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1
INTRODUCTION

Steel is used in numerous products and although already first used in 200 B.C. the development of new kinds

of steel has never ceased to stop. More than 30 new kinds of special steel products were developed in the past

year at Tata Steel alone, a result of continuous industry demand for improved steel properties. This need for

new innovation is mainly driven by the automotive industry which forms the bulk of Tata Steel customers

due to its strategic location in IJmuiden. That is, because car manufacturers in their race to stay ahead of

competition, design and produce new car models every year. In order to produce an improved model the

lightest, strongest and cheapest steel at that moment available is needed. For R&D researchers this implies a

need to accelerate the development process: from drawing board to customer.

In order to be able to develop new products with certain new properties a lot of prototypes have to be

produced based on experience, a time costly process. As the properties of these steels mostly depend on their

microstructure, the process of developing new steels can get more sophisticated when the microstructure

can be better predicted. Therefore a model has been developed by Bos et al. [1] which describes all kinds of

metallurgical mechanisms occurring during the production of steel. One important mechanism is currently

missing in the model: curvature-driven grain growth.

The goal of this thesis is to extent the model made by Bos et al. During the literature study [2], methods

have been selected and tested on special geometries to make a well founded decision on which method de-

scribes the minimization of grain boundary energy best, as well as forms a good working combination with

the model of Bos et al [1]. In the implementation a so called hybrid Cellular Automata-Lazar model is con-

structed. In short: the necessary data is extracted from the CA model, grain boundaries move to minimize

the grain boundary energy, the changed data needs to be updated back into the CA model.

In Chapter 2 all the necessary background on the metallurgy will be presented to get familiar with all facets

that play a role in the microstructure of steel. Next, the most prominent methods to model microstructures

will be briefly explained. One of the boundary conditions of this research, is that the method should be im-

plemented in the Cellular Automata method of Bos et al. Therefore each of the reviewed methods to simulate

grain growth by curvature in Chapter 4 are all, at least in theory, possible to implement in the existing model.

Only so called vertex methods are presented in this thesis, for other possible methods see my literature study

[? ]. One such method that has existed for some time is a method based on solving a grain boundary energy

minimization problem. A relatively new method has been developed by Lazar MacPherson and Srolovitz[3, 4]

1



2 1. INTRODUCTION

to describe grain growth in both 2D as 3D. In 2D it makes use of a theoretical relation on grain growth by cur-

vature the so called Neumann Mullins relation. Not until recently a 3D extension of this relation did not exist

making applications based on this relation lose a lot their functionality. This changed when McPherson and

Srolovitz published the MacPherson-Srolovitz relation [5]. After comparison the method by Lazar, McPher-

son and Srolovitz has been chosen.

In Chapter 5 the implementation is discussed, some algorithms will be described. Again distinguish three

cases: Extraction, movement based on Lazar, updating CA. In Chapter 6 it will be shown that the developed

hybrid model works by describing some interesting cases and by giving an example of the growth of grains in

2D. Finally a summary will be given of the delivered work and some future considerations will be given.



2
CRYSTAL INTERFACES AND

MICROSTRUCTURES

In the process of steel making we see a lot of changes happening on a micro-level in the steel. To better un-

derstand this process and to see the total effect of each contribution, a model can be made. We identify three

major processes [6] that drive the change in microstructure and need to be taken in consideration when de-

veloping the model (whereα and β denote in which phase the grains are (note: although they are of the same

phase (α−α) they do not belong to the same grain):

1. Phase-transformation α−β interfaces

2. Recrystallization & Recovery α−α interfaces

3. Grain growth by curvature α−α interfaces

The first: phase-transformation, generally has the strongest driving force. In steel there are different

phases depending on temperature and carbon concentration. Here a phase corresponds to a certain crystal

structure, e.g. how the atoms are arranged. An overview of the phases with the relation to carbon concen-

tration and temperature can be found in a phase diagram, see figure 2.1. Of special interest are the phase

transformations occurring when the carbon concentration is around 0.1−0.7 weight percent.

Considered are two phases: austenite and ferrite. They have the following crystal structure: Face Cen-

tered Cubic (FCC) called austenite or Body Centered Cubic (BCC) which is called ferrite. The orientation of

the crystal structure can be seen in figure 2.2.

When we look at the phase-diagram it can be seen that depending on temperature and carbon concen-

tration different crystal structures can be observed. Due to geometry of the crystal structure, a considerable

amount of carbon can be dissolved. There is enough space within the structure to fit the carbon atom. While

cooling down and having a low carbon concentration, the crystal will transform to a ferrite structure. In this

structure less carbon can be dissolved. This seems to contradict that the crystal structure of FCC is more

closely packed than BCC, since in FCC 74% of the space is filled in comparison to 68% for BCC. However the

reason for this seeming discrepancy is that the size of the interstitial gaps in BCC are different, it contains a

number of small gaps where the carbon atoms do not fit. Due to this difference in size, the number of gaps

3



4 2. CRYSTAL INTERFACES AND MICROSTRUCTURES

Figure 2.1: Phase diagram, source: [7]

Figure 2.2: Crystal structure of Ferrite BCC α (left) and Austenite FCC γ (right), source: [8]

which can contain carbon, is larger in FCC than in BCC. This explains the difference in the amount of carbon

that can dissolve in each phase.

Second is recrystallization and recovery, which happens simultaneously. Grain growth due to recrystal-

lization is driven by the difference in the density of dislocation between two grains. Dislocations are irregu-

larities in the crystal structure, two basic examples are edge- (see figure 2.3a) and screw dislocations (see fig-

ure 2.3b). Recrystallization replaces grains containing dislocations by strain-free, or dislocation-free grains.

Hence, the dislocations are removed. There will be spots with a high dislocation density and where recrys-

tallization has occurred a low density of dislocations. Recovery also depends on dislocations, in this case

dislocations are removed as two dislocations with opposite direction neutralize each other. For an example

see figure 2.4. In the first figure on the left as well as on the right there is an edge dislocation. The atoms on

the left (green) are situated too close to each other to get the same structure as the lower grain (orange). The

other way around is displayed in figure 2.4, see the middle and lower part. Two dislocations with opposite

sign are present, therefore the dislocation can be removed by recovery.

Finally, grain growth by curvature is considered. This driving force of change will be the main interest of

this thesis. Here, the driving force is determined by reduction in grain boundary energy. Further theoretical

background explaining the factors which contribute to grain growth will be given in the remaining part of this

chapter.
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(a) Edge dislocation, source [9]

(b) Screw dislocation, source [10]

Figure 2.3: Two examples of dislocations

2.1. INTERFACIAL FREE ENERGY

In the past, two different sources of decrease in free energy have been proposed as driving force for grain

growth. The first suggestion originally by Czochralski, who proposes a similar idea as used for crystallization

[12], is the following: grains formed by recrystallization have a residual strain energy, and that upon further

heating the grain with a low residual strain energy will grow at the expense of grains with a high residual strain

energy. Ewing and Rosenhain [13] proposed an alternative. They suggested that the interfacial energy of the

grain boundaries is the driving force for grain growth. The latter suggestion has been widely accepted as grain

boundary melting stops grain growth and therefore disputing the idea of Czochralski. This can be explained

as follows: at higher temperature under certain conditions the grain boundaries can melt, meaning that the

atoms are no longer ordered in a crystal lattice. Note that this should not effect the growth as the residual

strain energy still remains.

From Ewing and Rosenhain the interfacial free energy is needed to study grain growth. The Gibbs free

energy G of a system is given by:

G =G0 + Aγ. (2.1)

Here, G0 is the energy of the area inside the grain, the second term is the energy contribution of the grain

boundary. Further γ is the interfacial free energy per unit area and A denotes the area of the boundary.

The grain boundaries are high-energy regions that increase the free-energy of a polycrystal (solids that are

composed of many grains of varying size and orientation) relative to a single crystal, polycrystalline material

is never a true equilibrium structure. Therefore, due to the existence of grain boundaries a metastable equilib-
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Figure 2.4: Dislocations removed by recovery, source: [11]

rium can be found. This means that a local equilibrium is found. Though, from the definition of metastability,

when an activation energy is acquired a new minimum can be found. See figure 2.5 as an illustration.

Figure 2.5: Gibbs free energy with two equilibria, source: [6]

2.2. EQUIVALENCE TO SOAP FROTH
From the observation that interfacial free energy must be minimized we can conclude that the driving force is

the surface tension of the boundaries. We can defend this as follows. First it is shown by a number of authors

that the shape of metal grains is equivalent to the shape of foam cells [14, 15]. Then Smith [16] showed that in

a soap foam, surface tension can lead to cell growth that simulates grain growth. From the theory of surface

tension which states the Gibbs free energy using the Young-Laplace equation [17]:

∆G = γV (
1

Rx
+ 1

Ry
). (2.2)

The Gibbs free energy depends on γ the grain boundary energy (which will be explained later), V the

molar volume and Rx,y the radii of curvature of the grains. The grain will be similar to figure 2.6 therefore

assume Rx = Ry . We have
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Figure 2.6: Surface tension forces acting on a small surface. δθ and δθy indicate the amount of bend. Balancing the tension forces with

pressure leads to the Young–Laplace equation, source: [18]

∆G = γV (
2

Rx
). (2.3)

It will be assumed that the velocity for grain growth will be proportional to the Gibbs free energy. We arrive

at,

v =αM
2γ

Rx
, (2.4)

where α is a proportionality constant and the M the grain boundary mobility [6].

