj+1−Cj
∆zj+1/2

)
,

∆zj+1/2 ≈ 1
2 (∆zj + ∆zj+1).

(3.110)

As can be seen in Figure 3.1, the porosity θ and the dispersivity D are known
at j and j + 1, not at j + 1/2. The quantities D and θ are assumed constant
per element, so use

Fdj+1/2 =
(
θD

dC

dz

)

j+1/2

≈ (θD)j

(
Cj+1 − Cj
∆zj+1/2

)
, (3.111)

Fdj−1/2 =
(
θD

dC

dz

)

j−1/2

≈ (θD)j

(
Cj − Cj−1

∆zj−1/2

)
(3.112)

Note that it can be considered to take the average of Dj and Dj+1 in above
equations.
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For the advective flux Fa first order upwind discretization is used:

Faj+1/2 = − (qC)j+1/2 ≈ −
1
2
(
qzj+1/2 + |qzj+1/2 |

)
Cj−1

2
(
qzj+1/2 − |qzj+1/2 |

)
Cj+1.

(3.113)
For the aquifers, indeed qj+1/2 and qj−1/2 are known. The velocity qzj is as-
sumed to be constant within element j, so for the aquitards it is used

Faj+1/2 = − (qzC)j+1/2 ≈ −
1
2
(
qzj + |qzj |

)
Cj − 1

2
(
qzj − |qzj |

)
Cj+1, (3.114)

Faj−1/2 = − (qzC)j−1/2 ≈ −
1
2
(
qzj + |qzj |

)
Cj−1 − 1

2
(
qzj − |qzj |

)
Cj . (3.115)

For advective dominated problems it is expected that information about the
concentration can be found backwards in space. For a system of equations there
might be several waves propagating at different speeds and perhaps in different
directions. It makes sense to use the knowledge of the structure of the solution
to determine better numerical flux functions. This idea gives rise to upwind
methods in which the information for the concentration is obtained by looking
in the direction from which this information should be coming.

For a scalar advection equation (q constant), there is only one speed, which
is either positive or negative. So an upwind method is typically an one-sided
method with first order accuracy in space. For the one dimensional advection-
dispersion equation the inequality | qτ∆x | ≤ 1 must be satisfied in order for this
method to be stable. This condition is known as the CFL-condition.

The CFL condition is a necessary condition that must be satisfied by any fi-
nite volume method if stability and convergence to the solution of the differential
equation as the grid is refined is expected. Its formal definition is

Definition 1 The CFL condition is defined as: a numerical method is conver-
gent if and only if its numerical domain of dependence tends to the true domain
of dependence of the PDE, in the limit as τ and ∆x go to zero.

In Section 4.4 of Levèque [26] the CFL condition is derived for the one dimen-
sional advection equation with a three-point stencil

µ ≡ | qτ
∆x
| ≤ 1. (3.116)

This condition holds also for the advection-dispersion equation.

TVD method

Solutions produced by standard discretization techniques are typically corrupted
by nonphysical oscillations and/or excessive numerical dispersion. Traditionally,
these problems have been dealt with by means of a nonlinear shock-capturing
viscosity, like high resolution methods with limiter. Modern high-resolution
schemes are based on flux/slope limiters which switch between linear high- and
low-order discretizations adaptively depending on the smoothness of the solu-
tion.

Definition 1 For one dimension, a method is called Total Variation Diminish-
ing (TVD) if, for any set of data Qn, the values Qn+1 computed by the method
satisfy

TV (Qn+1) ≤ TV (Qn), (3.117)
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with

TV (Qn) =
∞∑

i=−∞
|Qni −Qni−1|. (3.118)

If a method is TVD, then in particular for data that are initially monotone, say

Qni ≥ Qni+1 for all i,

the data will remain monotone in all future time steps. Hence if a single propa-
gating discontinuity is discretized, the discontinuity may become smeared in fu-
ture time steps but cannot become oscillatory. A TVD method is monotonicity-
preserving. This is proved in [27] for the hyperbolic conservation law.

Definition 2 A method is called monotonicity-preserving if

Qni ≥ Qni+1 for all i,

implies that
Qn+1
i ≥ Qn+1

i+1 for all i.

This implies that a TVD method is stable. Note that stability plus consistency
implies convergence. This is known as Lax’s equivalence theorem. The defi-
nitions of consistency, stability, convergence, local truncation error and global
truncation error can be found in Appendix B [26].

To obtain a second-order accurate discretization in space for the advective
part, a high-resolution method with nonzero slope is used as derived in [26]. A
nonzero slope is chosen in such a way that the slope approximates the derivative
over the ith cell.

Assume the velocity q > 0 and |qτ/∆x| ≤ 1 as is required by the CFL
condition, then the advective flux in Equation (3.115) can be written as

Fanj+1/2 = − (qC)nj+1/2 ≈ −qj+1/2C
n
j .

With a nonzero slope the advective flux becomes

Fanj+1/2 = −qj+1/2C
n
j −

1
2
qj+1/2(∆x− qj+1/2τ)σnj . (3.119)

Three possibilities for the nonzero slope are:

Centered slope: σnj =
Cnj+1 − Cnj−1

2∆xj
(Fromm), (3.120)

Upwind slope: σnj =
Cnj − Cnj−1

∆xj
(Beam-Warming), (3.121)

Downwind slope: σnj =
Cnj+1 − Cnj

∆xj
(Lax-Wendroff), (3.122)

Second-order accurate methods such as Lax-Wendroff or Beam-Warming
give much better accuracy on smooth solutions than the upwind method, but fail
near discontinuities, where oscillations are generated. In fact for the advective
equation, according to [26], even when the solution is smooth, oscillations may
appear due to the dispersive nature of these methods. Upwind methods have
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the advantage that they cannot introduce oscillations, so they keep the solution
monotonically varying in regions where the solution should be monotone. The
disadvantage on the other hand is that they smear the solution.

High-resolution methods combine the best features of both the upwind and
the second-order accurate methods. Second-order accuracy is obtained where
possible, but it is not insisted in regions where the solution is not behaving
smoothly. The idea is to apply some form of limiter that changes the magnitude
of the correction actually used, depending on how the solution is behaving. This
leads to the so-called slope-limiter methods.

The first order upwind method is TVD for the advection equation and has
the advantage that it cannot introduce oscillations but the disadvantage that it
smears the solution. The Fromm, Beam-Warming and Lax-Wendroff methods
are not unconditionally TVD methods.

Take again the advective flux as described in Equation (3.119). One choice of
slope that gives second-order accuracy for smooth solutions while still satisfying
the TVD property is the minmod slope, which is a slope-limiter method

σnj = minmod

(
Cnj − Cnj−1

∆x
,
Cnj+1 − Cnj

∆x

)
, (3.123)

where the minmod function of two arguments is defined by

minmod(a, b) =





a if |a| < |b| and ab > 0,
b if |b| < |a| and ab > 0,
0 if ab ≤ 0.

(3.124)

Another popular choice is the monotonized central-difference limiter (MC
limiter)

σnj = minmod

((
Cnj+1 − Cnj−1

2∆xj

)
, 2
(
Cnj − Cnj−1

∆xj

)
, 2
(
Cnj+1 − Cnj

∆xj

))
,

(3.125)
where the midmod function of three arguments is defined by

minmod(a, b, c) = minmod(a,minmod(b, c)). (3.126)

This compares the central difference of Fromm’s method with twice the one-
sided slope to either side. In smooth regions this reduces to the centered slope
of Fromm’s method [19].

In Appendix G 1D numerical experiments can be found for the MC limiter.

3.3.2 FDM

In the vertical direction the Finite Difference Method can be used instead of the
Finite Volume Method. Divergence free flow is considered (∇q = 0), hence the
1D transport equation in the vertical direction is

θ
∂C

∂t
+ qz

∂C

∂z
− ∂

∂z

(
θD

∂C

∂z

)
= qsoCs, z ∈ Ω = [0,H] and t ∈ [0, T ].

(3.127)
With central differences for the spatial discretization, Equation (3.106) becomes
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θi
∂C
∂t + qzi

Ci+1−Ci−1
2∆z − Ci+1−Ci−1

2∆z
θi+1Di+1−θi−1Di−1

2∆z

−θiDi
Ci+1−2Ci+Ci−1

∆z2 = qsoiCsi ,

(3.128)

for the aquitards. Where i+ 1 denotes the vertex above vertex i and i− 1 the
vertex beneath vertex i.

For the aquifers

−Ci+1−Ci−1
2∆z

θi+1Di+1−θi−1Di−1
2∆z − θiDi

Ci+1−2Ci+Ci−1
∆z2 +

+qzi+1/2

Ci+1
2∆z − qzi−1/2

Ci−1
2∆z + θi

∂C
∂t = qsoiCsi ,

(3.129)

is used because the velocity in the upward direction is unknown in the vertex.
The upwind schemes for the aquitards and aquifers are

−Ci+1−Ci−1
2∆z

θi+1Di+1−θi−1Di−1
2∆z − θiDi

Ci+1−2Ci+Ci−1
∆z2 +

+ 1
∆z

(
1
2 (qzi + |qzi |)Ci + 1

2 (qzi − |qzi |)Ci+1 − 1
2 (qzi + |qzi |)Ci−1 − 1

2 (qzi − |qzi |)Ci
)

+

+θi ∂C∂t = qsoiCsi ,
(3.130)

for the aquitards and

−Ci+1−Ci−1
2∆z

θi+1Di+1−θi−1Di−1
2∆z − θiDi

Ci+1−2Ci+Ci−1
∆z2 +

+ 1
∆z

(
1
2 (qzi+/2 + |qzi+1/2 |)Ci + 1

2 (qzi+1/2 − |qzi+1/2 |)Ci+1−
1
2 (qzi−1/2 + |qzi−1/2 |)Ci−1 − 1

2 (qzi−1/2 − |qzi−1/2 |)Ci
)

+ θi
∂C
∂t = qsoiCsi ,

(3.131)
for the aquifers. A system of equations is derived of the form

M
dC

dt
= SC + f.

This system forms together with the system for the 2D horizontal FEM the
system of equations for the 3D model.

Note that the matrix M of the one dimensional FDM does not equal the mass
matrix M of the FEM. Equations (3.130) and (3.131) have to be rewritten in
order to substitude the third dimension in the system of equations. This can be
done by multiplication of (3.130) and (3.131) by MFEM (i,i)

θ , where MFEM (i, i)
equals the ith diagonal element of the mass matrix M formed by the FEM.

3.4 Temporal discretization

The system of ordinary differential equations has to be discretized in time. A
choice has to be made between the one-step and multi-step methods. Here one-
step methods are considered, so only information of the preceding time-step is
used and not of previous time-steps.

The ω-method is given by:
(
M

τ
− ωS

)
Cn+1 =

(
M

τ
+ (1− ω)S

)
Cn +

(
(1− ω)fn + ωfn+1

)
. (3.132)
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M is the mass-matrix as defined in equation (3.25) and S the stiffness-matrix
as defined in equation (3.26). The most common values for ω are:

ω = 0 Forward Euler method;
ω = 1

2 Crank-Nicolson method;
ω = 1 Backward Euler method.

In the literature it is common to split the matrix S into an advective and dis-
persive part. Say S = S1 + S2, with S1 the stiffness matrix for the dispersive
part and S2 the stiffness matrix for the advective part.

A common used option is Backward Euler for the dispersive part and For-
ward Euler for the advective part. For this method better conditions for the
stepsize can be derived in order to avoid wiggles. With S1 the matrix for the
dispersive part and S2 the matrix for the advective part, this scheme results in

(
M

τ
− S1

)
Cn+1 =

(
M

τ
+ S2

)
Cn + fn. (3.133)

In the Interim Master’s thesis [19] research was done on other methods for
the temporal discretization, like the Crank-Nicholson method and the Runge-
Kutta-2 method. But the combination Backward Euler for the dispersive part
and Forward Euler for the advective part of the stiffnessmatrix gave the best
results. In Table 3.4 the conclusions of those methods can be found for the one
dimensional problem.

T1 T2 T3

stability condition | qτ∆x | ≤ 1 unconditionally stable | qτ∆x | ≤ 1 and Dτ
∆x2 ≤ 1

2

Accuracy O(τ) O(τ2) O(τ2)

Work implicit scheme implicit scheme explicit but a
one-step method
with two stages

Numerical dispersion Less More More

Table 3.4: Characteristics of the temporal discretization schemes Backward
Euler for the dispersion part and Forward Euler for the advection part (T1),
Crank-Nicholson (T2) and Runge-Kutta-2 (T3) for the 1D advection dispersion
equation [19].
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3.5 Stability and accuracy

Stability

In the Interim Master’s thesis [19] the stability conditions for all in Section
3.4 mentioned temporal discretization methods are given. Some details can
be found in Appendix F. The used temporal discretization method uses the
Forward Euler method (explicit) for the advective part and Backward Euler
(implicit) for the dispersive part. The Von Neumann stability in [23] results in
the stability condition

| qτ
θ∆x

| ≤ 1, (3.134)

for one dimensional problems. This condition is called the CFL condition,
named after Courant, Friedrich and Levy. The dispersive part is discretized
with Euler Backward which results in unconditional stability. Note that the
seepage velocity v is defined by

v =
q
θ
, (3.135)

with θ the porosity of the subsurface. The seepage velocity, or Darcy velocity
divided by the porosity is used for the CFL condition.

For two dimensional problems with the same temporal discretization the
CLF condition can be defined by

| qxτ
θ∆x

|+ | qyτ
θ∆y
| ≤ 1, (3.136)

or by
max

(
| qxτ
θ∆x

|, | qxτ
θ∆x

|
)
≤ 1. (3.137)

Note that Equation (3.136) leads to a condition with the smallest time step,
hence the most safe condition.

For the three dimensional problem the condition

| qxτ
θ∆x

|+ | qyτ
θ∆y
|+ | qyτ

θ∆y
| ≤ 1, (3.138)

leads to the most stern demands for the time step τ .

Accuracy

The used temporal discretization scheme which uses Backward Euler for the
dispersion part and Forward Euler for the advection part and the source term
is first order accurate (O(τ)).

The spatial discretization method Standard Galerkin Approach is second
order accurate if all angles of the triangles are smaller than 1350 (see [13] or
[19] for more information). The SUPG classicial upwind method is first order
accurate. The upwind version of the finite difference method is also first order
accurate. The accuracy of the finite volume methods is analysed in [26]. The
MC-limiter is second-order accurate, where the solution is smooth.

Hence the three dimensional method which uses SUPG classical upwind or
the Mizukami Hughes algorithm for the x- and y-direction and the FDM upwind
for the z-direction is first order accurate.
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3.6 Method to solve the system of equations

The system of Equations
(
M

τ
− S1

)
Cn+1 =

(
M

τ
+ S2

)
Cn + fn, (3.139)

has to be solved in order to determine the concentration C at the next time
step. Let

A =
M

τ
− S1, (3.140)

b =
(
M

τ
+ S2

)
Cn + fn. (3.141)

Now, the system ACn+1 = b has to be solved.
This system of equations can be solved with a direct method. A popular

method is the Gaussian elimination method, also known as the LU decom-
position. This method is the method of choice when the matrix A is square
nonsingular, dense and relatively small. for small two dimensional problems,
this method will often satisfy.

