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ABSTRACT

In this paper, a method is proposed to automatically correct misalignment of or-
thophotos in time-series caused by an inaccurate geotransform. The proposed
method relies on common literature concepts such as keypoint identification, key-
point matching, and model fitting using random sample consensus (RANSAC). Tra-
ditional keypoint identification methods such as the scale invariant feature trans-
form (SIFT) are not suited for this problem as no real scale- or rotation-invariance
is required, instead, time-invariance is required. To achieve this, crops are sug-
gested as keypoints, and two different keypoint descriptors are put forth. The first
descriptor is based on the shape and size of the crops, while the alternative descrip-
tor is based on the planting pattern of crops. The method, and both descriptors,
generate promising results for certain scenario’s. However, in later growth stages
performance drops significantly as the identification of crops -required beforehand-
becomes troublesome due to dense growth.
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1 INTRODUCTION

In the agricultural sector, crop monitoring via drones is an increasingly used tech-
nique. Often times, one is interested in a time-series, and in doing change detection
between instances of this time-series, for example, establishing the rate at which
a crop has grown. Before doing such analysis, however, image stitching using
a photogrammetry pipeline is required. Using common software such as Agisoft
Metashape or OpenDroneMap, one may combine the separate images acquired by the
drone into what is referred to as an ‘orthophoto’. An orthophoto is geometrically
correct and may be used as a map in the sense that one can directly infer distances
from it. Furthermore, it has a ‘geotransformation” attached to it, which assigns a
latitude and longitude to each pixel in the orthophoto.

In this attached geotransformation one is presented with the problem this paper
attempts to address. The geotransformation, being a result of the GPS built into the
camera of the drone, is accurate in the order of ten meters.® It is clear how this is
problematic given the scope of change detection. Correction can be performed man-
ually by creating so-called ‘ground control points’, which are corresponding points
between two orthophotos, after which a transformation may be applied. This pa-
per will attempt to provide a framework to automate the creation of such ground
control points by using an approach comparable to what is used in common pho-
togrammetry pipelines for stitching images into an orthophoto.

* Indeed, the problem may also be addressed by more accurate GPS positioning, however, currently,
this is a problematic path to take for two reasons. The cost associated with such a GPS systems is rather
high, while the payload is also drastically larger, creating various new problems such as the requirement
for larger drones and a higher fuel consumption.
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2 CREATION OF ORTHOPHOTOS

When processing separate images in order to create an orthophoto, see figure 3, a
three-dimensional reconstruction of the scene is required first. Crucial for creating
this three-dimensional reconstruction, given a set of two-dimensional images, is the
essential matrix or E, introduced originally by Longuet-Higgins (1981).

2.1 Essential Matrix

The essential matrix follows directly from the coplanarity condition. Suppose we
have two cameras, camera A and B, in a three-dimensional space, see figure 1. Both
cameras have their own coordinate system, (Xa,Ya,Za) and (Xg, Yg,Zg), respec-
tively. As a convention, the Z-direction will always coincide with the direction in
which the camera is pointed. The translation between the cameras is given by the
vector t, which is a vector in the coordinate system of camera A, pointing the origin
of that of camera B.

q1 92
Xa Xg
ZA ZB YB

Y, ¢
Figure 1: Two cameras and their three-dimensional coordinate systems, observing a single
point in space that is seen by both cameras, g1 and Q5.

Now, suppose both cameras observe some point in space. The position of this point
with respect to camera A may be denoted by the vector g1, while the position with
respect to camera B is given by 5. Note that t, q; and Q2 are coplanar. However,
the coplanarity condition cannot be applied directly, as qy is a vector in (Xg, Yg, ZB)
while the other vectors are given in the coordinate system of camera A. Let R denote
the rotation between the two coordinate systems, consequently, coplanarity should
hold for t, q; and Rqp>.

If three vectors are coplanar, taking the cross product between two of them produces
a vector orthogonal to the plane. Consequently, taking the dot product with the
third vector should then always yield zero. Thus, by coplanarity:

di-(txRgz) =0. (1)

The cross-product with the three-dimensional translation vector t is equivalent to
multiplication with the 3 x 3 matrix representation [t],, defined as:

2 3
0 -t3
[tx=4t3 0 -t;9. (2)
-t, t; O

Since R is a 3 x 3 rotation matrix, we may define the essential matrix as E = R[t],
again a 3 x 3 matrix, resulting in:

aiEqz =0. 3)

Given this definition of the essential matrix, one may wonder how it relates to two-
dimensional image coordinates. Consider one camera and the corresponding image
plane, see Figure 2.
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Figure 2: One camera and the corresponding image plane a focal lenght f in front of the
camera, observing a single point that is given by q and forms projection p on the
image plane.