The condition for the grains to be in equilibrium can be obtained either by considering the total grain

boundary energy associated with a particular configuration, or more simply by considering the forces that

each boundary exerts on the junction (Chapter 3). Dunn, Chalmers and their co-workers [19, 20] made use

of the effect of grain boundary melting on grain growth. They made some interesting observations which

strengthens the choice for vertex-based principles. They found when melting a confined region near the

grain edges, grain growth will stop. This did not necessarily happen when melting takes place near the center

of a grain face. Hence, the effect from curvature near the edges are more pronounced than in the center of

grain faces. Therefore, let’s now only consider a vertex (intersection of three grains in 2-D).

In the case of a triple point, as the boundary tensions must be in balance, the following must hold for

equilibrium:

γ23

sinθ1
= γ13

sinθ2
= γ12

sinθ3
. (2.5)

Figure 2.7: The balance of grain boundary tensions for a grain boundary triple point in metastable equilibrium, source: [6]

If grain boundary energies are assumed to be equal (this assumption will be made clear in the next para-

graph). It follows that θ1 = θ2 = θ3 and therefore the angle for which the equilibrium holds, θ = 120◦ for a

triple point. Similarly it can be shown that θ = 109.28◦ at a corner where four grains meet in three dimensions.
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When these angular conditions are satisfied a complete meta-stable equilibrium is not yet reached. Also

the surface tension must balance over all the boundary faces between the junctions. The only way the bound-

ary tension forces can balance in three dimensions is if the boundary is:

1. Planar (r =∞) or

2. Curved with equal radii in opposite directions.

Although it is theoretically possible to construct a 3-D polycrystal in which boundary tension forces are in

balance, in practice this is not possible. There will always be boundaries with a net curvature in one direction.

Some examples of grains with boundary tension forces are given in figure 2.8.

We see that if the number of boundaries is six and if the angles all equal 120◦, the structure is metastable.

Because both requisites of metastability are fulfilled: angles and also the edges connecting the vertices are

straight lines. If the number of grain boundaries belonging to one particular grain is smaller than six, the

edges must be concave such that the grain will shrink. If the number of grain boundaries is larger the grain

will grow because its edges are convex. This will result in a decrease of the total number of grains and thereby

increasing the mean grain size. Hence, the total grain boundary energy is reduced. This phenomenon is

known as grain growth or grain coarsening.

Figure 2.8: Grain boundary configurations all angles are 120◦, source: [6]

2.3. GRAIN BOUNDARY ENERGY
Next the grain boundary energy will be explained. This energy comes from different orientations of a grain

around the lattice. By considering two relatively simple orientations the concept will be explained. Two ex-

amples are: pure tilt boundaries and pure twist boundaries, see figure 2.9. These lattices of any two grains

can be made to coincide by rotating one of them through a suitable angle about a single axis.

To consider the grain boundary energy first the assumption has to be made that the energy is proportional

to the dislocations in the boundary. We have,

γ∝ Ddi s

.

Here Ddi s is the dislocation spacing. The dislocation spacing is calculated with use of the Burgers vector

b and the misorientation angle θ (see for an illustration figure 2.10):

Ddi s =
b

sinθ
≈ b

θ
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(a) Tilt (b) Twist

Figure 2.9: Two examples of different orientations, source: [6]

Figure 2.10: An example of a low-angle tilt boundary. Where b the Burgers vector and θ the misorientation angle, source: [6]

.

First consider a low-angle of misorientation, θ between the two grains. The dislocation spacing is very

large and the grain boundary energy γ is approximately proportional to the density of dislocations in the

boundary, 1/Ddi s . As θ increases, the strain fields of the dislocations progressively cancel out, therefore γ

increases at a decreasing rate. In general when θ = 10−15◦, the dislocation spacing is so small such that the

dislocation cores overlap and it is then impossible to physically identify the individual dislocations. Hence,

the grain boundary energy is almost independent of the misorientation! As seen in figure 2.11.
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Figure 2.11: Grain boundary energy depending on the angle of misorientation, source: [6]

2.4. GOVERNING EQUATIONS

To develop an understanding of curvature driven grain growth a more mathematical approach is needed.

To obtain the governing equations used in the modelling, the concept of curvature is needed. As seen in

equation 2.4 the propagation of the interface depends on the radii of curvature. For any simple closed curve,

curvature κ can be calculated for any given point by placing a circle which runs through the point and is tan-

gent to points nearby (see figure 2.12). Now the governing equations of the curvature driven grain growth will

be presented. In this report only the curvature flow of planar curves and two dimensional cell structures is

considered.

Figure 2.12: A simple, closed curve, with points highlighted, and tangent circles and radii drawn, source: [21]

A curve in the plane can be defined as a continuous mapping α : I = [a,b] → R2. The curve is closed if

α(a) =α(b), a curve is simple if for all ŝ,u ∈ (a,b), α(t ) 6=α(u) (no intersection possible). A curve is regular if

α′(ŝ) 6= 0 ∀ŝ ∈ I . The arc-length s of a curve α mapped from the interval [a,b] is defined as s(α) =
b∫

a
|α′(ŝ)|d ŝ.

An arc-length parametrization is chosen such that the arc-length s is always exactly b −a.

Let an arc-length parametrized curve α be simple, closed, at least twice differentiable and |α′| = 1 (in

higher dimensions ||∇α|| = 1). Curvatureκ can be defined as follows: Let T(s) = α′(s)
||α′(s)|| denote the unit tangent

to α at a point α(s), pointing in a direction in which the curve is traversed. Let N(s) be the unit vector normal
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pointing outwards from α. Let the curve be traversed counterclockwise, then κ is defined as:

κ=
−||T′(s)|| = −||∇ ∇α

||∇α|| || = −||∇2α|| if the unit tangent vector is turning clockwise

||T′(s)|| = ||∇ ∇α
||∇α|| || = ||∇2α|| if the unit tangent vector is turning counterclockwise

Let α(•,0) : S1 →R2 be an embedded, closed planar curve that is at least twice differentiable. Then define

α : S1 × [0,T ] →R2, where S space and require it to satisfy:

∂α

∂t
=CκN, (2.6)

as parameter t moves through [0,T ] the curve evolves through time. C is a constant which depends on

physical properties of the system. An interesting result from Hamilton, Gage, and Grayson [22, 23] which can

be observed in figure 2.13 is that every curve will finally evolve to a circle as it shrinks.

Figure 2.13: A smooth curve embedded in the plane evolves via curvature flow. The area bounded by the curve decreases at a constant

rate, and the curve becomes progressively more circular; the curve eventually disappears in finite time, source: [21]





3
DIFFERENT MICROSTRUCTURE MODELS

Different models have been developed to describe all the processes occurring in the microstructure of steel.

In this chapter the most prominent ones will be explained. Due to the fact that the current model is a Cellular

Automata based model, the extension will have its basis formed by Cellular Automata. Notice that the differ-

ent methods to calculate curvature-driven grain growth find their fundamental ideas in the microstructure

models described here.

3.1. GRAIN SIZE DISTRIBUTION OF HILLERT
One of the earliest models to describe normal grain growth and the size distribution in the material was

published by Hillert [24] in his paper in 1965 "On the theory of normal and abnormal grain growth". Now it is

mostly used to verify the behaviour of new methods globally. He starts with equation (2.6) (Gibbs-Thompson)

v = M∆G = Mσ(
1

Rx
+ 1

Ry
). (3.1)

Where M is the grain boundary mobility, γ the grain boundary energy and Rx,y the principal radii of

curvature. For this analysis the interest goes to the averaged value over all grains. To get the net increase of

an averaged single grain a assumption has been made:

dR

d t
=αMσ(

1

Rcr
− 1

R
), (3.2)

where Rcr is the critical size for which the grain either grows or shrinks, which can experimentally be

determined and α a dimensionless constant. A steady state condition for the relative size u = R/Rcr can be

obtained from the equation (3.2). This is called the Lifshitz-Slyozov (LS) stability condition (see for a more

detailed derivation the appendix of the article of Hillert):

du2

dτ
= γ(u −1)−u2, where τ= lnR2

cr and γ= 2αMσd t/dR2
cr . (3.3)

Next the Grain Size Distribution (GSD) is derived for both 2-D and 3-D case [24] and is given by:

P (u) = (2e)β
βu

(2−u)2+β exp

( −2β

2−u

)
. (3.4)

Whereβ= 2 for the 2-D case andβ= 3 for the 3-D case. Also the relative size u depends on the dimension,

as shown in the appendix of Hillert the mean grain size is R̄ = Rcr in the 2-D case.

13



14 3. DIFFERENT MICROSTRUCTURE MODELS

3.2. LEVEL SET METHOD
Together with the phase field method the level set method is used in a wide region of fields [25]. The basics of

the level set method in the case of grain growth due to curvature is explained here. For a more in depth and

general discussion see the work of Sethian and Osher [25].

Define a smooth (Lipschitz continious) function φ(x, t ), that represents the interface as the set where

φ(x, t ) = 0. Here x = x(x1, ..xn) ∈Rn . The level set function φ has the folowing properties:

• φ(x, t ) > 0 ∀x ∈Ω

• φ(x, t ) < 0 ∀x ∉ Ω̄

• φ(x, t ) = 0 ∀x ∈ ∂Ω= Γ(t )

Thus, the interface is to be captured for all later time, by locating the set Γ(t ) for which φ vanishes. The

motion is described by convecting the φ values (levels) with the velocity field~v . This expressed by the follow-

ing equation:

∂φ

∂t
+~v∇φ= 0 (3.5)

Only the normal component of ~v is needed: vN =~v ∇φ
|∇φ| . This gives:

∂φ

∂t
+ vN |∇φ| = 0 (3.6)

Setting vN =Cκ, we obtain:

∂φ

∂t
+Cκ|∇φ| = 0 (3.7)

Now the growth of the interface is completely defined by the last equation. For a more visual illustration

on how the propogating interface is described in the Level set method see figure 3.1.

