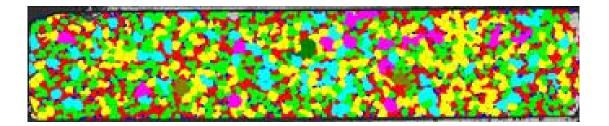
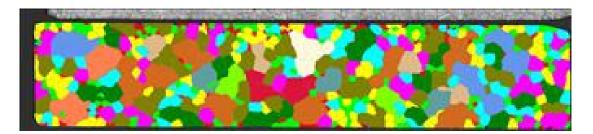


Curvature-driv	iven grain growth Tata Steel	Slide 2			
Content					
1	Fundamentals				
2	Micro structure models				
3	Curvature methods				
4	Results				
5	Preliminary conclusions & Further resea	arch			

Micro-structure

Micro-structure determines the mechanical properties of steel Example of grain growth in a micro-structure of austenite at 1200°C





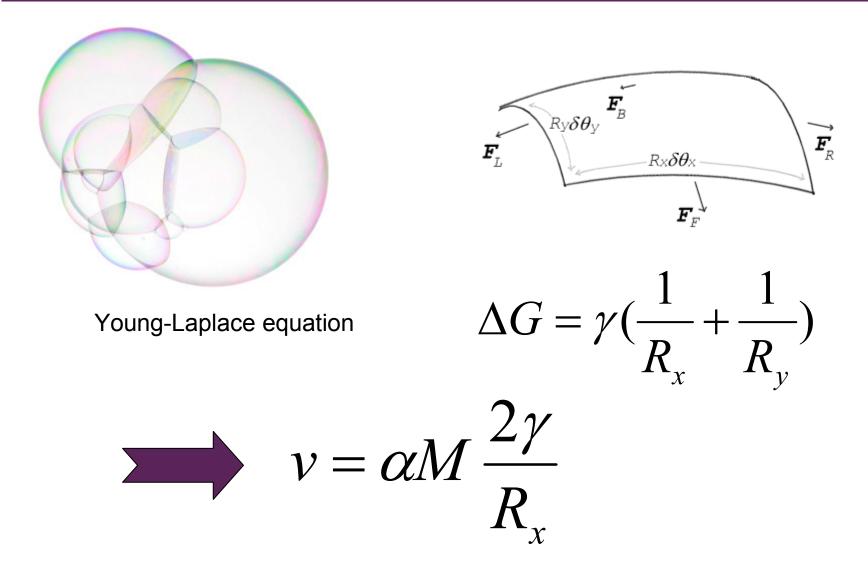
Three processes that determines the micro-structure

Goal of this master thesis is to extend the existing model of Tata Steel with grain growth by curvature

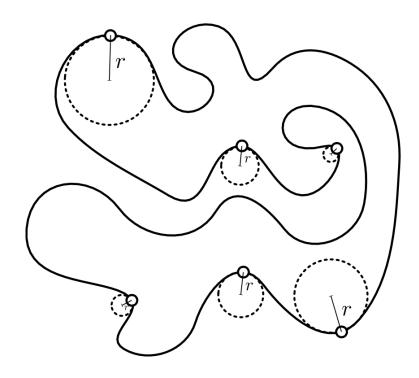
- 1. Phase transformations
 - Austenite to ferrite transformation
- 2. Recrystallization & Recovery
 - Austenite to austenite
- **3**. Grain growth by curvature **T.B.D**.
 - Austenite to austenite