Note that the image plane is actually a focal length f behind the camera and in-
verted, but for geometric reasons it may as well be placed normally in front of the
camera. Consequently, in the pinhole camera model, the relation between image
and three-dimensional coordinates is given by:

=1 @
y Z Y’ 4
Without loss of generality, the scene may be scaled by setting f = 1, resulting in
homogeneous image coordinates:

2 3 2 3
X 1 X
1 Z

As aresult, an observed point g in three dimensional space is projected on the image
plane in p, given by p = (1=9%)q, where g% denotes the Z-component of g. Note
that this implies p is a three-dimensional vector, referencing a two-dimensional
point in the image plane.

Consider again figure 1 and equation (3). Given the found relation between three-
and two-dimensional coordinates, it can be shown that the essential matrix also
relates image coordinates:

, ,9iEaz2=0, (6)

1 1
el a1Eqz =0, (7)
p1Ep2 = 0. 8)

Since the essential matrix also relates image coordinates, correspondences between
two images may be used to infer the essential matrix and thus translation and
rotation between the cameras.

Given p; in image A that corresponds to p, in image B, (8) must hold. Rewriting
this gives:

2 3
- E11

#
pXps PYpy PX pYps pIpy pY p3 py 1 §E122 . o
- z=0. 9

E3z3

Here, the top row contains the known x- and y-components of the identified points,
while the column vector contains elements of the unknown essential matrix. If more
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corresponding points are identified, they may be added as extra rows, arriving at
the linear system Ae = 0, with e = (E13, ..., Esa)'.

Consider (8), clearly, it would still hold for E = KE with any scalar k. In order to
avoid this scaling problem as well as the trivial solution to Ae = 0, the constraint
llell = 1is added (Hartley, 1997). Now, eight linear independent rows determine
an unique nontrivial solution. Since then A € R&*® and the rows are linearly
independent, one has rank(A) = 8. Consequently, A has eight non-zero singular
values.

Consider the singular value decomposition of A as:

A=U VT, (10)

where U € R8%8, ¢ R8%9 and V € R2%9. The columns of V contain the
right-singular vectors of A. Since A has eight non-zero singular values, exactly one
right singular vector in V will correspond to a zero singular value. By definition,
this vector spans the null space of A. Normalising this vector provides an e that
satisfies Ae = 0 and ||e|| = 1. See also Hartley (1997) for details on deriving E from
eight correspondences.

The fact that eight rows are required, and thus eight point correspondences, leads
to the so-called ‘eight-point problem’, originally introduced as well by Longuet-
Higgins (1981). Moreover, it is possible, though not as straight-forward, to use as
little as five correspondences, see Fathian et al. (2018).

Solving the eight-point problem, that is, finding at least eight corresponding points
between two images, allows one to determine the essential matrix. Consequently,
translation and rotation may be inferred, see Nistér (2004). Given translation and
rotation, points may be triangulated, creating one combined three-dimensional re-
construction of the scene. Finally, this pointcloud may be projected onto a flat
surface, creating the desired orthophoto, see figure 3.

2.2 Point Correspondences

In order to solve the eight-point problem itself, a set of point correspondences be-
tween images is required first. This set of correspondences can be retrieved by use
of keypoints in images. Finding correspondences by keypoints can be divided in
number of subsequent steps: determining keypoint locations, associating keypoint
descriptors with each location, using descriptors to match keypoints in different
images, and finally, model-fitting.

2.2.1  Keypoint Location and Descriptor

Broadly speaking, keypoint identification consists of two steps; identifying loca-
tions and describing these. There exist various algorithms for this purpose, in-
cluding SIFT, SURF, KAZE, ORB, BRISK, and others (Li et al., 2015). Presumably,
the Scale Invariant Feature Transform (SIFT) is the best known algorithm amongst
these, introduced by Lowe (1999). SIFT finds keypoint locations, pj, by analysing
the Gaussian scale-space of an image, thus creating scale invariance. Subsequently,
each keypoint is described by a corresponding descriptor vector, fj, in a way that
is rotation invariant, and illumination invariant to some degree. See Rey-Otero and
Delbracio (2014) for a detailed explanation of SIFT.

2.2.2 Keypoint Matching

Next, keypoints should be matched such that correspondences between images are
created. This is achieved by matching the descriptors to their nearest neighbours.
Given image A that has keypoints i with i € S and image B with keypoints that
have index i € SB. Each keypoint i has a location p; and a descriptor f; assigned by
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