Figure 3.1: Left the original front lies in xy plane. Right the level set function, front is intersection of surface and xy plane. Here, T is the

height function φ, source: [26]

3.3. PHASE FIELD
Here only the governing equations of the phase field method will be introduced. The main two ideas of the

phase field are: a diffuse interface region (instead of a sharp one, as used in the level set method) and the

minimization over the free energy. Instead of a sharp interface the phase field function φ(x, t ) of thickness ε

is introduced, which is a continuous function at the interface region. This function is for example given by:
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φ(x,0) =
1 if x is in Grain A at time t,

−1 if x is in Grain B at time t

and at the the interface region characterized by −1 <φ(x, t ) < 1.

The total free energy of a system is described by the function:

F (φ,u) =
∫
Ω

[
f (φ)+ε2|∇φ|2]dΩ. (3.8)

The function f (φ) gives the free energy of the system not effected by the boundary. The total free energy

of the system depends heavily on the boundary and therefore the term ε2|∇φ|2 is added. The free-energy has

to be minimized and the so called Euler-Lagrange equation is obtained. Thus minimize:

δF

δφ
= 0. (3.9)

A one dimensional example is given:

∂ f (φ)

∂φ
−2ε2 d 2φ

d x2 = 0. (3.10)

The phase field method applied on the grain growth by curvature problem is found here [27].

3.4. CELLULAR AUTOMATA

Already in the 1940s at the currently called Los Alamos national laboratory the first hand was laid on what is

called a Cellular Automata model. Here Stanislaw Ulam studied crystal growth. He represented the crystal

surfaces as nodes in a lattice network and using one of the computers built for the Manhattan Project, he

observed the changes to the surfaces as the nodes obeyed the rules that he imposed on them. He suggested a

similar approach on a problem his colleague von Neumann was working on. Neumann listened and adopted

the suggestion and called it Cellular Automata. Nowadays it is used for a great variety of applications e.g.

computer processes, cryptography, biology etc.

A SHORT DESCRIPTION

A short description of a general CA model is given, for a more detailed work we refer to [28]. A n-dimensional

subspace is divided in a finite number of volumes, called cells. All these cells have a state assigned to it; this

can be any natural number referring to the grain it belongs to. In the models described here the cell either be-

longs to an austenite or to a ferrite grain. The state of the cells depends on its neighbors and the state change

rules defined for the considered cell. Whether a cell is neighbor cell of the cell considered depends on the

neighborhood definition. Most used definitions are Neumann (left) and Moore (right) see figure 3.2. A state

change rule defines the new state of a cell as a function of the states of all cells in the local neighborhood of

that cell. Note that due to the flexibility of the cellular automata lots of different implementations exist!

A more mathematical description is given with the global state function Υ which is spatially partitioned

into a finite number of cells. All cells i have a state ξi and a neighborhood ηi at discrete moments in time

tk , a state transformation function f k
i is defined such that the new states can be computed depending on

information solely from states and neighborhoods computed in previous time steps.
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(a) Von Neumann neighbourhood (b) Moore 3x3 neighbourhood

Figure 3.2: Two examples of most used neighbourhoods, source: [29]

MODEL BY BOS ET AL.

In the article of Bos et al.[1] a description is given of the model developed for the metallurgical mechanisms

occurring in the annealing stage of dual-phase steels. A summary is given here, where the focus lies on which

metallurgical properties are included in the model and which are not.

In the CA-model the cells form grains which have the following properties:

• The phase of the grain

• Strain energy

• Average carbon concentration

• Carbon concentration at the interface

The growth of the grains is defined by the grain-boundary velocity v , determined by:

v = M∆G . (3.11)

Here G depends on the grain and its properties. As an example we give the interface velocity for the ferrite

growth in the austenitite to ferrite phase transformation:

v = Mαγ
0 exp(−Qαγ

g /RT )∆Gαγ(xγ,i nt
C ), (3.12)

We can denote the following variables:

• Mαγ
0 , the pre-exponential factor for grain boundary mobility, the superscript denotes interface [m

J−1s−1]

• Qαγ
g , Activation energy for the grain boundary mobility [kJmol−1]

• R, the gas constant [J mol−1K−1 ]

• T , temperature in K

• ∆Gαγ(xγ,i nt
C ) [J mol−1], the chemical driving force, where the variable xγ,i nt

C is the carbon concentration

[weight %]

Recrystallization, transformation, nucleation and growth have already been included in the model, Mul

[29] later changed the determination of the carbon interface concentration. Previously it was based on an ex-

ponential profile which was not accurate in the multi-grain model. The carbon concentration is now solved

by using a finite difference grid on the austenite domain.
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Still missing today is the growth due to surface tension or capillarity at the grain boundary. The impact of

surface tension or capillarity is relatively small in the beginning of the process. When other forces stabilize

the relative influence of curvature will continue to grow. This is the reason to further investigate this driving

force and improve the model of Bos et al..





4
CHOOSING CURVATURE METHOD

A larger overview of the methods available to calculate grain growth by curvature can be found in the liter-

ature study. Three methods here will be discussed and compared later on to justify the decision on taking

one of them to implement in the current model. These three methods are all vertex based. These methods

have been preferred over counting cell methods and other derived counting cell methods for the following

reasons. First, an important factor is the computation time for a counting cell method. Instead of using only

a few points at the intersection of grains (vertices), for all interface cells the curvature needs to be calculated.

To be able to calculate the curvature the number of cells in a neighborhood belonging to grain A or grain B

are counted. When the curvature is very small the size of the neighborhood needs to be enlarged to get the

necessary accuracy. This variation in size of the neighborhood will add even more complexity to the model.

4.1. DESCRIPTION OF VERTEX METHODS

The first method by Nippon, uses the grain boundary energy belonging to each particular grain to force the

position of the vertices in an equilibrium state. The second method minimizes the grain boundary energy

to obtain the equation of motion. The third method uses the exact solution of the total area of grain growth,

with help of the Neumann-Mullins relation [30].

4.1.1. VERTEX BY NIPPON

Mathematically the most basic method is given in this thesis. Key here is the need of the correct grain bound-

ary energy γ per grain boundary edge. Therefore only the governing equations and a short discussion of the

method by Tamaki [31] will be given.

vg b,i = Mg b,iγiκi (4.1)

vtr i pl e,i = Mtr i pl e,i

3∑
j=1

γi j
ri j

|ri j |
(4.2)

Here vg b,i is the velocity vector for vertices on the grain boundary (edge), so called virtual vertices and

vtr i pl e,i is the velocity vector for triple points. In figure 4.1 the method is illustrated. To obtain the curvature

κ, a formula is used which calculates the radius of a circumscribed circle around three virtual vertices. The

19



20 4. CHOOSING CURVATURE METHOD

equilibrium angles at the triple are not forced in this method as is done in the methods that will be discussed

afterwards.

Figure 4.1: Local curvature multi-vertex model, source: [31]
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4.1.2. MINIMIZATION OF GRAIN BOUNDARY ENERGY

An approach based on minimization of grain boundary energy has been proposed by Fullmann [32] in 1952.

Recent developments based on Fullmann are so called vertex models. It gives the possibility to treat the

influence of both the energy and the mobility of grain-boundaries. Fundamental to the vertex model is the

coupling of the dissipative energy and the potential energy. The dissipative equation of motion is presented

by the potential function F {q} and the Rayleigh dissipation function R
(
{q̇}, {q}

)
where {q} = q1, q2, ... are a

discrete set of dynamical variables [33]. Hence,

∂F

∂qi
=−∂R

∂q̇
. (4.3)

This expresses the relation between the frictional force on the left and the static force on the right. To

find the equations of motion for the vertices a minimization problem has to be solved to obtain the Euler-

Lagrange equation. See the literature report [2] for the derivation of this relation. The following system is

obtained:

Di vi = fi − 1

2

(i )∑
j

Di j v j , i = 1...N (4.4)

Di j = 1

3mi j ||ri j ||

[
y2

i j −xi j yi j

−xi j yi j x2
i j

]
, (4.5)

Di =
(i )∑
j

Di j , (4.6)

fi = ∂F

∂ri
=−

(i )∑
j
σi j

ri j

||ri j ||
. (4.7)

Where j in the sum
(i )∑
j

is running over the vertices which are connected to vertex i and N is the total

number of vertices in the system. In Kawasaki [33] the system of equations is further simplified. This will not

be done as the convergence to equilibrium state is not happening because of the simplification according to

D. Weygand [34].
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4.1.3. VERTEX METHOD USING NEUMANN-MULLINS EQUATION

In 2009 the article "A more accurate two-dimensional grain growth algorithm" has been published by Lazar,

MacPherson and Srolovitz [4]. Here the Neumann-Mullins relation [30] (an exact relation for grain growth in

two dimensions using the number of vertices) is used to obtain a method describing the grain growth due

to surface tension. Although a two-dimensional algorithm is in theoretical perspective use full in practice

it is not. Not until 2007 an extension to three dimensions was not available. This changed when Robert D.

MacPherson together with David J. Srolovitz published the article "The von Neumann relation generalized to

coarsening of three-dimensional microstructures" in Nature [5]. For now only the two dimensional case is

considered, but extending to three dimensions seems evident [3].