Soap froth

The growth of metal grains is similar to soap bubbles



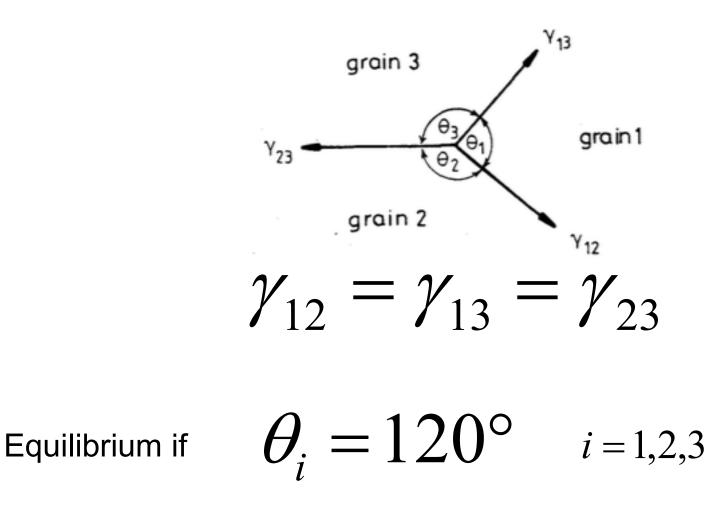
An arbitrarily simple, closed curve with a point P on it, there is a unique circle which most closely approximates the curve near P



 $\kappa = \frac{1}{R}$

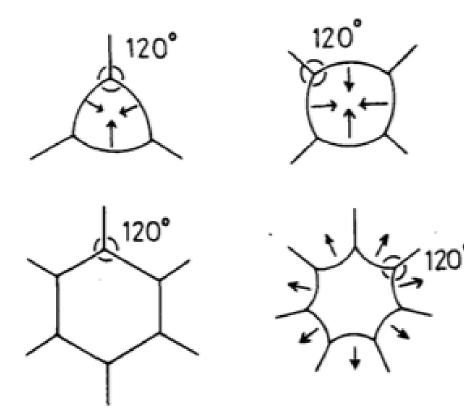
Triple points, where three grains meet

Every triple point seeks it equilibrium state, which depends on the grain boundary energy $\boldsymbol{\gamma}$

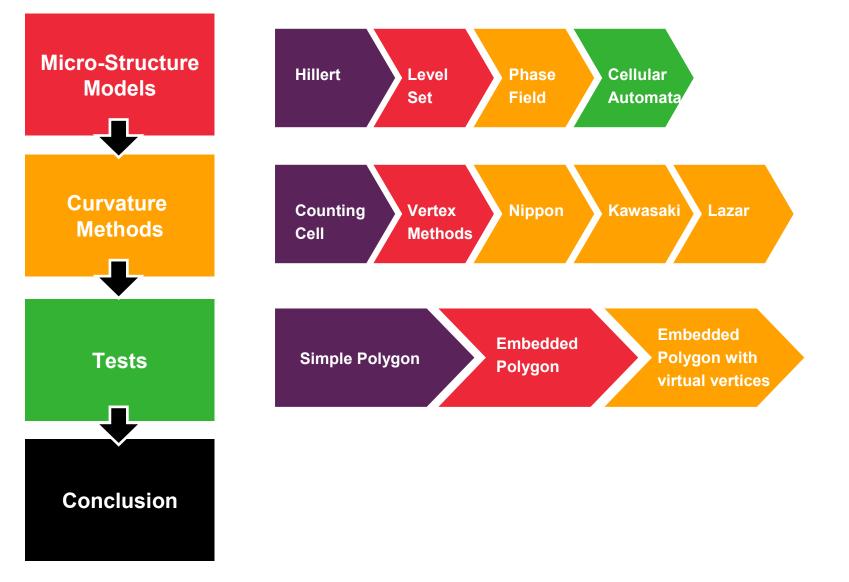


Examples

A grain with 6 corners is in equilibrium state if the angle is 120 degrees Two vertices determine the curvature of a grainboundary



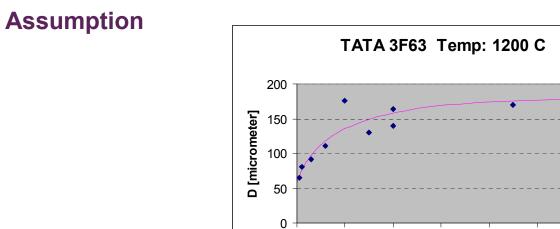
Structure of Literature Study



Slide 9

Hillert

A very good approximation of the average grain size distribution



0

100

Grain Size Distribution (GSD)

$$P(u) = (2e)^{\beta} \frac{\beta u}{(2-u)^{2+\beta}} \exp\left(\frac{-2\beta}{2-u}\right)$$