For bigger problems, a basic iterative method may be more useful. The
matrix A is sparse, so iterative methods for the solution of the linear system
of equations are useful. A good guess for the concentration Cn+1 is available,
namely the calculated concentration of the previous loop of the coupled problem.
Also because of this characteristic of the problem, iterative methods may be
more advantageous.

Use the following general iteration

Ci+1 = QCi + s, (i = 0, 1, 2, ...), (3.142)

such that the system C = QC + s is equivalent to the original problem. Q is
called the iteration matrix. The simplest iteration scheme is the Richardson
iteration (p. 39 [22]). Two other well-known methods are the Jacobi and the
Gauss-Seidel methods. In these methods a splitting of the matrix A takes place
in order to construct the matrix Q.

When A is symmetric (A = AT ) and positive definite (xTAx > 0 for x 6= 0)
the Conjugate Gradient (CG) method can be used. In order to obtain faster
convergence, the Preconditioned Conjugate Gradient (PCG) method may be
used. A preconditioner is a matrix that transforms the linear system such that
the transformed system has the same solution but the transformed coefficient
matrix has a more favorable spectrum (p. 66 [22]).

When the matrix Q is only symmetric and not positive definite, methods
as discussed in Chapter 5.3 of [22] may be used. One of those methods is a
BiCG Type Method. When advection is involved in the problem, the matrix
A used in the CGM is no longer symmetric and therefor the CGM cannot be
used. Another method is used, a BiCG Type Method. In this type of method
there are short recurrences but there is no optimality property. In the numerical
experiments, the Bi-CGSTAB method is used, more information can be found
in [22].

According to [28] Multigrid methods are faster than Conjugate Gradient
methods but require more complicated and individual programming.
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3.7 Flow equation

The flow equation (2.12) derived in Section 2.1, time independent and two di-
mensional in the x-direction and z-direction.The freshwater hydraulic conduc-
tivity is assumed to be constant (k). This flow equation is given by

∂

∂x

(
ρkf

∂hf
∂x

)
+

∂

∂z

(
ρkf

∂hf
∂z

+
ρ− ρf
ρf

)
= −ρq′, (3.143)

with k the freshwater hydraulic conductivity

kfij =
κijρfg

µf
, (3.144)

and hf the freshwater head. This flow equation is numerically solved with the
Standard Galerkin Approach.

Equation (3.143) is multiplied by a test function η satisfying the homoge-
neous essential boundary condition η|Γ1 = 0 and integrated over the domain
Ω.

∫

Ω

∂

∂x

(
ρkf

∂hf
∂x

)
+

∂

∂z

(
ρkf

∂hf
∂z

+
ρ− ρf
ρf

)
dΩ = −

∫

Ω

ηρq′dΩ. (3.145)

Applying Green’s theorem (Equation (3.21)) to the second derivative and sub-
stituting φ for η results in

−
∫

Ω

∇φi · (ρk∇hf )dΩ +
∫

Ω

φi
∂

∂z

(
ρk
ρ− ρf
ρf

)
+
∫

Γ

φiρk∇ · hf = −
∫

Ω

φiρq
′dΩ.

(3.146)
The integral over the boundary Γ disappears when the homogeneous Neumann
boundary condition ∇hf · n = 0 is used. Substitution of

hf =
n∑

j=1

hfjφj(x), (3.147)

with

x =
[
x
z

]
, (3.148)

results in

−
n∑

j=1

hfj

∫

Ω

ρk∇φi · φjdΩ =

= −
∫

Ω

φi
∂

∂z

(
ρk
ρ− ρf
ρf

)
dΩ−

nb∑

j=1

hfj

∫

Γ

φig2 −
∫

Ω

φiρq
′dΩ.

(3.149)

Equation (3.149) is a system of equations of the form

Thf = f,
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with T the nv ∗ nl × nv ∗ nl stiffness matrix, hf the vector with the freshwater
heads and f the right hand side. The element matrix of the stiffness matrix is

T ek =



T ek(1, 1) T ek(1, 2) T ek(1, 3)
T ek(2, 1) T ek(2, 2) T ek(2, 3)
T ek(3, 1) T ek(3, 2) T ek(3, 3)


 , (3.150)

with

T ek(i, j) = −|∆|
6
k(∇φi · ∇φj)

3∑

l=1

ρ(xl). (3.151)

The element vector of f is

fek =



fek(1)
fek(2)
fek(3)


 , (3.152)

with

f(i)ek = −|∆|
6

(
∂

∂z

(
ρ(xi)k

ρ(xi)− ρf
ρf

)
+ ρ(xi)q′(xi)

)
. (3.153)

The element vector for the boundary elements is

fel(i) = −|∆̃|
2
g2(xi), (3.154)

with |∆̃| the length of the boundary element.
The term ∂

∂z

(
ρ(xi)k

ρ(xi)−ρf
ρf

)
can be written as

∂

∂z

(
ρ(xi)k

ρ(xi)− ρf
ρf

)
=

∂

∂z

(
k

ρf
ρ(xi)2 − kρ(xi)

)
,

and is determined by

∂

∂z

(
ρ(xi)k

ρ(xi)− ρf
ρf

)
≈
(

2k
ρf
− k
) 3∑

l=1

ρ(xl)
∂φl
∂z

. (3.155)

The gradients of the basis functions can be found in the Equations (3.9), (3.10)
and (3.11).

In order to calculate the velocities qx and qy Darcy’s law (Equation (2.11))
is used. With k constant this results in

qx = −k∂hf
∂x

, (3.156)

qz = −k
(
∂hf
∂z

+
ρ− ρf
ρf

)
. (3.157)

The partial derivatives of hf for a regular grid can be determined by central
differences.
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Chapter 4

Numerical experiments

4.1 2D Transport Equation

error(1): wrong syntax

4.1.1 2D advection equation

The transport equation




−∇ · (θD∇C) + q · ∇C + θ ∂C∂t = qsoCs,

((θD∇C) · n) |Γ2 = g2(x),

(σC + (θD∇C · n)) |Γ3 = g3(x), σ ≥ 0,

C(x, t0) = C0(x),

(4.1)

is derived in Chapter 2 and numerically solved in two dimensions with the Finite
Element Method as shown in Chapter 3. At the no-flow and outflow boundary
a homogeneous Neumann boundary condition is used. At the inflow boundary
a homogeneous Robbins condition is used with σ = 0.

For the two dimensional advection-dispersion equation numerical experi-
ments are done for the Standard Galerkin Approach (SGA) (see Section 3.2.1),
SUPG Classicial upwind method (see Section 3.2.2), SUPG pure advection al-
gorithm (see Section 3.2.2) and Mizukami-Hughes algorithm (see Section 3.2.3).

The size of the domain Ω is one meter in the x-direction and one meter in
the y-direction. This area is divided into regular triangles with 50 nodes in both
directions, which results in a total of 2500 nodes. The elements and vertices in
the grid of Figure 4.1 are numbered from left to right and from the bottom to
the top. All angles of the 4802 elements of this structured grid are smaller than
or equal to π/2 or 90 degrees.

The initial condition of Figure 4.2 can be seen as an injection of salt in some
grid points at the initial state. A density ρ of 1025 kg/m3 corresponds to salt
water, ρ = 1000 kg/m3 corresponds to freshwater. A density between those
values is called brackish water.

59
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Figure 4.1: Structured grid, with 4802 elements and 2500 vertices, numbered
from te left to the right and from the bottom to the top.
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Figure 4.2: Initial condition of the density in the area Ω = 1 × 1 meter. The
density ρ = 1000 kg/m3 corresponds to freshwater, ρ = 1025 kg/m3 corresponds
to salt water.
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Different methods

For the parameters the following values are taken: dispersion coefficient D = 0,
velocity in the x-direction qx = 0.1, velocity in the y-direction qy = 0.1, porosity
θ = 1, time step τ = 0.05 and the number of time steps T = 60. So the salt
concentration should move 0.3 meters into the x− as well as the y−direction.

In Figure 4.3(a) the results for the Standard Galerkin Approach are shown.
It can be seen that unwanted wiggles appear. The SUPG method Classical
Upwind is shown in Figure 4.3(b), less wiggles appear with this method but
this method has numerical dispersion. It is noted that the SUPG Classical
Upwind method gives a solution with the same quality for negative velocities
(qx = qy = −0.1).

In Figure 4.3(c) the algorithm for the pure advection equation is shown.
This method shows more wiggles and more numerical dispersion than the SUPG
Classical Upwind method. The Mizukami Hughes algorithm is shown in Figure
4.3(d). This Figure shows a maximum density ρ of 1010 kg/m3, due to numerical
dispersion. In the case of Figure 4.3(d), the flow chart of the Mizukami Hughes
algorithm (see Figure 3.6 in Section 3.2.3) shows that the coefficients bi are set
b1 = 2/3, bi = −1/3 and bi = −1/3 because the velocity q is in the direction
of the vertex zone of node 1. In this case the choice of w2 and w3 does not
influence the solution.

The maximum density ρ should remain 1025 kg/m3, but increases with 12
kg/m3 for the SUPG Classical Upwind method, with 16 kg/m3 for the pure
advection algorithm and with 14 kg/m3 for the Mizukami Hughes algorithm.
The covered distance after 60 time steps, τ = 0.05 and with a velocity of qx =
qy = 0.1 m/day should be 0.3 meter. Both the SUPG Classical Upwind and
Mizukami Hughes algorithm have their maximum at the right location. For this
example, the SUPG Classical Upwind method (Figure 4.3(a)) gives the best
results.
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(a) Standard Galerkin Approach.
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(b) SUPG Classical Upwind.
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(c) SUPG Advection only algorithm.
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(d) Mizukami Hughes algorithm.

Figure 4.3: Advection equation with qx = qy = 0.1, D = 0, θ = 1, τ = 0.05,
T = 60.
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Timestep

The CFL (Courant-Friedrich-Levy) condition for the advection and advection-
dispersion equation is

| qxτ
θ∆x

|+ | qyτ
θ∆y
| ≤ 1, (4.2)

for two dimensional problems. The parameter for the porosity θ = 1 in these
examples.

Different element distances are shown in Figure 4.4. Note that ∆xmax = 0.02
and ∆ymax = 0.02 in the grid of Figure 4.1, so when qx = 0.1 and qy = 0.1,
the CFL condition results in τ ≤ 0.1. But ∆x and ∆y are the distances in a
triangle and are actually 0 ≤ ∆x ≤ 0.02 and 0 ≤ ∆y ≤ 0.02 (see Figure 4.4).
When ∆x = ∆y = 0.02 is taken, the CFL condition results in a time step of
τ ≤ 0.1.

Figure 4.5(a) shows that the time step τ = 0.1 is too large for the advection
equation, this can be seen by the unwanted wiggles in the density.

In Figure 4.5(b) the representative distances are taken ∆x = 0.002 and
∆y = 0.002, so a tenth of the maximum distances of the element, which results
in τ ≤ 0.01. These results are better, the solution has less wiggles.

Figure 4.5(c) shows that taking ∆x = 0.01 and ∆y = 0.01, so the half of the
maximum distances of the element, satisfies. This corresponds to a time step
τ = 0.05. In all two dimensional numerical experiments with qx = qy = 0.1,
τ = 0.05 is used in this section.
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Figure 4.4: Element of the Finite Element grid, with the element distances
∆xmax = ∆ymax = 0.02, ∆xmax/2 = ∆ymax/2 = 0.01 and ∆xmax/10 =
∆ymax/10 = 0.002 .
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(a) τ = 0.1.
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(b) τ = 0.01.
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(c) τ = 0.05.

Figure 4.5: Advection equation solved with SUPG Classical Upwind. qx = qy =
0.1, D = 0, θ = 1, T = 30. In Figure 4.5(a) the time step is τ = 0.1, in Figure
4.5(b) τ = 0.01 and in Figure 4.5(c) τ = 0.05.
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Porosity

The porosity θ has an influences the seepage velocity. The seepage velocity v is
defined as

v =
q
θ
,

hence for θ = 1 the seepage velocity equals the Darcy velocity q. When the
porosity θ = 0.2, the seepage velocity increases five times.

A porosity θ = 1 means that the total volume is available for fluid transmis-
sion. The value θ = 0 results in the differential equation

q · ∇C = qsoCs. (4.3)

Hence when there is no source, the velocity q = 0. This can physically be
explained as no possibility for a fluid to flow in a solid material. The source
term qsoCs should be dependent on the porosity, because no salt can be injected
in a solid with no volume available for fluid transmission.

When θ = 0.5, the seepage velocity increases two times, as can be seen in
Figure 4.6, because there is less space for the fluid to flow. The covered distance
has now increased from 0.3 meter (see Figure 4.3(b)) to about 0.6 meter.

Note that when the porosity changes, the stability condition for the time
step changes. When θ = 0.5 and ∆xmax/2 = ∆xmax/2 = 0.01, the stability
condition for the time step becomes τ ≤ 0.025. The example of Figure 4.6 does
not satisfy this condition, which explains the wiggles. Unless the wiggles, still
can be seen that the covered distance doubles when the porosity θ = 0.5 instead
of θ = 1.
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Figure 4.6: SUPG Classical Upwind. qx = qy = 0.1, D = 0, θ = 0.5, τ = 0.05,
T = 60.
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Sharp fresh-salt front

In Figure 4.7 another initial condition is given for the advection equation. This
Initial Condition can be seen as a sharp fresh-salt-fresh front. The values of the
parameters are D = 0, qx = 0, qy = 0.1, θ = 1, τ = 0.05.

Results are shown after 60 time steps (T = 60) for the SUPG Classical
Upwind method (Figure 4.8(a)) and the Mizukami Hughes algorithm (Figure
4.8(b)) and after 120 time steps (Figure 4.9). At the boundaries x = 0 and
x = 1 the Mizukami Hughes algorithm shows a density with less wiggles than
the SUPG Classical Upwind method. The minimum and maximum densities of
the SUPG Classical Upwind method in Figure 4.9(a) are ρ = 970 and ρ = 1030
kg/m3. For the Mizukami Hughes algorithm, these values are ρ = 975 and
ρ = 1025 kg/m3. It can be concluded that in this example the Mizukami
Hughes algorithm is better than the SUPG Classicial Upwind method.
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Figure 4.7: Initial condition of a sharp fresh-salt-fresh front. The density ρ =
1000 kg/m3 corresponds to freshwater, ρ = 1025 kg/m3 to salt water.
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(a) SUPG Classical Upwind.
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(b) Mizukami Hughes algorithm.