First the proof of Neumann-Mullins relation will be discussed. Then the results of [30] will be used to

obtain a method for grain growth in two dimensions, as proposed in [4].

DERIVIATION OF NEUMANN-MULLINS EQUATION

In 1956 Mullins published the article called: "Two dimensional motion of idealized grain boundaries" [30].

Here he proofed a general theorem concerning the change of area enclosed by a curve in two dimensions.

This curve is defined as r (θ, t ), where r and θ are polar coordinates and t time. Assumed is that any point

of the curve moves towards it center of curvature with a velocity v , given by v = Mγκ, where M is the grain

boundary mobility and γ the grain boundary energy. Define the arc length s of a curve α as s(α) =
b∫

a
|α′(t )|d t

andβ the angle measured in a counterclockwise manner between the positive x-axis and the directed tangent.

From figure 4.2 it can be seen that ∆r sinψ = −Mγκ∆t . Using the relations κ = ∂β
∂s and sinψ = r ( ∂θ∂s ) (from

Green’s Theorem) a new relation for ∂r
∂t can be obtained:

∂r

∂t
=−Mγ

κ

sinψ
=−Mγ

1

r

∂β

∂θ
. (4.8)

The area enclosed by a simple closed curve is given by A = 1
2

2π∮
0

r 2dθ, where the integral is taken counter-

clockwise around the curve.

Using these two results and differentiating over time gives:

d A

d t
=

∮
∂r

∂t
r dθ =−

∮
Mγ

∂β

∂θ
dθ =−Mγ

∮
dβ=−2πMγ. (4.9)

Remark: the result also holds for M ,γ being a function of β as the function is 2π-periodic.

Figure 4.2: Closed curve which moves towards it center of curvature, source: [30]
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From this relation it can be concluded that two curves of different shape, but enclosing equal areas have

an equal growth rate!

Now a similar relation will be obtained for a two dimensional area of grain boundaries. A network of

arbitrary curves dividing the plane into polygon-like grains is presented, see figure 4.3. As an illustration a

grain with n sides is considered, the vertices are numbered counter clockwise, each side has the same number

corresponding to the preceding vertice. Let βi j be the angle between the x-axis and the tangent to i -th side

and through the j -th vertex. The angle between each edge is assumed to be 2π
3 or 120 degrees, as explained

in Chapter 1. When every edge has a different grain boundary energy (anisiotropic), a different equilibrium

angle can be derived. Using the relation of equation (4.9), we find the rate of change of area of the grain to be:

d A

d t
=−Mγ

∮
dβ, (4.10)

=−Mγ
[
(β11 −β12)+ (β22 −β23)+ (β33 −β34)+ ...+ (βnn −βn1)

]
, (4.11)

=−Mγ
[
(β22 −β12)+ (β33 −β23)+ ...+ (β11 −βn1)

]
. (4.12)

Figure 4.3: Two dimensional area of grain boundaries, source: [30]

From figure 4.4 it can be concluded that β22 −β12 = π− 2π
3 = π

3 which is the case for the first n −1 terms.

From figure 4.3 β11 −β51 = π
3 −2π. Hence,

d A

d t
=−Mγ

[
(n −1)

π

3
−2π+ π

3

]
=−Mγ

π

3
(6−n). (4.13)

IMPLEMENTATION OF NEUMANN-MULLINS RELATION IN VERTEX METHOD BY LAZAR ET AL. [4]

The following idea is considered: use the knowledge of the total grain growth (Neumann-Mullins relation,

which is the exact for normal grain growth in an isotropic polycrystal) of one particular grain and divide this

growth over all the vertices.

For simplicity first a single isolated grain is considered see figure 4.5, hence n = 0. A key observation

is that when changing the area locally the total area is changed with the same amount. When for example
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β12β12

1

1

2

2

3

β22

Figure 4.4: A closer look on how the β is constructed

the position of the vertex σ is changed, only the gray area is affected and the total area of the grain changes

with the same amount. Therefore when using the derived relation above (4.13) and by summing over over all

nodes separately:

∆A = 2πMγ(
0

6
−1)∆t =−2πMγ∆t (4.14)

=
n∑

i=1
−αi Mγ∆t , where

n∑
i=1

αi = 2π. (4.15)

First the equation of motion of a virtual vertex is derived. This is a vertex which has only two neighbouring

grains and therefore only has two neighbouring vertices. If only virtual vertices exist n = 0 and a local change

in area by moving a vertex is exactly the same as the global change in area. Consider a node σ with edges

e1 and e2 as shown in Figure 4.5. The exterior angle ασ, from the cosine law ασ = cos−1
(
− e1e2

|e1||e2|
)
. Node σ

is moved by a displacement vector vσ , which will change the area of the triangle by ∆A = −αi Mγ∆t (using

equation (4.14)). For numerical stability reasons node σ is moved in the direction of e1 +e2. Hence,

vi =αi Mγ∆t
e1 +e2

|e1 ×e2|
. (4.16)

Consider the triple junction node τ (or node i in general) as shown in figure 4.6. Again the Neumann-

Mullins relation is considered, now for the displacement of the triple junction node. Because there are three

different grains meeting at a triple point the relation ∆A j = −(α j − π
3 )Mγ∆t holds, where α j i is the exterior

angle at the triple junction with respect to grain j . When one grain has n triples this means it also has exactly

n neighbouring grains. Therefore,

n∑
i=1

(α j ,i − π

3
)Mγ∆t = (2π− nπ

3
)Mγ∆t , (4.17)

=−2πMγ(1− n

6
). (4.18)
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Figure 4.5: Single grain, node σ with displacement vector and edges e1,e2 connected to σ, source: [4]

Figure 4.6: Triple defined by its vectors belonging to the edges connected to the triple and exterior angles α j i , source: [4]

The α’s are given by:

α1,i = cos−1
(
− e1,ie2,i

|e1,i||e2,i|
)

, (4.19)

α2,i = cos−1
(
− e2,ie3,i

|e2,i||e3,i|
)

, (4.20)

α3,i = cos−1
(
− e3,ie1,i

|e3,i||e1,i|
)

. (4.21)

For all three grains the Neumann-Mullins relation needs to hold. Hence, the following system of equations

need to be solved:

 e1,i −e2,i

e2,i −e3,i

e3,i −e1,i

vi = 2Mγ∆t

 α1,i − π
3

α2,i − π
3

α3,i − π
3

 . (4.22)

Due to the fact that there are three equations and the degree of freedom is two. The number of equations

can be reduced, obtain:
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vi = 2Mγ∆t

[
0 −1

1 0

][
e1,i −e2,i

e3,i −e1,i

]−1 [
α1,i − π

3

α3,i − π
3

]
. (4.23)
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4.2. COMPARING VERTEX METHODS
After discussing three possible methods, now a decision has to be made which method will be implemented

in the general model. To substantiate the decision different geometries will be tested.

Distinguish two ways of testing whether the method works appropriately. First the most important one,

the methods are compared with the analytic solution. The vertices are placed on a circle where the exact

curvature is known; hence comparison with the exact solution is possible. The second test is comparing the

found solution with an analytical implementation of the method on the selected test case. This has been

done by substituting an analytical representation of the problem in the method [34].

SIMPLE POLYGON

First a polygon where the vertices are placed on a circle is constructed. Knowing the exact curvature of a cir-

cle, the displacement of a vertex using different methods can be compared with the displacement according

to the Gibbs-Thompson effect: v =−Mγκ.

Another way is introduced by Weygand et al. [34], he makes use of equation (4.4) to find the analytic

solution of the change in total area of a n-sided polygon. See appendix A to see the derivation which leads to:

d A′
n

d t
=−2Mγn tan(

π

n
). (4.24)

Take the limit of n →∞ it can be seen that it is similar to the exact solution of a circle:

lim
n→∞

d A′
n

d t
=−2πMγ, (4.25)

which is the Neumann-Mullins relation for n = 0. Note: Here the dissipation and potential term is used as

a starting point, which of course is already an approximation of the influence of the surface tension.

Figure 4.7: n-sided polygon
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EMBEDDED POLYGON

The second test case is an extended version of the simple polygon. Whereas in the simple polygon only the

effect on virtual vertices could be observed by adding more vertices, also triple points can be studied. A set

of vertices with fixed locations is placed equidistant from each other on the outer circle. These vertices are

connected to the closest already existing vertices. Hence, a set of triple points is constructed, see figure 4.8.

Using the Neumann-Mullins relation (equation (4.26)), an exact solution to the change in area of the poly-

gon is available. This will be compared with the change in area of the polygon which is embedded in the

polygon constructed by the newly added vertices.

d A

d t
=−2πMγ(1− 1

6
n) (4.26)

Figure 4.8: Embedded polygon, triples in the inner polygon
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EMBEDDED POLYGON WITH VIRTUAL VERTICES

To see the effect of adding virtual vertices, an embedded polygon is expanded with so called virtual vertices. In

figure 4.9 only one extra vertex is placed between each triple point, but this number can vary (take in account

the discussion in Chapter 4.1). The effect of small perturbations of the vertices can now be observed. Another

interesting result would be to see what happens to the vertices when the number of triple points is six. From

Neumann-Mullins the total area of the polygon should not change in time, as a hexagon is in equilibrium

state.

Figure 4.9: Embedded polygon with nvi r tual = 1 (blue)



30 4. CHOOSING CURVATURE METHOD

4.3. RESULTS
The results of the test cases introduced in Chapter 4 will be presented and discussed. The differences between

the method first presented by Kawasaki and the method by Lazar is highlighted, such that a well reasoned de-

cision can be made on which method to finally implement.

