Crops as Time-Invariant Keypoints

M. Bos

Dr. N.V. Budko (Delft Univsersity of Technology) Ir. E. Verhoeff (VanBoven Drones)

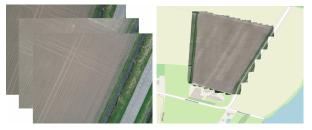
July 13, 2020

-

• • • • • • • • • • • •

Drone Images

∃ ► < ∃ ►</p>



Drone Images

Orthophoto

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 🔺 🗧 3

Drone Images

Orthophoto

Time-Series

・ロト ・回 ト ・ ヨト ・

.∋⇒

- 2 Creating an Orthophoto
- 3 Time Alignment of Orthophotos
- 4 Results & Discussion

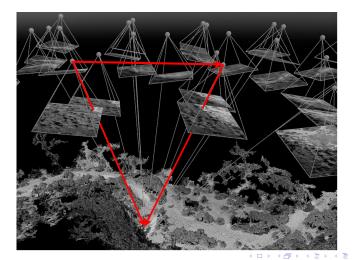
Creating an Orthophoto

- Aim to unite image data into a common reference frame.
 - Use 3D geometry of the problem.

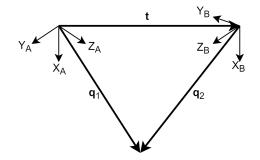


Creating an Orthophoto

- Aim to unite image data into a common reference frame.
 - Use 3D geometry of the problem.

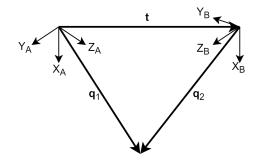


Essential Matrix



•
$$\left(\boldsymbol{q}_{1} \cdot (\boldsymbol{t} \times R \boldsymbol{q}_{2}) = 0 \right)$$

< ロ > < 回 > < 回 > < 回 > < 回 >



•
$$(\boldsymbol{q}_1 \cdot (\boldsymbol{t} \times R\boldsymbol{q}_2) = 0)$$

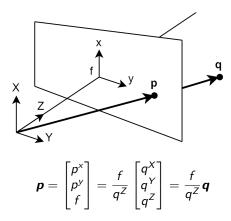
• by contanarity bet

• by coplanarity between \boldsymbol{t} , \boldsymbol{q}_1 , and $R\boldsymbol{q}_2$.

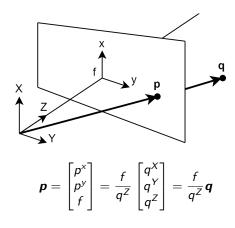
$$\bullet \left(\boldsymbol{q}_1^\mathsf{T} \boldsymbol{E} \boldsymbol{q}_2 = 0 \right)$$

• by defining essential matrix $E = \mathbf{t} \times R$, or $E = R[\mathbf{t}]_{\times}$.

< □ > < □ > < □ > < □ >



イロト イボト イヨト イヨ



•
$$\boldsymbol{q}_1^T E \boldsymbol{q}_2 = 0$$
 becomes $\left(\boldsymbol{p}_1^T E \boldsymbol{p}_2 = 0 \right)$

イロト イボト イヨト イヨ

• For a known $(\pmb{p}_1 \leftrightarrow \pmb{p}_2)$ between two images, we rewrite:

$$\begin{bmatrix} p_1^{x}p_2^{x} & p_1^{x}p_2^{y} & p_1^{x} & p_1^{y}p_2^{x} & p_1^{y}p_2^{y} & p_1^{y} & p_2^{x} & p_2^{y} & 1 \\ & \vdots & & & \end{bmatrix} \begin{bmatrix} E_{11} \\ E_{12} \\ \vdots \\ E_{33} \end{bmatrix} = 0.$$

-

• • • • • • • • • • • •

• For a known $(\boldsymbol{p}_1\leftrightarrow \boldsymbol{p}_2)$ between two images, we rewrite:

$$\begin{bmatrix} p_1^{\mathsf{x}} p_2^{\mathsf{x}} & p_1^{\mathsf{x}} p_2^{\mathsf{y}} & p_1^{\mathsf{x}} & p_1^{\mathsf{y}} p_2^{\mathsf{x}} & p_1^{\mathsf{y}} p_2^{\mathsf{y}} & p_1^{\mathsf{y}} & p_2^{\mathsf{x}} & p_2^{\mathsf{y}} & 1 \\ \vdots & & \vdots & & & \end{bmatrix} \begin{bmatrix} E_{11} \\ E_{12} \\ \vdots \\ E_{33} \end{bmatrix} = 0.$$