Figure 4.8: Advection equation, contourplot of the density ρ of the water with
qx = 0, qy = 0.1, D = 0, θ = 1, τ = 0.05, T = 60. In Figure 4.8(a) the SUPG
Classical Upwind is shown and in Figure 4.8(b) the Mizukami Hughes algorithm.
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(a) SUPG Classical Upwind.
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(b) Mizukami Hughes algorithm.

Figure 4.9: Advection equation, contourplot of the density ρ of the water with
qx = 0, qy = 0.1, D = 0, θ = 1, τ = 0.05, T = 120. In Figure 4.9(a) the
SUPG Classical Upwind is shown and in Figure 4.9(b) the Mizukami Hughes
algorithm.
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4.1.2 2D advection-dispersion equation

Different dispersion coefficients

In general, in groundwater flow the order of dispersion is 3 ∗ 10−3 m2/day and
the order of advection is 3 ∗ 10−2 m/day. Hence the dispersion is ten times
smaller than the advection. In the Figures 4.10(a) and 4.10(b) these values
for the dispersion coefficient D and the velocities qx and qy are taken. In the
Figures 4.11(a) and 4.11(b) the SUPG Classical Upwind and the Mizukami
Hughes algorithm for qx = qy = 0.1 and D = 10−4 are shown. In the Figures
4.12(a) and 4.12(b) these contour lines of the density ρ are shown for D = 10−8.
The SUPG Classical Upwind method shows the best results for small dispersion
coefficients in this example.
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(a) SUPG Classical Upwind.
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Figure 4.10: Advection-dispersion equation with qx = qy = 0.1, D = 10−2,
θ = 1, τ = 0.05, T = 60. In Figure 4.10(a) the SUPG Classical Upwind is
shown and in Figure 4.10(b) the Mizukami Hughes algorithm.
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(a) SUPG Classical Upwind.
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(b) Mizukami Hughes algorithm.

Figure 4.11: Advection-dispersion equation with qx = qy = 0.1, D = 10−4,
θ = 1, τ = 0.05, T = 60. In Figure 4.11(a) the SUPG Classical Upwind is
shown and in Figure 4.11(b) the Mizukami Hughes algorithm.
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(a) SUPG Classical Upwind.
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(b) Mizukami Hughes algorithm.

Figure 4.12: Advection-dispersion equation with qx = qy = 0.1, D = 10−8,
θ = 1, τ = 0.05, T = 60. In Figure 4.12(a) the SUPG Classical Upwind is
shown and in Figure 4.12(b) the Mizukami Hughes algorithm.
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Direction of the velocity

In Figure 4.13(b) an example is given of the Mizukami Hughes algorithm with
qx = 0.1, qy = −0.1 and D = 10−4. For most of the elements, the velocity is now
in the direction of the edge zone of node 1. See Section 3.2.3 for more information
and Figure 4.11 for an example where the velocity is in the direction of the vertex
zone of node 1. In Figure 4.13(a) the SUPG Classical Upwind method can be
found for the same parameters. The Mizukami Hughes algorithm is better in
this case. A possible cause for the wiggles in the SUPG classical upwind method
is the chosen representative element distance in the direction of q, see Appendix
D for more details.

In Figure 4.14 the velocity qx = 0.1 and qy = 0, for half the elements
this results in a velocity in the direction of the edge zone of node 1 in the
Mizukami Hughes algorithm. For the other half of the elements the velocity
is in the direction of the vertex zone of node 1. Figure 4.15 shows the SUPG
Classical Upwind method and the Mizukami Hughes algorithm for qx = −0.1
and qy = −0.1, which results in a velocity in the direction of the vertex zone of
node 1 for all elements.

It seems that the Mizukami Hughes algorithm is better than the SUPG
Classical Upwind method only when at least for half of the elements the velocity
will be in the direction of the edge zone of node 1 of the element. It is noted
that computations are much more time consuming for the Mizukami Hughes
algorithm than for the SUPG Classical Upwind method, because the element
matrices have to be recalculated every time step. This is necessary because the
coefficients of the upwind part of the Mizukami Hughes algorithm depend on
the gradients of the concentration C.

It seems that the SUPG classical upwind method with the Segal algorithm
defined in Section 3.2.2 works well in most cases. The parameter h is the
representative distance of the element in the direction of the velocity q calculated
by the Segal algorithm. When qx is positive and qy is positive or when qx is
negative and qy is negative, this approach works well. When qx is positive
and qy negative or vice versa, another representative distance in the element
is calculated. The algorithm developed by Segal used for the calculation of
this representative distance takes the absolute value of the velocity q and the
distance in that direction may be different than the distance in the direction qx
negative and qy positive. See Appendix D for more details.
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(a) SUPG Classical Upwind.
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(b) Mizukami Hughes algorithm.

Figure 4.13: Advection-dispersion equation with qx = 0.1, qy = −0.1, D =
10−4, θ = 1, τ = 0.05, T = 60. In Figure 4.13(a) the SUPG Classical Upwind
is shown and in Figure 4.13(b) the Mizukami Hughes algorithm.
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(a) SUPG Classical Upwind.
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Figure 4.14: Advection-dispersion equation with qx = 0.1, qy = 0, D = 10−4,
θ = 1, τ = 0.05, T = 60. In Figure 4.14(a) the SUPG Classical Upwind is shown
and in Figure 4.14(b) the Mizukami Hughes algorithm.
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(a) SUPG Classical Upwind.
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Figure 4.15: Advection-dispersion equation with qx = −0.1, qy = −0.1, D =
10−4, θ = 1, τ = 0.05, T = 60. In Figure 4.15(a) the SUPG Classical Upwind
is shown and in Figure 4.15(b) the Mizukami Hughes algorithm.
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4.1.3 2D diffusion equation

When the groundwater does not move (q = 0) the dispersion coefficient or
matrix D reduces to a diffusion coefficient or matrix. In the Figures 4.16 and
4.17 results are shown for the diffusion equation. As initial condition, Figure 4.2
is used. The parameters are chosen qx = qy = 0, θ = 1, τ = 0.05 and T = 60.
As diffusion coefficient D = 10−4 is taken in Figure 4.16 and D = 10−2 is taken
in Figure 4.17.

It can be seen that D = 10−4 (Figure 4.16) has a large influence on the
value of the density ρ. The initial density was ρ = 1025 kg/m3 (Figure 4.2), in
Figure 4.16 this value has decreased to ρ = 1008. On the other hand, the area
affected by this diffusion coefficient is small. The maximum density in Figure
4.17 is ρ = 1000.11 kg/m3, which is almost freshwater.
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Figure 4.16: Standard Galerkin Approach. qx = qy = 0, D = 10−4, θ = 1,
τ = 0.05, T = 60.
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Figure 4.17: Standard Galerkin Approach. qx = qy = 0, D = 10−2, θ = 1,
τ = 0.05, T = 60.
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4.2 3D transport equation

In Figure 4.18 an initial condition for the three dimensional numerical experi-
ments is shown. A domain Ω of 1×1×1 meter (1 m3) is chosen, subdivided into
20 aquifers (hence 20 grid point in the vertical direction). Each aquifer has 400
nodes, so the total number of nodes in the domain Ω is 8000. In the horizontal
direction (2D), the transport equation is solved with the FEM SUPG Classical
Upwind. In the vertical direction (1D), the transport equation is solved with
the FDM Upwind.

Figure 4.19(a) shows the contour lines of the density ρ in the aquifers 10
and 11. There is an initial salt concentration in the aquifers 10 and 11. Figure
4.18(b) shows the minimum and maximum density per aquifer. On the x-axes
the number of the aquifer is shown and on the y-axes the density. This figure
shows that the minimum as well as the maximum density in aquifer 1 is 1000
kg/m3, hence freshwater. It can be seen that the initial density in all other
aquifers besides aquifer 10 and 11 is 1000 kg/m3.
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(a) Density ρ in aquifer 10 and 11.
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Figure 4.18: Initial condition. The domain Ω is subdivide into 20 layers
(aquifers) with 400 nodes in each layer. ρ = 1000 kg/m3 corresponds to fresh-
water, ρ = 1025 kg/m3 in the aquifers 10 and 11 to salt water.

4.2.1 3D advection equation

The CFL number in two dimensions is given in Equation (4.2). From the CFL
condition it follows that for the grid as shown in Figure 4.18, the time step
should be taken τ ≤ 0.125 when qx = 0.1 and qy = 0.1 and ∆x = ∆y = 0.025.
The CFL condition for the z-direction is

| qzτ
θ∆z
| ≤ 1, (4.4)

which results in τ ≤ 0.5 for qz = 0.1 and ∆z = 0.05.
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The most severe CFL condition for three dimensions is

| qxτ
θ∆x

|+ | qyτ
θ∆y
|+ | qzτ

θ∆z
| ≤ 1. (4.5)

For qx = qy = qz = 0.1 and ∆x = ∆y = 0.025 and ∆z = 0.05 this results in
τ ≤ 0.1. This condition indeed results in the smallest time step.

In the three dimensional numerical experiments τ is chosen τ = 0.05 when-
ever |qx| 6= 0 or |qy| 6= 0 and τ = 0.1 whenever qx = qy = 0 in order to obtain
smoother solutions.

The advection equation with qx = qy = 0.1 and qz = 0 with another initial
condition is shown in the Figures in Section 4.1.1. The advection equation with
qx = qy = 0 and qz = 0.1 is shown in Figure 4.19. The velocity qz = 0.1, the
time step τ = 0.1 and the number of time steps T = 30, hence the covered
distance in the z-direction should be 0.3 meter. In Figure 4.19(c) can be seen
that the maximum density is now in the aquifers 16 and 17. Each aquifer is 0.05
meters hence indeed the covered distance is 0.3 meter. In the Figures 4.19(a)
and 4.19(b) the contour lines of the density in aquifer 11 and 17 is shown. The
maximum density ρ is 1000.25 kg/m3 in aquifer 11 (Figure 4.19(a)) and 1008
kg/m3 in aquifer 17, these values can also be found in Figure 4.19(c).

In Figure 4.20(a) can be seen that the salt concentration has moved 0.3 meter
in the x- and y-direction. Figure 4.20(b) shows that the salt concentration has
moved to aquifer 16, which is indeed a distance 0.3 meter from aquifer 10.
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(a) Density ρ in aquifer 11.
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(b) Density ρ in aquifer 17.
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(c) Minimum and maximum density ρ per
aquifer.

Figure 4.19: Advection equation with qx = qy = 0, qz = 0.1, D = 0, θ = 1,
τ = 0.1, T = 30.
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(a) Density ρ in aquifer 11.
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Figure 4.20: Advection equation with qx = qy = qz = 0.1, D = 0, θ = 1,
τ = 0.05, T = 60.
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4.2.2 3D advection-dispersion equation

Figure 4.21 shows the advection-dispersion equation with qx = qy = 0, qz = 0.1
and D = 10−3. In Figure 4.21(a) the density ρ in aquifer 17 is shown, in Figure
4.21(b) the minimum and maximum density in each aquifer. In Figure 4.22
these figures are shown for qx = qy = qz = 0.1 and D = 10−2 and in Figure 4.23
with qx = qy = qz = 0.1 and D = 10−3.
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(a) Density ρ in aquifer 17.
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Figure 4.21: Advection-dispersion equation with qx = qy = 0, qz = 0.1,
D = 0.001, θ = 1, τ = 0.1, T = 30.
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(a) Density ρ in aquifer 17.

0 5 10 15 20
999.98

1000

1000.02

1000.04

1000.06

1000.08

1000.1

1000.12

1000.14

number of the aquifer

de
ns

ity
 ρ

min ρ in aquifer
max ρ in aquifer

(b) Minimum and maximum density ρ per
aquifer.

Figure 4.22: Advection-dispersion equation with qx = qy = qz = 0.1,
D = 0.01, θ = 1, τ = 0.05, T = 60.
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(a) Density ρ in aquifer 17.
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Figure 4.23: Advection-dispersion equation with qx = qy = qz = 0.1,
D = 0.001, θ = 1, τ = 0.05, T = 60.
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4.2.3 3D diffusion equation

In the Figures 4.24 and 4.25 the solution of the three dimensional diffusion
equation is shown. From these figures, it can be seen that the diffusion is the
same in all three directions.
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(a) Density ρ in aquifer 11.
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Figure 4.24: Diffusion equation with qx = qy = qz = 0, D = 0.01, θ = 1,
τ = 0.1, T = 30.
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Figure 4.25: Diffusion equation with qx = qy = qz = 0, D = 0.001, θ = 1,
τ = 0.1, T = 30.
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4.3 Density dependent flow: rotating brackish
zone

An area with impermeable boundaries is considered with different densities.
The benchmark problem rotating brackish zone (Figure 4.26) shows a clear
coupling between the density differences in the area and the velocities of the
water. Without sources of sinks, a flow appears in the water. This flow is only
due to the density differences.

At the initial state, there are three zones: a saltwater, brackish water and
freshwater zone with densities of ρ = 1025, ρ = 1012.5 and ρ = 1000 kg/m3

as shown in 4.26 (a). Initially, at time t = 0, both interfaces are straight and
make a 450 angle with the horizontal. Consider a two-dimensional, confined
flow in a vertical cross-section. The aquifer is 40 meter thick and a 300 meter
long section of the aquifer is considered with all boundaries impermeable. The
hydraulic conductivity k = 2 m/d and the effective porosity θ = 0.2. There is
no diffusion or dispersion (D = 0). The brackish zone will rotate to a horizontal
position through time, the results after t = 2000 days are shown in Figure 4.26
(b) [29, 7].

Figure 4.26: Experimental problem: a rotating brackish zone. a.) Setup of the
example, b.) Boundary of brackish zone after 2000 days [7].
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4.3.1 Cycles with Matlab

The flow equation is solved numerically using the two dimensional Standard
Galerkin Approach in Section 3.7 and coupled to the two dimensional transport
equation, which is solved with the SUPG method in Section 3.2.2. The coupled
system of the flow equation and transport equation can be found in Figure 2.4.
Both equations are solved with the aid of the numerical computing environment
and programming language Matlab. The transport equation and flow equation
are solved two dimensional in the x-/z-domain.

The boundaries of the area are impermeable. For the transport equation this
means that the gradient of the concentration is zero at all boundaries, hence
a homogeneous Neumann boundary condition is taken for all boundaries. For
the flow equation the Darcy velocity q normal to all boundaries should be zero.
Recall Darcy’s law:

qx = −k∂hf
∂x

, (4.6)

qz = −k
(
∂hf
∂z

+
ρ− ρf
ρf

)
. (4.7)

At the left and the right boundary, the boundary condition is qx = 0 which
results in

∂hf
∂x

= 0, (4.8)

the homogeneous Neumann boundary condition. At the bottom and the top of
the area the boundary condition is qz = 0. This results in

−k
(
∂hf
∂z

+
ρ− ρf
ρf

)
= 0. (4.9)

The Neumann boundary condition for the flow equation is defined as

ρk∇hf · n = g2(x). (4.10)

Substitution of Equation (4.9) and Equation (4.10) and the boundary condition
qz = 0 results into

g2(x) = −ρkρ− ρf
ρf

. (4.11)

at the top and the bottom of the area. Note that ρ−ρf
ρf

= 0 at the part with
freshwater.