A SIMPLE POLYGON

As expected the growth of the polygon by Lazar’s method is consistent with the Neumann-Mullins relation:

d A

d t
=−Mγ

π

3
(6−n) =−Mγ2π (4.27)

The Method of Tamaki is simply calculating the curvature by finding the unique circle based on its two

neighbouring points and the considered vertex (the essence of the method by Nippon when only virtual ver-

tices are implemented). As seen in figure 4.10 this coincides with Kawasaki and when enough vertices are

introduced it is similar to the result obtained by Lazar’s method, as was expected see equation (4.25).

n number of vertices

4 6 8 10 12 14 16

d
A

/d
t

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Simple polygon

Curvature method

Kawasaki

Lazar

Figure 4.10: Change in area of a simple polygon, the derivative of area is multiplied by the factor − 1
2π and M = 1
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EMBEDDED POLYGON

The embedded polygon introduced in Chapter 4 is a different interpretation of the embedded polygon intro-

duced in Weygand et al. There the virtual vertices are placed on the straight line connecting the triples. When

implementing this it can be seen that figure 4.11 coincides with figure 5 of Weygand et al. However, when

placing the virtuals on the circle as is done in figure 4.12 for Lazar’s method, the method gives a large error

when comparing to Neumann-Mullins relation. Observed can be that this is not the case for Lazar’s method.

When implementing the method of Nippon on the polygons and comparing with the Neumann-Mullins re-

lation, no sensible results could be found.

Figure 4.11: Change in area of an embedded polygon with virtual vertices (v v = 0, v v = 2, v v = 5) on a straight line connecting the triples.

The black line is the Neumann-Mullins relation

n number of vertices

2 4 6 8 10 12 14 16

d
A

/d
t

-4

-2

0

2

4

6

8

10

Lazar: Embedded Polygon

vv=0

vv=5

vv=2

vv=1

Figure 4.12: Change in area of an embedded polygon with virtual vertices (v v = 0, v v = 1, v v = 2, v v = 5) on a circle connecting the triples

To illustrate what happens two figures are made of a polygon with six triple points and four virtual ver-

tices, figures 4.13 and 4.14. Notice that the virtual points are not anymore nicely distributed over the grain

boundary edge. Concluded can be that this is due to the connection of a triple point and virtual point which

gives an error in the solution. This occurs because the velocity of neighbouring cells is also taken in equation

(4.4). In contrast to Kawasaki the method of Lazar makes sure that the virtual points stay equidistant and the

triple points move enough outside to enlarge the area which is decreased by the virtual points. This effect is

not anymore present when the virtual points are given on the straight line see figures 4.15, 4.16. An overview

of the obtained results is given in table 4.1. Finally we can conclude that the method by Lazar is most suitable

to describe grain growth by curvature.
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Table 4.1: Overview of the result of the selected methods on the concerning test cases, where v v means number of virtual vertices

Simple Polygon Embedded Polygon Neumann-Mullins

Curvature Neumann-Mullins Arbitrary n, v v = 0 Arbitrary n, v v > 0

Nippon + - - +/-

Kawasaki + - + -

Lazar + + + +

Figure 4.13: Kawasaki’s method implemented on an embedded polygon with six triples and four virtual vertices, virtual vertices on the

same circle. + at t = 0, blue * at t = 1, yellow * at t = 10.
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Figure 4.14: Lazar’s method implemented on an embedded polygon with six triples and four virtual vertices, virtuals on the same circle.

+ at t = 0, blue * at t = 1, yellow * at t = 10.

Figure 4.15: Kawasaki’s method implemented on an embedded polygon with six triples and four virtual vertices, virtuals on the a straight

line connecting the triples. + at t = 0, blue * at t = 1, yellow * at t = 10.
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Figure 4.16: Lazar’s method implemented on an embedded polygon with six triples and four virtual vertices, virtuals on the a straight

line connecting the triples. + at t = 0, blue * at t = 1, yellow * at t = 10.



5
IMPLEMENTATION IN CELLULAR AUTOMATA

Finally the general model can be expanded to include grain growth by curvature. The procedures that are

needed to be able to get a working hybrid Cellular Automata-Lazar method are presented. First the vertices

(both virtual as triple) need to be extracted from the Cellular Automata model. Second the vertices will move

according to the derived equations from Lazar (4.23). Finally all changes need to be updated back into the

model.

5.1. FIRST PART – EXTRACTION

In this first part all the necessary information needed for the Lazar method is extracted. There are two dif-

ferent vertices that are needed for the description of the movement of a grain. So called triple points that lie

between three grains and virtual vertices that lie on the edges of a grain; only having two mutual grains. First

the triple points need to be extracted. Search through the interface cells and check whether more than three

different grains lie in its Moore neighborhood. Interface cells are normal cells but with a tag such that they

are recognized easily. The cell get this tag when in its Moore neighborhood two different states (grains) occur

e.g. it lies on the interface. This limits the amount of cells needed to be evaluated enormously.

If a cell is found with three or four different grains in its neighborhood, it is again searched in a smaller

neighborhood to find its exact location and can be added to the vertex list. All these vertices carry information

about its exact and discrete location, connections and to which grains it belongs. Because our initial Voronoi

is discrete it can rarely happen that four grains meet, in the analytic case the probability of this phenomena is

zero. If such a vertex is found it will automatically be split into two vertices, dividing the four grains over the

two.

The triple points give a good description of a grain. It not only gives the location of the end points of

its edges, it also tells something about the average slope between the points, that is related to the curvature.

When the interface between two vertices is a straight line the interface will then be accurately described.

Unfortunately this is not the case, because the grain growth part will step in when other processes in the mi-

crostructure have stopped. It is not guaranteed to only have straight lines between the triples; that initially

came from the starting Voronoi. To be able to follow the interface correctly additional vertices: virtual vertices

are placed.

35
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The algorithm works as follows:

1. Find the midpoint between two vertices

2. Depending on the slope of the edge look either horizontally or vertically, to find two different grains

next to each other.

3. Use this location to calculate the Total Variation of second order [35]

T V (x) =∑
xi−1 +2xi –xi+1 (5.1)

4. When this total variation is larger than a certain lower boundary an extra vertex is added

5. When new vertex is added two new edges appear and the same procedures needs to be repeated

When finished all grains will accurately be described by use of both triple points and virtual vertices.

Before the method by Lazar can be used some additional information is necessary. Finding the right

connections between all triple points, sorting all vertices by grain and finally separate the interface cells by

edge. The following information is now known:

• mvVertexList included both virtual and triples, position, grain-ids, connectionList

• mvGrainList, by grain sorted list with all vertices sorted by order. The list is needed to be able to track

the size of the grains at all times, the vertices will be sorted by grain and in a way such that all vertices

can be obtained in clockwise order.

• mvEdgeMap, by edge sorted interface cells. After moving the vertices limited to only one cell in either

vertical or horizontal direction, also the cells at the interface need to be updated. Therefore the inter-

face cells of the specific edges belonging to the triples are needed. A map container is used: every triple

pair belonging to an edge is stored as a key and all interface cells belonging to this edge are stored as

the mapped value.
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5.2. SECOND PART – LAZAR METHOD

All the needed information from the Cellular Automata model is extracted, now grains are moved to minimize

its grain boundary energy. In figure 5.1 an overview is found of the model. Assumed here is that initialization

has finished, e.g. only the second and third part of the model is given. Some short explanations will be given

on some of the functions used. Notice that the lower part of the figure belongs to part three of the model;

placing back the moved vertices in the Cellular Automata model. In general be aware that every change or

function needs to take in account the periodic boundaries.

Figure 5.1: Overview of algorithm, rectangle is a data element, arrow shaped polygon is a function and the triangle is output

Start at the top of figure 5.1. From mvVertexList all essential information needed to calculate the velocities

of the vertices can be obtained. This is calculated by using dV for the triple points and dVVirtual for the virtual

vertices. Next is the variable vDx or vDy that keeps track of the movement in previous time steps. The reason

that the coordinates of the triple points are not directly updated is that the displacement of the vertices needs

to be restricted. Otherwise the procedure to place back the information into the CA model will be obstructed.

Therefore the TimeStepFunction is used.

TIME STEP FUNCTION

The movement of a vertex is restricted to only one cell in horizontal direction and one cell in a vertical direc-

tion. Necessary as only the interface cells will be updated for every step. This restriction prevents a cell not

being checked when the time step is too large and movement of a triple thus exceeds the interface.

Time t is obtained by calculating all velocities and making sure for every point that:
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d X + tmaxvx ≤p
2 (5.2)

dY − tmaxvy ≤
p

2, (5.3)

where d X and dY is the total displacement of a triple of the previous time steps, but after its last use of

moveTriple. The vertex for which d X or dY has reached
p

2 (the size of a cell is 1 by 1 such that the length

scale is 1) will update the states of the cells surrounding the moved vertex and its edges, e.g. the third part of

the model. The d X or dY of the considered vertex will be set to zero.

Within the process of the moving triples two procedures can occur. The removal or addition of vertices

and a topological T1 change.

REMOVAL/ADDITION OF VIRTUAL VERTICES

In the original paper of Kawasaki [36] where the first two dimensional vertex model was proposed, only triple

points were used. Further development in three dimensions revealed that more information of the edges is

required. Therefore, a second kind of vertex is introduced: the virtual vertex [34]. These new introduced ver-

tices are placed between a pair of triple points (called ’real vertices’), to allow a finer grid over the edges.