• Add more correspondences as extra rows: [Ae = 0]

< □ > < □ > < □ > < □ >

• For a known $(\boldsymbol{p}_1\leftrightarrow \boldsymbol{p}_2)$ between two images, we rewrite:

$$\begin{bmatrix} p_1^{x}p_2^{x} & p_1^{x}p_2^{y} & p_1^{x} & p_1^{y}p_2^{x} & p_1^{y}p_2^{y} & p_1^{y} & p_2^{x} & p_2^{y} & 1 \\ & \vdots & & & \end{bmatrix} \begin{bmatrix} E_{11} \\ E_{12} \\ \vdots \\ E_{33} \end{bmatrix} = 0.$$

- Add more correspondences as extra rows: Ae = 0
- Can be solved for e using a singular value decomposition of A.

• Pair of images with overlap.

< □ > < □ > < □ > < □ >

- Pair of images with overlap.
- Find corresponding points.

Image: A math a math

- Pair of images with overlap.
- Find corresponding points.
- Solve Ae = 0 and find e.

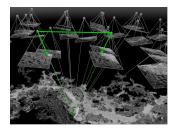
< < >> < <</>

- Pair of images with overlap.
- Find corresponding points.
- Solve Ae = 0 and find e.
- From *E*, infer *t* and *R*.

< D > < A >

-

- Pair of images with overlap.
- Find corresponding points.
- Solve Ae = 0 and find e.
- From *E*, infer *t* and *R*.
- Triangulate points \rightarrow 3D point cloud.



- Pair of images with overlap.
- Find corresponding points.
- Solve Ae = 0 and find e.
- From *E*, infer *t* and *R*.
- $\bullet~\mbox{Triangulate points} \rightarrow 3D$ point cloud.
- $\bullet\,$ Project on flat surface \to orthophoto.

- Pair of images with overlap.
- Find corresponding points. \leftarrow
- Solve Ae = 0 and find e.
- From *E*, infer *t* and *R*.
- $\bullet~\mbox{Triangulate points} \rightarrow 3D$ point cloud.
- $\bullet\,$ Project on flat surface $\rightarrow\,$ orthophoto.

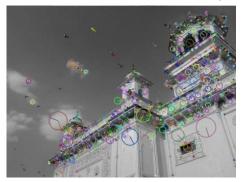
• Find interesting points in the image p_i and describe these in a descriptor f_i .

< < >> < <</>

< ∃ >

Point Correspondences

- Find interesting points in the image p_i and describe these in a descriptor f_i .
- For example using the scale-invariant feature transform (SIFT).



• Image A with keypoints $i \in S^A$ and image B with keypoints $i \in S^B$.

- Image A with keypoints $i \in S^A$ and image B with keypoints $i \in S^B$.
- Candidate match for $i \in S^A$ is the nearest neighbour:

•
$$\iota = \arg \min_{\tau \in S^B} \| \mathbf{f}_i - \mathbf{f}_{\tau} \|.$$

- Image A with keypoints $i \in S^A$ and image B with keypoints $i \in S^B$.
- Candidate match for $i \in S^A$ is the nearest neighbour:

• $\iota = \arg \min_{\tau \in S^B} \| \mathbf{f}_i - \mathbf{f}_{\tau} \|.$

- Accept candidate if there is no 'close' second-nearest neighbour:
 - $\|\mathbf{f}_i \mathbf{f}_{\iota}\| < C \min_{\tau \in S^B \setminus \{\iota\}} \|\mathbf{f}_i \mathbf{f}_{\tau}\|$ with $C \leq 1$.

• Image pair with a set of matches $(\boldsymbol{p}_i \leftrightarrow \boldsymbol{p}_\iota)$

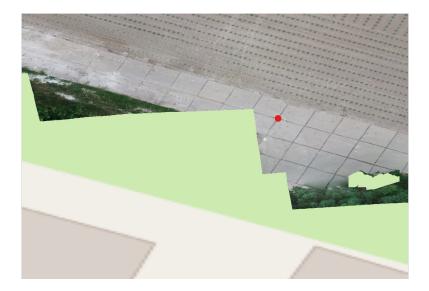
Image: A math a math

- Image pair with a set of matches $(\boldsymbol{p}_i \leftrightarrow \boldsymbol{p}_\iota)$
- Filter data and fit *E* using random sample consensus (RANSAC):
 - 1: for N iterations do
 - 2: select random subset of $(\boldsymbol{p}_i \leftrightarrow \boldsymbol{p}_i)$ and determine \tilde{E}
 - 3: count inliers on all data that satisfy $(\boldsymbol{p}_i)^T \tilde{\boldsymbol{E}} \boldsymbol{p}_{\iota} < \varepsilon$
 - 4: **if** count > best count **then**
 - 5: $E \leftarrow \tilde{E}$
 - 6: end if
 - 7: end for

