
Master’s Thesis

Adaptive Deflated Multiscale Solvers

Dmitrii Boitcov

to obtain the degree of Master of Science
at the Delft University of Technology

Thesis committee: Prof. dr. ir. C. Vuik, TU Delft, supervisor
Dr. A. Lukyanov, TU Delft, daily supervisor
Dr. H. M. Schuttelaars TU Delft, Mathematical Physics

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

1 Problem Formulation 1
1.1 Reservoir Simulation. 1
1.2 Rock and Fluid properties . 1
1.3 Governing equations . 3

1.3.1 Darcy’s law . 3
1.3.2 Mass-Balance equation . 4
1.3.3 Single-phase flow equations 4
1.3.4 Multiphase flow equations 5
1.3.5 Boundary and initial conditions 6

1.4 Black-Oil fluid model . 7
1.5 Discretization methods . 8

1.5.1 Two-Point Flux Approximation (TPFA) 8
1.5.2 Multi-Point Flux Approximation (MPFA) 12

1.6 MATLAB Reservoir Simulation Toolbox (MRST) 13

2 Linear Solvers 15
2.1 Introduction . 15
2.2 Newton-Raphson method . 15
2.3 Direct methods . 16
2.4 Iterative methods . 17

2.4.1 Projection methods. 19
2.5 Preconditioning . 22

3 Deflation Method 25
3.1 Introduction . 25

3.1.1 Deflation preconditioning 25
3.2 Preconditioner and GMRES. 26

3.2.1 Restarted GMRES . 26
3.2.2 Preconditioned GMRES . 28

3.3 Construction of deflation vectors 29
3.3.1 Ritz deflation . 29
3.3.2 Harmonic Ritz deflation . 31
3.3.3 Physics-based deflation . 31

4 Multiscale Methods 33
4.1 Introduction . 33

4.1.1 Upscaling Methods . 33
4.1.2 Dual-Grid Methods. 34
4.1.3 Multiscale Finite Element Method (MsFEM) 34
4.1.4 Multiscale Volume Element Method (MsFVM) 35

iii

iv Contents

5 Multiscale Restriction-Smoothed Basis Method (MsRSB) 37
5.1 Introduction . 37
5.2 Multiscale formulation. 38

5.2.1 Construction of basis functions 38
5.3 Iterative multiscale formulation 39

6 Adaptive Deflated Multiscale Solvers (ADMS) 41
6.1 Motivation . 41
6.2 Various forms of ADMS . 41

6.2.1 Fully ADMS . 41
6.2.2 Decoupled ADMS . 42
6.2.3 Mixed ADMS . 42

7 Results 43
7.1 ADMS parameters . 43
7.2 Test cases . 44

7.2.1 ”Islands” model problem 45
7.2.2 Fractured reservoir. 50
7.2.3 SPE10 layer . 55

References 59

1
Problem Formulation

1.1. Reservoir Simulation
Reservoir simulation is used to implement and verify a mathematical model of

fluid behaviour in a hydrocarbon reservoir over time depending on its petrophysical
properties. The main purpose purpose of this modelling is to collect the geolog-
ical information, process it and provide oil companies with the guidelines how to
optimize and maximize oil and gas recovery.

In order to mathematically describe flow processes inside reservoir, two kinds
of models are required. The first one is represented as a set of partial differential
equations (PDEs) depicting how fluids actually flow in a porous medium. These
relations are typically based on the principle of mass conservation of fluid phases,
complemented with dependencies between various physical quantities. In addi-
tion, one needs a mathematical interpretation of the porous rock formation under
consideration reflecting its geological characteristics. The second model has to be
constructed in the form of a grid and used as input to the first (flow) model, thereby
forming a complete reservoir simulation model.

This chapter is devoted to the physics and mechanics behind reservoir simula-
tion. We start by defining the properties of the porous rock and fluids, and proceed
with the mathematical formulations of the physical laws and relationships governing
the flow.

1.2. Rock and Fluid properties
In a petroleum reservoir the size of the underlying rock bodies varies from ten to

hundred meters in the vertical direction and can be an order of magnitude more (up
to a few kilometres) in the lateral direction. That is why on this modelling scale it is
almost impossible to take into account the storage and transport in individual pores
and channels. For an accurate modelling of the reservoir geology, in that section
we introduce macroscopic petrophysical quantities (we use them as input to flow
simulators) that are based on a continuum hypothesis and volume averaging over

1

1

2 1. Problem Formulation

a sufficiently large Representative Elementary Volume (REV) in order to reproduce
the authentic rock heterogeneities.

Continuum hypothesis implies that the amount of particles (molecules) in each
control volume is large enough to express all flow variable as statistical averages
in each balance volume of the entire computational domain [1]. Representative
Elementary Volume (REV) indicate the smallest volumes, over which measurements
can be taken so that they would be representative of the whole [2].

Pressure 𝑝 denotes the force distributed over a surface.
Porosity 𝜙 is the relative volume of pores in the rock. To determine a rock

partition, we need to know a ratio between the space occupied by impermeable
rock and the space populated by pores in which a fluid can pass through. A porosity
is equal to 0, when there are no pores at all, which means no fluid can flow through
the rock. A porosity of 1 will on the other hand mean that the volume is void.
Porosity value can be obtained using the following formula of rock compressibility
𝑐 :

𝑐 = 1
𝜙
d𝜙
d𝑝 =

d ln (𝜙)
d𝑝 .

Absolute Permeability is the rock property which characterizes the ability to
transmit a fluid in different directions (one direction depends on other directions),
or in other words the resistance that the rock offers to flow at certain (reservoir)
conditions. The rock is called permeable, when it has large (well-connected) pores,
and we call it impermeable otherwise, i.e. while pores are smaller and, as a con-
sequence, less interconnected. The permeability is expressed in the form of a full
tensor, ranging over many orders of magnitude throughout the reservoir. Having
a full tensor, it often possible to diagonalize it to avoid certain difficulties. The
permeability tensor is denoted as K, and is in 3D on the general form

K = (
K K K
K K K
K K K

) .

If the permeability can be represented by a scalar function K(�⃗�), we say that the
permeability is isotropic as opposed to the anisotropic case where we need a full
tensor K(�⃗�).

Relative permeability is a non-linear function of the saturation, which mea-
sures the effective permeability of a phase. Generally it is determined via experi-
ments and denoted by 𝑘 for a phase 𝛼.

Saturation indicates proportions of the entire volume filled up with existing
phases. A reservoir is completely saturated when there is no free space in the void
in pores. Basically, a phase can be liquid or gas, and we distinguish three phases:
water (𝜔), oil (𝑜) and gas (𝑔). We denote the saturation of each phase as 𝑆 ,
𝛼 = 𝜔, 𝑜, 𝑔, and for a fully saturated volume, we can write

∑
, ,
𝑆 = 1.

1.3. Governing equations

1

3

Velocity 𝑣 is the rate that a phase travel through a medium. Sometimes we
refer to the velocity of a single phase 𝛼 as 𝑣 , and the total velocity of all phases is

𝑣 =∑𝑣 .

Density of a phase 𝛼 denoted by 𝜌 is the mass per unit of volume.
Viscosity 𝜇 for fluids is a measure of ”thickness”. A liquid with high viscosity

is more resistant to flow than a liquid with low viscosity; the more viscous a fluid is,
the slower it flows with the same pressure difference. Water has a lower viscosity
than light oil, which again has lower viscosity than heavy oil. Heavy oil is also
referred to as viscous oil.

Mass Fraction of a Phase Component 𝑐 is the mass fraction that a com-
ponent 𝑙 occupies in a phase 𝛼. For each phase the mass fractions should add up
to unity,

∑𝑐 = 1. (1.1)

1.3. Governing equations
For the flow model, pressure, velocity and saturation are the primary unknowns.

In this section we will derive the governing modelling equations for flow in porous
media. An extensive introduction to the physics and dynamics behind fluid flow
thorough porous media can be found in [3, 4].

1.3.1. Darcy’s law
To model the fluid flow through the porous rock, the constitutive relation called

Darcy‘s law is used. This empirical relation is derived from the Navier-Stokes equa-
tions via homogenization and only valid for slow, viscous flow [5]; flow in subsurface
reservoirs falls into this category. Darcy‘s law states that the velocity of the fluid is
proportional to a combination of the gradient of the fluid pressure and the effects
due to gravity:

�⃗� = −K𝜇 (∇𝑝 − 𝑔𝜌∇𝑧) , (1.2)

where �⃗� is the fluid velocity, which represents the volume of fluid per total area per
time, K is the permeability tensor of the porous medium, 𝜇 is the fluid viscosity, 𝑝
is the fluid pressure, 𝑔 is the gravitational acceleration, 𝜌 is the density of the fluid
and 𝑧 is the vertical coordinate.

Assuming that we suppress gravitational forces, i.e., 𝑔 = 0, we can make the
following two observations: no flow will occur if there is no pressure gradient; if
there is a pressure gradient, the fluid will flow from high pressure towards low
pressure.

1

4 1. Problem Formulation

1.3.2. Mass-Balance equation
The law of mass conservation is fundamental for the mass-balance equation,

which gives the basic equation for the flow model. The law states that mass can
neither be created nor destroyed; mass can only change its form. For a closed
system where mass is neither flowing in nor out, the mass inside the system is
constant, regardless of the processes acting inside.

In most practical applications of flow simulation, we do not have closed systems.
For a reservoir model, we might have flow coming in and out through boundaries,
or wells that inject or produce mass. To account for material entering or leaving the
system, we use the principle of mass-balance. The mass-balance principle states
that mass entering the system must either leave the system, or be accumulated
within it. This is a direct extension of the law of mass conservation. The mass-
balance equation for an arbitrary domain Ω with boundary 𝜕Ω and normal vector �⃗�
can be written in integral form as,

𝜕
𝜕𝑡 ∫ 𝜙𝜌d�⃗�
⏝⎵⎵⎵⏟⎵⎵⎵⏝
accumulation

+∫ 𝜌�⃗� ⋅ �⃗�d𝑠
⏝⎵⎵⎵⏟⎵⎵⎵⏝

outflow

= ∫ 𝜌𝑞d�⃗�
⏝⎵⏟⎵⏝
inflow

. (1.3)

The change of a fluid within Ω is determined by the flux �⃗� through 𝜕Ω, and the
amount of the matter created within Ω, denoted by 𝑞. A positive 𝑞 implies that we
have a source, and a negative value implies a sink.

The Gauss’ (divergence) theorem applied to (1.3) gives

∫ [𝜕𝜕𝑡𝜙𝜌 + ∇ ⋅ (𝜌�⃗�)] d�⃗� = ∫ 𝜌𝑞d�⃗�. (1.4)

Since (1.4) holds for an arbitrary domain Ω, and in particular for infinitesimally
small, the integrands have to be equal, which means integral signs may be dropped,
i.e. it follows that the macroscopic behaviour of the single-phase fluid must satisfy
the continuity equation:

𝜕(𝜙𝜌)
𝜕𝑡 + ∇ ⋅ (𝜌�⃗�) = 𝜌𝑞. (1.5)

1.3.3. Single-phase flow equations
Equation (1.5) contains more unknowns than equations and to derive a closed

mathematical model, we need to introduce what is commonly referred to as con-
stitutive equations that give the relationship between different states of the system
(pressure, volume, temperature, etc.) at given physical conditions. While Darcy’s
law provides a relationship between the fluid velocity �⃗� and pressure 𝑝, the rock
compressibility 𝑐 definition describes the relationship between the pressure 𝑝 and
porosity 𝜙. In a similar way, we can introduce the fluid compressibility to relate the
fluid pressure 𝑝 to the fluid density 𝜌:

𝑐 = 1
𝜌
d𝜌
d𝑝 =

d ln (𝜌)
d𝑝 ,

1.3. Governing equations

1

5

where 𝑐 denotes the isothermal compressibility, which we henceforth will refer
to as the fluid compressibility, is non-negative and will generally depend on both
pressure and temperature, i.e., 𝑐 = 𝑐 (𝑝, 𝑇).

Inserting Darcy’s law (1.2) and compressibility notations 𝑐 and 𝑐 into (1.5),
the following parabolic equation for the fluid pressure is derived:

𝑐 𝜙𝜌𝜕𝑝𝜕𝑡 − ∇ ⋅ [
𝜌K
𝜇 (∇𝑝 − 𝑔𝜌∇𝑧)] = 𝜌𝑞, (1.6)

where 𝑐 = 𝑐 +𝑐 denotes the total compressibility. It is important to that this equa-
tion is generally nonlinear since both 𝜌 and 𝑐 may depend on 𝑝. However, there are
several scenarios, where the governing single-phase flow equation becomes linear
for the initially unknown variables. More extensive discussions on derivation of the
governing equations and some specific cases can be found in standard textbooks
[6, 7].

Incompressible flow. In the special case of an incompressible rock and fluid
(that is, 𝜌 and 𝜙 are independent of 𝑝 so that 𝑐 = 0), (1.6) simplifies to an elliptic
equation with variable coefficients,

− ∇ ⋅ [𝜌K𝜇 (∇𝑝 − 𝑔𝜌∇𝑧)] = 𝑞. (1.7)

Introducing the fluid potential Φ, which is defined as Φ = 𝑝 − 𝑔𝜌𝑧, (1.7) is
identified as the generalized Poisson’s type pressure equation

− ∇ ⋅ K∇Φ = 𝑞 (1.8)

or as the Laplace equation
∇ ⋅ K∇Φ = 0,

if there are no volumetric fluid sources or sinks.

1.3.4. Multiphase flow equations
Similarly to the derivation of single-phase flow equations we can state generic

equations which describe multiphase flow of immiscible fluids. For the detailed
overview of multiphase flow fundamentals we refer to [8] and [9].

Single-component phases. For a system of 𝑁 immiscible fluid phases that
each consists of a single component, we write one mass conservation equation for
every phase 𝛼,

𝜕
𝜕𝑡 (𝜙𝜌 𝑆) + ∇ ⋅ (𝜌 �⃗�) = 𝜌 𝑞 .

Here, each phase may contain multiple chemical species, which make up a single
component since the composition of each phase remains constant in time and there
is no transfer between phases.

To obtain a closed model we can extend Darcy’s law (1.2) by applying relative
permeabilities concept [10],

�⃗� = −K𝑘𝜇 (∇𝑝 − 𝑔𝜌 ∇𝑧) .

1

6 1. Problem Formulation

Multicomponent phases. There are a lot of real-world examples of reser-
voirs, where phases may comprise a few chemical species which are mixed at the
molecular level and keep the same properties like temperature and velocity. Differ-
ent from immiscible fluids, such a scenario is influenced by Brownian motion and
dispersion, causing the components redistribution in case of macroscale gradients
in the mass fractions. To simulate this situation we need to apply a linear Fickian
diffusion,

𝐽 = −𝜌 𝑆 D ∇𝑐 ,
where 𝑙 refers to the component, 𝛼 denotes the phase and D is the diffusion
tensor.