Define nvi r tual as the number of virtual vertices between two triple points, the precision of the discretiza-

tion and therefore the precision of the approximation of the curvature depends on this number. A second

parameter needs to be introduced, the minimal distance between two virtual vertices for which otherwise

one vertex needs to be removed. Due to grain growth the structure will change, hence the number of virtual

vertices need to depend on the mean grain size < r >. Therefore, the minimum distance, ∆ between virtual

vertices is given [36]:

∆= α

nvi r tual +1
< r >, (5.4)

where < r >= [(2Atot al )/(πnr eal )]
1
2 using Eulers relation in two dimensions, Atot al the size of the system,

nr eal the number of triple points in the system. The pre-factor α is chosen small enough (0.025 in Weygand

et al. [34]) to have negligible influence on the size distribution of the grains. When the distance between two

real vertices is larger than 2.5nvi r tual∆, nvi r tual virtual vertices are introduced.

TOPOLOGICAL CHANGES

Next to the movement of vertices according to the equations of motions defined in 4.23 , some topological

changes need to be enforced. In the two-dimensional case the following needs to be considered:

1. removal/addition of virtual vertices

2. change in connection

3. removal of a grain

CONNECTION CHANGE & REMOVAL OF A GRAIN

The first topological transformation (seen in figure 5.2a) occurs when two triple points are in close distance

from each and get smaller. Then the vertex connections will change as illustrated. A consequence of this

transformation is that two grains will lose an edge and two grains will gain an edge. Changes will have to be
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(a) Transformation 1

(b) Transformation 2

Figure 5.2: Topological transformations, source: [34]

made in mvVertexList, mvGrainList and mvEdgeMap.

The second topological transformation (seen in figure 5.2b) removes two triple point when a three sided

grain which has one side smaller than ∆ and the other sides smaller than 2∆. In this case the size of the grain

is smaller than ∆2. Equivalent, remove a grain when its size is smaller than a certain parameter. To be able to

calculate the grain size use Green’s Theorem, to give an expression for the total area of a closed curve:

A =
∮

c
xd y (5.5)

Parametrize each segment of the polygon from (xk , yk ) to (xk+1, yk+1):

Ck : r = ((xk+1–xk )t +xk , (yk+1–yk )t + yk ) with 0 ≤ t ≤ 1 (5.6)

Plugging in gives the equation of the area:

A =
n∑

k=0

(xk+1 +xk )(yk+1 − yk )

2
(5.7)



40 5. IMPLEMENTATION IN CELLULAR AUTOMATA

5.3. THIRD PART – UPDATING THE CELLULAR AUTOMATA MODEL
To really obtain a hybrid CA-Lazar model, the information found using Lazar’s model needs to be placed back

into the CA model. This is done by making sure that the vertices enclosing a grain corresponds to the grain

found when looking at the states of the cells in the CA model. When a vertex moves, of course its edges im-

plying the borders of a grain will move and therefore the states telling whether the cell belongs to grain A or

grain B at the interface.

In this third part there are two important functions making sure that the right cells will be updated when

a vertex has been moved. One function only updates the interface cells at the edges where the number of

different states (grains) is limited to two. The other focuses on the cells near a triple point where the number

of neighbors is equal to three.

Looking specifically at the interface cells of the edge, the decision whether a cell lies within a grain is made

by checking whether it lies above or under the straight line connecting the two vertices of this edge. Needed

now is the information which grain lies above or under this line. The function getTopDown will give this in-

formation. It uses the two vectors belonging to a triple, where one belongs to the changed edge, the other

is one of the remaining two where the angle between the two vectors is not larger than 180 degrees. It next

calculates the dot product and projects this on the vector belonging to the edge of the considered triples. The

orthogonal component will point to which side of the edge the considered grain lays, who have both edges in

common.

When all three edges belonging to the moved triple are evaluated, only the interface cells with more than

two grains in their neighborhood need to be checked. This is done by updateTripleCells, that looks in the

neighborhood of the triple for these kind of cells. Next is to evaluate the angle of the vector that starts at the

vertex and ends in the middle of the considered cell. Comparing this angle with the angles of the edges the

corresponding grain can be found.



6
RESULTS FROM HYBRID CA-LAZAR MODEL

Before a general example will be given, it will be shown that some essential parts of the model work correctly.

The first part is extraction, it can be concluded that all vertices are successfully extracted as no problems arise

when the triples get in motion. Considering the second part, some special cases will be shown to validate of

the model. The third part has also been performed and will be discussed.

6.1. SPECIAL CASES CONSIDERED
Before the result of the movement of all vertices in the 2D case is given, two special cases will be examined:

the removal of a grain and a T1 change.

In Chapter 4 it can be observed that grains with less than six edges reduce in size and the ones with more

edges grow. In the process of getting smaller the grain loses triple points by a T1 change. This process can be

followed in figure 6.1 and 6.2. A T1 change occurs when two triple points move to each other. If a grain has

come to the point that it only contains three triple points and is small enough the grain will be removed. This

process can be followed in figure 6.3 and 6.4.

To follow more closely the effects in these special cases, a function has been written to stop all grains con-

taining more than three or four edges from moving. The grains are shown at specific interesting time steps,

note that this does not tell anything about real time as this differs due to the function timestep.

41
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Figure 6.1: A voronoi with a polygon having four edges. The green dot is a triple point, the blue dots are virtual vertices
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(a) Two polygon with each four edges are

moving. Especially notice two triples mov-

ing towards each other. T=141

(b) Two polygon with each four edges are mov-

ing. Especially notice two triples moving to-

wards each other, where two virtual vertices

have been removed. T=243

(c) Two polygon with each four edges are

moving. Especially notice two triples mov-

ing towards each other, last virtual is re-

moved. T=301

(d) Two polygon with each four edges are

moving. T1-change has been executed.

T=332

(e) Two polygon with each four edges are

moving. Now the two grains have both

only three edges. T=367

Figure 6.2: T1 change of a polygon with four edges. The green dot is a triple point, the blue dots are virtual vertices
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Figure 6.3: A voronoi with a polygon having three edges. The green dot is a triple point the blue dots are virtual vertices

6.2. PLACEMENT OF VIRTUAL VERTICES

According to [36] no additional virtual vertices are needed in the 2D case. This is in contradiction with the

results from this model and the observation of Lazar [4]. First of all there is the need to follow the grain bound-

ary more accurately. An algorithm has been developed to place additional vertices. It places virtual vertices

correctly on the interface, but has not been tested for all cases. Next it can be observed that a vertex is not

moving correctly if not enough virtual vertices are placed. Consider the following case:

A triple connected to three other vertices by the vectors:

(
−1

−1

)
,

(
−1

1

)
,

(
10

10

)
. (6.1)

Calculating the velocity vector for this triple point gives:
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(a) Zoomed in at the specific polygon at T=0

(b) Triples move to center at timestep T = 99

(c) Grain is getting smaller almost small enough to perform

change, T = 177

(d) Removal of grain is performed T=188

Figure 6.4: Removal of a grain with three edges. The green dot is a triple point, the blue dots are virtual vertices
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dv =
(

−52.36

−42.34

)
. (6.2)

If a virtual was added to the largest vector (edge), the length of the vector belonging to triple point is

reduced. Therefore replace

(
10

10

)
with a smaller vector:(

−1

−1

)
,

(
−1

1

)
,

(
1

1

)
. (6.3)

Calculating the velocity vector for this triple point again gives:

dv =
(

−52.36

104.72

)
. (6.4)

This illustrates the important effect the number of virtual vertices have on the velocity vector of a triple

point. To prevent this from happening more virtual vertices need to be introduced. Now only a certain lower

bound is used, but a more dynamic description of the necessary amount of virtual vertices is preferred.

6.3. UPDATING INFORMATION BACK INTO CA
For long the method to update the information back into the Cellular Automata did not function. Now it

works but there are still improvements necessary. These improvements are needed in the case virtual vertices

are used and or topological changes are enforced.

6.4. BEHAVIOUR OF ALL GRAINS: EXAMPLE
After considering special cases, now a general example of the movement of all triples under the influence of

minimization of grain boundary energy. A Voronoi is made for a grid size of 1000x1000 containing 70 different

grains is given. All triple points are found and where needed virtual vertices placed.

The model behaves as expected. In figure 6.6a it can be observed that grains with less than six triples

reduce in size, with six are stable in size and more than six grow in size. Next it can be seen that the rate

of growth is also proportional to the amount of triples a grain has. Around time t = 18 the straight line is

irregular, this is due to topological changes. A grain with for example 7 triples reduces to 6 and is in general of

a higher average size, therefore increasing the average grain size of grains with 6 triples. The next two figures

(6.6b, 6.6c) show how the distribution of size develops over time. In the starting situation, it can be seen that

the bulk of grains are close to the average grain size. As the process of minimization of grain boundary energy

develops, small grains get reduced in size even more and later on disappear, whereas large grains will tend to

get even bigger. This is the case for as well the size of grains, as the amount of triples.
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(a) Zoomed in at the specific polygon at T=2

(b) Unstable vertex moves in such a way that the grain becomes larger at

timestep T = 64

(c) Unstable vertex moves in such a way that the grain becomes larger, T

= 100

Figure 6.5: A polygon with an unstable vertex.The green dot is a triple point, the blue dots are virtual vertices
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(a) Here we see the average grainsize develop over time grains with different number

of triples

(b) A grainsize distribution, the number of grains that are in a certain grain size range

(c) Distribution of grains with a certain number of triples (edges)

Figure 6.6: An example of the development of grains due to minimization of grain boundary energy



7
FIRST CONCLUSIONS & FURTHER

RESEARCH

Vertex based methods have been selected to model grain growth. These methods are preferred over count-

ing cell methods and other derived counting cell methods for the following two reasons. First, an important

factor is the computation time for a counting cell method. Instead of using only a few points at the inter-

section of grains (vertices), for all interface cells the curvature needs to be calculated. To be able to calculate

the curvature the number of cells in a neighborhood belonging to grain A or grain B are counted. When the

curvature is very small the size of the neighborhood needs to be enlarged to get the necessary accuracy. This

variation in size of the neighborhood will add even more complexity to the model.