Initial state

The regular grid has 51 nodes in the x-direction and 41 nodes in the z-direction
(total number of 2091 nodes). The total number of elements is 4000, the element
width in the x-direction is 6 meter and in the z-direction 1 meter. The shapes
of the elements are comparable to the shapes of the elements of the grid of
Figure 4.1. The brackish zone with the initial condition of the density is shown
in Figure 4.27. The left part (red part in Figure 4.27) of the water is salt
water and has density ρ = 1025 kg/m3, the green part is brackish water with
ρ = 1012.5 kg/m3 and the blue part of the area is freshwater (ρ = 1000 kg/m3).

Figure 4.28 shows the contour lines of the Darcy velocity qx at the initial
state calculated by the flow equation in Matlab. Note that the Darcy velocity
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has to be divided by the porosity (θ = 0.2) in order to obtain the seepage
velocity. The maximum Darcy velocity in the x-direction qx is 0.04 m/day and
is pointed to the right at the right side of the brackish zone and to the left at
the left side of the brackish zone. The Darcy velocity at the z-direction qz at
the initial state has a maximum of 0.025 m/day and is upwards at the right side
of the brackish zone and downwards at the left side. This can be see in Figure
4.29.
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Figure 4.27: Initial condition rotating brackish zone: salt (ρ = 1025) - brackish
(ρ = 1012.5) - fresh (ρ = 1000) front.
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Figure 4.28: Initial state rotating brackish zone: Darcy velocity qx.
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Figure 4.29: Initial state rotating brackish zone: Darcy velocity qz.
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Time step

The CFL condition is
| qxτ
θ∆x

|+ | qzτ
θ∆z
| ≤ 1.

For ∆x and ∆z half the maximum of the element width is taken, hence ∆x = 3
and ∆z = 0.5. In Figure 4.28 can be seen that the maximum Darcy velocity
qx = 0.04 and the maximum Darcy velocity qz = 0.03. With θ = 0.2, this leads
to the stability condition

τ ≤ 2.2. (4.12)

Rotating brackish zone after 200 days

The contour lines of the rotating brackish zone example are shown after 200
days with different values for the time step dt, the number of time steps of the
transport equation T and the number of cycles of the coupled system cycles.
In Figure 4.30 the results with the time step dt = 5 days are shown. In Figure
4.30(a) only one cycle is used, in Figure 4.30(b) 2 cycles are used and in Figure
4.30(c) 20 cycles of the coupled system are used to calculate the salt transport
after 200 days. These figures show the necessity of the coupling of the flow
equation and the transport equation. Note that τ does not satisfy the CFL
condition, but Figure 4.30(c) still gives a stable solution. For the CFL condition,
the most severe condition is used and the element distances are chosen half the
maximum element distance of the triangle. In this example, it is possible to
choose a less strict condition for the time step.

In Figure 4.31 the rotating brackish zone after 200 days in shown for the
time step dt = 0.5. For Figure 4.31(a) only 2 cycles are used, it can be seen
that the density transport is different than in Figure 4.31(b) or Figure 4.32(b).
Also for the time step dt = 0.05 in Figure 4.34 the influence of the number of
cycles is clear. The Figures 4.32(b) and 4.32(b) with 20 and 200 cycles give a
better salt transport than Figure 4.32(a), with only 2 cycles.

From the Figures 4.30 ,4.31 and 4.34 can be concluded that the time passing
by in the transport equation should be less than 100 days in this example. The
Figures 4.30(b), 4.31(a) and 4.32(a) all have dt × T = 100 days and give bad
results. Taking dt× T = 10 days, as in the Figures 4.30(c), 4.31(b) and 4.32(a)
gives better results. Using more cycles does not influence the salt transport in
this example, the Figures 4.32(b) and 4.32(c) show the same contour lines for
the density.
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(a) τ = 5, T = 40, cycles = 1.
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(b) τ = 5, T = 20, cycles = 2.
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(c) τ = 5, T = 2, cycles = 20.

Figure 4.30: Rotating brackish zone after 200 days, with τ the time step of the
transport equation, T the number of time steps of the transport equation and
cycles the number of cycles of the coupled system of the flow equation and the
transport equation. τ = 5 and (a) T = 40, cycles = 1, (b) T = 20, cycles = 2
and (c) T = 2, cycles = 20.



4.3. DENSITY DEPENDENT FLOW: ROTATING BRACKISH ZONE 87

0 50 100 150 200 250 300
0

20

40

x

z

1005

1010

1015

1020

1025

(a) τ = 0.5, T = 200, cycles = 2.
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(b) τ = 0.5, T = 20, cycles = 20.
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(c) τ = 0.5, T = 2, cycles = 200.

Figure 4.31: Rotating brackish zone after 200 days, with τ the time step of
the transport equation, T the number of time steps of the transport equation
and cycles the number of cycles of the coupled system of the flow equation and
the transport equation. τ = 0.5 and (a) T = 200, cycles = 2, (b) T = 20,
cycles = 20 and (c) T = 2, cycles = 200.
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(a) τ = 0.05, T = 2000, cycles = 2.
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(b) τ = 0.05, T = 200, cycles = 20.
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(c) τ = 0.05, T = 20, cycles = 200.

Figure 4.32: Rotating brackish zone after 200 days, with τ the time step of
the transport equation, T the number of time steps of the transport equation
and cycles the number of cycles of the coupled system of the flow equation and
the transport equation. τ = 0.05 and (a) T = 2000, cycles = 2, (b) T = 200,
cycles = 20 and (c) T = 20, cycles = 200.
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Rotating brackish zone after 1000 days

In Figure 4.33 the rotating brackish zone is shown after 1000 days with time
step dt = 0.5, number of time steps of the transport equation T = 20 and
number of cycles cycles = 100. It can be seen that the brackish zone rotates to
a horizontal position through time, with the freshwater on top of the brackish
water and the brackish water on top of the salt water.
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Figure 4.33: Density in the rotating brackish zone after 1000 days with dt = 0.5,
T = 20 and cycles = 100.

Some notes on accuracy

The rotating brackish zone in Figure 4.33 is calculated by a coupling between
the flow equation and the transport equation. In the initial Darcy velocities in
Figure 4.28 and Figure 4.29 are some unexpected nonzero velocities at the left
side of the rotating brackish zone. These velocities are calculated with Darcy’s
law after solving the flow equation with the SGA. The system of equations
derived for the flow equation is solved with the BiCGSTAB method. In Section
3.7 some notes where made about solving this system of equations

Thf = f.

In order to be able to find a solution, the freshwater head is given (fixed) in
one point of the grid. This trick can help the Bi-CGSTAB method to choose a
good solution. When this trick does not improve the solution another approach
is necessary. If the problem Thf = f is singular (for example due to the Neu-
mann boundary condition), there is no unique solution. In order to obtain a
unique solution, the vector f should be in the Span(T ).

The BiCGSTAB method in Matlab indeed finds a good solution by fixing
the freshwater head in one point in the grid, but without a high accuracy. This
method in Matlab gives for the example of Figure 4.33 a maximum relative



90 CHAPTER 4. NUMERICAL EXPERIMENTS

residual of 0.41. This relative residual is defined as

relative residual = norm(f − T ∗ hf )/norm(f).

In order to investigate the accuracy of solving the system of equations Thf =
f , the area of the rotating brackish zone is fully filled with salt water with a
density ρ = 1025. The freshwater head is defined as

hf =
p

ρfg
+ z, (4.13)

in Section 2.1 and shown in Figure 2.1. In this equation, p is the pressure of
the groundwater, ρf the density of freshwater, g the acceleration due to gravity
and z the vertical coordinate of the location of measure. In Figure 4.34(a)
the freshwater head calculated by the flow equation in Matlab is given for the
salt water. From Equation (4.13) can be seen that the pattern of this figure is
correct.

In Matlab, it is possible to define the accuracy tolerance for the BiCGSTAB
method. For the Figures 4.34(b) and 4.34(c) an accuracy tolerance of 10−6

is used. Remember from Section 3.7 that the Darcy velocity is calculated by
central differences of the gradient of the freshwater head (qx = −k ∂hf∂x ). The
differences between the freshwaterhead in the x-direction have to be zero in this
example. In Figure 4.34(b) can be seen that there is an error of the size 10−7.
The Darcy velocity in the z-direction is calculated by

qz = −k
(
∂hf
∂z

+
ρ− ρf
ρf

)
.

Central differences of the gradient of the freshwater head again gives an error of
the order 10−7. In the Figures 4.34(d) and 4.34(e) the Darcy velocities in the
x- and z-direction are shown calculated by using an accuracy tolerance of 10−12

in the BiCGSTAB method. An error in these velocities can be seen of the order
10−13.

In order to make the system of equations Thf = f solvable, the right hand
side vector f can be updated. The matrix T is almost singular. In order to
make the system of equations Thf = f solvable

Tv = 0,

can be calculated. The vector v is now an eigenvector belonging to the eigen-
value 0. If

vT f = 0,

the system of equations is solvable. Otherwise use

fnew = f − vT f
||v||22

· v.

Now the system of equation is compatible.
Unfortunately, the matrix T does not have the eigenvalue zero for this ex-

ample. The smallest eigenvalue is −1.1×10−11. Because this eigenvalue is close
to zero, the eigenvector belonging to this eigenvalue may be used as the vector
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(b) qx accuracy 10−6.
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(c) qz accuracy 10−6.

0 50 100 150 200 250 300
0

20

40

x

z

−1

−0.5

0

0.5

1

x 10
−13

(d) qx accuracy 10−12.
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(e) qz accuracy 10−12.

Figure 4.34: Impermeable domain Ω filled with salt water with ρ = 1025 kg/m3.
(a) freshwater head calculated with the flow equation in Matlab (b) qx with the
BiCGSTAB method with a given accuracy of 10−6, (c) qz with the BiCGSTAB
method with a given accuracy of 10−6, (d) qx with the BiCGSTAB method with
a given accuracy of 10−12 and (e) qz with the BiCGSTAB method with a given
accuracy of 10−12.
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v. More research is needed in order to increase the accuracy of the solution of
the flow equation.

It can be concluded that in order to obtain a more accurate solution for
the density pattern of the rotating brackish zone, the method to solve the flow
equation should be improved.
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4.3.2 Cycles with Triwaco and Matlab

The example of the rotating brackish zone as shown in Figure 4.26 is again
considered. A box of 300 meters in the x-direction, 3 meters in the y-direction
and 40 meters in the z-direction is taken. One aquifer has 150 elements and 152
nodes, the z-direction is divided into 40 aquifers and 39 model aquitards. The
flow equation is solved with Triwaco and coupled to the transport equation,
which is solved in Matlab. The initial density profile with the salt, brackish
and freshwater zones is shown in Figure 4.35. Note that the grid used in the
rotating brackish zone example coupled in Matlab (Section 4.3.1) used 51 nodes
per aquifer and 41 layers in the vertical direction, so the element sizes are
comparable.

Note that the Darcy velocity is shown in the figures, the seepage velocity v
can be calculated by

v =
q
θ
.

A symmetric profile is expected as shown in Figure 4.28 and 4.29 for the
Darcy velocities qx and qz:

qxmin(aquifer 1) = −qxmax(aquifer 40),

and
qxmin(aquifer 40) = −qxmax(aquifer 1).

The velocity profile calculated by the flow equation in Triwao is indeed sym-
metric, see Figure 4.36(a) and Figure 4.36(c). Note that these velocities show
wiggles in the maximum and minimum velocity per aquifer. The velocity in
the y-direction is expected to be zero, but due to the small amount of elements
in this direction, the error of the Darcy velocity is of the order 10−4 (Figure
4.36(b)). Compared to the maximum Darcy velocity in the x-direction (2×10−2)
and the z-direction (8× 10−3), this is a large error.
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Figure 4.35: Initial Condition Rotating Brackish Zone: salt(ρ = 1024)-brackish-
fresh(ρ = 1001) front.
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Figure 4.36: Initial state Rotating Brackish Zone: (a) minimum and maximum
Darcy velocity qx per aquifer, (b) minimum and maximum Darcy velocity qy
per aquifer and (c) minimum and maximum Darcy velocity qz per aquifer.
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Darcy velocities in rotating brackish zone

To investigate what goes wrong, the rotating brackish zone is considered after
0.002 days, with time step dt = 0.001, number of time steps of the transport
equation T = 1 and the number of cycles between the transport equation and
flow equation cycles = 2. The salt, brackish and fresh zones are given in Figure
4.37, there is no visible difference between the initial zones (Figure 4.35) and
the density pattern after 0.002 days (Figure 4.37). The time step dt = 0.001
is so small that even in the individual aquifers the density has not significantly
changed.

The velocities in all directions calculated by the flow equation in Triwaco
are expected to (almost) equal the velocities calculated at the initial state. The
minimum and maximum velocities in the y- and z-direction, Figure 4.38(b) and
Figure 4.38(c) are indeed equal to the the Figures 4.36(b) and 4.36(c). The
minimum and maximum velocity in the x-direction in all aquifers, as shown
in Figure 4.38(a), on the other hand differs from the initial velocities in this
direction (Figure 4.36(a)). For example in aquifer number 39, the Darcy velocity
qx has at the initial state values between 0 and 0.17 m/day (Figure 4.36(a)),
after 0.002 days this Darcy velocity has values between −0.15 and 0.017 m/day.
Figure 4.39 shows the contour lines of the Darcy velocity qx in aquifer 39. The
minimum Darcy velocity of −0.15 m/day takes place around x = 60190 m, near
the brackish-freshwater front.

The errors in the initial velocity in the y-direction, the wiggles in the initial
velocities qx and qz and the large error in the velocity qx after 0.002 days lead
to unphysical solutions.
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Figure 4.37: salt(ρ = 1024)-brackish-fresh(ρ = 1001) front.
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Figure 4.38: Rotating Brackish Zone after 0.002 days, with time step dt = 0.001,
number of time steps T = 1 and number of cycles cycles = 2, (a) minimum and
maximum Darcy velocity qx per aquifer, (b) minimum and maximum Darcy
velocity qy per aquifer and (c) minimum and maximum Darcy velocity qz per
aquifer.
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Figure 4.39: Darcy velocity qx around the brackish zone in aquifer 39.
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4.4 Density dependent flow: freshwater mining

In the introduction an example was given of a well in the groundwater (see
Figure 1.2 in Section 1.1). The density of freshwater is less than the density of
salt water, hence the freshwater is on top of the salt water in the subsurface. An
application of density dependent flow is a tap in the dunes in the Netherlands.
In the subsurface in the dunes is a so-called freshwater lens on top of the salt
water. When mining of freshwater takes place, a brackish zone appears from
the salt water in the direction of the sink, as shown in Figure 1.2. With this
density dependent groundwater flow model, the influence of sinks with different
capacities can be investigated and the necessity of a possible freshwater source
to restore the freshwater lens can be explained. Simulations with the density
dependent flow model can safe the freshwater lens for future generations.