For a system of 𝑁 fluid phases and 𝑀 chemical species, the mass conservation
balance equation for components 𝑙 = 1,… ,𝑀 reads,

𝜕
𝜕𝑡 (𝜙∑𝑐 𝜌 𝑆) + ∇ ⋅ (∑𝑐 𝜌 �⃗� + 𝐽) =∑𝑐 𝜌 𝑞 ,

where �⃗� is the superficial phase velocity and 𝑞 is the source term.
The system is closed in the same way as for single-component phases, except

that we now also have to use that the mass fractions sum to one (1.1).

1.3.5. Boundary and initial conditions
To guarantee that the solution to any of the governing flow equations is well-

posed (i.e. there exists a unique solution, which is continuously dependent on the
initial and boundary conditions) inside a finite computational domain, we need to
specify boundary conditions that determine the behaviour on the external boundary.
In a parabolic case one also needs to impose an initial condition that determines
the initial state of the fluid system. In the following paragraphs, we will give a more
detailed overview of these auxiliary conditions.

In reservoir simulation one of the most realistic scenarios is closed systems
where no flow occurs across its outer boundaries, since we actually study a lot
of full reservoirs that have trapped and contained petroleum fluids for million of
years. Formally, such boundary conditions are modelled in terms of homogeneous
Neumann conditions,

�⃗� ⋅ �⃗� = 0 for �⃗� ∈ 𝜕Ω.
Alternatively, the reservoir can be connected to a larger object which provides

additional pressure support. This situation is described by Dirichlet type boundary
conditions of the form

𝑝(�⃗�) = 𝑝 (�⃗�, 𝑡) for �⃗� ∈ Γ ⊂ 𝜕Ω,

where the function 𝑝 may, for example, be given as a hydrostatic condition.
It is also common that there is a prescribed influx at the boundary, which is

described by supplying inhomogeneous Neumann conditions,

�⃗� ⋅ �⃗� = 𝑢 (�⃗�, 𝑡) for �⃗� ∈ Γ ⊂ 𝜕Ω.

1.4. Black-Oil fluid model

1

7

Combinations of the various boundary conditions are used to model and analyse
parts of a reservoir.

1.4. Black-Oil fluid model
Black-oil modelling is the most common technique in the petroleum industry to

simulate oil and gas recovery for a multicomponent, multiphase flow, when there
is no diffusion among components [11]. This model allows to predict compressibil-
ity and mass transfer effects between phases, which are crucial parts of primary
(pressure depletion) and secondary (water injection) recoveries.

The black-oil flow equations exploit several laws and relationships:

• equation of state;

• thermodynamic equilibrium;

• Darcy’s law for the volumetric flow rates;

• mass conservation equation for each component.

Equation of state (EOS) provides constitutive relationships between mass,
pressures, temperature, and volumes at thermodynamic equilibrium. There are a
lot of different ways to write this relation, but here we present a popular one used
in reservoir simulation, specifically in a cubic form,

𝑍 + 𝑓 (𝐴, 𝐵)𝑍 + 𝑓 (𝐴, 𝐵)𝑍 + 𝑓 (𝐴, 𝐵) = 0,

with

𝑍 = 𝑝𝑉
𝑅𝑇 , 𝐴 = 𝑎𝛽𝑝

(𝑅𝑇) , 𝐵 = 𝑏𝑝
𝑅𝑇 ,

where 𝑎 and 𝑏 are functions of the temperature and the molar volume at the critical
point; 𝛽 depends on the acentric factor of the species, that measures molecules
centricity in the fluid, temperature, and temperature at the critical point; and 𝑅 is
the universal gas constant.

By convention, the black-oil equations are formulated as conservation of gas, oil,
and water volumes at standard (surface) conditions rather than conservation of the
corresponding component masses. To formulate equations in the final form let us
introduce a few parameters used in standard PVT (Pressure-Volume-Temperature)
models that employ some pressure-dependent functions to establish a relation be-
tween fluid volumes at reservoir and surface conditions. More precisely, we need
the inverse of formation-volume factors 𝐵 defined as

𝐵 = 𝑉
𝑉 ⇒ 𝑏 ∶= 𝐵 = 𝑉

𝑉 ,

where 𝑉 and 𝑉 are volumes occupied by a bulk of component 𝑙 at reservoir and
surface conditions, respectively. Also we use solution oil-gas ratio denoted by

𝑟 =
𝑉
𝑉 .

1

8 1. Problem Formulation

Using all these notations, the black-oil equations for a live-oil (gas is dissolved
in oil) system reads,

𝜕
𝜕𝑡 (𝜙𝑏 𝑆) + ∇ ⋅ (𝑏 �⃗�) − 𝑏 𝑞 = 0,

𝜕
𝜕𝑡 (𝜙𝑏 𝑆) + ∇ ⋅ (𝑏 �⃗�) − 𝑏 𝑞 = 0,

𝜕
𝜕𝑡 [𝜙 (𝑏 𝑆 + 𝑏 𝑟 𝑆)] + ∇ ⋅ (𝑏 �⃗� + 𝑏 𝑟 �⃗�) − (𝑏 𝑞 + 𝑏 𝑟 𝑞) = 0.

Note that, in order to account for any specific phenomenon in the reservoir, the
model can be extended by adding necessary quantities and relations.

1.5. Discretization methods
To solve the model equations numerically, the problem needs to be discretized.

There are a large amount of various finite-difference and finite-volume schemes,
as well as finite-element techniques based on standard (or mixed discontinuous)
Galerkin approximations. In classical finite-difference approach the partial deriva-
tives are approximated by linear combinations of function values at the discrete set
of grid points in the domain. On the other hand, finite-volume methods rely on
a more physical aspect and consist of two steps. Firstly, the initial computational
domain is divided into a number of control volumes, where the primary unknowns
are (usually) located at the centroid of the control volume. Secondly, it is neces-
sary to integrate the differential form of the governing equations over each control
volume that results in so-called discretized (or discretization) equation. Thus, the
discretization equation represents the conservation principle for the variable inside
the control volume. The most crucial feature of finite-volume methods is that the
obtained solution satisfies the conservation law of physical quantities like mass,
energy and momentum for any control volume as well as for the entire domain.

In this section, we introduce several recently designed methods, that are spe-
cially suited for problems with highly discontinuous coefficients, which are typi-
cally seen in realistic reservoir simulation models. In particular, two discretization
schemes are presented: two-point flux approximations (TPFA), which uses only two
cells to approximate the flux, and multi-point flux approximations (MPFA), which
consider more than two cells.

1.5.1. Two-Point Flux Approximation (TPFA)
The two-point flux approximation (TPFA) scheme is used extensively throughout

industry as the simplest example of a finite-volume discretization, which is basically
used for elliptic flow problem (pressure equation) [3]. In this method, the flux
across the certain face of the control volume is approximated by the pressure val-
ues in corresponding cells on each side of the face. The calculated discretization
coefficient is called 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, which in fact is the harmonic mean of the
adjacent transmissibilities weighted by the distance to its cell centres.

To avoid any technical difficulties related to model complexity, we will without
loss of generality consider the simplified single-phase flow equation. We actually

1.5. Discretization methods

1

9

want to solve the equation for pressure 𝑝 given by the conservation law

−∇ ⋅ 𝜆∇𝑝 = 𝑞, �⃗� ∈ Ω,

assuming that there is no-flow on the boundary, i.e.,

�⃗� ⋅ �⃗� = 0, �⃗� ∈ 𝜕Ω,

where velocity is given by Darcy‘s law:

�⃗� = −𝜆∇𝑝, �⃗� ∈ Ω.

Let us divide the physical domain Ω into a set of control volumes 𝐸 :

Ω =⋃𝐸 , 𝐸 ∩ 𝐸 = ∅ for 𝑖 ≠ 𝑗

where quantities inside 𝐸 represent the average of the physical quantities inside
this control volume.

A set of mass-balance equations is obtained by integrating the pressure equation
over an arbitrary control volume 𝐸 :

∫ −∇ ⋅ 𝜆∇𝑝d�⃗� = ∫ 𝑞d�⃗� (1.9)

We assume, that �⃗� = 𝜆∇𝑝 is sufficiently smooth for (1.9) to hold. Let 𝛾 be the
interface between 𝐸 and a neighbouring control volume 𝐸 with area 𝐴 and normal
�⃗� ,

𝛾 = 𝜕𝐸 ∩ 𝜕𝐸 .
Invoking the divergence theorem transforms (1.9) into

∑∫ −𝜆∇𝑝 ⋅ �⃗� d𝑠 = ∫ 𝑞d�⃗�

The two-point flux approximation uses two points to calculate the flux across an
interface. The flux between 𝐸 and 𝐸 across 𝛾 can simply be expressed as

�⃗� = −∫ 𝜆∇𝑝 ⋅ �⃗� d𝑠, (1.10)

where the gradient of pressure is calculated using a central finite difference stencil:

∇𝑝 ≈
2(𝑝 − 𝑝)
𝑑 + 𝑑 on 𝛾 . (1.11)

Here 𝑝 and 𝑝 indicate the averaged pressure in 𝐸 and 𝐸 volumes, respectively,
whereas 𝑑 and 𝑑 indicate the distance between 𝛾 and the corresponding cell
centres.

1

10 1. Problem Formulation

Using the approximation of ∇𝑝 in (1.11), (1.10) becomes

�⃗� = −
2(𝑝 − 𝑝)
𝑑 + 𝑑 ∫ 𝜆 ⋅ �⃗� d𝑠. (1.12)

Let us denote the directional cell permeabilities as 𝜆 , = �⃗� ⋅ 𝜆 �⃗� and 𝜆 , =
�⃗� ⋅ 𝜆 �⃗� . A distance-weighted harmonic mean for 𝜆 across the interface 𝛾

𝜆 = (𝑑 + 𝑑) (𝑑𝜆 ,
+
𝑑
𝜆 ,

)

is applied to estimate the integral in (1.12) and gives:

�⃗� = −
2(𝑝 − 𝑝)
𝑑 + 𝑑 ∫ 𝜆 ⋅ �⃗� d𝑠

= −
2(𝑝 − 𝑝)
𝑑 + 𝑑 ∫ (𝑑 + 𝑑) (𝑑𝜆 ,

+
𝑑
𝜆 ,

) ⋅ �⃗� d𝑠

= 2|𝛾 |(𝑝 − 𝑝) (𝑑𝜆 ,
+
𝑑
𝜆 ,

) .

(1.13)

We now define the transmissibilities as

[T] = 2|𝛾 | (𝑑𝜆 ,
+
𝑑
𝜆 ,

)

and we can write
∑[T] (𝑝 − 𝑝) = ∫ 𝑞d�⃗�. (1.14)

Let �̄� = {�̄� } be a vector defined by

�̄� = ∫ 𝑞d�⃗�.

Then (1.14) is a symmetric linear system

A𝑝 = �̄�, (1.15)

since

∑[T] (𝑝 − 𝑝) = [T] (𝑝 − 𝑝) + ... + [T] (𝑝 − 𝑝) + ... + [T] (𝑝 − 𝑝)

= �̄� .
Consequently, in a short form

[A] = {
∑ [T] if 𝑗 = 𝑖
−[T] if 𝐸 ∩ 𝐸 ≠ 0
0 otherwise

1.5. Discretization methods

1

11

Forcing 𝑝 = 0 by adding a positive constant to the first diagonal element of Amakes
the system positive definite. Moreover, symmetry is also preserved by specifying
the pressure in a single point. What is essential for computational reasons, the
discretization leads to the 𝑀-matrix A has a sparse banded structure for structured
grids (tridiagonal for 1D grids and penta- and heptadiagonal for Cartesian grids in
2D and 3D, respectively).

After solving the linear system for 𝑝, the fluxes across each interface are calcu-
lated via (1.10).

In order to identify drawbacks of the TPFA, we will briefly discuss orthogonality
of grids. Let us consider an arbitrary grid-cell 𝐸 with cell-centre 𝑥 connected to the
neighbouring grid-cell 𝐸 with cell-centre 𝑥 by the line 𝑙 . In addition, we denote
by 𝛾 the interfaces of 𝐸 for 𝑗 = 1,… ,𝑁 , where 𝑁 signifies the total number of
𝐸 neighbours.

Figure 1.1: Orthogonality between grid-cells and

The grid is called 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 (Fig. 1.1), if

𝑙 ⋅ 𝛾 = 0

holds for all unequal 𝑖 = 1,… ,𝑁 and 𝑗 = 1,… ,𝑁 .
Similarly, the grid is called K − 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 (orthogonality with respect to the

permeability tensor K), if
𝑙 ⋅ K𝛾 = 0.

The TPFA scheme is monotone and robust as well as relatively cheap and easy
to implement. However, the TPFA scheme is consistent and convergent only for
K-orthogonal grids [12].

For non-K-orthogonal grids, TPFA gives an error in the solution which does
not vanish as the grids are refined. Unfortunately, in case of the reservoir with
special features like faults and channels K-orthogonality is often lost. Therefore, in
order to be able to solve the flow equations on general grids, the multi-point flux
approximation (MPFA) is introduced.

1

12 1. Problem Formulation

1.5.2. Multi-Point Flux Approximation (MPFA)
The main idea of multi-point flux approximation (MPFA) schemes is to increase

the number of points in the stencil in the expression of the flux in order to overcome
the TPFA approach disadvantages and improve the flexibility of grids to be used in
reservoir simulation [13]. MPFA methods use a generalization of the harmonic
mean of permeabilities (as mentioned above, a distance-weighted harmonic mean
is used in standard TPFA scheme) to handle general anisotropy, heterogeneity, and
grid irregularity. Convergence and stability of the MPFA methods are discussed in
[14]. Obviously, the coefficient matrix for MPFA is less sparse than TPFA matrix. In
particular, the sparsity patterns for both discretization types are presented in the
following table:

dimension (grid) TPFA MPFA
1D tridiagonal -

2D (quadrilateral) pentadiagonal 9-diagonal
3D (hexahedral) heptadiagonal 27-diagonal

O-method. The most popular MPFA scheme is the 𝑂-method, which for quadri-
lateral grids was introduced in [15]. For numerical experiments and convergence
proofs we refer to [16]. Note that the 𝑂-method is not symmetric for general grids,
and consequently is only conditionally convergent (see [14] for a convergence crite-
rion on quadrilateral grids and [17] on rough grids). In this method we firstly have
to define an interaction region around each corner-point in the grid, restricted by
faces that connect cell centroids and face centroids (see Fig. 1.2 [18]). Next, a set
of linear (pressure) functions is defined for each interaction region, where it is re-
quired that they are continuous at the cell centroids and flux-continuous across the
face patches. A globally coupled system is constructed using the gradients of the
linear functions to express the corresponding flux across the face patches inside the
interaction region, in terms of the unknown cell pressures 𝑝 . It is important to re-
member that one needs to solve a local system of equations at this step. During this
process a list of subface transmissibility coefficients is generated and combined with
neighbouring interaction regions in order to generate faces contributions. Eventu-
ally, the cell pressures are calculated by requiring mass conservation and summing
the fluxes across all face patches. It was shown by many authors [12, 15, 19] that
𝑂-method outperforms TPFA discretization and produce lesser errors.