Three vertex methods have been tested: Tamaki [31], Weygand et al. [34] and Lazar [4]. Concluding from

the results of the polygon test cases, Lazars method has been chosen to further implement in a 2D structure.

A hybrid cellular automata-Lazar model has been constructed. Summarizing:

1. Extract the necessary data (vertices) from the CA model.

2. The vertices will move according to the derived equations from Lazar (4.23).

3. Update all changes back into the CA model.

It can be concluded that virtual vertices are crucial in the extraction of information from the CA model.

To describe the interface, as well as to prevent the effect of large differences in the length of vectors needed

for the calculation of the velocity vector of a triple point.

From the results it can be concluded that the model works correctly. Considering special cases, it can be

observed that both topological changes work, since:

1. Small grains with only three edges have been removed.

2. A correct change of connections when two vertices are close to each other.

In the general example we have seen that larger grains grow in favor of the smaller grains, similar to the

phenomenon of Oswald ripening.

49
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Although updating the changes back into the CA model works in the most basic case, still some improve-

ments need to be made here. The model needs to be adjusted such that it also can handle topological changes

and the addition and/or removal of virtual vertices.



8
APPENDIX ALL ADDED FUNCTIONS WITH

SHORT DESCRIPTION

1

2 c l a s s Global : public TThreadingBasic

3 {

4 private :

5 TvertexList mvVertexVector ; // ! < L i s t to store v e r t i c e s for grain growth

6 TvertexList mvGrainList ; // ! < L i s t to store the grains

7 TvertexList mvVertexVector_quad ; // ! < L i s t to store of 4 neighbour_id v e r t i c e s for grain growth

8 std : : vector <vertexPair > vertexPairVector ; // ? ? ? ? ? ?

9 TedgeMap mvEdgeMap;

10 void grow_gg_bastiaan ( TICellsContainer &i c e l l s , TSubSystem &SubSystem , TvertexList &mvVertexVector ,

TedgeMap &mvEdgeMap) ; // ! <new grow function by bastiaan . .

11 void ProcessNewChanged ( TSubSystem &sub ) ; // ! < deal with newly transformed c e l l s

12 void f indVert ices ( ) ;

13 void f i n d V i r t u a l V e r t i c e s ( ) ;

14 void findGrain ( i n t Nx) ;

15 double solveEquationt ( double d_xy , double dv_xy ) ;

16 // void findEdges ( TICellsContainer &i c e l l s ) ;

17 } ;

18 c l a s s Ce l l s : public TThreadingBasic

19 {

20 private :

21 i n t mvNNearest ; // ! < number of nearest neighbours , 2D: 4 , 3D: 6

22 i n t mvNNext ; // ! < number of next nearest neighbours , 2D: 4 , 3D: 12

23 i n t mvNNextNext ; // ! < number of next−next nearest neighbours , 2D: 0 , 3D: 8

24 i n t mvNCube; // ! < number of neighbours in 2D 3

25 i n t mvNCubeL; // ! <number of neighbours in 2D 3

26 void updateTripleCells ( i n t direction , i n t t r i p l e L i s t _ i n d e x , i n t index , TvertexList &mvVertexVector ,

TSubSystem &SubSystem , TedgeMap &mvEdgeMap) ; // ! < function that

27 void AddNewChangedCell ( TSubSystem &sub , TCellChangeNew &ccn ) const ; // ! < adds a to be changed c e l l to the

l i s t

28 std : : pair <double , double> f indVirtualVertex ( std : : pair <double , double> pair1 , std : : pair <double , double>

pair2 , double s ) ; // ! < finds v i r t u a l v e r t i c e s to follow the i n t e r f a c e of the grain more accurately

29 void changeEdge ( i n t t r i p l e L i s t _ i n d e x , i n t index , TvertexList &mvVertexVector , TSubSystem &SubSystem ,

TedgeMap &mvEdgeMap) ; // ! <Updates the the edges belonging to the moved t r i p l e

30 i n t nbrSizef ( i n t index ) ; // ! < Returns the nbrsize of a vertex

31 } ;

51
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32

33 c l a s s Tvertex {

34

35 public :

36 double vXVertex ; // ! < Exact x coordinate of a vertex

37 double vYVertex ; // ! < Exact y coordinate of a vertex

38 double vDx ; // ! < Total x displacement before updating a t r i p l e , w i l l be again zero when t o t a l

displacement> sqrt ( 2 )

39 double vDy ; // ! < Total y displacement before updating a t r i p l e , w i l l be again zero when t o t a l

displacement> sqrt ( 2 )

40 i n t T1index ; // ! < Keeps track of the usage of a t1change

41 i n t v i ; // ! < i coordinate of c e l l belonging to vertex / t r i p l e point

42 i n t v j ; // ! < j coordinate of c e l l belonging to vertex / t r i p l e point

43 std : : set <int > vNeighbours ; // <! set of a l l grain_id ’ s of the c e l l s in a Neumann neigbhourhood

44 std : : vector <int > mvVertexConnect ; // <! vector with the t r i p l e s connected to the considered t r i p l e

45 std : : vector <int > mvQuadList ; // <! L i s t of quadrupple points who need to be removed

46 Tvertex ( ) ; // ! < default constructor

47 void removeConnect ( ) ; // ! <

48 void addNeighbours ( const std : : set <int > &neighbours ) ; // ! < add a grain_id to the set of neighbours

49 void addConnect ( i n t i ) ; // ! < add a t r i p l e _ i d to the l i s t of connections

50 void clearConnect ( ) ; // ! < removes a l l connections stored in mvvertexconnect

51 std : : vector <int > mvVertexDIFFC ;

52 i n t viDiag ; // ! < i coordinate of diagonal neighbour c e l l of c e l l i , j , k ( also belonging to vertex / t r i p l e

point )

53 i n t vjDiag ;

54 i n t vertexIndex ;

55 double timeT ;

56

57 } ;

58

59 c l a s s TedgeMap{

60 private :

61 std : : map< std : : pair <int , int > , std : : set <int > > mvEdgeMap; // ! < buiding a map container where a l l

connected t r i p l e pairs are the keys mapped to a l l i n t e r f a c e c e l l belonging to the s p e c i f i c edge

62

63 public :

64

65 void addEdgeMap( std : : pair <int , int > edgePair , std : : set <int > edgePairVector ) ; // ! < add the key with mapped

indices to mvEdgeMap

66 std : : set <int > getEdgeVector ( std : : pair <int , int > t r i p l e P a i r ) ; // ! < get the set of indices belonging to the

s p e c i f i c key

67 void removeKey ( std : : pair <int , int > t r i p l e P a i r ) ; // ! < remove the key from the edgemap

68 std : : vector <std : : pair <int , int >> getPairVector ( ) ;

69 } ;

70

71

72 c l a s s TvertexList {

73

74 private :

75 std : : vector <Tvertex > mvVertexVector ; // ! < a vector of Tvertex

76 std : : vector <Tvertex > mvGrainList ; // ! < per Tvertex t h e i r i s one grain with a l l v e r t i c e s belonging to the

grain l i s t e d clockwise

77

78

79 void removeTriple ( i n t i ) ; // ! < removes a vertex in mvVertexVector

80 void removeQuad( i n t i ) ; // ! < removes a quad in mvVertexVector

81

82 public :

83 void changeNeighbours ( i n t i , std : : set <int > newNeighbours ) ; // ! < changes the neighbours grain−ids with a
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new set of neighbours

84 void addVertex ( const Tvertex &v ) ; // ! < add a vertex to vertexvector

85 i n t getConnect ( i n t i , i n t j ) ; // ! < gets the connected t r i p l e of t r i p l e i on location j in

mvVertexConnect

86 void addGrain ( const Tvertex &v ) ; // ! < adds a grain to mvGrainList

87 bool inGrainsize3 ( i n t a ) ; // ! < checks whether t r i p l e a belongs to a grain with only three t r i p l e points

88

89 void findConnection ( ) ; // ! < Searches through mvVertexVector and checks whether a t r i p l e has a neighbour

combination in common, when so t h i s i s added to the connectionlist of both t r i p l e s

90 // void cleanForQuads ( ) ; //! <

91 i n t countQuads ( i n t i ) ; // ! < counts the number of quadruples

92 bool addVirtual ( std : : vector <double> e1 , i n t i , i n t a , TvertexList &mvGrainList , i n t Nx) ; // ! < When a

vector from t r i p l e becomes to long an extra v i r t u a l vertex needs to be added to both mvVertexList and

mvGrainList

93 bool removeVirtual ( i n t a , TvertexList &mvGrainList ) ; // ! <When two v e r t i c e s ( where one i s a v i r t u a l

vertex ) come to near to each other the v i r t u a l vertex needs to be removed

94 bool VertexInList ( const Tvertex &v ) ; // Check whether the vertex i s already in the mvVertexList