200

300

400

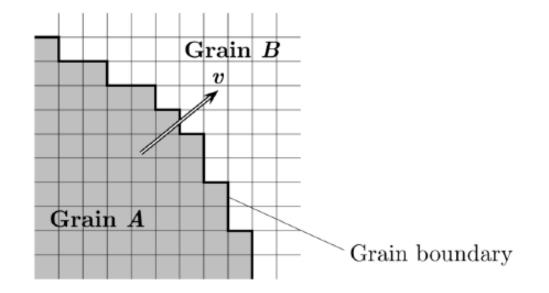
time [sec]

500

600

700

CA model first developed by John von Neumann

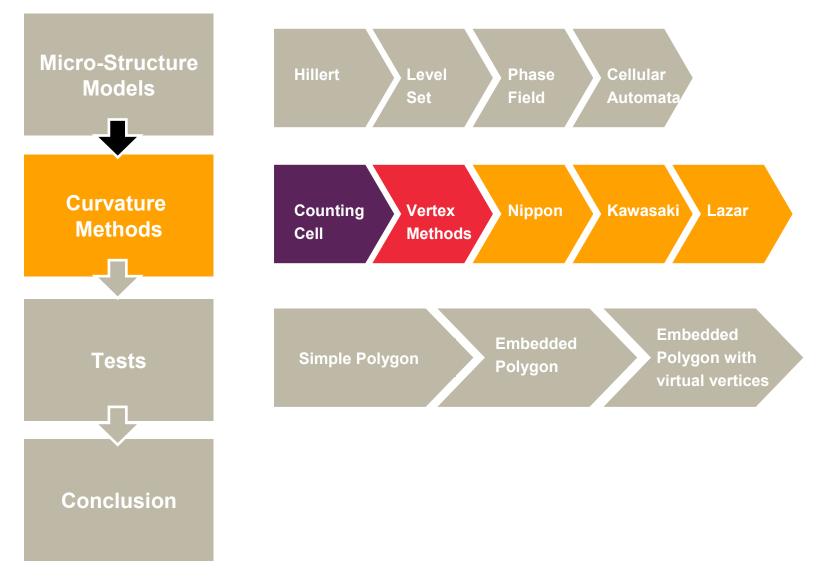


Each cell has assigned a

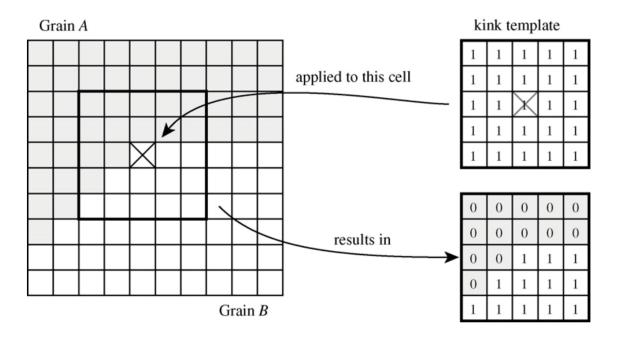
- State
- Neighborhood definition
- Transformation rule

Slide 12

Structure of Literature Study



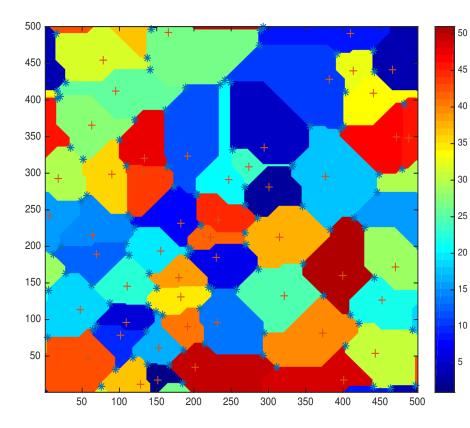
Due to the sharp interface, interpolation is needed. Hence, a lot of calculations have to be made