Figure 1.2: Two dimensional -method

1.6. MATLAB Reservoir Simulation Toolbox (MRST)

1

13

In addition to the classic 𝑂-method, there is another family of multi-point schemes,
namely compact methods, which basically have smaller stencils than cell’s direct
neighbourhood compared to full schemes. These methods are constructed in a
similar way to the 𝑂-method, since the same dual grid and interaction regions are
used to enforce flux and pressure continuity on the subfaces. The only difference
between various compact methods is due to distinction in the enforcement of these
continuity constraints. In the figure below (Fig. 1.3 [18]) the most widely used
compact techniques such as 𝑈-method [20], 𝐿-method [21] and 𝑍-method [22]
are presented:

(a) -method (b) -method

(c) -method (d) Legend

Figure 1.3: Two dimensional examples of compact schemes

1.6. MATLAB Reservoir Simulation Toolbox (MRST)
All simulations and numerical experiments of that thesis are conducted in the

MATLAB Reservoir Simulation Toolbox (MRST), which is developed by the
Computational Geosciences group in the Department of Applied Mathematics at
SINTEF ICT as a free open-source software for reservoir modelling and simulation.
It includes many state-of-the-art numerical methods to process a wide range of
public data sets: real-world reservoir examples such that the Norne field in the
Norwegian Sea operated by Statoil and the Johansen formation on the south-west
coast of Norway as well as realistic geological scenarios like SPE 1,3,9 and 10 bench-
marks. Basically it is not a simulator itself, but allows to create your own custom
model and analyse fluid behaviour. Also the functionality offers a large set of add-

1

14 1. Problem Formulation

on modules including discretizations (both TPFA and MPFA-O methods) and solvers,
simulators for incompressible and compressible flow, multiscale methods and visu-
alization of simulation output, and so on.

Public releases of the package can be downloaded from the webpage:

http://www.sintef.no/MRST/

A comprehensive introduction to the reservoir simulation and its implementation
in the MRST is available in the user guide [23].

http://www.sintef.no/MRST/

2
Linear Solvers

2.1. Introduction
Numerical simulation of the flow in porous media consists of the solving the

discretized linear system arising from the non-linear governing equations for each
iteration in the Newton-Raphson method. Unfortunately, in general case there can
be a large number of Newton iterations to be done required for an accurate reservoir
simulation. Therefore, the corresponding number of linear equations need to be
solved, and, as a consequence, linear solver execution time becomes the dominant
part of the total computational effort.

2.2. Newton-Raphson method
Newton-Raphson method, also simply known as Newton’s iteration, is a famous

commonly used root-finding algorithm, where the initial guess 𝑥 is already pretty
close to the exact solution 𝑥∗.

Let us consider the non-linear system

𝑓(𝑥) = 0, (2.1)

which represents governing equations in a generalized form, where 𝑥 includes all
unknown variables such as pressure, saturation and mass fraction variables. A
Taylor expansion of (2.1) in the neighbourhood of 𝑥, involving first two terms and
writing higher order terms as a remainder using big-𝒪 notation, yields,

𝑓(𝑥 + 𝛿𝑥) = 𝑓(𝑥) + ∇𝑓(𝑥) ⋅ 𝛿𝑥 + 𝒪(𝛿𝑥).
Then, we construct a convergent sequence of approximate solutions

𝑥 = 𝑥 + 𝛿𝑥, 𝑘 = 1, 2, 3, ...
by means of the iterative process,

∇𝑓(𝑥) ⋅ (𝑥 − 𝑥) = −𝑓(𝑥),

15

2

16 2. Linear Solvers

which can be rewritten in a matrix equation form as

𝐴𝛿𝑥 = 𝑏,

where 𝐴 is the Jacobian of the function 𝑓 at 𝑥 and 𝑏 = −𝑓(𝑥).

In the next two sections we consider (sparse) linear algebraic systems 𝐴𝑥 = 𝑏
with a nonsingular matrix 𝐴 ∈ ℛ × , so that 𝑥 = 𝐴 𝑏 is well defined, and introduce
two families (direct and iterative) of techniques for solving these equations.

2.3. Direct methods
Direct methods for solving 𝐴𝑥 = 𝑏 are implicitly based on a decomposition

of 𝐴 into easily solvable factors and subsequent solution of the systems involving
these factors. Different from iterative methods, which will be described in the next
section, no intermediate approximations are calculated, and the final approximate
solution is available only at the end of the process.

Cholesky decomposition. For any symmetric positive definite matrix 𝐴 ∈
ℛ × , i.e. 𝑥 𝐴𝑥 > 0 for all 𝑥 ∈ ℛ \ {0}, there exists the Cholesky decomposition
of the form

𝐴 = 𝐿𝐿 ,
where 𝐿 = [𝑙] ∈ ℛ × with 𝑙 > 0 is a uniquely determined lower triangular matrix.
The total cost of this procedure is 𝑛 flops for large 𝑛. Once this factorization is
done, we obtain

𝑥 = 𝐴 𝑏 = (𝐿𝐿) 𝑏 = 𝐿 (𝐿 𝑏),
so that 𝑥 can be computed by solving two triangular systems,

1. forward substitution: solve for 𝑦 from 𝐿𝑦 = 𝑏 ⇒ 𝑦 = 𝐿 𝑏,

2. backward substitution: solve for 𝑥 from 𝐿 𝑥 = 𝑦 ⇒ 𝑥 = 𝐿 𝑦 = 𝐴 𝑏.

A lower (upper) triangular system can be solved using forward (backward) substi-
tution. For 𝐿𝑦 = 𝑏 we have

𝑦 = 1
𝑙 (𝑏 −∑ 𝑙 𝑦) , 𝑗 = 1, 2, … , 𝑛.

Computing 𝑦 costs 𝑗 multiplications and 𝑗−1 subtractions, and hence the total cost
is ∑ (2𝑗 − 1) = 𝑛 flops.

LU decomposition. Gaussian elimination. Let us now consider a general
nonsingular matrix 𝐴 ∈ ℛ × . If the matrices 𝐴(1 ∶ 𝑘, 1 ∶ 𝑘) ∈ ℛ × for all 𝑘 =
1,… , 𝑛 are nonsingular, then there exists an 𝐿𝑈 decomposition,

𝐴 = 𝐿𝑈,

2.4. Iterative methods

2

17

where 𝐿 is a unit lower triangular and 𝑈 is an upper triangular matrix. For this
factorization,

𝑥 = 𝐴 𝑏 = 𝑈 (𝐿 𝑏),
so that again 𝑥 can be computed via forward and backward substitutions. The 𝐿𝑈
decomposition can be calculated using Gaussian elimination: at step 𝑗 = 1,… , 𝑛−1,
multiples of the 𝑗-th row are subtracted from rows 𝑗+1,… , 𝑛 in order to put zeros in
the column 𝑗 below the entry in cell (𝑗, 𝑗). As a result, we obtain the upper triangular
matrix 𝑈. Each step 𝑗 in the process can be considered as one left-multiplication of
𝐴 by a suitable lower triangular matrix 𝐿 . After 𝑛 − 1 steps we get

𝐿 ⋯𝐿 𝐴 = 𝑈 ⇒ 𝐴 = (𝐿 ⋯𝐿)𝑈 =∶ 𝐿𝑈.

Note that, generally cost is (approximately) twice as expensive as Cholesky decom-
position, i.e. around 𝑛 flops for large 𝑛.

Pivoting strategy should be applied to avoid numerical instabilities, if 𝐴 has fairly
small elements on the diagonal.

2.4. Iterative methods
As we mentioned in the previous section, a significant difference between it-

erative and direct solution methods for solving linear algebraic systems is that the
former generate intermediate approximations (called iterates), while the latter yield
an approximation of the exact solution only at the very end of the computation. Us-
ing these iterates it is possible to estimate the error (or residual) norm, which allows
to stop the iteration when desired accuracy is achieved. This can be an essential ad-
vantage in practical applications, where we usually do not require a highly accurate
approximation of the exact solution.

In this section we consider a linear algebraic system 𝐴𝑥 = 𝑏 with nonsingular
𝐴 ∈ ℛ , . Most ”classical” iterative methods rely on a splitting 𝐴 = 𝑀 − 𝑁, where
𝑀 should be easily invertible (e.g. diagonal or triangular). Then 𝐴𝑥 = 𝑏 can be
rewritten as (𝑀 − 𝑁)𝑥 = 𝑏, or

𝑥 = 𝑀 𝑁𝑥 +𝑀 𝑏,

which leads to the iterative method

𝑥 = 𝑀 𝑁𝑥 +𝑀 𝑏, 𝑘 = 0, 1, 2, … , (2.2)

where 𝑥 is a given initial approximation.
The 𝑘-th error is defined by 𝑒 ∶= 𝑥 − 𝑥 and satisfies

𝑒 = 𝑥 − 𝑥 = 𝑥 − (𝑀 𝑁𝑥 +𝑀 (𝑀 − 𝑁)𝑥) = 𝑀 𝑁𝑒 .

Therefore by induction we get

𝑒 = (𝑀 𝑁) 𝑒 .

2

18 2. Linear Solvers

The matrix 𝑀 𝑁 is called the iteration matrix of the method (2.2). Applying the
Jordan decomposition to the iteration matrix we obtain

𝑀 𝑁 = 𝑃𝐽𝑃 ⇒ (𝑀 𝑁) = 𝑃𝐽 𝑃 .

Thus, if the spectral radius (i.e., the largest absolute value of its eigenvalues: 𝜌(𝐴) =
max{|𝜆 |, … , |𝜆 |}) of the iteration matrix satisfies 𝜌(𝑀 𝑁) < 1, then 𝐽 → 0 and
hence (𝑀 𝑁) → 0 for 𝑘 → ∞, and for each 𝑥 the method (2.2) converges with
𝑒 → 0 for 𝑘 → ∞.

If we split 𝐴 as
𝐴 = 𝐿 + 𝐷 + 𝑈,

where 𝐿 and 𝑈 are strictly lower and upper triangular matrices, while 𝐷 is a diagonal
part, then the following classical methods are derived:

• Jacobi method

𝑀 = 𝐷,
𝑁 = −(𝐿 + 𝑈),

𝑀 𝑁 = −𝐷 (𝐿 + 𝑈) =∶ 𝑅 .

• Gauss-Seidel method

𝑀 = 𝐿 + 𝐷,
𝑁 = −𝑈,

𝑀 𝑁 = −(𝐿 + 𝐷) 𝑈 =∶ 𝑅 .

Both methods converge when 𝐴 is diagonally dominant, i.e. |𝑎 | ≥ ∑ |𝑎 | for all
𝑖. However, when 𝜌(𝑀 𝑁) is close to 1, the convergence may be very slow.

In order to improve the convergence rate a relaxation parameter 𝜔 > 0 is intro-
duced and instead of 𝐴𝑥 = 𝑏 the modified equation 𝜔𝐴𝑥 = 𝜔𝑏 is considered. Now
splitting looks like

𝜔𝐴 = 𝜔(𝐿 + 𝐷 + 𝑈) = (𝐷 + 𝜔𝐿) + (𝜔𝑈 + (𝜔 − 1)𝐷) =∶ 𝑀 − 𝑁

which results in the method

𝑥 = 𝑅 (𝜔)𝑥 + 𝜔𝑀 𝑏,

where
𝑅 (𝜔) = −(𝐷 + 𝜔𝐿) (𝜔𝑈 + (𝜔 − 1)𝐷).

For 0 < 𝜔 < 1 the method is called under-relaxation method, in case of 𝜔 = 1 it
is the Gauss-Seidel method and for 𝜔 > 1 the method is called Successive Over
Relaxation (SOR) method.

2.4. Iterative methods

2

19

More generally, we can consider 𝐴 = 𝑀 − 𝑁 and apply relaxation parameter
𝜔 > 0 to this splitting as follows,

𝜔𝐴𝑥 = 𝜔𝑏 ⟺ 𝜔(𝑀 − 𝑁)𝑥 = 𝜔𝑏
⟺ 𝑥 = (𝜔𝑀 𝑁 + (1 − 𝜔)𝐼)𝑥 + 𝜔𝑀 𝑏,

which results in the iterative sequence,

𝑥 = 𝑅(𝜔)𝑥 + 𝜔𝑀 𝑏,

where
𝑅(𝜔) = (1 − 𝜔)𝐼 + 𝜔𝑀 𝑁.

The convergence criterion is now determined by 𝜌(𝑅(𝜔)) or ‖𝑅(𝜔)‖, since 𝑒 =
𝑅(𝜔) 𝑒 , giving

‖𝑒 ‖
‖𝑒 ‖ ≤ ‖𝑅(𝜔)‖ , 𝑘 = 0, 1, 2, …

In all such iterations the convergence is asymptotically (for large 𝑘) linear, with the
average reduction factor per step given by ‖𝑅(𝜔)‖.

2.4.1. Projection methods
Projection methods are based, as follows from its title, on projections onto sub-

spaces. Suppose that 𝑥 is a given initial guess of 𝑥 = 𝐴 𝑏. In step 𝑘 = 1, 2, 3, …
we construct approximations of the form

𝑥 ∈ 𝑥 + 𝒮 , (2.3)

where 𝒮 is a 𝑘-dimensional (𝑘 ≤ 𝑛) subspace of ℂ called search space. Since
there are 𝑘 degrees of freedom used to construct 𝑥 , 𝑘 constraints are needed to
determine 𝑥 . Imposing these conditions on the residual 𝑟 = 𝑏 − 𝐴𝑥 , we require
that

𝑟 ⊥ 𝒞 , (2.4)

where 𝒞 is a 𝑘-dimensional subspace of ℂ called the constraint space. Suppose
that the columns of 𝑆 , 𝐶 ∈ ℂ × form bases of 𝒮 and 𝒞 , respectively, then (2.3)
and (2.4) can be rewritten as,

𝑥 = 𝑥 + 𝑆 𝑡 for some 𝑡 ∈ ℂ ,

and
0 = 𝐶 𝑟 = 𝐶 (𝑏 − 𝐴𝑥 − 𝑆 𝑡) ⇔ 𝐶 𝐴𝑆 𝑡 = 𝐶 𝑟 .

Let the projection method to be well-defined at step 𝑘, i.e. 𝑡 is uniquely deter-
mined (it depends only on 𝐴, 𝒮 , 𝒞 , but not on the choice of its bases). Then

𝑡 = (𝐶 𝐴𝑆) 𝐶 𝑟 ,

hence
𝑥 = 𝑥 + 𝑆 𝑡 = 𝑥 + 𝑆 (𝐶 𝐴𝑆) 𝐶 𝑟 ,

2

20 2. Linear Solvers

and
𝑟 = 𝑏 − 𝐴𝑥 = (𝐼 − 𝑃)𝑟 , (2.5)

where
𝑃 = 𝐴𝑆 (𝐶 𝐴𝑆) 𝐶 .