Time Alignment of Orthophotos

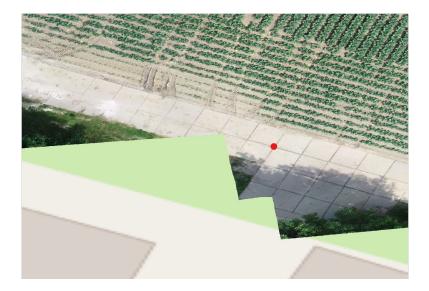
Image: A math a math

Time Alignment of Orthophotos



イロト イヨト イヨト イヨ

Time Alignment of Orthophotos



< ロ > < 回 > < 回 > < 回 > < 回 >

• Assume error as $\mathbf{x}_A = \mathbf{t} + R\mathbf{x}_B + \mathbf{w}(\mathbf{x}_B)$.

< < >> < <</>

< ∃ >

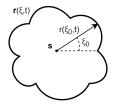
- Assume error as $\mathbf{x}_A = \mathbf{t} + R\mathbf{x}_B + \mathbf{w}(\mathbf{x}_B)$.
- Need point correspondences between orthophotos to correct the error.

- Assume error as $\mathbf{x}_A = \mathbf{t} + R\mathbf{x}_B + \mathbf{w}(\mathbf{x}_B)$.
- Need point correspondences between orthophotos to correct the error.
- Do not require e.g. scale-invariance, but time-invariance.

- Assume error as $\mathbf{x}_A = \mathbf{t} + R\mathbf{x}_B + \mathbf{w}(\mathbf{x}_B)$.
- Need point correspondences between orthophotos to correct the error.
- Do not require e.g. scale-invariance, but time-invariance.
- Use crops as time-invariant keypoints.
 - Guaranteed to be present.
 - Evenly distributed.

• Polar parametrization of crop:

 $\mathbf{r}(\xi, t) = \mathbf{r}(\xi, t)\mathbf{n}(\xi) + \mathbf{s}, \quad \mathbf{n}(\xi) = \langle \cos \xi, \sin \xi \rangle.$



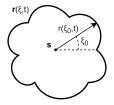
< □ > < □ > < □ > < □ >

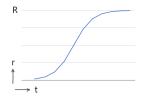
• Polar parametrization of crop:

$$\mathbf{r}(\xi,t) = \mathbf{r}(\xi,t)\mathbf{n}(\xi) + \mathbf{s}, \quad \mathbf{n}(\xi) = \langle \cos \xi, \sin \xi \rangle.$$

• Assume logistic growth model:

$$\frac{\partial r}{\partial t} = \alpha r \left(1 - \frac{r}{R} \right).$$





3 →

• Every crop *i* will be a keypoint with a position p_i and descriptor f_i .

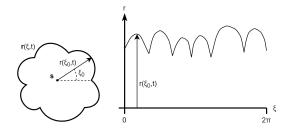
< □ > < □ > < □ > < □ >

- Every crop *i* will be a keypoint with a position p_i and descriptor f_i .
- Position p_i is ideally selected as the stem s, which is time-invariant.

< 口 > < 同 >

- Every crop *i* will be a keypoint with a position p_i and descriptor f_i .
- Position p_i is ideally selected as the stem s, which is time-invariant.
- Two possible descriptors f_i are suggested:
 - Shape and size based descriptor
 - Planting pattern based descriptor

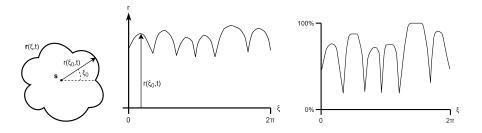
Shape and Size Descriptor



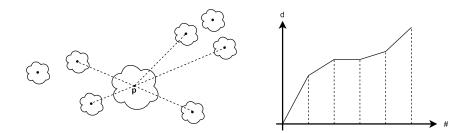
< < >> < <</>

-

Shape and Size Descriptor



Planting Pattern Descriptor



・ロト ・ 同ト ・ ヨト

• Candidate match defined by nearest neighbour again.

< < >> < <</>

- Candidate match defined by nearest neighbour again.
- Quality checked by second-nearest neighbour again.

- Candidate match defined by nearest neighbour again.
 Quality checked by second-nearest neighbour again.

Locality constraint.

- Candidate match defined by nearest neighbour again.
 Quality checked by second-nearest neighbour again.

Locality constraint.

Filtering and model fitting is done by RANSAC again.