Computational costly

Vertex method

Using vertices is the most efficient method to calculate the effect of curvature



Advantages

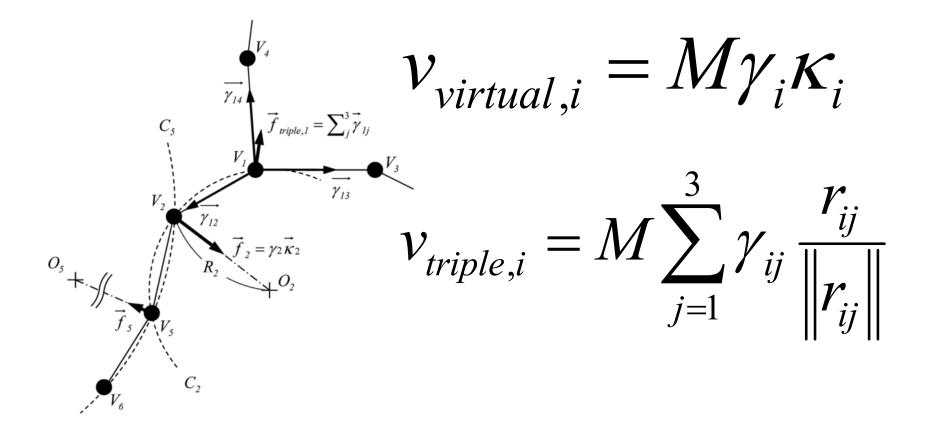
- Less points are needed to calculate
- Vertex points are most influential in grain growth
- When more points are needed, virtual vertices can be added

A hybrid model

- Run CA model
- Extract vertices
- Run vertex method
- Update states using the position of the vertices

Vertex by Nippon Steel

Method that is heavily dependent on the specific grain boundary energy



Vertex method based on Minimization of Grain Boundary Energy (1/2)

Method first introduced by Kawasaki (1952), based on idea from Phase Field Method

Dissipation Energy + Potential Energy = 0

$$\frac{1}{2} \int_{GB} \frac{v(s)^2}{M_{GB}} ds + \int_{GB} \gamma(s) ds = 0$$

Minimize energy over position

Vertex method based on Minimization of Grain Boundary Energy (2/2)

Governing equations

$$\begin{split} D_{i}v_{i} &= f_{i} - \frac{1}{2}\sum_{j}^{(i)} D_{ij}v_{j} \\ D_{ij} &= \frac{1}{3M_{ij} \|r_{ij}\|} \begin{bmatrix} y_{ij}^{2} & -x_{ij}y_{ij} \\ -x_{ij}y_{ij} & x_{ij}^{2} \end{bmatrix} \\ D_{i} &= \sum_{j}^{(i)} D_{ij} \\ f_{i} &= \sum_{j}^{(i)} \gamma_{ij} \frac{r_{ij}}{\|r_{ij}\|} \end{split}$$

Slide 17

2D Neumann-Mullins (1956) revived by expansion to

3D in 2007 by MacPherson and Srolovitz

2D: Neumann-Mullins

- Closed curve, enclosing area grows with the same rate
- Growth of a grain enclosed by others:

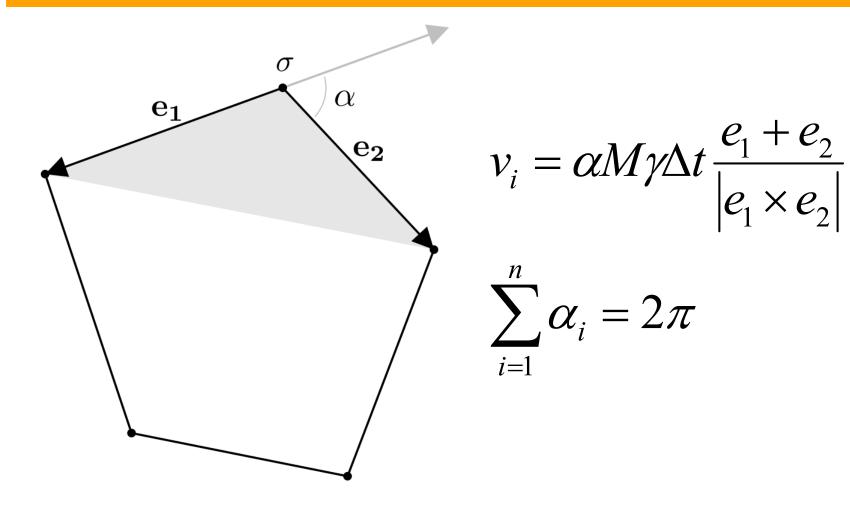
3D MacPherson & Srolovitz

• Grain growth of a grain in 3D:

$$\frac{dA}{dt} = -M\gamma \frac{\pi}{3} (6-n) \qquad \frac{dV(\mathbf{D})}{dt} = -2\pi M\gamma \left(\mathcal{L}(\mathbf{D}) - \frac{1}{6}\sum_{i} e_{i}(\mathbf{D})\right)$$

Neumann-Mullins (2/3)

Governing equation of a virtual vertex (arbitrary point between only two grains), satisfies Neumann-Mullins relation

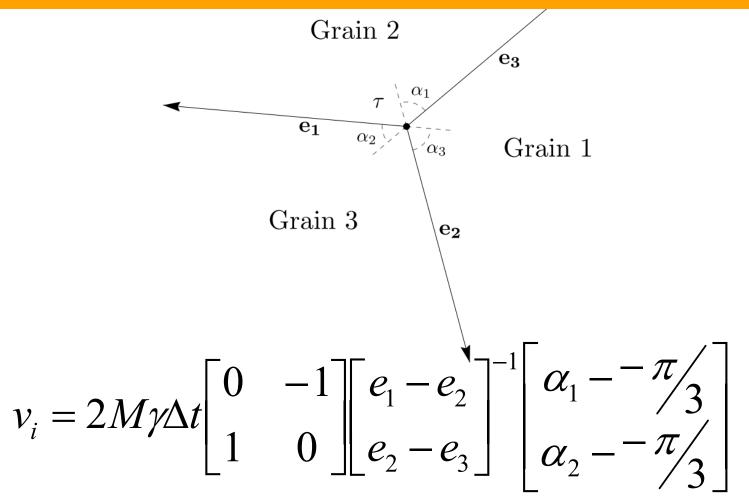


Curvature-driven grain growth

Tata Steel

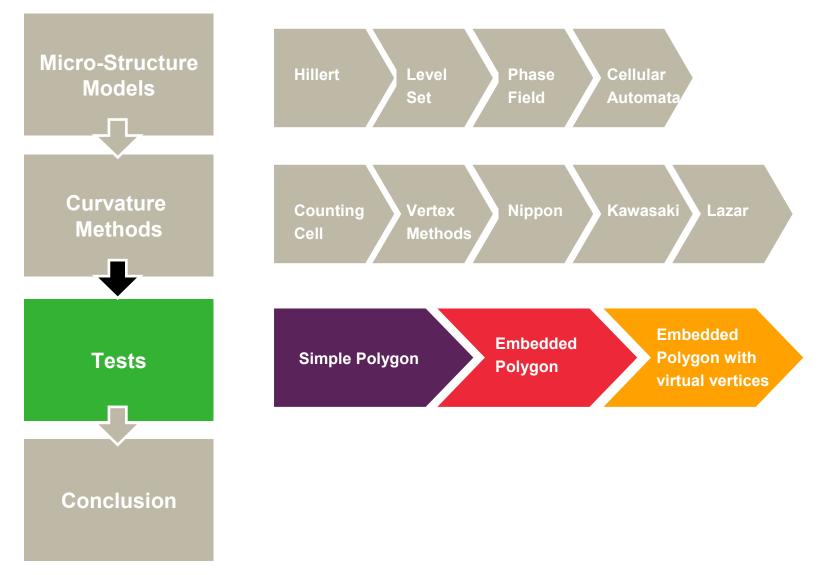
Neumann-Mullins (3/3)