We call operator 𝑃 a projection, since 𝑃 = 𝑃 . For all 𝑦 ∈ ℂ we have

𝑃 𝑦 ∈ 𝐴𝒮 , and (𝐼 − 𝑃)𝑣 ∈ 𝒞

and hence 𝑃 projects onto 𝐴𝒮 orthogonally to 𝒞 . Consequently, (2.5) can be
written as

𝑟 = 𝑃 𝑟⏟
∈ 𝒮

+ 𝑟⏟
∈𝒞

.

If 𝐴𝒮 = 𝒞 , then the decomposition is orthogonal and the method is called an
orthogonal projection method, otherwise (𝐴𝒮 ≠ 𝒞) we call it an oblique projection
method.

Now we would like to study when the method terminates (in exact arithmetic)
with 𝑟 = 0. In order to establish termination conditions we consider search spaces
𝒮 with

𝒮 = span{𝑟 }, and 𝒮 ⊂ 𝒮 ⊂ 𝒮 ⊂ …
such that these spaces automatically satisfy

𝐴𝒮 = 𝒮 for some 𝑘.

These properties are guaranteed when

𝒮 = 𝒦 (𝐴, 𝑟) ∶= span{𝑟 , 𝐴𝑟 , … , 𝐴 𝑟 }, 𝑘 ≥ 1,

where 𝒦 (𝐴, 𝑟) is called the 𝑘-th Krylov subspace generated by 𝐴 and 𝑟 .
For any nonsingular 𝐴 ∈ ℂ × and 𝑟 ∈ ℂ \{0} we have
• There exists a uniquely determined 𝑑 = 𝑑(𝐴, 𝑟)with 1 ≤ 𝑑 ≤ 𝑛 and𝒦 (𝐴, 𝑟) ⊂
… ⊂ 𝒦 (𝐴, 𝑟) = 𝒦 (𝐴, 𝑟) for all 𝑗 ≥ 1. This 𝑑 is called the grade of 𝑟 with
respect to 𝐴. In particular, dim(𝒦 (𝐴, 𝑟)) = 𝑘 for 𝑘 = 1,… , 𝑑.

• If 𝑟 is of grade 𝑑 with respect to 𝐴, then 𝐴𝒦 (𝐴, 𝑟) = 𝒦 (𝐴, 𝑟).
• If 𝑟 is of grade 𝑑 with respect to 𝐴 and the method is well-defined at step 𝑑
with 𝒮 = 𝒦 (𝐴, 𝑟), then 𝑟 = 0.

Now we have all required setup to introduce the two most widely used Krylov
subspace methods:

1. Conjugate Gradient (CG) method
If A is an Hermitian positive definite matrix, 𝒮 = 𝒞 = 𝒦 (𝐴, 𝑟), 𝑘 = 1, 2, …,
then the projection method is well-defined at every step 𝑘 until it terminates
with 𝑟 = 0 at step 𝑑. It is characterized by the orthogonal property

𝑟 ⊥ 𝒦 (𝐴, 𝑟) OR 𝑥 − 𝑥 ⊥ 𝒦 (𝐴, 𝑟),

2.4. Iterative methods

2

21

and the equivalent optimality property

‖𝑥 − 𝑥 ‖ = min
∈ 𝒦 (,)

‖𝑥 − 𝑧‖

2. Generalized Minimal Residual (GMRES) method
If A is nonsingular, 𝒮 = 𝒦 (𝐴, 𝑟), 𝒞 = 𝐴𝒮 = 𝐴𝒦 (𝐴, 𝑟), 𝑘 = 1, 2, …, then
the projection method is well-defined at every step 𝑘 until it terminates with
𝑟 = 0 at step 𝑑. It is characterized by the orthogonal property

𝑟 ⊥ 𝐴𝒦 (𝐴, 𝑟) OR 𝑥 − 𝑥 ⊥ 𝒦 (𝐴, 𝑟),

and the equivalent optimality property

‖𝑟 ‖ = min
∈ 𝒦 (,)

‖𝑏 − 𝐴𝑧‖

In order to implement the above described methods we need to construct bases
of 𝒮 and 𝒞 . The ”canonical” basis 𝑟 , 𝐴𝑟 , … , 𝐴 𝑟 of𝒦 (𝐴, 𝑟) should not be used
in practical applications, since the corresponding matrix usually is ill-conditioned.
Therefore, for numerical reasons, a well-conditioned, at best orthonormal basis of
𝒦 (𝐴, 𝑟) is preferred. Such a basis may be generated be the Arnoldi process:

Algorithm 1 Arnoldi process
1: 𝑣 = 𝑟 / ‖𝑟 ‖
2: for 𝑗 = 1,… , 𝑘 − 1 do
3: �̄� = 𝐴𝑣 − ∑ ℎ , 𝑣 , where ℎ , = (𝐴𝑣 , 𝑣)
4: ℎ , = ‖�̄� ‖
5: 𝑣 = �̄� ‖ℎ , ‖
6: end for

Note that in line 3 of algorithm 1 we perform a ”classical” Gram-Schmidt orthog-
onalization of 𝐴𝑣 with respect to the previous orthonormal basis vectors 𝑣 ,… , 𝑣 .
There also exists a ”modified” version of Gram-Schmidt algorithm. In addition, what
is important for practical computations is that the Arnoldi algorithm does not ex-
plicitly require operations on matrix 𝐴, but only a matrix-vector multiplication needs
to be implemented. It is an essential benefit, when 𝐴 is sparse and, consequently,
the product 𝐴 ⋅ 𝑣 can be computed inexpensively. However, storage and mem-
ory requirements grow linearly as the number of iterations 𝑘 increases, since the
Arnoldi algorithm employs a full recurrence for calculating the orthonormal basis of
𝒦 (𝐴, 𝑟). Moreover, even for sparse matrices the Arnoldi basis vectors usually are
not sparse, which may result in storage problems for large applications with ex-
tremely small desired tolerance and, as a consequence, a huge amount of required
GMRES iterations to converge.

The convergence will be fast when the condition number of 𝐴 is close to 1 and
eigenvalues of 𝐴 are in a single ”cluster” that is as far as possible from zero, which
motivates to apply preconditioning and deflation techniques to the system 𝐴𝑥 = 𝑏.

2

22 2. Linear Solvers

2.5. Preconditioning
Preconditioning is the basic technique to improve the robustness and efficiency

of iterative solvers for large linear systems of equations by reducing the condition
number of 𝐴 [24]. In general preconditioning means a transformation of the system
into an equivalent one which has the same solution, but this solution is much faster
computed using iterative methods. Basically, preconditioning consists of a matrix
𝑀 which must satisfy following requirements:

• 𝑀 should be nonsingular easily (inexpensively) invertible approximation to 𝐴;
• the mapping 𝑥 ↦ 𝑀 𝑥 should be easy and cheap to perform;
• the eigenvalues of 𝑀 𝐴 (or 𝐴𝑀) should belong to only one region (at best
around 1 in the complex plane).

There are three ways to use such a matrix 𝑀:
1. Left preconditioner 𝑀 𝐴𝑥 = 𝑀 𝑏 is more common and does not require
any additional step to calculate 𝑥;

2. Right preconditioner 𝐴𝑀 𝑦 = 𝑏, where 𝑥 = 𝑀 𝑦, does not change the
residual norm;

3. Split preconditioner 𝑀 = 𝐿𝑈 such that 𝐿 𝐴𝑈 𝑦 = 𝑏 with 𝑥 = 𝑈 𝑦 keeps
symmetry property.

It should be noted that all types of preconditioners mentioned above give the
same spectrum for the preconditioner operator which is much better clustered com-
pared to the spectrum of 𝐴. Also the preconditioned matrix usually has a smaller
condition number. Preconditioned matrix 𝑀 𝐴 (𝐴𝑀 or 𝐿 𝐴𝑈) is not formed
explicitly, since it is too expensive and sparsity is lost. Instead, consecutive matrix-
vector products are performed with a solution of the transformed linear system.
The choice of the preconditioner highly depends on the problem and the computer
architecture used for the implementation.

The most popular preconditioners are

• Jacobi (or diagonal scaling) takes 𝑀 = 𝑑𝑖𝑎𝑔(𝐴) as preconditioner which has
low storage requirements and could be used as a first step in combination
with other preconditioners;

• Gauss-Seidel is defined by 𝑀 = 𝐿 + 𝐷, where 𝐿 is strictly lower-triangular
part of 𝐴 and 𝐷 = 𝑑𝑖𝑎𝑔(𝐴) and gives faster error reduction than Jacobi. By
introducing a relaxation parameter 𝜔 we get successive over-relaxation (SOR)
preconditioner 𝑀 = 𝜔𝐿+𝐷, which even more improve the convergence rate;

• ILU preconditioner is based on the idea of computing incomplete (sparse ap-
proximation of) 𝐿𝑈 decomposition. The exact 𝐴 = 𝐿𝑈 has fill-in, and zero
entries in 𝐴 become non-zero in 𝐿 and 𝑈, but 𝑀 = 𝐿 𝑈 (incom-
plete factorization, i.e. 𝐴 ≈ 𝐿 𝑈) can keep only the fill-in entries
above a fixed tolerance.

2.5. Preconditioning

2

23

• Algebraic Multigrid (AMG) preconditioner [25] is extremely robust in terms of
algorithmic efficiency preconditioner. Modern commercial reservoir simulators
for subsurface fluid flow in porous media unconditionally use AMG precondi-
tioner for the solution pressure equation. However, there are still challenges
to address in implementing strongly scalable AMG solver [26]. Klie et al. [27]
considered deflation AMG solvers for highly ill-conditioned reservoir simula-
tion problems. However, the manual construction of the deflation vectors is a
time consuming process and will most likely lead to suboptimal results [26].
Therefore, the deflation strategy will be considered in the following chapter.
The deflation strategy has a lower algebraic complexity and is inexpensive to
set up. This strategy in combination with the multiscale may lead to a robust
alternative of AMG in general.

3
Deflation Method

3.1. Introduction
Usually eigenvalues of small magnitude and corresponding eigenvectors slow

down the convergence or even cause divergence of the iterative method used to
solve matrix equation 𝐴𝑥 = 𝑏. For this reason, the deflation technique removing the
influence of extremal eigenvalues of small magnitude while leaving the remainder
eigenvalues unchanged is introduced. There are, basically, two approaches of how
harmful eigenvalues may be deflated:

1. the proper projector 𝑃 is applied as a special (singular) preconditioner;
2. extend utilized Krylov subspace by adding eigenvectors corresponding to some
extreme eigenvalues, whereupon the convergence rate is improved due to
modified spectrum. This process is called augmentation.

But in this work we will only use and concentrate on the first variant, since in
the second case desired eigenvectors generally are not easily computed, that forces
to use other deflation subspaces. Firstly, the concept of deflation preconditioning
will be described, and then some methods to construct the deflation vectors will be
presented.

3.1.1. Deflation preconditioning
Deflation preconditioning was developed to construct a preconditioner in such

a way that it eliminates problematic subspaces influence by removing them from
preconditioned operator. For the detailed overview of possible types of deflation
preconditioning we refer to [28–31]. But here we consider the specific deflation
preconditioner in the form of the projector 𝑃 introduced in [32].

Let us consider general case with non-symmetric linear system matrix 𝐴 ∈ ℝ ×

and suppose that the deflation matrix 𝑍 ∈ ℝ × with 𝑑 deflation vectors spanning
a subspace 𝒵 is given. Then define the matrix 𝐸 ∈ ℝ × as

𝐸 = 𝑍 𝐴𝑍,

25

3

26 3. Deflation Method

assuming the existence of 𝐸 , which is computed relatively cheap, since, in gen-
eral, 𝑑 ≪ 𝑛. The matrix equation 𝐴𝑥 = 𝑏 is preconditioned by the deflation operator
(projector)

𝑃 = 𝐼 − 𝐴𝑍𝐸 𝑍 ,
i.e., the initial problem is transformed into the deflated system,

𝐴𝑥 = 𝑏 ⟺ 𝑃 𝐴𝑥 = 𝑃 𝑏.

One should observe that if the columns of 𝑍 (the deflation vectors) form an invariant
subspace of 𝐴, then 𝑃 𝐴 has 𝑑 zero eigenvalues, which makes 𝑃 𝐴 singular. In
particular, when 𝑍 contains 𝑑 exact eigenvectors of 𝐴, then applying 𝑃 to 𝐴 deflates
these 𝑑 corresponding eigenvalues to zero.

Then second deflation operator (projector)

𝑃 = 𝐼 − 𝑍𝐸 𝑍 𝐴

is used to obtain the solution 𝑥 as follows. Since

𝑥 = (𝐼 − 𝑃)𝑥 + 𝑃 𝑥

and because
(𝐼 − 𝑃)𝑥 = 𝑍𝐸 𝑍 𝑏

may be easily and directly calculated, the only computation of 𝑃 𝑥 is required, which
can be done by solving the deflated system using the identity 𝐴𝑃 = 𝑃 𝐴 and pre-
multiplying by 𝑃 :

𝐴𝑃 �̃� = 𝑃 𝐴�̃� = 𝑃 𝑏. (3.1)

Since 𝑃 𝐴 is singular, �̃� contains arbitrary components in its null space, and, hence,
the solution of the deflated system differs from the solution of the original system.
However, due to the fact that 𝑃 �̃� = 𝑃 𝑥 and 𝑃 𝑥 has no components in the null
space of 𝑃 𝐴, the projected solution 𝑃 �̃� is unique.

As a result, we have that reconstructed solution of the original system looks like

𝑥 = 𝑍𝐸 𝑍 𝑏 + 𝑃 �̃�,

where the right part of (3.1) needs to be solved to find �̃�.

3.2. Preconditioner and GMRES
In this section we will present the basic GMRES algorithm (thorough mathemati-

cal formulation is explained in the previous chapter) and describe its preconditioned
version.

3.2.1. Restarted GMRES
As we know, the full GMRES always terminates after at most 𝑛 iterations and

the underlying Krylov subspace dimension grows up to 𝑛 as maximum [33]. On
the other hand, for a quite large 𝑛 it is worthwhile to restrict the Krylov subspace

3.2. Preconditioner and GMRES

3

27

dimension to a fixed value𝑚 (𝑚 ≪ 𝑛), after reaching this value the method restarts
the Arnoldi process using the last approximation 𝑥 as a new initial guess. Restarted
algorithm 2 is usually denoted by GMRES(𝑚):
Algorithm 2 GMRES(𝑚)
1: choose 𝜀 as the tolerance for the residual norm;
2: choose initial guess 𝑥 and dimension 𝑚 of the Krylov subspace;
3: ok ∶= FALSE;
4: 𝑒 ∶= [1, 0, … , 0] ;
5: while ok is FALSE do
6: 𝑟 = 𝑏 − 𝐴𝑥 ;
7: 𝛽 = ‖𝑟 ‖;
8: 𝑣 ∶= 𝑟 /𝛽;
9: for 𝑗 = 1,… ,𝑚 do
10: 𝑤 ∶= 𝐴𝑣 ;
11: for 𝑖 = 1,… , 𝑗 do
12: ℎ ∶= 𝑣 𝑝;
13: 𝑤 = 𝑤 − ℎ 𝑣 ;
14: end for
15: ℎ , ∶= ‖𝑝‖;
16: 𝑣 ∶= 𝑝/ℎ , ;
17: 𝑠 ∶= ‖𝑏 − 𝐴𝑥 ‖;
18: if 𝑠 < 𝜀 then
19: solve min

∈R
‖𝛽𝑒 − 𝐻 , 𝑦 ‖;

20: 𝑥 ∶= 𝑥 + 𝑉 𝑥 ;
21: ok ∶= TRUE;
22: break;
23: end if
24: end for
25: solve min

∈R
‖𝛽𝑒 − 𝐻 , 𝑦 ‖;

26: 𝑥 ∶= 𝑥 + 𝑉 𝑥 ;
27: if ‖𝑏 − 𝐴𝑥 ‖ < 𝜀 then
28: ok ∶= TRUE;
29: else
30: 𝑥 = 𝑥 ;
31: end if
32: end while

As we will explain in the next section, 𝐻 , is an upper Hessenberg matrix for
𝑘 = 1,… ,𝑚 satisfying the fundamental relation

𝐴𝑉 = 𝑉 𝐻 , .