• Ground-truth based on white cards.

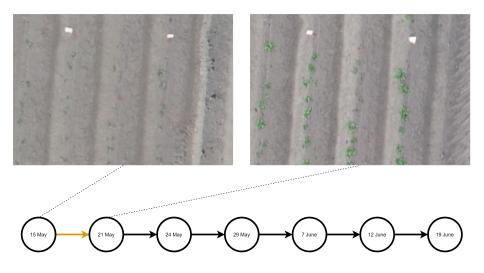
< => < => < => < =>

- Ground-truth based on white cards.
- Tested parameters in the method and both descriptors.

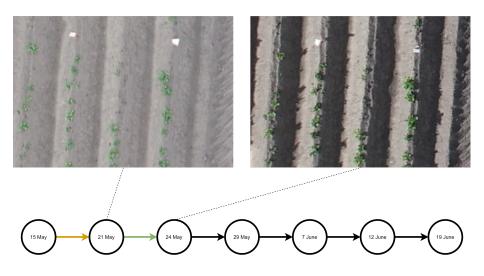
< D > < A > < B > <</p>

- Ground-truth based on white cards.
- Tested parameters in the method and both descriptors.
- Tested effectiveness on a time-series of seven orthophotos.

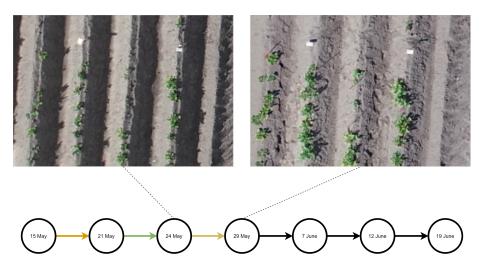
< => < => < => < =>



・ロ・・ 日本・ ・ 日本・ ・ 日本

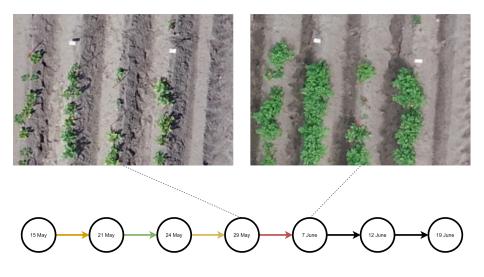


< ロ > < 回 > < 回 > < 回 > <</p>

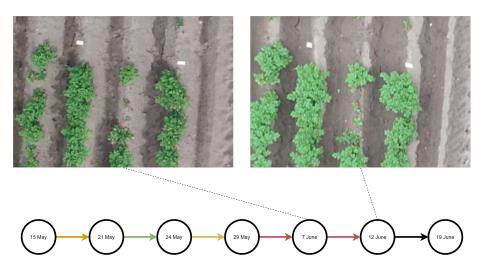


July 13, 2020 20 / 21

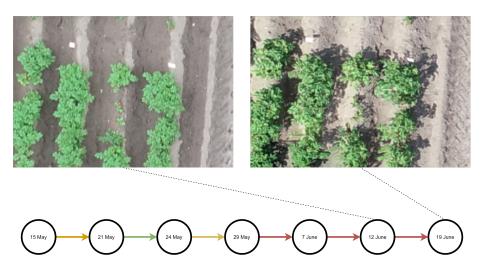
< ロ > < 回 > < 回 > < 回 > <</p>



・ロト ・日下・ ・ ヨト ・



イロト イヨト イヨト イヨ



(日) (四) (日) (日) (日)

• Under certain conditions, the method and both descriptors perform well.

< < >> < <</>

< ∃ > .

- Under certain conditions, the method and both descriptors perform well.
- In early growth stages resolution is problematic.

- Under certain conditions, the method and both descriptors perform well.
- In early growth stages resolution is problematic.
- In later growth stages merging of crops is problematic.

- Under certain conditions, the method and both descriptors perform well.
- In early growth stages resolution is problematic.
- In later growth stages merging of crops is problematic.
 - Split connected components by shrinkage and buffer operations.

- Under certain conditions, the method and both descriptors perform well.
- In early growth stages resolution is problematic.
- In later growth stages merging of crops is problematic.
 - Split connected components by shrinkage and buffer operations.
 - Account for merging in the model \rightarrow planting pattern descriptor.

- Under certain conditions, the method and both descriptors perform well.
- In early growth stages resolution is problematic.
- In later growth stages merging of crops is problematic.
 - Split connected components by shrinkage and buffer operations.
 - Account for merging in the model \rightarrow planting pattern descriptor.
 - Identify crops not by image thresholding but by e.g. convolutional neural networks.