Governing equations of a triple point, who satisfy the Neumann-Mullins relation



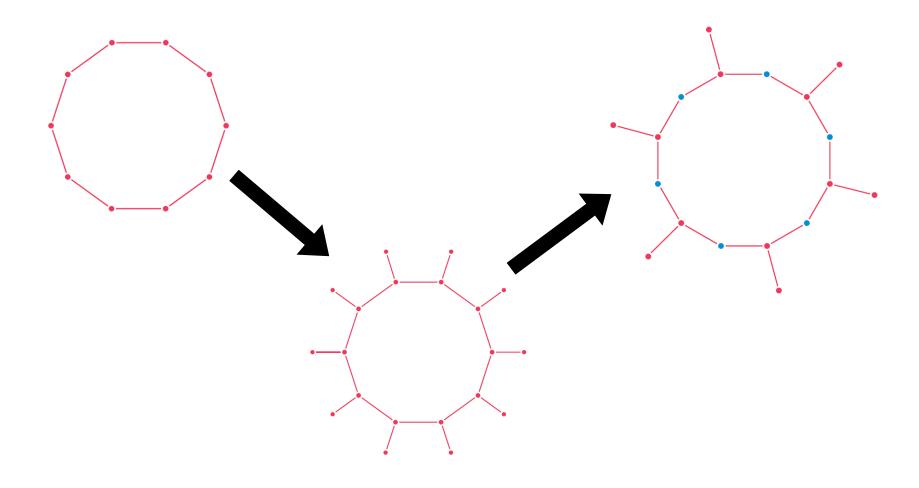
Slide 21

Structure of Literature Study



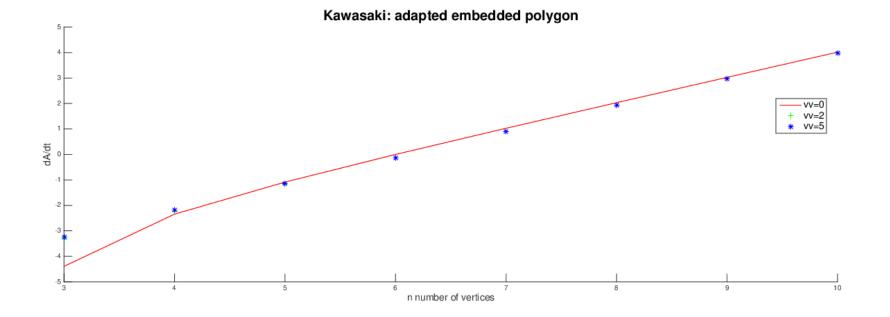
Tests

Three polygon have been constructed to test the different methods on their performance

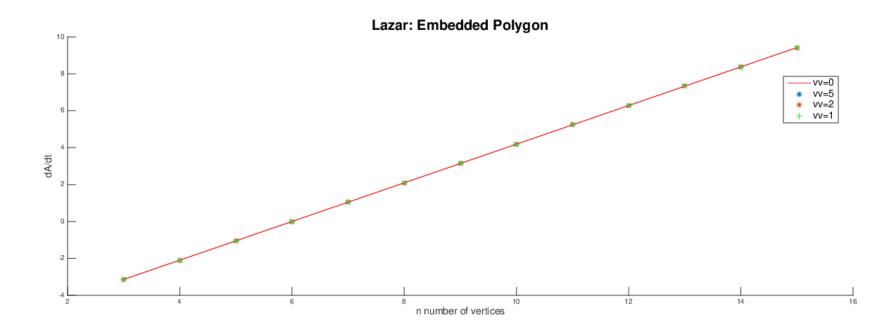


Slide 23

Embedded Polygon: Kawasaki vs exact Neumann-Mullins relation



Embedded Polygon: Lazar vs exact Neumann-Mullins relation



Problem in Kawasaki: the connection of a triple point with a virtual vertex

The method by Lazar shows the best results

Method	Computation time	Circle	Neumann- Mullins n=6	NM, variable n, virtuals on a straight line	NM variable n virtuals virtues on the circle	
Counting Cell		?	?	?	?	
Vertex methods:	ertex methods:					
Nippon	++	+				
Kawasaki	++	+/-	++	+		
Lazar	++	++	++	++	++	

Ready to implement in cellular automata model of Tata Steel

- Implementation of 2D and 3D in cellular automata model of Tata Steel
 - Extract vertices from CA grid
 - Solve motion equations for vertices
 - Update CA grid from vertices motion
- Anisotropic variant of Lazars method