The GMRESmethods computes the approximation 𝑥 by solving the least-squares
problem, which may be achieved using QR factorization (decomposition into a prod-

3

28 3. Deflation Method

uct of orthogonal and upper triangular matrices) of 𝐻 , in conjunction with
Givens rotations.

3.2.2. Preconditioned GMRES
Here we present a couple of improvements for a standard GMRES method,

specifically preconditioned variants [34]:

• GMRES with right preconditioning (right version is preferred, since it guaran-
tees that the residual norm is non-increasing for increasing iterations):

Algorithm 3 PRECGMRES(𝑚)

1. Start and Initialization:
Choose initial guess 𝑥 , dimension 𝑚 of the Krylov subspace, preconditioner
𝑀 and the residual norm tolerance 𝜀;

2. Arnoldi process:
Compute 𝑟 = 𝑏 − 𝐴𝑥 , 𝛽 = ‖𝑟 ‖ , 𝑣 = 𝑟 /𝛽;a)

for 𝑗 = 1,… ,𝑚 do
– Compute 𝑧 ∶= 𝑀 𝑣 , 𝑤 ∶= 𝐴𝑧 ;
– for 𝑖 = 1,… , 𝑗 do

• ℎ , ∶= (𝑤, 𝑣);
• 𝑤 = 𝑤 − ℎ , 𝑣 ;

– Compute ℎ , = ‖𝑤‖ , 𝑣 = 𝑤/ℎ , ;

b)

Define 𝑉 = [𝑣 ,… , 𝑣];c)

3. Construct the approximate solution:
solve min

∈R
‖𝛽𝑒 − 𝐻 , 𝑦 ‖;a)

𝑥 ∶= 𝑥 +𝑀 𝑉 𝑦 ;b)

4. Restart:
if ‖𝑏 − 𝐴𝑥 ‖ < 𝜀
Stop the algorithm, since the converged solution is found;

else
𝑥 ∶= 𝑥 ;
Go to step 2;

The solution in the step 3. b) of the algorithm 3 is obtained by calculating a
linear combination of the preconditioned vectors,

𝑧 = 𝑀 𝑣 , 𝑖 = 1,… ,𝑚.

Note that we do not need to save all these vectors, since they are constructed
using the same preconditioner 𝑀. Furthermore, we only have to apply 𝑀

3.3. Construction of deflation vectors

3

29

to 𝑉 𝑥 . Now we are interested in varying of the preconditioning matrix at
every step of the algorithm, i.e. 𝑧 would be defined by

𝑧 = 𝑀 𝑣 ,

and we save them to update 𝑥 in the step 3, that leads to the ”flexible”
modification of the previous algorithm.

• GMRES with variable preconditioning (flexible scheme):

Algorithm 4 FGMRES(𝑚)

1. Start and Initialization:
Choose initial guess 𝑥 , dimension 𝑚 of the Krylov subspace, preconditioners
𝑀 and the residual norm tolerance 𝜀;

2. Arnoldi process:
Compute 𝑟 = 𝑏 − 𝐴𝑥 , 𝛽 = ‖𝑟 ‖ , 𝑣 = 𝑟 /𝛽;a)

for 𝑗 = 1,… ,𝑚 do
– Compute 𝑧 ∶= 𝑀 𝑣 , 𝑤 ∶= 𝐴𝑧 ;
– for 𝑖 = 1,… , 𝑗 do

• ℎ , ∶= (𝑤, 𝑣);
• 𝑤 = 𝑤 − ℎ , 𝑣 ;

– Compute ℎ , = ‖𝑤‖ , 𝑣 = 𝑤/ℎ , ;

b)

Define 𝑍 = [𝑧 , … , 𝑧];c)

3. Construct the approximate solution:
solve min

∈R
‖𝛽𝑒 − 𝐻 , 𝑦 ‖;a)

𝑥 ∶= 𝑥 + 𝑍 𝑦 ;b)

4. Restart:
if ‖𝑏 − 𝐴𝑥 ‖ < 𝜀
Stop the algorithm, since the converged solution is found;

else
𝑥 ∶= 𝑥 ;
Go to step 2;

3.3. Construction of deflation vectors
Here we consider the most common techniques to construct the deflation matrix.

3.3.1. Ritz deflation
Due to the size and complexity of the matrix under consideration instead of

the exact values approximated eigenvectors and eigenvalues are calculated using

3

30 3. Deflation Method

various numerical methods. A widely used technique for accomplishing this is called
the Rayleigh-Ritz procedure in combination with Arnoldi algorithm.

Rayleigh-Ritz procedure. The Rayleigh-Ritz procedure is an iterative projec-
tion method for the general eigenvalue problem

𝐴𝑥 = 𝜆𝑥, 𝐴 ∈ ℂ × .

It is based on the Arnoldi iteration and starts with a unit norm vector 𝑣 ∈ ℂ and
yields after 𝑘 steps a decomposition of the form

𝐴𝑉 = 𝑉 𝐻 , = 𝑉 𝐻 , + ℎ , 𝑣 𝑒 ,

where 𝑒 is the 𝑘-th canonical vector in ℝ .
There are several mathematically equivalent variants of this algorithm, in par-

ticular ”classical” and ”modified” Gram-Schmidt variants. In each case the columns
of 𝑉 ∈ ℂ × form an orthonormal basis of the 𝑘-th Krylov subspace generated by
𝐴 and 𝑣 , i.e.,

𝒦 (𝐴, 𝑣) = span{𝑣 , 𝐴𝑣 , ..., 𝐴 𝑣 },
where the final subspace 𝒦 (𝐴, 𝑣) is invariant under 𝐴, and 𝐻 , ∈ ℂ , is
an upper Hessenberg matrix with positive subdiagonal elements, so that 𝐻 , is
unreduced. The Arnoldi algorithm terminates (in exact arithmetic) in step 𝑘 = 𝑚
with 𝑣 = 0 and ℎ = 0 if and only if 𝑣 is of grade 𝑚 with respect to A, i.e.,
𝑚 is the smallest integer such that vectors 𝑣, 𝐴𝑣, ..., 𝐴 𝑣 are linearly independent,
but 𝑣, 𝐴𝑣, ..., 𝐴 𝑣 are linearly dependent. In this step we have

𝐴𝑉 = 𝑉 𝐻 ,

so that the columns of 𝑉 span the 𝐴-invariant subspace 𝒦 (𝐴, 𝑣) and the eigen-
values of 𝐻 , are eigenvalues of 𝐴.

In the following we assume that 1 ≤ 𝑘 ≤ 𝑚. The idea is to use eigenpairs of
the intermediate Hessenberg matrices 𝐻 , , 𝑘 = 1, 2, 3, …, for the approximation of
eigenpairs of 𝐴. If (𝜆(), 𝑧()) is an eigenpair of 𝐻 , , then 𝜆() is called a Ritz value
of 𝐴 with respect to the subspace 𝒦 (𝐴, 𝑣) and �̂�() ∶= 𝑉 𝑧() is the corresponding
Ritz vector. Now the residual

𝑟() ∶= 𝐴�̂�() − 𝜆()�̂�()

satisfies
𝑉 𝑟() = 𝑉 (𝐴�̂�() − 𝜆()�̂�()) = 𝐻 , 𝑧() − 𝜆()𝑧() = 0,

since 𝑉 𝐴𝑉 = 𝐻 , is a unitary similarity transformation with 𝑉 𝑉 = 𝐼, and hence
each Ritz pair (𝜆(), �̂�()) in the Arnoldi method satisfies two conditions

�̂�() ∈ 𝒦 (𝐴, 𝑣), 𝑟()⊥ 𝒦 (𝐴, 𝑣),

where the second condition is called Galerkin orthogonal projection problem.

3.3. Construction of deflation vectors

3

31

Seeing that Ritz pairs tend to approximate eigenvalues and eigenvectors of 𝐴, 𝑑
approximated eigenvectors associated with the 𝑑 smallest Ritz values may be taken
as the columns of matrix 𝑍.

However, according to [35] Harmonic Ritz vectors is better option, if the approx-
imation of extreme eigenvalues is required.

3.3.2. Harmonic Ritz deflation
Imposing the Petrov-Galerkin orthogonality conditions on the residual

𝑟()⊥ 𝐴𝒦 (𝐴, 𝑣),

Harmonic Ritz vectors are obtained by solving the equation

(𝐴𝑉) 𝑟() = (𝐴𝑉) (𝐴�̂�() − 𝜆()�̂�()) = 0,

which can be overwritten either as the harmonic eigenvalue problem or the gener-
alized eigenvalue problem. The latter is preferable to be used for solving, since it
does not require to store the Hessenberg matrix 𝐻 , .

It is important to remark that the required number of Harmonic Ritz vectors to
be computed for the deflation subspace 𝑍 is much smaller than dimension of matrix
𝐴, which makes this procedure relatively inexpensive.

3.3.3. Physics-based deflation
Subdomain deflation. This approach is closely related to the domain de-

composition and multigrid methods, where the discretized computational domain
Ω is divided into non-overlapping subdomains Ω , which are accumulated into sin-
gle cells using projector operators 𝑃 and 𝑃 . Deflation vectors 𝑧 forming columns
of the deflation matrix 𝑍 are piecewise-constant, orthogonal and disjoint and are
defined as

(𝑧) = {1, 𝑥 ∈ Ω ,
0, 𝑥 ∈ Ω ⧵ Ω ,

where 𝑥 is a grid point in the discretized domain Ω .
Levelset deflation. Levelset deflation takes into account geometry and geo-

logical properties of the reservoir and decomposes it into different parts with similar
characteristics, provided in matrix coefficients, in order to guarantee that eigenvec-
tors associated with extreme eigenvalues are well approximated.

Subdomain-level deflation. This method of choosing deflation vectors com-
bines two previously described ideas. First of all, initial domain is decomposed into
subdomains using certain criteria. Thereafter, levelset deflation is applied for each
subdomain, reflecting jumps between the high permeability and low permeability
nodes in case of reservoir simulation.

A simple example of physics-based deflation for a 4 × 4 grid is given in Figure
3.1. In each node (black and red squares) the values correspond to the values in
the first deflation vector, whereas dash and dotted lines indicate borders between

3

32 3. Deflation Method

computational domains and separate subdomains with high contrasts in the PDE
coefficients.

Figure 3.1: Subdomain, levelset and subdomain-levelset deflation [36].

There are some other options of constructing deflations vectors available in the
literature [37].

4
Multiscale Methods

4.1. Introduction
Key concept. Although standard preconditioners improve the convergence

rate, after a few iterations they produce smooth low frequency errors, correspond-
ing to extreme eigenvalues, which are reduced very slowly. One of the most ef-
fective methods to deal with this problem is a multigrid idea comprising following
steps:

1. Transformation of the initial system discretized on a fine grid into a coarse
grid using a restriction operator;

2. Solving the problem on a coarse grid (coarse-grid correction);

3. Interpolation of the correction to the fine grid using a prolongation operator.

On a coarse grid low frequency errors behave like high frequency errors, and
hence are easily removable, but they also cause new high frequency errors on a
fine grid, which should be treated using smoothing (relaxation) operators after the
coarse grid procedure is completed.

4.1.1. Upscaling Methods
Upscaling, also called homogenization, methods have been widely used to solve

large scale subsurface flow problems. The main idea of upscaling is to compute
effective properties on a coarse scale by some preliminary steps, and then solve the
coarse-scale equations. The governing equations for subsurface flow can be split
into the flow problem (pressure equation) and the transport problem (saturation
equations). For detailed surveys of these we refer to [38].

In spite of the fact that multiscale methods are similar to upscaling techniques,
there also exist some significant differences. The purpose of multiscale approach
is to accurately approximate the fine-scale solutions, whereas upscaling modelling
focuses on obtaining the approximation to the coarse-scale solutions. In other

33

4

34 4. Multiscale Methods

words, the multiscale approach is a local-global concept based on the construction
of global solutions providing global coarse scale information, while the local solu-
tions are used to obtain fine scale information. Moreover, in multiscale methods
the coarse-scale system is obtained numerically and dynamically using current fine-
scale information rather than coarse-scale quantities computed beforehand. Since
no prior flow scenarios are assumed, multiscale modelling is process independent.
Therefore multiscale methods are generally suitable for any sort of reservoir sim-
ulation. In addition, different from multiphase upscaling techniques, in multiscale
modelling one avoids the inconsistency and non-physical features on the coarse
scale in the process of coupling local and global problems [39].

4.1.2. Dual-Grid Methods
Generally, in the most trivial scenario multiscale methods utilize only two grids

to provide an efficient numerical algorithm for a reservoir simulation. In some
early papers authors proposed a few methods, where both coarse- and fine-scale
flow information are obtained without directly solving the full fine-scale problem.
There is a family of such methods called ”dual-grid” methods, which can be easily
distinguished from multiscale methods due to some substantial differences between
them.

However, there is one common drawback for all discussed dual-grid methods:
the fine- and coarse-scale problems are not coupled properly. In particular, any
improvements in the local fine-scale solutions have a quite limited impact on the
coarse-scale solution, since the latter is almost independent of the local fine-scale
solution. On the contrary, the coarse-scale approximations have a large influence
on the fine-scale solutions, i.e., degradation of the coarse-scale solutions leads to
the highly bad results on the fine scale. In addition, dual-grid methods demonstrate
extremely poor performance for highly heterogeneous permeability fields [40].

4.1.3. Multiscale Finite Element Method (MsFEM)
Recently developed by Hou and Wu [41] multiscale method for the flow problem

has much stronger coupling between the fine and coarse scales. The main idea of
the MsFEM is to integrate the fine-scale information into a coarse-scale system via
special basis functions. Unlike traditional finite-element methods, these basis func-
tions, representing the fine-scale information, of the MsFEM are usually obtained as
numerical solutions of localized boundary-value problems that reflects the fine-scale
properties. The MsFEM solves the underlying elliptic problem

∇ ⋅ (𝜆 ⋅ ∇𝑢) = 𝑓, on Ω.