The cross-section of the three dimensional area used for the simulations is
shown in Figure 4.40. The area has the shape of a cylinder, with a radius of
1000 meters and a height of 40 meter. On top of the cylinder is a tap for mining
freshwater with a capacity of 100 m3/day. At the bottom of the cylinder is a
continuous salt water source in order to keep the amount of water in the area
constant. the porosity is chosen θ = 0.2. The steady flow equation is solved
in Triwaco and coupled to the transport equation, which is numerically solved
with Matlab.

Neumann boundary conditions are used for both the flow and transport
equation. The sides as well as the top of the cylinder, are impermeable, hence the
homogeneous Neumann boundary condition is chosen for the transport equation.
At the bottom is a continuous source of salt water, which results in a nonzero
flux of salt. The boundary condition for the transport equation at the bottom
is

∇C · n = Csalt × qz × V, (4.14)

with Csalt = 17.5 kg/m3 the concentration of salt in salt water with a density
of ρ = 1025 kg/m3, qz the Darcy velocity normal to the bottom and V the
node influence area (the area of the column of water for this node). For the flow
equation, the condition qx = 0 at the sides and the top of the cylinder leads to
the homogeneous boundary condition ∂hf

∂x = 0. For the bottom a continuous
flux of salt water leads to a nonzero Neumann boundary condition. The initial
condition of the transport equation is determined by the given density in the
cylinder at the initial state.
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Figure 4.40: freshwater mining: the cross-section of the cylinder.
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Initial state

The cylinder shown in Figure 4.40 is divided into 40 aquifers and 39 model
aquitards. For the transport equation only the aquifers are used for the grid.
The sink is placed in the middle of aquifer 1 and aquifer 40 is always filled with
salt water. One aquifer has 142 nodes, so for the transport equation a total
number of 5680 nodes is used to calculate the salt transport. The irregular and
unstructured grid has 262 elements per aquifer and is shown in for example
Figure 4.42.

In Figure 4.41 the minimum and maximum Darcy velocities at the initial
state are shown. A realistic value for the dispersion parameter D is one tenth
of the velocity of the groundwater. The maximum seepage velocity in the hori-
zontal direction is qymax/θ = 0.78/0.2 = 3.9 m/day, hence D = 0.4 is taken in
the numerical experiments.

The infiltration of salt water in aquifer 40 as well as the sink in aquifer 1
take care for the nonzero horizontal velocities qx and qy. The nonzero velocities
qx and qy in the first 15 aquifers are due to the freshwater mining in aquifer
1, these velocities are pointed into the direction of the sink, as can be seen in
the Figures 4.42 and 4.43. The velocity in the z-direction has its maximum
in aquifer 2, one aquifer away from the freshwater mining (see Figure 4.41(d)).
This maximum takes only place in the node beneath the sink as can be seen in
Figure 4.43(f), all other nodes in aquifer 2 have a zero velocity in the z-direction.
A comparison between the values of the velocities in the Figures 4.42 and 4.43
shows larger velocities in aquifer 1 (for qx and qy) and aquifer 2 (for qz) than
in aquifer 39. On the other hand, in aquifer 39 are more nodes with a nonzero
velocity.
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Figure 4.41: Initial state freshwater mining, (a) minimum (red) and maximum
(blue) density ρ per aquifer, (b) minimum and maximum Darcy velocity qx per
aquifer, (c) minimum and maximum Darcy velocity qy per aquifer and (d)
minimum and maximum Darcy velocity qz per aquifer.
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Figure 4.42: Initial state freshwater mining in aquifer 39, (a) Darcy velocity
qx in aquifer 39, (b) qx in the center of aquifer 39, (c) Darcy velocity qy in
aquifer 39, (d) qy in the center of aquifer 39, (e) Darcy velocity qz in aquifer 39
and (e) qz in the center of aquifer 39.
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Figure 4.43: Initial state freshwater mining in aquifer 1, (a) Darcy velocity qx

in aquifer 1, (b) qx in the center of aquifer 1, (c) Darcy velocity qy in aquifer
1, (d) qy in the center of aquifer 1, and in aquifer 2 (e) Darcy velocity qz in
aquifer 2 and (e) qz in the center of aquifer 2.
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Time step

The CFL condition is defined as

| qxτ
θ∆x

|+ | qyτ
θ∆y
|+ | qzτ

θ∆z
| ≤ 1, (4.15)

and determines an upper bound for the time step τ .
The porosity in this model is θ = 0.2, hence the Darcy velocities have to

be divided bij 0.2 in order to determine the seepage velocities. Figure 4.41(b)
shows the maximum Darcy velocity in the x-direction qx, from which the seepage
velocity can be calculated: qxmax/θ = 0.68. Figure 4.41(c) shows these values
for qy: qymax/θ = 0.78, and Figure 4.41(d) for qz: qzmax/θ = 3.2 m/day.

For regular triangular elements the distance ∆x is chosen half the maximum
distance of the element in the x-direction. Figure 4.42 shows an irregular and un-
structured grid. In this case half the maximum element distance of the smallest
element in the grid is chosen as ∆x. The parameter ∆y is determined equivalent.
The minimum distance in the x-direction as well as in the y-direction of one
element of the irregular grid is approximately 5 meter, hence ∆x = ∆y = 2.5 in
the CFL condition. The element distance in the z-direction equals the distance
from the middle of an aquifer to the middle of the next aquifer and is 1 meter
(∆z = 1).

The CFL condition can now be used in order to determine the upper bound
for the time step τ

τ ≤ 0.052. (4.16)

Numerical experiments have shown that taking τ = 0.05 indeed satisfies, hence
in all numerical experiments of the freshwater mining example the time step is
chosen τ = 0.05.
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150 days

The velocity induced by the density differences is much smaller than the velocity
caused by the freshwater mining, hence there is no visible difference in salt
distribution between using the coupling between the flow and transport equation
or just using the transport equation with the velocity given by the flow equation
(cycle = 1). Besides that, the dispersion coefficient is D = 0.4, which also
overrules the solute transport by the velocity caused by the density differences.

In Figure 4.44(a) the minimum and maximum density ρ per aquifer is shown
after 150 days with time step dt = 0.05, number of time steps of the transport
equation T = 10 and number of cycles cycles = 300. This figure gives the same
results as Figure 4.44(b), which shows the minimum and maximum density ρ
per aquifer after 150 days with time step dt = 0.05, number of time steps of the
transport equation T = 3000 and number of cycles cycles = 1. The density in
aquifer 40 is 1025 kg/m3 (salt water), the density decreases in the direction of
the sink. In Figure 4.45 the contour lines of the density ρ in the aquifers 39,
34 and 29 is shown. There is no visible difference between these figures and the
contour plots of the density after 150 days with cycle = 1.
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Figure 4.44: Minimum (red) and maximum (blue) density ρ per aquifer after
150 days with dt = 0.05, (a) number of time steps transport equation T = 10
and cycles = 300 and (b) T = 3000 and number of cycles cycles = 1.
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(e) Aquifer 29.
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Figure 4.45: Freshwater mining example after 150 days with time step dt =
0.05, number of time steps transport equation T = 10 and cycles = 300. Figure
(a) shows the density ρ of aquifer 39, (b) ρ in the center of aquifer 39, (c) ρ in
aquifer 34, (d) ρ in the center of aquifer 34, (e) ρ in aquifer 29 and (f) ρ in the
center of aquifer 29.
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Pure advection

The freshwater mining example is investigated without dispersivity (D = 0).
In Figure 4.45(b) the minimum density ρmin = 1002 kg/m3 in aquifer 39. In
Figure 4.47(b) the minimum density ρmin = 1000 kg/m3, hence freshwater.
The extra 2 kg/m3 after 150 days in Figure 4.45(b) are due to the dispersion
coefficient D = 0.4.

The transport induced by density differences instead of the sink may be a
bit more visible when only advective transport is considered (D = 0). In the
Figures 4.46 and 4.48 the minimum and maximum density ρ per aquifer is shown
after 225 days. In Figure 4.46 the density is shown after 225 days with time
step dt = 0.05, number of time steps of the transport equation T = 10 and
cycles = 300. For Figure 4.48 only one cycle is used with time step dt = 0.05
and number of time steps of the transport equation T = 4500. There is no
visible difference between both figures.

In Figure 4.47 the contour plots of the density in the aquifers 39, 30 and 21
is shown after 225 days with 450 cycles. In Figure 4.49 these contour plots are
shown after 225 days with 1 cycle. In Figure 4.49 the density ρ is a bit larger in
all grid points (difference is between 0.02 - 0.05 kg/m3). The more spreading of
the salt in Figure 4.47 may be caused by the transport due to density differences
in the x- and y-direction. On the other hand, the density differences are that
small that they can be caused by a numerical error.

For examples where a velocity caused by a source or sink is involved which
overrules the velocity caused by density differences, it is not necessary to use
the coupled model. In order to calculate the salt transport after a certain time,
it satisfies to use the transport equation with the initial velocities calculated by
the flow equation. The flow will not be influenced by the density differences
because of the large velocities caused by the source or sink.
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Figure 4.46: Minimum (red) and maximum (blue) density ρ per aquifer after
150 days with dt = 0.05, number of time steps transport equation T = 10 and
cycles = 300, dispersion coefficient D = 0. (b) Same as Figure (a), enlarged on
the vertical axis.
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(c) Aquifer 30.
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(e) Aquifer 21.
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(f) Aquifer 21.

Figure 4.47: Freshwater mining example after 225days with time step dt =
0.05, number of time steps transport equation T = 10 and cycles = 450. Dis-
persion coefficient D = 0. Figure (a) shows the density ρ of aquifer 39, (b) ρ in
the center of aquifer 39, (c) ρ in aquifer 30, (d) ρ in the center of aquifer 30, (e)
ρ in aquifer 21 and (f) ρ in the center of aquifer 21.
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Figure 4.48: (a) Minimum (red) and maximum (blue) density ρ per aquifer after
225 days with dt = 0.05, number of time steps transport equation T = 4500
and cycles = 1. Dispersion coefficient D = 0. (b) Same as Figure (a), enlarged
on the vertical axis.
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(a) Aquifer 39.
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(b) Aquifer 39.
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(c) Aquifer 30.
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(d) Aquifer 34.
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(e) Aquifer 21.
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(f) Aquifer 21.

Figure 4.49: Freshwater mining example after 225 days with time step dt =
0.05, number of time steps transport equation T = 4500 and cycles = 1. Dis-
persion coefficient D = 0. Figure (a) shows the density ρ of aquifer 39, (b) ρ in
the center of aquifer 39, (c) ρ in aquifer 30, (d) ρ in the center of aquifer 30, (e)
ρ in aquifer 21, and (f) ρ in the center of aquifer 21.
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Chapter 5

Conclusions and
recommendations

5.1 Conclusions

5.1.1 Solute transport

For the two dimensional transport of salt, research is done on four variations of
the Finite Element Method; the Standard Galerkin Approach, the SUPG pure
advection algorithm by Mizukami, the SUPG classical upwind method and the
Mizukami Hughes algorithm. For diffusive transport all methods give good
results for solving the transport equation.

For advective transport on the other hand, there are differences in the quality
of these methods. Numerical experiments were done on the two dimensional
advection equation with constant velocity. The Standard Galerkin Approach
shows wiggles in a large part of the domain and is instable for the advection
equation. The SUPG pure advection algorithm by Mizukami shows smaller
wiggles than the Standard Galerkin Approach, but still shows wiggles in a large
part of the domain. The SUPG Classical Upwind method gives good results in
most cases although with some wiggles. The Mizukami Hughes algorithm shows
wiggles in some cases, but only at the path from the initial concentration to the
concentration after a certain time. Special cases for the SUPG classical upwind
method and the Mizukami Hughes algorithm can be distinguished.

SUPG classical upwind

The SUPG Classical Upwind method uses the test function η(x) = w(x)+ b(x),
with w(x) the classical test function and b(x) a parameter used to take care for
the upwind behaviour. The parameter b(x) is defined as

b(x) =
hξ

2
∇φi · q
||q|| ,

with
ξ = sign(q ·∆x).
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The parameter h is the representative distance of the element in the direction
of the velocity q. When qx and qy are both positive or when qx and qy are both
negative, this approach works well. When qx is positive and qy negative or vice
versa, the representative distance in the element for both qx and qy positive
is calculated. The algorithm developed by Segal used for the calculation of
this representative distance takes the absolute value of the velocity q and the
distance in that direction may be different than the distance in the direction qx
negative and qy positive.

Another parameter to be discussed is the distance ∆x in the definition of ξ.
Research was done on different definitions for ∆x, but taking ξ = 1, independent
on the sign of q or ∆x, gives the best results.

Mizukami Hughes algorithm

It seems that the Mizukami Hughes algorithm is better than the SUPG Classical
Upwind method only when at least for half of the elements the velocity will be
in the direction of the edge zone of node 1 of the element. When the direction
of the velocity is in the direction of the vertex zone, the Mizukami Hughes
algorithm gives unwanted wiggles.

Computations are much more time consuming for the Mizukami Hughes
algorithm than for the SUPG Classical Upwind method, because the element
matrices have to be recalculated every time step. This is necessary because the
coefficients of the upwind part of the Mizukami Hughes algorithm depend on
the gradients of the concentration C.

3D solute transport

The combination of the two dimensional Finite Element Method in the x- and
y-direction and the 1D Finite Difference Method in the z-direction works well.
A system of equations is derived with matrices with coefficients depending on
the FEM as well as the FDM. The software developped with Matlab simulates
three dimensional advective, dispersive and diffusive solute transport with equal
covered distances in all directions. This three dimensional method has in the
horizontal direction the characteristics of the SUPG classical upwind method
(some wiggles for advective transport) and in vertical direction the characteris-
tics of the FDM (numerical diffusion for advective transport).

Time

In the Interim Master’s thesis [19], numerical experiments were presented for
several temporal discretization schemes for the transport equation. The scheme
which uses Backward Euler for the dispersion part and Forward Euler for the
advective part of the solute transport gave the best results. A severe stability
criterion for the time step τ for this scheme is

| qxτ
θ∆x

|+ | qyτ
θ∆y
|+ | qzτ

θ∆z
| ≤ 1. (5.1)

For structured grids with 2D FEM in the horizontal direction and 1D FDM
in the vertical direction, a safe condition is to take for ∆x and ∆y half of
the maximum element distances in respectively the x-direction and y-direction.
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For an unstructured grids with irregular shaped triangular elements, the CFL
condition is based on these distances in the smallest element. This is a severe
but safe condition and a bigger time step may keep the method stable. The
element distance ∆z can be taken equal to the element size of the FDM, which
is the distance between the middle of two neighbouring aquifers.