95 void updateTriple ( ) ; // not used anymore

96 void updateTriple1 ( ) ; // not used anymore

97 i n t s i z e ( ) ; // returns s i z e of vector

98 i n t l i s t S i z e ( ) ; // returns s i z e of g r a i n l i s t

99 i n t numberOfGrain ( ) ; // returns s i z e of g r a i n l i s t

100 i n t grainConnectSize ( i n t i ) ; // returns s i z e of grain

101 Tvertex getVertex ( i n t i ) ; // returns vertex

102 void g e t I J F o r T r i p l e ( i n t i , i n t &vi , i n t &v j ) ; // returns coordinates of vertex

103 void printVertex ( i n t i ) ; // print vertex

104 std : : vector <double> getTripleVector ( i n t i , i n t j , i n t Nx) ; // ! < returns a vector which o ri g inate s in

t r i p l e i and goes to i t s connectionList [ 0 , 1 , 2 ]

105 std : : pair <double , double> getTripleVector1 ( i n t i , i n t j , i n t Nx) ; // ! < returns a pair which corresponds to

a vector originat ing in t r i p l e i to t r i p l e j

106 // std : : vector <int > getTripleOrder ( i n t i , i n t Nx, i n t Ny) ; //! <

107 // std : : vector <int > getGrainidOrder ( i n t i , std : : vector <int > vOrder ) ; //! < u i t l e g

108 double getDistance ( std : : vector <double> t r i p l e V e c t o r ) ; // ! < returns the length of a vector

109 std : : vector <int > getBeginEnd ( i n t i , i n t j ) ; // ! < returns the coordinates of the begin and endpoint of

the edge

110 void moveTriple_x ( i n t i , double dx , double tmin , i n t Nx) ; // ! < moves a t r i p l e in x direction taking in

account the periodic boundaries ( exact coordinates )

111 void moveTriple_y ( i n t i , double dy , double tmin , i n t Nx) ; // ! < moves a t r i p l e in y direction taking in

account the periodic boundaries ( exact coordinates )

112 void moveTriple ( i n t t r i p l e L i s t _ i n d e x , i n t dx , i n t dy , i n t Nx) ; // ! < moves a t r i p l e in both direction

changes i t s integer coordinates

113 std : : vector <double> dv ( i n t i , i n t Nx, TvertexList &mvGrainList ) ; // ! < calculat ing the v e l o c i t y of a

t r i p l e using Lazar

114 std : : vector <double> dvVirtual ( i n t i , i n t Nx, TvertexList &mvGrainList ) ; // ! < calculat ing the v e l o c i t y of

a v i r t u a l point

115 void findGrain ( ) ; // ! < searches through mvVertexList and sort the t r i p l e s by grain using i t s

neighbourlist

116 double getGrainSize ( std : : vector <int > GrainListLocal , i n t Nx) ; // ! < Calculates the grain s i z e using the

derived formula

117 // i n t indexConnectedTriple ( i n t t r i p l e L i s t _ i n d e x , i n t grain_id1 , i n t grain_id2 , i n t Nx) ;

118 bool T1change ( i n t a , i n t Nx, double dx , double dy , TvertexList &mvGrainList ) ; // ! < function enforces a

topologica t1change

119 void resetPoint ( i n t a , i n t b , i n t a1 , i n t a2 ) ; // ! < When a t1 change i s excecuted the two changed

t r i p l e s need to change t h e i r coordinates

120 void updateConnectionList ( i n t oldIndex , i n t newIndex , i n t a1 , i n t a2 ) ; // ! <when a vertex i s added or

removed the connectionlist needs to be updated

121 void replaceGrain ( i n t i , std : : vector <int > grainVector ) ; // ! < When a vertex i s added or removed the

connectionlist of a mvGrainList needs to be updated

122 std : : vector <int > grainOrder ( std : : vector <int > c o l l e c t V e r t e x ) ; //< After findGrain a l l v e r t i c e s in the
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g r a i n l i s t need to be sorted such that i t i s possible to go through the grain clockwise

123 bool i s P e r i o d i c ( std : : pair <int , int > vertexPair , i n t Nx) ; // ! < Checks whether a vector uses the periodic

boundary

124 bool isPeriodicX ( std : : pair <int , int > vertexPair , double x , i n t Nx) ; // ! < Checks whether a vector uses the

periodic boundary

125 bool isPeriodicY ( std : : pair <int , int > vertexPair , double y , i n t Nx) ; // ! < Checks whether a vector uses the

periodic boundary

126 void moveDx( i n t i , double dv_x , double tmin ) ; // ! < changes i t s vDx by dv_x *tmin

127 void moveDy( i n t i , double dv_y , double tmin ) ; // ! < changes i t s vDy by dv_y *tmin

128 void resetDx ( i n t i ) ; // ! < when a t r i p l e has the larges dv_x i t needs to r eset vDX

129 void resetDy ( i n t i ) ; // ! < when a t r i p l e has the l a r g e s t dv_y i t needs to r eset vDY

130 double getDx ( i n t i ) ; // ! < returns vDx

131 double getDy ( i n t i ) ; // ! < returns vDy

132 double getvXVertex ( i n t i ) ; // ! < returns vXVertex

133 double getvYVertex ( i n t i ) ; // ! < returns vYVertex

134 i n t getConnectSize ( i n t i ) ; // ! < returns whether t r i p l e or v i r t u a l vertex

135 std : : vector <int > getGrainListLocal ( i n t i ) ; // ! < returns the l i s t of v e r t i c e s belonging to grain i

136 std : : vector <int > getTripleGrainListLocal ( std : : vector <int > GrainListLocal ) ; // ! < returns a l i s t of

t r i p l e s belonging to grain i

137 void clearGrainList ( ) ; // ! < c l e a r s g r a i n l i s t

138 std : : pair <int , int > findTriplePairofEdge ( i n t a , i n t b) ; // ! < Input two grain−ids , returns t r i p l e p a i r

139 std : : vector <std : : pair <int , int >> ConstructCoord ( i n t i , i n t j , i n t n , i n t Nx) ; // ! < projects vector of

t r i p l e p a i r such that the periodic boundary w i l l not i n t e r f e r e

140 std : : pair <int , int > neighboursOfPair ( i n t i , i n t j ) ; // ! < returns the grain−ids of a vertexpair

141 std : : pair <int , int > getConnectPair ( i n t grain , i n t t r i p l e ) ; // ! < returns the two v e r t i c e s connected to the

t r i p l e and belonging to the same grain

142 double getS ( i n t i , i n t j , i n t Nx) ; // ! < Returns the slope of a vector belonging to an edge

143 std : : vector <int > getCollectVertex ( i n t k ) ; // ! < c o l l e c t s a l l v e r t i c e s belonging to grain k

144 std : : pair <int , int > getTopDown( double s , i n t connectTriple , i n t tr iple_index , i n t Nx) ; // ! < Function

which defines which grain−id i s above/under or l e f t / r i g h t of the vector l ine connecting to v e r t i c e s

145 void virtualConnect ( i n t i , i n t j , i n t index ) ; // ! < connects the newly added v i r t u a l vertex to i t s

neighbouring v e r t i c e s

146 double angle ( std : : vector <double> e1 , std : : vector <double> e2 ) ; // ! < returns the angle between the two

vectors

147 i n t f i n d V i r t u a l o f T r i p l e ( std : : pair <int , int > edgeTriplePair ) ; // ! < returns the vertex which has a

connection to both v e r t i c e s of edgeTriplePair

148 void removeGrain ( i n t a , i n t b , i n t c , TvertexList &mvGrainList , i n t grain ) ; // ! <removes the grain from

mvGrainlist , mvVertexList

149 bool inGrainWithSize ( i n t a , i n t sizeGrain , TvertexList &mvVertexVector ) ; // ! < returns true i f the number

of edges i s equal to sizeGrain

150 i n t numberOfEdges ( TvertexList &mvVertexVector , i n t a ) ; // ! < returns the number of edges of the grain

151 i n t pointInGrain ( i n t t r i p l e L i s t _ i n d e x , i n t indexPoint , i n t Nx) ; // ! < using the angles of the vectors

or ig inat ing from the t r i p l e the function gives the grain−id the evaluated point belongs to

152 // bool signOfVector ( std : : vector <double> vector1 , std : : vector <double> vector2 , std : : vector <double>

pointVector ) ; //! <

153 std : : vector <double> getIndex2TripleVector ( i n t i , i n t x , i n t y , i n t Nx) ; // ! < Returns the vector between

a t r i p l e andthe middle of a c e l l

154 i n t getGrainID ( i n t i , i n t a , i n t b) ; // ! < returns the mutual grain−id of three v e r t i c e s

155 double angleCounterClockwise ( std : : vector <double> v1 ) ; // ! < gives the angle between p o s i t i v e x−axis and a

vector

156 double angleBetweenVectorsCC ( std : : vector <double> v1 , std : : vector <double> v2 ) ; // ! < gives the angle

between two vectors using atan2

157 double relat iveAngle ( double pointAngle , double vectorAngle ) ; // ! < returns the angle which adds 2pi when

negative

158 bool pointInTriangle ( std : : vector <double> pointVector , std : : vector <double> vector1 , std : : vector <double>

vector2 ) ; // ! < whether a point i s inside a t r i a n g l e

159 i n t testVectorTriangle ( std : : vector <double> v1 , std : : vector <double> v2 , std : : vector <double> v3 , std : :

vector <double> p) ; // ! < t e s t s a point between which vectors i t l i e s

160 void updateT ( double deltaT ) ; // ! < updates time T
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161 double getTimeT ( ) ; // ! < returns timeT

162 } ;
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