In terms of classical finite-element approach, the weighting functions space 𝒱
is spanned by the basis functions as

𝒱 = span{𝜙 ; 𝑖 = 1, ..., 𝑛; 𝐾 ∈ 𝒦 ⊂ 𝐻 (Ω)},

where 𝜙 denotes the basis function associated with node 𝑖 in element 𝐾, 𝑛 is the
number of nodes in element 𝐾, 𝒦 is an element partition of domain Ω and 𝐻 (Ω)

4.1. Introduction

4

35

is the Hilbert functional space defined on Ω. These basis functions are solved locally
in each element with reduced boundary condition, such that

{
∇ ⋅ (𝜆 ⋅ ∇𝜙) = 0, in Ω
∇‖ ⋅ (𝜆 ⋅ ∇𝜙)‖ = 0, on 𝜕Ω
𝜙 (𝑥) = 𝛿 ∀𝑗 ∈ 1, ..., 𝑛,

where the subscript ‖ indicates the vector (or operator) projected along the tan-
gential direction of the element boundary 𝜕Ω , and Ω is the domain of element 𝐾,
superscript 𝑖 denotes one node of that element, and 𝑥 represents the coordinate
of node 𝑗. After locally solving equation above, the coarse-scale system can be
constructed by the basis functions, in a similar way as conventional finite-element
methods. Once the coarse-scale solution is obtained, the fine-scale approximation
can be calculated using the basis functions and the coarse-scale solution at node 𝑖,
i.e. 𝑢 , as

𝑢(𝑥) =∑𝜙 (𝑥)𝑢 , if 𝑥 ∈ Ω .

It was also pointed out that large errors occur due to resonance when the scale
of oscillations in the fine-scale coefficient is close to the scale of the grid. In addition,
the resonance error can be eliminated by improving the boundary conditions of the
basis functions. In order to tackle this issue, they proposed an oversampling tech-
nique that imposes the reduced boundary condition on a sampled domain, which is
larger than the coarse element and then the basis functions are computed on that
sampled domain. They show that a good choice of the boundary condition deter-
mines that the local characteristics are well sampled into the basis functions and
can significantly improve the accuracy of multiscale methods. The investigations
reported in [42] demonstrate that the MsFEM has a good convergence rate for the
elliptic equation with highly oscillatory coefficients.

The major drawback of this method for reservoir simulation is that it does not
provide a mass conservative velocity field, which is a crucial element in achieving
accurate solutions of the transport problem, since existing multiscale methods use
a sequential strategy. Later, Chen and Hou [43] presented a multiscale formulation
based on a mixed finite-element method and demonstrated the importance of a
locally conservative algorithm for transport simulation. This family of Mixed Multi-
scale Finite-Element Methods (MMsFEM) [44] can offer mass conservative velocity
fields for both fine- and coarse-scale grids.

4.1.4. Multiscale Volume Element Method (MsFVM)
In order to obtain approximate solutions that are strictly locally mass conser-

vative on the fine scale, the Multiscale Finite Volume Method (MsFVM) [45] was
developed. Compared with the finite element formulation, the MsFVM yields mass
conservative solutions using a smaller number of degrees of freedom.

In MsFVM basis functions are utilized to capture the fine-scale information, which
are identical to those of the MsFEM. The approximate pressure solution obtained

4

36 4. Multiscale Methods

from MsFVM guarantees local mass conservation, which can be used to reconstruct
the velocity field by solving local elliptic problems on primal coarse grids with Neu-
mann boundary conditions. Recent developments of the MsFVM include incorporat-
ing the effects of compressibility, gravity and capillary, complex wells, faults, frac-
tures, three-phase flow using the black-oil model and compositional displacements
[46]. Moreover, for efficiency’s sake the method has been improved by adaptive
computation of the basis functions for multiphase, time-dependent displacement
problems [47]. Zhou and Tchelepi [48] proposed the Operator-Based Multiscale
Method (OBMM), which employs constructed in an algebraic manner prolongation
and restriction operators in order to capture the fine-scale information. Applying
these two operators to the original fine-scale mass balance equation leads to a
coarse-scale system, which can be solved for the coarse-scale pressure field. Then,
a fine-scale approximation can be obtained by prolongation of the coarse-scale so-
lution. This algebraic formulation reduces computational costs for problems defined
on unstructured grids and allows to incorporate complex reservoir physics for easy
integration of the method into existing solvers.

In spite of the good performance for a large number of test cases, the orig-
inal MsFVM deteriorates for channelized permeability fields and large anisotropy
[49]. As in all multiscale methods, in the MsFVM framework, the coarse system
is obtained by using basis functions, which are numerically computed on local do-
mains (with assumed boundary conditions). The accuracy of the MsFVM is therefore
strongly dependent on the quality of the local boundary conditions. For some very
challenging problems, the method fails to provide accurate solutions. To resolve
these limitations, the iterative MsFVM (i-MsFVM) was introduced by Hajibeygi et
al. [50], where the MsFVM solution is iteratively improved by locally computed
correction functions together with a fine-scale smoother. The i-MsFV method con-
verges to the fine-scale reference solution, and a conservative velocity field can
be constructed after any iteration level. The i-MsFVM reduced the MsFVM errors
for many challenging problems; however, for highly heterogeneous and anisotropic
cases, it did not perform satisfactorily. The weak MsFVM coarse-scale operator is
the main reason of this issue, which has been overcome by development of the
Two-Stage Algebraic Multiscale Linear Solver (TAMS) [51]. To provide the conser-
vative solution, when the full procedure is done, the MsFVM operator is employed
as the last step in the TAMS algorithm. Having a two steps structure, high- and
low-frequency errors are handled by smoother and multiscale preconditioner in the
local and global stages, respectively. Obviously, combination of the stages allows
to resolve all kinds of frequency errors. Also it is important to note that TAMS is
appropriate for both finite volume and finite element schemes and does not contain
correction function like other MsFVMs.

5
Multiscale

Restriction-Smoothed Basis
Method (MsRSB)

5.1. Introduction
In the previous chapter a number of various multiscale methods were introduced

as an improvement of classical upscaling technique in order to accelerate reservoir
simulation and provide better scaling for the Poisson-type equations modelling flow
in porous media. These methods relies on the construction of a set of prolon-
gation (basis functions) and restriction operators which map between unknowns
corresponding to fine-grid cells honouring the petrophysical properties of the geo-
logical model and coarse-grid variables used for a dynamic simulation. One needs
to solve local flow equations to compute prolongation operators numerically, which
are used to construct a reduced coarse-scale system describing the macro-scale dis-
placement arising due to global forces [52]. Unlike other methods, basis functions
are obtained by restricted smoothing: starting from a constant (i.e., equal 1 in the
coarse block cells and 0 otherwise), prolongation operators are computed iteratively
on the fine-scale grid in a such way as to be consistent with the local properties
of the differential operators. It was shown that the multiscale restriction-smoothed
basis (MsRSB) method is as robust and accurate as existing multiscale techniques
and even outperforms them for some reservoir simulation test cases due to its three
benefits [53]:

1. Both fine- and coarse-scale grids have unstructured topology and general
polyhedral geometry. It makes method applicable for complex models involv-
ing heterogeneous domains with long coherent structures with high contrasts,
since the coarse partition is adapted to geological features of the reservoir;

37

5

38 5. Multiscale Restriction-Smoothed Basis Method (MsRSB)

2. It is not required to expensively recompute local basis functions to account for
transient behaviour: only a few extra steps needed to update existing basis
functions;

3. Method is suitable for any flow problem where pressure equation may be
isolated.

5.2. Multiscale formulation
Like in all multiscale techniques, MsRSB method starts from a fine grid {Ω } ,

which is partitioned into the coarse grid {Ω̄ } (𝑚 < 𝑛), where each fine cell is
contained in only one coarse block. Then, numerical prolongation 𝑃 and restriction
𝑅 operators are defined as mappings between fine cells and coarse blocks and
represented as sparse matrices of sizes 𝑛 ×𝑚 and 𝑚 × 𝑛, respectively:

𝑃 ∶ {Ω̄ } → {Ω } ,
𝑅 ∶ {Ω } → {Ω̄ } .

Let us denote by 𝑝 and 𝑝 pressure values computed on the fine and coarse
grids, which are connected via the prolongation operator,

𝑝 = 𝑃𝑝 . (5.1)

Generally, pressure solution on the coarse grid does not coincide with the exact
solution, but can be an accurate approximation, which is calculated more efficiently
than solving the initial problem on a fine grid.

Inserting (5.1) into the initial linear system 𝐴𝑝 = 𝑞 and applying restriction
operator 𝑅, we derive a linear system for pressure on the coarse grid,

𝑅(𝐴(𝑃𝑝)) = (𝑅𝐴𝑃)𝑝 = 𝐴 𝑝 = 𝑅𝑞 = 𝑞 .
Basically, there twomain ways to determine the restriction operator, either a Galerkin
operator or control volume summation operator, i.e.,

𝑅 = 𝑃 ,

(𝑅) = {1, if 𝑥 ∈ Ω̄ ,
0, otherwise.

5.2.1. Construction of basis functions
In most multiscale methods basis functions forming prolongation operators are

obtained by numerically solving local flow problems, which are defined similar to the
global problem with modified boundary conditions and account for corresponding
local features. However, in MsRSB method basis functions are constructed itera-
tively, and here we will describe this process.

For each coarse block basis functions are initially defined as characteristic func-
tions,

𝑃 = {1, if fine cell 𝑖 belongs to the coarse block 𝑗,
0, otherwise,

5.3. Iterative multiscale formulation

5

39

Obviously, such a choice is made for convenience sake, namely constant functions
are trivial to construct and handle, and they also provide partition of unity. We then
define a local smoothing repeated iteration,

𝑃 = (𝐼 − 𝜔𝐷 𝐴)𝑃 , (5.2)

where 𝑗 denotes the column index of the prolongation operator, 𝜔 ∈ (0, 1] is a relax-
ation factor and 𝐷 is a diagonal matrix that contains the diagonal entries of (weakly)
diagonally dominant system matrix 𝐴. Note that 𝜔 = 2/3 is the optimal relaxation
parameter for Jacobi’s method applied to Poisson’s equation with constant coeffi-
cients. Better choices of 𝜔 will speed up convergence of the basis construction, but
are not necessarily obvious for general problems. By iterating on the prolongation
operator, we try to reduce ‖𝐴𝑃‖ as much as possible to achieve relatively smooth
residual error. In general, (5.2) determines an increment for each basis function
based on the local error and amends this increment until a convergence criterion
is satisfied as well as to guarantee that the support of the basis functions is inside
already defined acceptable regions. This update is also used to determine conver-
gence of the basis construction procedure. Since in every iteration the cell value
is modified based on the topological neighbours, the support of the basis functions
will gradually increase step-by-step and eventually cover the whole computational
domain. These support regions are needed to restrict the basis functions expansion
outside of the coarse grid block.

5.3. Iterative multiscale formulation
An utilization of the prolongation operator (iteratively constructed or even de-

fined by piecing together localized flow solutions) has a negative influences on the
solution, namely local high-frequency errors show up in the fine-scale approxima-
tion. This is issue is handled by applying a smoother, which can be combined with
the multiscale solve to formulate an iterative solver consisting of two steps:

1. multiscale increment is computed iteratively;

2. a few smoother operations are completed to limit the error of the approxima-
tion obtained in step 1.

The whole procedure eventually reduces the fine-scale residual to zero [54].
To determine the full iterative scheme let us define the defect 𝑑 at each multi-

scale iteration 𝑘 as
𝑑 = 𝑏 − 𝐴𝑥 ,

where 𝑥 is the approximation of the pressure solution (at step 𝑘), 𝐴 is a given
coefficient matrix and 𝑏 is a right-hand side.

Then, having initial guess zero we apply smoother 𝑆 to the defect,

𝑦 = 𝑆(𝑑).

Hence, the next approximation in the iterative process can be written as a sum of
the current solution, coarse correction (ensures that the coarse-scale conservative

5

40 5. Multiscale Restriction-Smoothed Basis Method (MsRSB)

property is not removed) and smoothed update, i.e.

𝑥 = 𝑥 + 𝑃 (𝐴 𝑅 (𝑑 − 𝐴𝑦)) + 𝑦 .

Here one pass of the smoother along with the coarse correction is called amultiscale
cycle.

Note that the smoother 𝑆 should be inexpensive for the updates, hence the
incomplete LU-factorization with zero fill-in (ILU(0)) is usually used, but a few Jacobi
iterations may be applied for problems where only some local error needs to be
reduced.

Finally, it is important to note there are some recent developments related to
meshless multiscale methods [55] which can be considered as alternative to the
above multiscale methods.

6
Adaptive Deflated Multiscale

Solvers (ADMS)

6.1. Motivation
Existing multiscale solvers use a sequence of aggressive restriction, coarse-grid

correction and prolongation operators to handle low-frequency modes on the coarse
grid. High-frequency errors are resolved by employing a smoother on the fine grid.
Deflation preconditioning improves matrix properties, i.e., damps slowly varying
errors, corresponding to extreme eigenvalues, in the linear solver residuals. Vari-
ous Adapted Deflated Multiscale Solvers are proposed in order to detect the low-
frequency modes instead of relying on the residual map and complement today’s
stet-of-the-art advanced iterative multiscale strategies.

6.2. Various forms of ADMS
6.2.1. Fully ADMS

Applying the restriction operator 𝑅 to the preconditioned deflated system on the
fine grid

𝑃 𝐴 𝑝 = 𝑃 𝑏

and expressing the pressure on the fine grid as an approximation on the coarse grid
prolonged to the fine grid, we obtain the following formulation of the fully ADMS
(F-ADMS):

𝑃 𝐴 𝑝 = 𝑃 𝑏 ⟺ 𝑅𝑃 𝐴 𝑃�̂� = 𝑅𝑃 𝑏 , where 𝑃�̂� = 𝑝
⇒ �̂� = (𝑅𝑃 𝐴 𝑃) 𝑅𝑃 𝑏
⇒ 𝑝 ≈ 𝑍𝐸 𝑍 𝑏 + 𝑃 𝑃�̂� = [𝑍𝐸 𝑍 + 𝑃 𝑃(𝑅𝑃 𝐴 𝑃) 𝑅𝑃]⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝𝑏

41

6

42 6. Adaptive Deflated Multiscale Solvers (ADMS)

6.2.2. Decoupled ADMS
The simplest way to utilize the multiscale solver along with the deflation method

is to use the operator M based on Additive Schwarz Method with deflation cor-
rection [56]:

M = 𝑍𝐸 𝑍 +∑𝑅 (𝑅 𝐴𝑅)𝑅 ,

where 𝑅 is the restriction operator to the overlapping domain.
In light of the structure of the operatorM , it is possible to use the decoupled

ADMS (D-ADMS) constructed as follows

𝑝 ≈ [𝑍𝐸 𝑍 + 𝑃(𝑅𝐴 𝑃) 𝑅]⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝𝑏

6.2.3. Mixed ADMS
Mixed ADMS (M-ADMS) employs an enriched set of basis functions to map be-

tween fine and coarse scales. This extended set involves the conventional multiscale
local basis functions and globally constructed deflation vectors. Hence, the global
prolongation operator 𝑃 is constructed such that it consists of original prolongation
operator and deflation operator, whereas there is only one option for the restriction
operator 𝑅:

�̂� = [𝑃; 𝑍], 𝑅 = �̂� .
Consequently, the solution on the fine grid is defined as

𝑝 ≈ �̂� (�̂�𝐴 �̂�) �̂�⏝⎵⎵⎵⏟⎵⎵⎵⏝𝑏 .