5.1.2 The coupled model

Numerical experiments were done on two ways of coupling the transport and flow
equation. In the first coupling both the flow and transport equation are solved
in Matlab. In the second coupling the flow equation is solved with Triwaco and
coupled to the transport equation solved in Matlab.

In both cases, first the flow equation is solved with a given density pattern.
From the freshwater head hf calculated by the flow equation, the Darcy veloc-
ities qx, qy and qz can be calculated by Darcy’s law. These initial velocities are
given to the transport equation. The initial condition for the transport equa-
tion is given by transformation of the given density pattern into a concentration
pattern with an experimentally derived formula. The transport equation de-
termines the new concentration C after some time. This new concentration is
transformed with the experimentally derived formula into the density ρ. With
this new density, the new freshwater head is calculated with the flow equation.
This coupling is called one cycle. A new cycle can be made by repeating the
process.

Time

The transport equation is time dependent, the flow equation is steady. Hence
the time passing by takes only place in the transport equation. For the transport
equation a number of time steps T has to be chosen. Numerical experiments
have shown that there is an upper bound for the time passing by in one cycle
(dt× T ) in cases where the flow is only induced by density differences.

Coupling in Matlab

In this thesis numerical experiments of the rotating brackish zone benchmark
problem are presented. The coupling within Matlab, where the flow as well as
the transport equation is solved with the Finite Element Method, gives good
results. Due to density differences in the domain filled with salt, brackish and
freshwater, the brackish zone will rotate until the freshwater is on top of the salt
water. This example shows the importance of the coupling between the flow and
transport equation. Only using the transport equation with the velocities given
by the flow equation (hence using 1 cycle) gives wrong results, it is necessary to
keep the time passing by in one cycle (dt× T ) bounded.

Although the results are promising, the accuracy of the calculation of the
freshwater head should be improved. In the initial Darcy velocities are some
unexpected nonzero velocities at the left side of the rotating brackish zone. The
system of equations derived for the flow equation with the Standard Galerkin
Approach results in a singular matrix. The BiCGSTAB method used to solve
this system of equations does find a good solution for the freshwater head, but
keeps a relative residual which is not always very small. A possible approach
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in order to increase the accuracy is using an updated vector for the right hand
side of the system of equations.

Coupling with Triwaco

The benchmark problem rotating brackish zone is also solved with a coupling
between the flow equation solved with Triwaco and the transport equation solved
in Matlab. The initial velocities calculated by Triwaco show some problems. The
first problem are the nonzero velocities in the y-direction (qy) due to the small
amount of elements in the y-direction. The second problem in the calculated
initial velocities are the wiggles in the maximum and minimum velocities per
aquifer in the x- and z-direction (qx and qz). The first problem can be handled
by using more elements in the y-direction. The second problem can perhaps
also be handled by taking more elements in the x− as well as the z-direction.

A bigger problem with the calculation of the velocities appears after 2 cycles.
A very small time step τ is used in the transport equation with only 1 time step
(T = 1), in order to investigate the behaviour of the initial velocities. After
those 2 cycles the density has hardly changed, but the velocity in the x-direction
increases eight times in some points and becomes negative instead of positive.

The errors in the initial velocity in the y-direction, the wiggles in the initial
velocities qx and qz and the large error in the velocity qx after 2 cycles with a
very small time step lead to unphysical solutions.

Triwaco models usually contain 3-6 aquifers. For simulation of density depen-
dent groundwater flow more grid points in the vertical direction are needed for
a reasonable accuracy. When the number of grid points in the domain increases,
the computational time will also increase. For large problems this may cause
computer memory and calculation time problems. For the rotating brackish
zone example the velocity as well as the concentration is needed on a fine grid.
For more practical problems, the density differences are more diffusive. Hence
the concentration should be calculated on a fine grid, but the velocities can be
calculated on a coarser grid.

Sustainable applications

The freshwater mining example shows the importance of calculating the salt
transport when a sink is placed to mine the freshwater which is on top of salt
water. After some time the pump will extract brackish water instead of fresh-
water. Often, these pumps in the dunes in the Netherlands are meant to mine
freshwater for drinking water. It is too expensive to purge brackish water,
hence the mine is not useful anymore. New simulations can be made with for
example a freshwater source with rainwater, which injects the rainwater into
the freshwater lens in the dunes. These simulations can be made by only using
the transport equation with the velocities calculated by the flow equation. The
velocities induced by the sink will overrule the velocities caused by the density
differences, hence it is unnecessary to use more cycles.

When the freshwater mining example is extended to a problem that takes
place near coast lines, the density dependence of the water for the flow may
become important. In the so-called Henry problem (see Appendix H) a given
seawater pressure head takes place near the coast line on one side and a constant
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freshwater flux from the groundwater takes place on the other side of the domain.
Freshwater mining often takes place at the top of the domain, for example in
the dunes in Scheveningen in the Netherlands. Calculating the migration of
salt with the transport equation will give other results than calculating the salt
migration with the coupled model. The developed model in this thesis will be
able to simulate this problem and can become an important tool for waterworks.

In general, the developed model for the simulation of salt migrations in
groundwater can be useful for predicting the effects of the changing climate.
The density differences induced by these effects will have an impact on the
groundwater flow. With this model, a farmer can indeed know whether ditches
bordering his fields become too salt to be used as drinking water for his cattle
and the waterworks can change their approach of mining freshwater.

Aim of the study

The aim of this study was to investigate the possibilities of modelling salt migra-
tions in density dependent groundwater with modelling environment Triwaco.
The advective, dispersive and diffusive transport of salt with the same grid as
used in Triwaco can be calculated with this model. The coupling between the
flow equation and transport equation within Matlab works well, even for pure
advective transport. Hence when Triwaco is able to calculate the right velocities,
no big problems are expected for simulation of density dependent groundwater
flow or salt migrations.

5.2 Recommendations

5.2.1 Solute transport

Recommendations with respect to the solute transport model:

1. For the SUPG classical upwind method, the representative element dis-
tance h in the case that the velocity qx is negative and qy is positive or
vice versa should be improved.

2. Another parameter in the SUPG classical upwind method to do further
research on is the parameter ξ. Research can be done on an algorithm to
determine the sign of the inner product of the element distance ∆x and
the velocity q. This may become important specially in cases where the
grid is unstructured and irregular and the velocity not constant.

3. In order to obtain a better accuracy, the coefficients of the Mizukami
Hughes algorithm in the direction of the vertex zone of node 1 should be
improved. The computation time of the Mizukami Hughes algorithm can
be reduced by updating the element matrices not every time step. This is
only possible when the velocity is not to big.

4. A better accuracy and less numerical diffusion for the 2D simulations of
advective transport can be obtained by using a flux in the Finite Element
Method. For example the flux developed by Kuzmin [30, 31], summerized
in the interim Master’s thesis [19], may be very useful.
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5. In order to reduce the numerical diffusion in the z-direction caused by
the Finite Difference Method, the Finite Volume Method MC limiter can
be used. One dimensional experiments in the Interim Master’s thesis [19]
show no wiggles and less numerical diffusion for the MC limiter for advec-
tive transport. One dimensional implementation is already developed in
Matlab.

6. In the numerical experiments the diffusion D is a coefficient. When D is
the matrix

D∇C =



Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 ,

the coefficients Dzx, Dzy, Dxz and Dyz are neglected because of the com-
bination of the 2D FEM and the 1D FDM. This may cause an asymmetric
density profile for diffusive transport. It is recommended to do research
on this problem before using the full dispersion matrix.

5.2.2 The coupled model

Recommendations with respect to the coupled model:

1. For the transport equation, the CFL condition is a good criterion to de-
termine an upper bound for the time step τ . It would be nice if it is also
possible to determine a criterion for the time step of the coupled process,
hence a general criterion for the time passing by during one cycle might
be investigated.

2. The use of inner iterations means using the coupling with the steady trans-
port equation until a stable solution appears. These inner iterations can
improve the accuracy, but the computational time will increase.

5.2.3 Software in Matlab

Recommendations with respect to the developed software:

1. Matlab can only handle problems with less than 10000 nodes, otherwise
an out of memory notification will be given. For realistic problems, often
more than 10000 nodes are used. The software can be rewritten in for
example Fortran in order to be able to handle bigger problems.

2. A feature that can be useful to implement is the use of Dirichlet bound-
ary conditions. Now only a choice can be made between Neumann and
Robbins boundary conditions.

5.2.4 Triwaco

Recommendations with respect to Triwaco:

1. Triwaco has some problems with calculating the velocities when large den-
sity contrasts move in the aquifers. Before continuing the research on
accurate and fast calculation of density dependent groundwater flow, it
is recommended to solve the problem of calculating the velocities of the
groundwater flow.
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2. The vertical velocity qz is determined on top and at the bottom of the
aquifers. All other parameters, like the horizontal velocities and the den-
sities, are given in the middle of the aquifers. Determination of qz in the
middle of the aquifers will reduce the memory needed for storage.
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Appendix A

List of symbols

Roman symbols

Symbol Definition Dimension
aL longitudinal dispersivity [m]
aT transversal dispersivity [m]
b upwind test function SUPG
bi constant of the MH algorithm
C concentration [kg/m3]
Cs solute concentration of water entering

from sources or sinks [kg/m3]
D dispersion coefficient or matrix [m2/day]
ek element k
el boundary element l
f right hand side vector of system of equations
g acceleration due to gravity [m/day2]
h representative distance in the element

in the direction of q [m]
hf freshwater head [m]
kf hydraulic conductivity [m/day]
ṁ mass flow [kg/day]
M mass matrix
q Darcy velocity [m/day]
p pressure [kg/m ∗ day2]
qso volumetric flow rate per unit volume due to source/sink [1/day]
qsoCs source [kg/day ∗m3]
S stiffness matrix
S1 dispersive stiffness matrix
S2 advective stiffness matrix
Ss specific storage [1/day]
t time [day]
v seepage velocity [m/day]
w classical test function SUPG
x spatial coordinate [m]
y spatial coordinate [m]
z spatial coordinate [m]
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Greek symbols

Symbol Definition Dimension
α Peclet number [-]
Γ1 Dirichlet boundary
Γ2 Neumann boundary
Γ3 Robbins boundary
|∆| two times the area of a triangle [m2]
|∆̃| length of boundary element [m]
η test function numerical method
θ porosity [−]
κ intrinsic permeability [m2]
µ dynamic viscosity [kg/m ∗ day]
ρ density [kg/m3]
ρf freshwater density [kg/m3]
τ time step [day]
φ basis function
Ω area



Appendix B

Definitions

Mathematics

CFL number Named after Courant-Friedrich-Levy. For discretized transport
problems, the CFL number determines how many mesh cells, a fluid el-
ement passes during a timestep. Or rather, the fraction of a timestep
to pass one cell. The CFL condition is a condition for stability of the
numberical method. In 2D the CFL condition is

| qxτ
θ∆x

|+ | qyτ
θ∆y
| ≤ 1.

Consistency Scheme (3.132) is called consistent if the local truncation error
vanishes as τ ↓ 0 for all smooth functions C(x, t) satisfying the differential
equation.

Convergence The method is convergent at time T in the norm ||.|| if

limτ→0,Nτ=T ||EN || = 0.

Here N is used to indicate the time level corresponding to time T = Nτ .

Essential boundary condition Condition that has to be satisfied by all func-
tions in the function class where the solution is sought. C|Γ1 = g1(x) is
the essential boundary condition.

Global truncation error The global truncation error is defined as

En ≡ Cn − C(n),

with Cn the numerical solution at t = n and C(n) the exact solution at
t = n.

Local truncation error Scheme (3.132) can be written as Cn+1 = N (Cn),
where N represents the numerical operator mapping the approximate so-
lution at one time step to the approximate solution at het next. The local
truncation error is defined as

en =
1
τ

[N (Cn)− Cn+1].
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Natural boundary condition Condition that appears naturally from the min-
imization problem once the corresponding Euler-Lagrange equations are
derived. ((θD∇C) · n) |Γ2 = g2(x) and (σC + (θD∇C · n)) |Γ3 = g3(x)
are the natural boundary conditions.

Solenoidal vector field In vector calculus a solenoidal vector field is a vector
field v with divergence zero:

∇ · v = 0.

This condition is satisfied whenever v has a vector potential. A vector
potential is a vector field whose curl is a given vector field. The curl is a
vector operator that shows a vector field’s rate of rotation: the direction
of the axis of rotation and the magnitude of rotation. Here rotation is
used for properties of a vector function or position (they are nog about
changes with time).

Stability A method is said to be stable if a small deviation from the true
solution does not tend to grow as the solution is iterated.

Let {δn, n = 0, 1, ..., N} and {δ∗n, n = 0, 1, ..., N} be any two perturba-
tions of the discretized problem and let {C̃n, n = 0, 1, ..., N} and {C̃∗n, n =
0, 1, ..., N} be the resulting perturbed solutions. Then if there exist posi-
tive constant S and ∆x0 such that, for all ∆x ∈ (0,∆x0]:

||C̃n − C̃∗n|| ≤ Sε,

whenever
||δn − δ∗n|| ≤ ε, 0 ≤ n ≤ N,

then the method is said to be zero-stable.

Hydrology

Advection Transportation of contaminants by the flow of a current of water.
This implies that the solute contaminant moves passively with the same
velocity as the groundwater.

Anisotropic Not possessing the same properties in all directions (the opposite
of isotropic).

Aquifer An aquifer is a body of rock or sediment that is sufficiently porous and
permeable to store, transmit and yield significant quantities of groundwa-
ter to wells and springs.

Aquitard An aquitard is a geologic formation that is not permeable enough
to yield significant amounts of water to wells, but on a regional scale can
supply significant water to the underlying or overlaying aquifers. In an
aquitard only vertical velocity is assumed, the horizontal velocity of the
flow is zero.
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Convection Convection is the internal movement of currents within fluids (i.e.
liquids and gases). It cannot occur in solids due to the atoms not being
able to flow freely. Convection may cause a related phenomenon called
advection, in which mass or heat is transported by the currents or motion
in the fluid.

Diffusion The transport of matter solely by the random motions of individual
molecules not moving together in coherent groups. It is a consequence of
concentration gradients.

Dispersion Dispersive transport describes the dilution or mixing of a solute
due to different velocities of groundwater, which is moving at rates that are
both greater and smaller than the average advective pore velocity. Disper-
sion is observed on both the microscopic and the macroscopic scale. The
three main reasons for the different velocities at the microscopic scale are
friction in pores, varying travel path lengths and pore sizes. Macroscopic
dispersion is caused by variable permeability’s of single layers inducing
different velocities.

Fick’s law The relation between the flux F and the concentration C is known
as Fick’s law:

F = −D∇C,
with D the diffusion coefficient or matrix.

freshwater head The measured head if the piezometer tube were filled over
its full height with water of specific weight.

Gauge pressure Pressure measured greater than atmospheric pressure.

Hydraulic gradient Hydraulic head drop between two points a and b divided
by the distance between them.