7
Results

In this chapter we will present the description of test cases, discuss the obtained
results of numerical experiments and draw corresponding conclusions. Basically,
we focus on solving the pressure equation (1.8) in the form of system of linear
equations (1.15) resulting from the discretization and linearization of the governing
PDEs of subsurface flow. For this purpose we use various ADMS accelerated by the
right-preconditioned GMRES, where the preconditioner consists of deflation matrix
(and operators in case of Fully ADMS) and/or multiscale mapping operators, and
compare the required number of iterations for convergence among them.

7.1. ADMS parameters
Deflation. To construct the deflation matrix we use techniques described in

chapter 3.
Smoother and Preconditioner. Jacobi and ILU(0) (see section 2.5) are se-

lected as smoother and preconditioner in case where only deflation is used (without
any multiscale solver).

Grid partitioning. To formulate the problem on the coarse scale, prolongation
and restriction operators (used for deflation matrix construction and multiscale basis
functions generation) are obtained via the MsRSB method (see chapter 5), while
the multigrid transformation can be performed in two ways:

• traditional domain subdivision into equal rectangles or squares;

• METIS partitioning. If we deal with the highly heterogeneous computa-
tional domain, which contains regions with large jumps in permeability coef-
ficients, then the software package METIS [57] may be used to obtain coarse
mesh partitioning honouring these discontinuities.

43

7

44 7. Results

Figure 7.1: Subdomain partitioning into 16 subdomains using METIS [56].

Coarse linear solver. For solving the coarse-scale problem we utilize built-in
MATLAB iterative solvers (sections 3.2):

• GMRES;

• BiConjugate Gradients stabilized method (BiCGSTAB).

Passing all necessary parameters to embedded MRST routines, we extract the
linear system matrix A and corresponding right-hand side vector b to solve the
pressure equation using our developed methods. Since the deflation matrix along
with the multiscale mapping operators can be constructed in a few different ways
and comprise of changing number of vectors, we describe certain options used in
ADMS for each model problem separately.

7.2. Test cases
The three model problems that used to test ADMS are:

• ”Islands” (high-permeability inclusions);

• Fractured reservoir;

• SPE10 layer [58];

For each scenario we will provide a detailed specification, that contains physical
parameters of the system and the iterative solver data including standard GMRES
input as well as the deflation matrix, multiscale basis functions and function handles
for the smoother and coarse level linear solver if needed. Considered test cases are
good examples of real reservoirs with highly heterogeneous porous media.

7.2. Test cases

7

45

7.2.1. ”Islands” model problem
Here we consider a 100 × 100 Cartesian grid, which has a physical size of 10 ×

10 meters squared, with 64 high-permeability islands located symmetrically with
respect to the centre of the domain (see Fig. 7.2):

Figure 7.2: 2D example with 64 high heterogeneities islands.

Then we initialize an incompressible single phase fluid model of viscosity 1 𝑐𝑃
and density 1014 𝑘𝑔/𝑚 (typical water properties). After that we impose flux and
pressure boundary conditions by specifying a Neumann condition with total inflow
of 5000 𝑚 /𝑑𝑎𝑦 on the left side and a Dirichlet condition with fixed pressure of
50 𝑏𝑎𝑟 on the right side. To drive the flow, we use a fluid source at the south-west
corner and a fluid sink at the north-east corner of the model. More precisely, we
set the source terms such that a unit time corresponds to the injection of one pore
volume of fluids. As the last step, we establish the initial state with a pressure value
of zero and a unit fluid saturation, that completes setup of the model, which leads
to a 10000 × 10000 matrix with 49600 non-zero entries and a diagonal sparsity
pattern:

Figure 7.3: ”Islands” example matrix sparsity pattern.

7

46 7. Results

Deflation. For method validation the following deflation matrices are used:
1. 𝑍 - physics-based deflation: contains 64 vectors of the size 10000, where
each vector represents only one high-permeability island, specifically 1 in the
corresponding island coordinates and 0 otherwise;

2. 𝑍 - physics-based deflation: similar approach as in 𝑍 , but now 0 in the island
coordinates and 1 otherwise;

3. 𝑍 - physics-based deflation: consists of 𝑍 and the first vector from 𝑍 ;

4. 𝑍 - physics-based deflation: consists of 𝑍 and the first vector from 𝑍 ;

5. 𝑍 -multiscale basis functions: contains multiscale basis functions as columns;

6. 𝑍 - domain-based: similar to the physics-based deflation approach, but
here we put 1 into all cells, which belong to the certain subdomain, and 0 into
all other cells;

7. 𝑍 -mixed deflation: consists of vectors obtained from different approaches
(e.g. physics-based deflation and multiscale basis functions);

8. 𝑍 - theoretical: consists of determined beforehand number of the exact
eigenvectors corresponding to the smallest magnitude eigenvalues.

In this scenario standard GMRES method (without deflation and multiscale com-
plements) requires 500 iterations to solve the pressure equation with desired toler-
ance 10 . As regards ADMS which for sure outperform GMRES, we present results
for the right-preconditioned version, then for decoupled, fully and mixed modifica-
tions. Note that in all following tables the number in brackets indicates number of
vectors in the corresponding matrix.

Right preconditioner.
Here we consider the constructed preconditioner as a classical right precondi-

tioner for GMRES.
As a benchmark, i.e. the most efficient way to deflate extreme eigenvalues, we

examine influence of the deflation matrix 𝑍 , which allows method to converge with
the computed number of iterations (see table 7.1):

deflation matrix no. iterations
𝑍 (16) 181
𝑍 (32) 142
𝑍 (64) 57
𝑍 (65) 51

Table 7.1: Linear solver iterations using

Now we would like to determine the best option for the deflation matrix, which
can be easily and cheaply constructed.

7.2. Test cases

7

47

The required number of iterations for the restarted GMRES, right-preconditioned
only by physics-based deflation, are shown in the table 7.2:

deflation matrix no. iterations
𝑍 (64) 103
𝑍 (64) 93
𝑍 (65) 88
𝑍 (65) 88

Table 7.2: Linear solver iterations using physics-based deflation

For the domain decomposition we employ 3 METIS-based variants of grid par-
titioning - into 16, 32 and 64 subdomains:

(a) Partitioning into subdomains

(b) Partitioning into subdomains

7

48 7. Results

(c) Partitioning into subdomains

Figure 7.4: METIS-based grid partitioning.

For these cases the required number of iterations for GMRES, right-preconditioned
only by deflation consisting of multiscale basis functions or domain-based vectors,
are presented in the table 7.3:

deflation no. subdomains
matrix 16 32 64
𝑍 255 203 44
𝑍 285 256 59

𝑍 [𝑍 𝑍] 51 36 23
𝑍 [𝑍 𝑍] 49 38 29

Table 7.3: Linear solver iterations using , and mixed deflation

Note that in the corresponding deflation matrices the number of columns co-
incide with the chosen number of subdomains, while the mixed version contains
vectors from both components. As we can see from the tables above, the best
option for the deflation would be usage of mixed deflation.

To investigate the performance of the multigrid idea, we again decompose the
computational domain and apply only multiscale operators as a preconditioner for
the GMRES, which gives us,

no. subdomains no. iterations
16 95
32 86
48 87
64 20

Table 7.4: Linear solver iterations using multiscale operators

7.2. Test cases

7

49

Decoupled ADMS
When we unite deflation and multiscale operators into single preconditioner, we

eventually obtain the simplest form of the ADMS:

number of deflation matrix
subdomains 𝑍 𝑍 𝑍 𝑍 𝑍 𝑍 𝑍 [𝑍 𝑍] 𝑍 [𝑍 𝑍]

16 37 38 38 38 95 134 39 36
32 28 29 28 28 77 315 27 28
64 14 13 13 13 16 40 14 12

Table 7.5: Linear solver iterations for decoupled ADMS

Fully ADMS
In this section we look at the fully ADMS. Since the only change, compared to

the right preconditioner and decoupled versions, is made on the coarse linear solver
level, the difference in performance is observed exceptionally in application of both
deflation and multiscale operators. In the following table 7.6 we present results for
different choices of deflation matrix and grid partitioning:

number of deflation matrix
subdomains 𝑍 𝑍 𝑍 𝑍

16 10 10 9 9
32 10 9 7 7
64 10 6 6 6

Table 7.6: Linear solver iterations for fully ADMS

Mixed ADMS
In this type of ADMS instead of using standard multiscale operators, we com-

plement (by adding corresponding columns) prolongation operator with different
physics-based deflation matrices and transpose it to get the restriction operator.
Therefore, ”including” deflation into multigrid idea we obtained that the method
converges approximately as fast as fully ADMS:

number of deflation matrix
subdomains 𝑍 𝑍 𝑍 𝑍

16 15 16 14 16
32 13 12 12 12
64 11 10 11 10

Table 7.7: Linear solver iterations for mixed ADMS

To summarize the difference in the performance between various precondition-
ers, we provide the comparison graph for the case with 32 subdomains and physics-
based deflation matrix.

7

50 7. Results

Figure 7.5: Preconditioners performance comparison using METIS-based partitioning into subdomains
and .

7.2.2. Fractured reservoir
In this model problem we consider 2𝐷 example of the fractured reservoir, where

fractures have an essential influence on the fluid flow due to its increased perme-
ability. More specifically, we have generated 30 fractures randomly distributed over
the 100×100 domain with a homogeneous permeability which is 10 times greater
than reservoir permeability (Fig. 7.6).

Figure 7.6: Fractured reservoir.

As regards physical features of the system, namely fluid characteristics and
boundary conditions, we use the same setup as described in the previous model
problem. As an output of the TPFA-type discretization routine we obtain a 10277×

7.2. Test cases

7

51

10277 matrix (here the last 277 rows and columns correspond to fractures proper-
ties) with the following sparsity pattern:

Figure 7.7: Fractured reservoir matrix sparsity pattern.

Deflation. For the deflation-based preconditioner we utilize these matrices:
1. 𝑍 - physics-based deflation: contains 30 vectors of the size 10277, where
every vector corresponds to only one fracture, especially 1 in cells crossed by
this fracture and 0 otherwise;

2. 𝑍 - physics-based deflation: similar approach as in 𝑍 , but now 0 in the
intersected cells and 1 otherwise;

3. 𝑍 - physics-based deflation: consists of 𝑍 and the first vector from 𝑍 ;

4. 𝑍 - physics-based deflation: consists of 𝑍 and the first vector from 𝑍 ;

5. 𝑍 -multiscale basis functions: contains multiscale basis functions as columns;

6. 𝑍 - grid-based: here we put 1 into all cells, which belong to the certain
subdomain, and 0 into all other cells;

7. 𝑍 - fracture-based: similar to the grid-based deflation approach, but here
we put 1 into all cells, which belong to the certain set of fractures pieces after
grid partitioning, and 0 into all other cells;

8. 𝑍 - domain-based: contains vectors from both 𝑍 and 𝑍 ;

9. 𝑍 -mixed deflation: consists of vectors obtained from different approaches
(e.g. physics-based deflation and multiscale basis functions);

10. 𝑍 - theoretical: consists of determined beforehand number of the exact
eigenvectors corresponding to the smallest magnitude eigenvalues.

7

52 7. Results

In the figure below there is a couple of possible ways to partition the grid and
fractures (every colour denotes separate set of fractures):

(a) fracture and grid subdomains

(b) fracture and grid subdomains

Figure 7.8: Grid- and fracture-based partitioning

While standard GMRES method needs 100 iterations to solve the pressure equa-
tion with desired tolerance 10 , we will now present the deflation- and multiscale-
based preconditioned version as well as ADMS performance.

Right preconditioner
First of all, we applied the theoretical type of deflation, i.e. using 𝑍 (30), and

found out that the method converges with 48 iterations.

7.2. Test cases

7

53

Secondly, we establish the required number of the iterations for all other defla-
tion matrices:

• physics-based deflation:

deflation matrix no. iterations
𝑍 (30) 85
𝑍 (30) 71
𝑍 (31) 70
𝑍 (31) 70

Table 7.8: Linear solver iterations using physics-based deflation

• multiscale-based deflation (f and g stand for the amount of fractures and grid
subdomains respectively):

deflation grid and fractures partitioning
matrix 30 f & 25 g 30 f & 16 g 21 f & 16 g 57 f & 100 g 16 f & 100 g
𝑍 45 52 51 32 34
𝑍 84 84 85 85 85
𝑍 94 96 96 78 78
𝑍 59 62 63 43 48

Table 7.9: Linear solver iterations using multiscale (grid- and fractures-based) deflation

• mixed deflation:
deflation grid and fractures partitioning
matrix 21 f & 25 g 16 f & 100 g 16 f & 16 g 57 f & 25 g 12 f & 16 g

𝑍 [𝑍 𝑍] 44 32 50 43 50
𝑍 [𝑍 𝑍] 60 51 64 60 64
𝑍 [𝑍 𝑍] 45 32 50 43 50
𝑍 [𝑍 𝑍] 60 51 64 60 64

Table 7.10: Linear solver iterations using mixed deflation

The performance of only multiscale-based preconditioner is reflected in the table
below:

fractures and grid partitioning no. iterations
16 f & 25 g 67
21 f & 16 g 66
16 f & 100 g 53
12 f & 16 g 42
9 f & 16 g 33
9 f & 25 g 29
9 f & 100 g 25

Table 7.11: Linear solver iterations using multiscale-based preconditioner

7

54 7. Results

As we can observe from the table 7.11, even quite rough decomposition has a
considerable effect on the convergence rate.

Decoupled ADMS
Finally, we demonstrate the results obtained after applying the full precondi-

tioner (both deflation and multiscale components):

fractures and grid deflation matrix
partitioning 𝑍 𝑍 𝑍 𝑍 (30) 𝑍 [𝑍 𝑍] 𝑍 [𝑍 𝑍]
9 f & 16 g 35 33 27 19 33 35
9 f & 25 g 29 27 30 18 27 27
9 f & 100 g 26 24 18 18 18 23

Table 7.12: Linear solver iterations for ADMS as a right preconditioner for GMRES

To complete the investigation of the first ADMS modification, we provide the
convergence plot showing relative residual norms depending on the iteration num-
ber:

Figure 7.9: Preconditioners performance comparison using .