Hydraulic head Measure for the amount of energy groundwater flowing through
aquifer has per unit weight. Quantity is expressed in terms of a length of
water.

Hydrostatic pressure The pressure which is exerted on a portion of a column
of fluid as a result of the weight of the fluid above it.

Permeability The ability of a geologic formation to transmit water.

Phreatic The term phreatic is used in geology to refer to matters relating to
underground water below the water table.

Phreatic zone The layer(s) of soil or rock below the water table in which voids
are permanently saturated with water, as opposed to the higher vadose
zone in which the pore spaces are not completely filled with water.

Piezometer A device used for the measurement of hydraulic head of ground-
water in aquifers.

Porosity The percentage of the volume of that material that can be occupied
by water.
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Pressure head Same as gauge pressure, unless absolute pressure is explicitly
specified

Saturation Generally means water content is equal to porosity and pressure
head is greater than atmospheric pressure. / The relative amount of water,
oil and gas in the pores of a rock, usually as a percentage of volume

Seepage velocity Percolation of water through the soil from unlined canals,
ditches, laterals, watercourses, or water storage facilities.

Specific Storage The amount of water which a given volume of aquifer will
produce, provided a unit change in hydraulic head is applied to it (while
it still remains fully saturated). it has units of inverse length, [L-1].

Transient Varying in time.

Transmissiviteit The rate at which water passes through an aquifer.

Water table or phreatic surface The upper limit of abundant groundwater.
The surface where the pressure head is equal to atmospheric pressure.
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Software

The during this research developed software was written in Matlab. The trans-
port equation is three dimensionally solved with several numerical methods.
Matlab functions are made in order to automatically read and write files with
information written or read by Triwaco in order to have a continuous coupling
between both programmes.

The coupling between the transport equation and the flow equation within
Matlab is two dimensionally.

C.1 Structure of the software

Main
Main makes use of the following functions in Matlab:

� EAD

� EbAD

� InitialCondition

� FlowEquation if coupling within Matlab is used

� SaveRho if coupling with Triwaco is used

� TransportEquation

� rhof

� VADf

TransportEquation
TransportEquation makes use of the following functions in Matlab:

� MADf

� S1ADf

� S2ADf

� fADf

� D1ADf

� D2ADf

131
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� MADUf

� S1ADUf

� S2ADUf

� MADMHf

� S2ADMHf

� MADPUf

� S2ADPUf

MADUf, S1ADUf and S2ADUf
MADUf, S1ADUf and S2ADUf make use of the following function in Mat-
lab:

� hf

VADf
VADf makes use of the following function in Matlab:

� litcount

FlowEquation
FlowEquation makes use of the following functions in Matlab:

� Tf

� fhff

Plaatjesmaker

C.2 Description of all functions in Matlab

D1ADf FDM for the third dimension of the transport equation, dispersive
part.

D2ADf FDM for the third dimension of the transport equation, advective part.

dos dos(’run3.bat’) runs the Fortran file in Triwaco.

EAD constructs the matrix with all vertices per element.

EbAD constructs the matrix with all vertices per boundary element.

fADf constructs the right hand side of the system of equations for the transport
equation.

fADUf constructs the right hand side of the upwind method for the transport
equation.

fhff constructs the right hand side for the flow equation.

FlowEquation calculates the freshwater heads by solving the flow equation
with the BiCGSTAB method and uses Darcy’s law to determine the ve-
locities of the flow.
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hf determines the representative distance in the element in the direction of q
by the Segal algorithm.

litcount reads the adore blocks of the *.ado, *.TRO, *.TEO files constructed
by Triwaco.

MADf constructs the mass matrix for the SGA for the transport equation.

MADMHf constructs the mass matrix for the Mizukame Hughes algorithm
for the transport equation.

MADPUf constructs the mass matrix for the SUPG pure advection method
for the transport equation.

MADUf constructs the mass matrix for the SUPG method for the transport
equation.

Main Mainprogramma with cycles of the coupled system. Input: number of
elements ne, number of boundary elements neb, number of vertices per
aquifer nv and number of aquifers nl, time step dt, number of time steps
transport equation It. A choice has to be made between the methods SGA,
SUPG classical upwind, Mizukami Hughes algorithm and the SUPG pure
advection method by Mizukami.

plaatjesmaker makes figures after the simulation is completed.

rhof converts concentration into density.

S1ADf constructs the stiffness matrix elementwise for the SGA for the disper-
sive part of the transport equation.

S1ADUf constructs the stiffness matrix elementwise for the SUPG for the
dispersive part of the transport equation.

S2ADf constructs the stiffness matrix elementwise for the SGA for the advec-
tive part of the transport equation.

S2ADMHf constructs the stiffness matrix elementwise for the Mizukami Hughes
algorithm for the advective part of the transport equation.

S2ADPUf constructs the stiffness matrix elementwise for the SUPG pure ad-
vection algorithm for the advective part of the transport equation.

S2ADUf constructs the stiffness matrix elementwise for the SUPG for the
advective part of the transport equation.

Tf constructs the matrix for the flow equation.

TransportEquation solves the advection-dispersion equation for 1 iteration,
the system of equations formed for the transport equation is solved with
the BiCGSTAB method.

VADf reads the information per vertex and stores this information in a matrix.
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Appendix D

Representative element
distance

Algorithm to determine hj , the representative distance of an element in the
direction of q :

For each vertex i within the element
φmax = maxk (|qi| · ∇φk|)
if φmax > ε

h(i) = ||qi||
φmax

else
h(i) = 0.
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Figure D.1: Two elements of the Finite Element grid, with element distances
∆x and ∆y.
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The gradients of the basis functions are given by

∇φ1(x) =

[
∂φ1(x)
∂x

∂φ1(x)
∂y

]
=
[

y3−y2
∆

x2−x3
∆

]
=
[ 1

∆x
1

∆y

]
, (D.1)

∇φ2(x) =

[
∂φ2(x)
∂x

∂φ2(x)
∂y

]
=
[

y1−y3
∆

x3−x1
∆

]
=
[ −1

∆x
0

]
, (D.2)

∇φ3(x) =

[
∂φ3(x)
∂x

∂φ3(x)
∂y

]
=
[

y2−y1
∆

x1−x2
∆

]
=
[

0
−1
∆y

]
. (D.3)

Different possible velocities q are considered for Figure D.1(a), for the above
algorithm:

q =
[

1
0

]
leads to φmax = 1

∆x , hence h(i) = ∆x. (D.4)

q =
[

0
1

]
leads to φmax = 1

∆y , hence h(i) = ∆y. (D.5)

q =
[

0
0

]
leads to φmax = 0, hence h(i) = 0. (D.6)

q =
[

1
1

]
leads to φmax = 1

∆x + 1
∆y , hence h(i) =

√
2(∆x+∆y)

∆x+∆y . (D.7)

q =
[

1
2

]
leads to φmax = 1

∆x + 2
∆y , hence h(i) =

√
5

1/∆x+2/∆y . (D.8)

In the case of Equation (D.7), when ∆x = ∆y,

h(i) =
1
2

√
2∆x.

This is the distance k in Figure D.1(a). In the case of Equation (D.8)

h(i) =
√

5
3

∆x,

when ∆x = ∆y, this distance can also be derived with simple goniometric
formulas.

It is noted that the sign of q has no influence on h(i), hence the represen-
tative distance of the element in the direction of q is for q = [1 1] equal to the
representative distance for q = [1 − 1]. When ∆x = ∆y and q = [1 − 1],
the element distance in the element in Figure D.1 should be

√
2∆x instead of

1
2

√
2∆x.



Appendix E

Triwaco

E.1 Groundwater flow equation

For constant density, the groundwater flow equation in Triwaco is two dimen-
sional. When the density becomes dependent on the location, the height of the
aquifer becomes important. Z, the elevation or height of the aquifer is now
introduced which depends on the x and y coordinate.

Darcy’s law in terms of the freshwaterhead hf for a coordinate xi can be
written as:

qi = −ki
(
∂hf
∂xi

+
ρ− ρf
ρf

∂z

∂xi

)
. (E.1)

With ki again the freshwater hydraulic conductivity and ρf the freshwater den-
sity. The Dupuit-assumption allows to express Darcy’s law for vertical flow
through aquitards and vertically integrated horizontal flow in aquifers.

E.1.1 Vertical flow

The vertical flow in Triwaco is solved with the Finite Difference Method. Define

ki =
Kiρfg

µ
=

1
ci
,

where g is the acceleration due to gravity, µ is the dynamic viscosity of water and
cj the resistance of aquitard j. The vertical flow from aquifer j with freshwater
head hfj at elevation Zj in the center of the aquifer through aquitard j− 1 with
thickness dj−1 and vertical intrinsic permeability Kj−1 to aquifer j − 1 with
freshwater head hfj−1 at elevation Zj−1 in the center of the aquifer is equal to:

qz,j−1 = −kj−1

(
∂hf
∂xj−1

+
ρ

ρf

∂z

∂xj−1
− ∂z

∂xj−1

)
.

∼= −kj−1


−hfj + hfj−1

dj−1
+

∫ Zj−1

z=Z
ρ
ρf
dz

dj−1
+
Zj − Zj−1

dj−1


 , (E.2)

or

qz,j−1
∼=
hfj − hfj−1 − Zj + Zj−1 −

∫ Zj−1

z=Zj

ρ
ρf
dz

cj−1
. (E.3)
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With cj−1 the resistance of aquitard j−1. Note that ∂hf
∂z = 0 within an aquifer

because of the hydraulic pressure within an aquifer. The hydraulic pressure is
defined as the pressure which is exerted on a portion of a column of fluid as
a result of the weight of the fluid above it. So in the application of the finite
difference method the used grid size is dj . More information and the derivation

of the integral
∫ Zj−1
z=Zj

ρ
ρf
dz

dj−1
can be found in Olsthoorn [32].

E.1.2 Horizontal flow

Let Qi denote the horizontal flow in the aquifer ([L2T−1]). The horizontal flow
in aquifer i with thickness H is equal to:

Qi =
∫ Z+1/2H

z=Z−1/2H

qidz

=
∫ Z+1/2H

z=Z−1/2H

(
−ki ∂hf

∂xi
− ki ρ− ρf

ρf

∂Z

∂xi

)
dz

= −κi
∫ Z+1/2H

z=Z−1/2H

∂hf
∂xi

dz −−κi ∂Z
∂xi

∫ Z+1/2H

z=Z−1/2H

ρ− ρf
ρf

dz, (E.4)

where Z denotes the center of the aquifer and the index i = 1, 2 indicates the x
and y coordinates.

Remark: In the second step of Equation (E.4) is z replaced by Z without
any comment. It is unknown why this is permitted, it might be possible that z
in Equation (E.1) must be Z.

Define the transmissivity as T = kH with H the thickness of the aquifer and
rewrite Equation (E.4) as:

Qi = −Ti
H

∫ Z+1/2H

z=Z−1/2H

∂hf
∂xi

dz − Ti
H

∂Z

∂xi

∫ Z+1/2H

z=Z−1/2H

ρ− ρf
ρ

dz. (E.5)

With S the storage coefficient and q the sink term, the equation of continuity
becomes:

∂Q1

∂x1
+
∂Q2

∂x2
= qz,j − qz,j−1 − S ∂hf

∂t
− q. (E.6)

Substitution of Equation (E.3) and (E.4) in Equation (E.6) results in:

∂

∂x1

(
T1

H

∫ Z+1/2H

z=Z−1/2H

∂hf
∂x1

dz

)
+

∂

∂x2

(
T2

H

∫ Z+1/2H

z=Z−1/2H

∂hf
∂x2

dz

)
=

= −
hfj+1 − hf −

∫ Z
z=Zj+1

ρ
ρf
dz

cj
−
hf − hfj−1 −

∫ Zj−1

z=Z
ρ
ρf
dz

cj−1

− S ∂hf
∂t
− q − q∗. (E.7)

With q∗ the correction flux:

q∗ = − ∂

∂x1

(
T1

H

∂Z

∂x1

∫ Z+1/2H

z=Z−1/2H

ρ− ρf
ρf

dz

)
− ∂

∂x2

(
T2

H

∂Z

∂x2

∫ Z+1/2H

z=Z−1/2H

ρ− ρf
ρf

dz

)
+
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+
Zj+1 − Z −

∫ Z
z=Zj+1

ρ
ρf
dz

cj
−
Z − Zj−1 −

∫ Zj−1

z=Z
ρ
ρf
dz

cj−1
. (E.8)

First part of E.7 It has linear shaped functions and numerical calculations
based on Galerkin’s method. It is assumed that the density is constant in the
vertical direction within each aquifer. Equation (E.7) can now be simplified.
The density within an aquifer is called ρ, the density in the underlying aquitard
is called γj and in the above aquitard γj−1. With dj the thickness of aquitard j
will be denoted and with Hj the thickness of aquifer j. The correction flux can
be rewritten

q∗ = −T1
∂2Z

∂x2
1

ρ− ρf
ρf

− T1
∂Z

∂x1

∂(ρ/ρf )
∂x1

− ∂T1

∂x1

∂Z

∂x1

ρ− ρf
ρf

− T2
∂2Z

∂x2
2

ρ− ρf
ρf

− T2
∂Z

∂x2

∂(ρ/ρf )
∂x2

− ∂T2

∂x2

∂Z

∂x2

ρ− ρf
ρf

+
Zj+1 − Z + 1

2Hj+1
ρj+1
ρf

+ dj
γj
ρf

+ 1
2Hj

ρ
ρf

cj

−
Z − Zj−1 + 1

2H
ρ
ρf

+ dj−1
γj−1
ρf

+ 1
2Hj−1

ρj−1
ρf

cj−1
. (E.9)

E.1.3 FEM for the correction flux

The correction flux of Equation (E.9) is discretized with the Finite Element
Method. First, integrate the flux (E.9) over the surface A:

Q∗ =
∫ ∫

A

q∗dx1dx2 (E.10)

Split the correction flux into a flux that takes care for the lateral effects within
the aquifer Q∗l and a flux that takes care for the vertical effects to the underlying
and above aquifers Q∗v:

Q∗l =
∫ ∫

A

{
−T1

∂2Z

∂x2
1

ρ− ρf
ρf

− T1
∂Z

∂x1

∂(ρ/ρf )
∂x1

− ∂T1

∂x1

∂Z

∂x1

ρ− ρf
ρf

−T2
∂2Z

∂x2
2

ρ− ρf
ρf

− T2
∂Z

∂x2

∂(ρ/ρf )
∂x2

− ∂T2

∂x2

∂Z

∂x2

ρ− ρf
ρf

}
dx1dx2.(E.11)

Q∗v =
∫ ∫

Ae

{
Zj+1 − Z + 1

2Hj+1
ρj+1
ρf

+ dj
γj
ρf

+ 1
2Hj

ρ
ρf

cj

−
Z − Zj−1 + 1

2H
ρ
ρf

+ dj−1
γj−1
ρf

+ 1
2Hj−1

ρj−1
ρf

cj−1

}
dx1dx2. (E.12)

First, the lateral flux is described. Take a triangular shaped element e and
assume that the parameters are linear within the element:

Ti = T ei,1x1 + T ei,2x2 + T ei,0, (E.13)
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Z = Ze1x1 + Ze2x2 + Ze0 , (E.14)

ρ = ρe1x1 + ρe2x2 + ρe0. (E.15)

The second order derivative of Z, ∂
2Z
∂x2
i

= 0, due to Equation (E.14), so Equation
(E.11) simplifies. Call the remaining part the element flux Q∗e:

Q∗e = −Ae
{
T e1µZ

e
1

ρe1
ρf

+ T e1,1Z
e
1

ρeµ − ρf
ρf

+ T e2µZ
e
2

ρe2
ρf

+ T e2,2Z
e
2

ρeµ − ρf
ρf

}
,

(E.16)
with µ the mean of the three vertices of the element and Ae the surface of the
element. During the linearization of the height Z in Equation (E.14), the second
order derivative is neglected. The corresponding term of Equation (E.11) can
be important and has to be added:

Q∗z =
∫ ∫

A

{
−T1

∂2Z

∂x2
1

ρ− ρf
ρf

−−T2
∂2Z

∂x2
2

ρ− ρf
ρf

}
dx1dx2. (E.17)

The flux Q∗z has to be calculated for each vertex. The number of neighboring
vertices has to be determined for each vertex (≥ 2). Dependent on the number
and location of the vertices, it is possible to determine 0, 1 or 2 curvatures.
The Laurent- series in the local coordinates ξ and η around the central vertex
parallel to x1 and x2 as explained in [12] shows the number of curvatures

Z ' Z0 + Z1ξ + Z2η +
1
2
Z11ξ

2 + Z12ξη +
1
2
Z22η

2, (E.18)

where Z0 is the value of the central vertex, Z1 and Z2 are the slopes, Z12 the
cross-term and Z11 and Z22 the curvatures: Zii = ∂2Z/∂x2

i . The definition of
the Laurent series can be found in Appendix B. If there are more than five
neighboring vertices, the terms can be determined with the Mean Square Error.
The Z-curvature flux becomes

Q∗z = −An ρ− ρf
ρf

{T1Z11 + T2Z22} . (E.19)

And the lateral flux becomes

Q∗l =
∑(

1
3
Q∗e

)
+Q∗z. (E.20)

The vertical correction flux (E.12) can be calculated for each vertex:

Q∗v = An

{
Zj+1 − Z + 1

2Hj+1
ρj+1
ρf

+ dj
γj
ρf

+ 1
2Hj

ρ
ρf

cj

−
Z − Zj−1 + 1

2H
ρ
ρf

+ dj−1
γj−1
ρf

+ 1
2Hj−1

ρj−1
ρf

cj−1

}
, . (E.21)

with An the surface of the vertex. The total correction flux can now be calcu-
lated by

Q∗c = Q∗v +Q∗l . (E.22)
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E.1.4 FEM for the flow equation

The discretization of the correction flux q∗ is explained in the previous section.
The other terms of Equation (E.7) are also discretized with the finite element
method. The matrices and vectors belonging to these terms can only be found
in Triwaco’s source code.

E.1.5 Particle tracking

In [19] more information can be found about particle tracking. Once the ground-
water flow situation has been calculated for a given hydrogeological situation,
groundwater flow lines may be computed using the particle-tracking program
Trace. Trace determines pathlines and travel times in groundwater flow, based
on groundwater flow simulations.

The horizontal movement is derived from the discharges that have been
calculated for the aquifers. The thickness and the porosity of the aquifer are used
to calculate the velocity corresponding to the discharge. The vertical movement
within the aquifers is derived from vertical fluxes through the aquitards, using
the principle of continuity. Vertical movement is been taken into account for
the slope of the aquifer. The transport through the aquitards is vertical only.
Together with the porosity and thickness of the aquitard, the time needed for
the passage through the aquitard is calculated. The pathlines can be determined
following the flow upstream and downstream.
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Appendix F

Temporal discretization 1D

For the steady 1D advection dispersion equation the condition |ph| ≤ 1 is needed
to have a monotone solution. ph is called the mesh Péclet number and is defined
as

ph ≡ Pe∆x
2θ

≡ q∆x
2θD

. (F.1)

Pe is called the Péclet number and is a measure for by how much the advection
dominates the dispersion.

For the time dependent advection dispersion equation another analysis is
needed that can give a stability condition.

F.1 Amplification factors

Recall the spatial discretized advection dispersion equation of the form M dC
dt =

SC + f with M the mass matrix, S the stiffness matrix and f the source term.
Each numerical procedure has an amplification matrix G which is given by the
numerical solution of the error equation dε

dt = M−1Sε:

εn+1 = G(τM−1S)εn. (F.2)

A numerical solution method is absolutely stable if and only if for the eigenvalues
µk of G(τM−1S) holds |µk| < 1. If the error equation consists of one equation
only, i.e. ε′ = λε, then the amplification of the numerical solution is referred
to as the amplification factor, which is denoted by V (τλ). The eigenvalues µk
of G(τM−1S) are obtained by substitution of the eigenvalues λk of the matrix
M−1S into the amplification factor

µk = V (τλk).

Hence for stability we need
|V (τλk)| < 1. (F.3)

Note that all eigenvalues λk are real-valued and negative (λ < 0) when S is nega-
tive definite and M is positive definite (see Section 10.5 [13]). The amplification
matrix for the ω−method is:

G(τM−1S) =
(
I − ωτM−1S

)−1 (
I + (1− ω)τM−1S

)
.
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With this theory it is hard to derive a stability condition for methods that solve
the equation M dC

dt = SC+ f because the eigenvalues of the matrix M−1S have
to be calculated. Though it can be used to say something about the boundedness
of the error. For Forward Euler, ω = 0:

|V (τλ)| = |1 + τλ| → ∞ as |λ| → ∞.

Provided λ ∈ R, the interval for stability for Forward Euler can be calculated
by using Equation (F.3):

τ |λ| ≤ 2 (F.4)

For Backward Euler

|V (τλ)| = | 1
1− τλ | → 0 as |λ| → ∞,

and the interval for stability is unbounded:

τλ ∈ (−∞, 0) (F.5)

and for Crank-Nicholson, ω = 1/2, the amplification factor is

|V (τλ)| = |1 + τλ
2

1− τλ
2

| → 1 as |λ| → ∞.

and the interval for stability of this explicit method is again (F.5). For the
Modified Euler method (Runge-Kutta-2) the amplification factor is given by

|V (τλ)| = |1 + τλ+
1
2

(τλ)2|,

and the interval for stability is given by

τ |λ| ≤ 2. (F.6)

So for Forward Euler the error does not extinguish and can become large
outside the small interval for stability. Backward Euler and Crank-Nicholson
are unconditionally stable, but only for Backward Euler errors in time in the
initial condition will always be damped out. For Crank-Nicholson the error of
the previous time steps is bounded but does not extinguish for |λ| large. The
Runge-Kutta-2 scheme has a stability condition that is better than the stablity
condition for Forward Euler. [13]

F.2 Stability temporal discretization scheme

As an alternative method to estimate the eigenvalues of the matrix M−1S, Von
Neumann analysis can be used. More information can be found in Chapter 8
in [26] or in Chapter 4 in [23]. In [23] the following results are obtained for
the advection-dispersion equation with the ω−scheme: unconditional stability
for 1/2 ≤ ω ≤ 1. So the Backward Euler and Crank-Nicholson schemes are
unconditionally stable.
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For ω = 0 in the ω−scheme (Forward Euler) the necessary and sufficient
stability condition according to [23] is:

2Dτ
(

1
∆x2

)
≤ 1 and

τ

2D

(
q2

1 + |q|∆x
)
≤ 1. (F.7)

This is a disadvantage of the Forward Euler method, the time step is restricted
in order to get a stable solution.

For the advection equation spatial discretized with the first order upwind
method with positive velocity q and temporal discretized with Forward Euler,
the Von Neumann stability analysis results in the stability condition:

0 ≤ qτ

∆x
≤ 1. (F.8)

The derivation can be found in Chapter 8 of Leveque [26]. qτ
∆x is known as the

Courant number. The same condition is derived in Section 12.3 [13] for the 1D
advection equation discretized with Forward Euler and central differences.

For the 1D dispersion equation according to [23] the time step after dis-
cretization with Forward Euler must satisfy

τ ≤ ∆x2

2D
. (F.9)

This is the reason why explicit methods are less suitable for the dispersion part
of the advection dispersion equation.

Temporal discretization with Forward Euler for the advective part and Back-
ward Euler for the dispersive part results in the condition |qτ/dx| ≤ 1, because
the dispersive part discretized with Backward Euler is unconditionally stable.

For the Runge-Kutta-2 method the stability conditions are:

| qτ
∆x
| ≤ 1,

Dτ

∆x2
≤ 1

2
. (F.10)

F.3 TVD methods

For nonlinear numerical methods, like the high resolution method MC-limiter
of the finite volume method a different approach for stability must be adopted.
The total variation (TV) turns out to be an effective tool for studying stability
of nonlinear problems. In Section 8.3.5 in Leveque [26] it can be seen that
the high resolution TVD method MC limiter is convergent for the advection
equation provided the CFL condition is satisfied:

| qτ
∆x
| ≤ 1. (F.11)

The methods: Fromm (3.120), Beam-Warming (3.121) and Lax-Wendroff (3.122)
are not TVD methods and hence not necessary monotonicity preserving (see Sec-
tion 6.7 [26]). The first order upwind FVM is TVD for the advection equation,
so this method for this equation cannot introduce oscillations.
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F.4 Numerical experiments

Three different temporal discretizations wer used in the Interim Master’s thesis:
T1 is the temporal discretization that refers to the use of Backward Euler for
the dispersion part and Forward Euler for the advection part and the source
term. T2 is the temporal discretization that refers to the use of the Crank-
Nicolson scheme. T3 is the temporal discretization that refers to the use of the
Runge-Kutta-2 scheme.

Note that T3 does not have to be stable for the given parameters for the
advection dispersion equation. T3 costs 2 calculation per time step, so in order
to obtain the same computer work take a double step size for T3, ∆x = 0.2 and
take a look after 50 instead of 100 time steps. The results for the advection-
dispersion equation for the FEM, FVM and FDM can be found in the Figures
F.1, F.2, F.3. In Figure F.4 the results can be found for the advection equation.
It can be seen that T1 has less numerical dispersion than T3 and T3 less than
T2.
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Figure F.1: SUPG classical upwind with T1, T2 with ∆x = 0.1 and T3 with
∆x = 0.2 after 100 time steps for the advection dispersion equation.
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Figure F.2: FVM upwind with T1 and T2 after 100 time steps with ∆x = 0.1
for the advection dispersion equation.
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Figure F.3: FDM with T1, T2 with ∆x = 0.1 and T3 with ∆x = 0.2 after 100
time steps for the advection dispersion equation.
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Figure F.4: SUPG classical upwind with T1, T2 and T3 for the advection
equation after 100 time steps.
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Appendix G

Advection equation 1D

In the Interim Master’s thesis 1D numerical experiments were presented for
the advection equation. Choose D = 0 and q = 0.03 and note that the exact
solution is C(x, t) = f(x− qt), with f(x) the initial condition. Results after 100
time steps can be found in Figure G.1 for the FEM. The SGA is unstable and
gives large wiggles. In Figure G.2 the results for the FVM and FDM are shown.
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Figure G.1: SUPG classical upwind and Il’in scheme for the advection equation
after 100 time steps with T1.
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Figure G.2: FVM and FDM for the advection equation after 100 time steps.



Appendix H

Applications

Some other applications of density dependent groundwater flow are presented.

H.1 Coast line

The first experimental problem is a representative problem for the coast in the
western part of the Netherlands. A coast line is presented with a convex and
concave shoreline. Adjacent to the sea the freatic inland can be found with a
sink, where groundwater abstraction takes place. In this part of the land the
groundwater supply is given. Adjacent to the freatic inland a polder topsystem
can be found.

This problem has several aspects. The first is a sharp interface between
brackish and freshwater on the coastline caused by freshwater flow to the sea.
The second aspect is a diffusive transition from salt to brackish to fresh water
under the polder behind the dunes. The last aspect is a sink that causes an
upward transition from salt to freshwater. The well can be very sensitive for
salinization. For drinking water the limit is 150 mg CL− per liter water while
salt groundwater contains about 10000 mg CL− per liter water. The interface
will not be sharp near the well.

Possible changes in the model are the elevation of the sealevel, the lowering
of water levels in the polder due to subsidence and the increase of the abstraction
rate of the well.

This example is shown in Figure H.1.

H.2 Coast line with water ways

This example is equal to the first experimental problem, but now waterways are
present in the polder topsystem. For these waterways, the salt supply from the
groundwater is important. This experimental problem can be found in Figure
H.2.
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Figure H.1: Experimental problem: coast line.
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Figure H.2: Experimental problem: coast line with water ways.
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H.3 Henry problem

The transient Henry problem describes the saline intrusion caused by a sud-
den change in fresh groundwater discharge. This approach is also effective for
other variable density flow scenario, since it allows one to decouple the flow and
transport equations.

Henry (1964) presented an analytical solution for a problem of groundwater
flowing toward a seawater boundary. Because an analytical solution was avail-
able for the Henry problem, many numerical codes have been evaluated and
tested with the Henry solution. Segol (1993) showed, however, that the Henry
solution was not exact because Henry (1964) eliminated, for computational rea-
sons, mathematical terms from the solution that he thought to be insignificant.
When Segol (1993) recalculated Henrys solution with the additional terms, the
improved answer was slightly different from the original solution.

The basic design of the Henry problem is shown in Figure H.3. The cross-
sectional box is 2-m long, by 1-m high, and by 1-m wide. A constant flux of
fresh ground water is applied to the right boundary at a rate of 6.6×10−5 m3/d
with a concentration equal to zero. A constant head boundary is applied to the
left side of the box to represent seawater hydrostatic conditions. The upper and
lower model boundaries are no flow.

The Henry problem caused further confusion among the modeling commu-
nity because some researchers attempting to verify numerical codes calculated
an erroneous value for molecular diffusion that did not correlate with the original
value used by Henry (Voss and Souza, 1987). For this reason, some researchers
consider there to be two cases of the Henry problem: one in which the value for
molecular diffusion is 1.62925 m2/d and another with a value of 0.57024 m2/d.
The values of other parameters can be found in Table C.1 [7].

porosity 0.35
seawater concentration 35 kg/m3

inflow rate 5.702 m3/day
equivalent freshwater hydraulic conductivity 864 m/d
molecular diffusion (case 1) 1.62925 m2/day
molecular diffusion (case 2) 0.57024 m2/day

Table C.1.: parameters of The Henry problem.
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Figure H.3: Experimental problem: Henry problem.