7.2. Test cases

7

55

7.2.3. SPE10 layer
The second model of the SPE10 project is a highly heterogeneous reservoir,

characterized by large permeability variations (up to 6 orders of magnitude), with
a regular geometry described on a Cartesian grid with 60 × 220 × 85 (1, 122, 000)
cells, which has the physical size of 1200 × 2200 × 170 (𝑓𝑡), where 1 𝑓𝑜𝑜𝑡 is
0, 3048 𝑚𝑒𝑡𝑒𝑟𝑠. For the detailed description of the SPE Comparative Solution
Project one can visit:

http://www.spe.org/web/csp/datasets/set02.htm

For testing purposes we consider the third layer (permeability distribution is shown
in figure 7.10) of the reservoir, which is a part of a shallow-marine Tarbert formation
[59].

Figure 7.10: Permeability distribution of the 3rd layer in the SPE10 project, model 2.

In this scenario we make use of 3 deflation matrices (the way to construct them
is explained in 2 previous model problems):

• 𝑍 -multiscale basis functions: contains multiscale basis functions as columns;

• 𝑍 - domain-based: 1 in cells belonging to the certain subdomain and 0
otherwise;

• 𝑍 − theoretical: consists of determined beforehand number of the exact
eigenvectors corresponding to the smallest magnitude eigenvalues.

To partition the grid, we subdivide the domain by METIS-based routine into
10, 30 and 50 subdomains, respectively. In the figure 7.11 these decompositions
are presented:

http://www.spe.org/web/csp/datasets/set02.htm

7

56 7. Results

(a) Partitioning into subdomains

(b) Partitioning into subdomains

(c) Partitioning into subdomains

Figure 7.11: METIS-based grid partitioning.

7.2. Test cases

7

57

Decoupled ADMS
For every type of decomposition, we performed several tests and discovered that

in fact the usage of 𝑍 as a deflation matrix outperforms (requires less number
of iterations to converge) even preconditioner with 𝑍 . Moreover, if we increase
the number of subdomains, then the dominance of the combined preconditioner
becomes more conspicuous, which is reflected in the figure below:

(a) METIS-based partitioning into subdomains

(b) METIS-based partitioning into subdomains

7

58 7. Results

(c) METIS-based partitioning into subdomains

Figure 7.12: Preconditioners performance comparison using for various domain decompositions.

In general, for a such heterogeneous reservoir it is complicated to construct
physics-based deflation matrix, which makes 𝑍 optimal option, whereas the par-
titioning scheme is also highly problem dependent, i.e. the optimal number of sub-
domains has to be defined during thorough analysis of the computational domain
in order to obtain the balance between computational effort and fast convergence
rate.

Fully ADMS
This version of the preconditioner allows method to converge in 5 and even 2

iterations for grid partitioning into 5 and 7 subdomains, respectively, which means
it is the fastest option among all modifications.

References

[1] H. Walter and B. Epple, Numerical Simulation of Power Plants and Firing Sys-
tems (Springer, 2016).

[2] R. Hill, Elastic properties of reinforced solids: some theoretical principles, Jour-
nal of the Mechanics and Physics of Solids 11, 357 (1963).

[3] K. Aziz and A. Settari, Petroleum reservoir simulation (Chapman & Hall, 1979).

[4] J. Bear, Dynamics of fluids in porous media (Courier Corporation, 2013).

[5] S. Whitaker, Flow in porous media i: A theoretical derivation of darcy’s law,
Transport in Porous Media 1, 3 (1986).

[6] Z. Chen, G. Huan, and Y. Ma, Computational methods for multiphase flows in
porous media (SIAM, 2006).

[7] D. W. Peaceman, Fundamentals of numerical reservoir simulation. 1977, .

[8] C. E. Brennen, Fundamentals of multiphase flow (Cambridge university press,
2005).

[9] C. T. Crowe, J. D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji, Multiphase flows
with droplets and particles (CRC press, 2011).

[10] M. Muskat, R. D. Wyckoff, et al., Flow of homogeneous fluids through porous
media, (1937).

[11] J. A. Trangenstein and J. B. Bell, Mathematical structure of the black-oil model
for petroleum reservoir simulation, SIAM Journal on Applied Mathematics 49,
749 (1989).

[12] I. Aavatsmark, Interpretation of a two-point flux stencil for skew parallelogram
grids, Computational geosciences 11, 199 (2007).

[13] I. Aavatsmark, An introduction to multipoint flux approximations for quadri-
lateral grids, Computational Geosciences 6, 405 (2002).

[14] R. A. Klausen and R. Winther, Convergence of multipoint flux approximations
on quadrilateral grids, Numerical methods for partial differential equations 22,
1438 (2006).

[15] M. G. Edwards and C. F. Rogers, Finite volume discretization with imposed
flux continuity for the general tensor pressure equation, Computational Geo-
sciences 2, 259 (1998).

59

http://dx.doi.org/ 10.1007/BF01036523

60 References

[16] I. Aavatsmark, G. Eigestad, and R. Klausen, Numerical convergence of the
mpfa o-method for general quadrilateral grids in two and three dimensions,
Compatible spatial discretizations , 1 (2006).

[17] R. A. Klausen and R. Winther, Robust convergence of multi point flux approx-
imation on rough grids, Numerische Mathematik 104, 317 (2006).

[18] G. Moog, Advanced discretization methods for flow simulation using unstruc-
tured grids, Department of Energy Resources Engineering, Stanford University
CA (2013).

[19] K.-A. Lie, S. Krogstad, I. S. Ligaarden, J. R. Natvig, H. M. Nilsen, and
B. Skaflestad, Open-source matlab implementation of consistent discretisa-
tions on complex grids, Computational Geosciences 16, 297 (2012).

[20] I. Aavatsmark and G. Eigestad, Numerical convergence of the mpfa o-method
and u-method for general quadrilateral grids, International journal for numer-
ical methods in fluids 51, 939 (2006).

[21] J. Nordbotten and I. Aavatsmark, Monotonicity conditions for control volume
methods on uniform parallelogram grids in homogeneous media, Computa-
tional Geosciences 9, 61 (2005).

[22] J. M. Nordbotten and G. T. Eigestad, Discretization on quadrilateral grids with
improved monotonicity properties, Journal of computational physics 203, 744
(2005).

[23] K.-A. Lie, An introduction to reservoir simulation using matlab: user guide for
the matlab reservoir simulation toolbox (mrst). sintef ict, (2016).

[24] Y. Saad, Iterative methods for sparse linear systems (SIAM, 2003).

[25] J. Ruge and K. Stuben, Algebraic multigrid (amg), In: McCormick, S. (Ed.)
Multigrid Methods, 3, SIAM, Philadelphia, PA , 73 (1987).

[26] T. B. Jönsthövel, A. A. Lukyanov, E. D. Wobbes, and C. Vuik, Monotone non-
galerkin algebraic multigrid method applied to reservoir simulations, in ECMOR
XV-15th European Conference on the Mathematics of Oil Recovery (2016).

[27] H. Klie, M. Wheeler, K. Stueben, and T. Clees, Deflation amg solvers for
highly ill-conditioned reservoir simulation problems, in Reservoir Simulation
Symposium, doi:10.2118/105820-MS (2007).

[28] J. Erhel, K. Burrage, and B. Pohl, Restarted gmres preconditioned by deflation,
Journal of computational and applied mathematics 69, 303 (1996).

[29] L. Mansfield, Damped jacobi preconditioning and coarse grid deflation for con-
jugate gradient iteration on parallel computers, SIAM Journal on Scientific and
Statistical Computing 12, 1314 (1991).

References 61

[30] R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary
value problems, SIAM Journal on Numerical Analysis 24, 355 (1987).

[31] J. Tang and C. Vuik, On deflation and singular symmetric positive semi-definite
matrices, Journal of computational and applied mathematics 206, 603 (2007).

[32] C. Vuik, A. Segal, and J. Meijerink, An efficient preconditioned cg method
for the solution of a class of layered problems with extreme contrasts in the
coefficients, Journal of Computational Physics 152, 385 (1999).

[33] Y. Saad and M. H. Schultz, Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM Journal on scientific and statistical
computing 7, 856 (1986).

[34] Y. Saad, A flexible inner-outer preconditioned gmres algorithm, SIAM Journal
on Scientific Computing 14, 461 (1993).

[35] R. B. Morgan, Gmres with deflated restarting, SIAM Journal on Scientific Com-
puting 24, 20 (2002).

[36] J. van der Linden, T. Jönsthövel, A. A. Lukyanov, and C. Vuik, The parallel
subdomain-levelset deflation method in reservoir simulation, Journal of Com-
putational Physics 304, 340 (2016).

[37] A. A. Lukyanov, J. van der Linden, T. B. Jönsthövel, and C. Vuik, Meshless
subdomain deflation vectors in the preconditioned krylov subspace iterative
solvers, in ECMOR XV-14th European Conference on the Mathematics of Oil
Recovery (2016).

[38] C. L. Farmer, Upscaling: a review, International Journal for Numerical Methods
in Fluids 40, 63 (2002).

[39] M. Pal, S. Lamine, K.-A. Lie, S. Krogstad, et al., Multiscale method for simu-
lating two-and three-phase flow in porous media, in SPE Reservoir Simulation
Symposium (Society of Petroleum Engineers, 2013).

[40] P. Audigane and M. J. Blunt, Dual mesh method for upscaling in waterflood
simulation, Transport in Porous Media 55, 71 (2004).

[41] T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems
in composite materials and porous media, Journal of Computational Physics
134, 169 (1997).

[42] T. Hou, X.-H. Wu, and Z. Cai, Convergence of a multiscale finite element
method for elliptic problems with rapidly oscillating coefficients, Mathematics
of Computation of the American Mathematical Society 68, 913 (1999).

[43] Z. Chen and T. Hou, A mixed multiscale finite element method for elliptic
problems with oscillating coefficients, Mathematics of Computation 72, 541
(2003).

http://dx.doi.org/10.1002/fld.267
http://dx.doi.org/10.1002/fld.267
http://dx.doi.org/ 10.1023/B:TIPM.0000007309.48913.d2
http://dx.doi.org/http://dx.doi.org/10.1006/jcph.1997.5682
http://dx.doi.org/http://dx.doi.org/10.1006/jcph.1997.5682

62 References

[44] J. E. Aarnes, S. Krogstad, and K.-A. Lie, A hierarchical multiscale method
for two-phase flow based upon mixed finite elements and nonuniform coarse
grids, Multiscale Modeling & Simulation 5, 337 (2006).

[45] P. Jenny, S. Lee, and H. Tchelepi, Multi-scale finite-volume method for elliptic
problems in subsurface flow simulation, Journal of Computational Physics 187,
47 (2003).

[46] H. Hajibeygi and P. Jenny, Multiscale finite-volume method for parabolic prob-
lems arising from compressible multiphase flow in porous media, Journal of
Computational Physics 228, 5129 (2009).

[47] P. Jenny, S. H. Lee, and H. A. Tchelepi, Adaptive fully implicit multi-scale finite-
volume method for multi-phase flow and transport in heterogeneous porous
media, Journal of Computational Physics 217, 627 (2006).

[48] H. Zhou, H. A. Tchelepi, et al., Operator-based multiscale method for com-
pressible flow, in SPE Reservoir Simulation Symposium (Society of Petroleum
Engineers, 2007).

[49] V. Kippe, J. E. Aarnes, and K.-A. Lie, A comparison of multiscale methods for
elliptic problems in porous media flow, Computational Geosciences 12, 377
(2008).

[50] H. Hajibeygi, G. Bonfigli, M. A. Hesse, and P. Jenny, Iterative multiscale finite-
volume method, Journal of Computational Physics 227, 8604 (2008).

[51] H. Zhou, H. A. Tchelepi, et al., Two-stage algebraic multiscale linear solver for
highly heterogeneous reservoir models, SPE Journal 17, 523 (2012).

[52] K. Lie, O. Møyner, J. Natvig, A. Kozlova, K. Bratvedt, S. Watanabe, and Z. Li,
Successful application of multiscale methods in a real reservoir simulator en-
vironment, in ECMOR XV-15th European Conference on the Mathematics of
Oil Recovery (2016).

[53] O. Møyner and K.-A. Lie, A multiscale restriction-smoothed basis method for
high contrast porous media represented on unstructured grids, Journal of
Computational Physics 304, 46 (2016).

[54] Y. Wang, H. Hajibeygi, and H. A. Tchelepi, Algebraic multiscale solver for flow
in heterogeneous porous media, Journal of Computational Physics 259, 284
(2014).

[55] A. A. Lukyanov and C. Vuik, Parallel fully implicit smoothed particle hydrody-
namics based multiscale method, in ECMOR XV-15th European Conference on
the Mathematics of Oil Recovery (2016).

[56] V. Dolean, P. Jolivet, F. Nataf, N. Spillane, and H. Xiang, Two-level domain
decomposition methods for highly heterogeneous darcy equations. connec-
tions with multiscale methods, Oil & Gas Science and Technology–Revue d’IFP
Energies nouvelles 69, 731 (2014).

http://dx.doi.org/ http://dx.doi.org/10.1016/j.jcp.2015.10.010
http://dx.doi.org/ http://dx.doi.org/10.1016/j.jcp.2015.10.010

References 63

[57] G. Karypis and V. Kumar, Metis: A software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing orderings of
sparse matrices, University of Minnesota, Department of Computer Science
and Engineering, Army HPC Research Center, Minneapolis, MN (1998).

[58] M. Christie, M. Blunt, et al., Tenth spe comparative solution project: A compar-
ison of upscaling techniques, in SPE Reservoir Simulation Symposium (Society
of Petroleum Engineers, 2001).

[59] S. Davies, N. Dawers, A. McLeod, and J. Underhill, The structural and sedi-
mentological evolution of early synrift successions: the middle jurassic tarbert
formation, north sea, Basin Research 12, 343 (2000).

	Problem Formulation
	Reservoir Simulation
	Rock and Fluid properties
	Governing equations
	Darcy's law
	Mass-Balance equation
	Single-phase flow equations
	Multiphase flow equations
	Boundary and initial conditions

	Black-Oil fluid model
	Discretization methods
	Two-Point Flux Approximation (TPFA)
	Multi-Point Flux Approximation (MPFA)

	MATLAB Reservoir Simulation Toolbox (MRST)

	Linear Solvers
	Introduction
	Newton-Raphson method
	Direct methods
	Iterative methods
	Projection methods

	Preconditioning

	Deflation Method
	Introduction
	Deflation preconditioning

	Preconditioner and GMRES
	Restarted GMRES
	Preconditioned GMRES

	Construction of deflation vectors
	Ritz deflation
	Harmonic Ritz deflation
	Physics-based deflation

	Multiscale Methods
	Introduction
	Upscaling Methods
	Dual-Grid Methods
	Multiscale Finite Element Method (MsFEM)
	Multiscale Volume Element Method (MsFVM)

	Multiscale Restriction-Smoothed Basis Method (MsRSB)
	Introduction
	Multiscale formulation
	Construction of basis functions

	Iterative multiscale formulation

	Adaptive Deflated Multiscale Solvers (ADMS)
	Motivation
	Various forms of ADMS
	Fully ADMS
	Decoupled ADMS
	Mixed ADMS

	Results
	ADMS parameters
	Test cases
	"Islands" model problem
	Fractured reservoir
	SPE10 layer

	titleReferences

