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ABSTRACT

The computation of multivariate expectations is a common task in various fields related
to probability theory. This thesis aims to develop a generic and efficient solver for multi-
variate expectation problems, with a focus on its application in the field of quantitative
finance, specifically for the quantification of Counterparty Credit Risk (CCR).

The proposed COS-CPD method utilizes the COS method to recover the exposure
distribution by its Fourier-cosine series expansion, from which measures such as the
PFE and EE can be obtained. The key insight is that the corresponding Fourier coeffi-
cients are readily available from the characteristic function, which can be solved using
numerical integration methods. However, the efficiency of standard quadrature rules is
limited to only a few risk factors, as the dimension of integration is determined by the
number of risk factors involved.

To address this limitation, the COS-CPD method reduces the dimension of integra-
tion of the characteristic function through two steps. Firstly, the joint density func-
tion of the risk factors in the characteristic function is replaced by a dimension-reduced
Fourier-cosine series expansion, which is obtained through CPD. With CPD, the com-
putational complexity of computing the Fourier coefficient tensor is reduced to a linear
growth with respect to the number of dimensions. Secondly, the portfolio is divided
into segments that share the same risk factors. These two steps reduces the evaluation
of the characteristic function to the calculation of only one- and two-dimensional inte-
grals, which are solved by the Clenshaw-Curtis quadrature rule. As a result, the COS-CPD
method is suitable for portfolios with more than three risk factors.

Numerical comparisons of the COS-CPD method and Monte Carlo (MC) method are
made for netting-set PFE and EE profiles of multiple derivative portfolios up to five risk
factors. For similar accuracy levels, the COS-CPD method greatly outperforms the Monte
Carlo method in computation time. This difference increases for larger portfolios, which
makes the COS-CPD method a much more efficient alternative for the MC method, es-
pecially for large portfolios.

Furthermore, the COS-CPD method is applied in the context of multi-asset option
pricing. A six-dimensional basket option is considered, and the results are compared
to a recently developed sparse grid method. The comparison shows that the COS-CPD
method outperforms the sparse grid method in both accuracy and computation time.
Moreover, the COS-CPD method allows the computation of the option value for multi-
ple strike prices simultaneously, with no significant additional computational cost.

Keywords: multivariate expectations, COS method, Monte Carlo simulation, Fourier-
cosine series expansion, canonical polyadic decomposition, counterparty credit risk,
potential future exposure, expected exposure, multi-asset option pricing.
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1
INTRODUCTION

1.1. MULTIVARIATE EXPECTATIONS
The computation of multivariate expectations is a common occurrence in various dis-
ciplines related to probability theory, including game theory, time-series analysis, data
sciences and weather forecasting. Also in the field of quantitative finance, many prob-
lems can often be formulated in terms of the expectation of a function that depends
on multiple random variables. These random variables then correspond to the stochas-
tic processes found in the financial markets, such as interest rates, exchange rates and
stock prices. The calculation of the multivariate expectation involves the evaluation of
a multi-dimensional integral. To illustrate this, consider a multivariate random variable
X = (X1, · · · , XN ) with corresponding joint density function f (·). The multivariate expec-
tation of the target function g (·) under a certain probability measure is defined as

E
[
g (X)

]= ∫
RN

g (x1, · · · , xN ) f (x1, · · · , xN ) d x1 · · ·d xN .

Consequently, solving multivariate expectations is equivalent to the task of evaluating
multi-dimensional integrals. As analytical solutions often do not exists, numerical inte-
gration methods are employed to approximate the multivariate expectation. However,
standard numerical integration techniques are optimized for one- or two-dimensional
problems, but can struggle with the high-dimensional situation, as they suffer from the
so-called "curse of dimensionality", resulting in an exponential increase in the computa-
tional costs of the methods. This leads to impracticable computation times and potential
memory overflow issues. Therefore, much effort has been put into improving the perfor-
mance of numerical integration methods in high-dimensional contexts, which will be
discussed in more detail in the literature review presented in Section 1.4.

This thesis aims to develop a generic and efficient solver for multivariate expectation
problems, with a focus on its application in the field of quantitative finance, specifically
for the quantification of Counterparty Credit Risk (CCR). To demonstrate the versatility
of the method, a secondary example in the context of multi-asset option pricing will also
be presented.

1
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2 1. INTRODUCTION

1.2. INTRODUCTION TO COUNTERPARTY CREDIT RISK
Quantifying and managing counterparty credit risk is one of the most challenging tasks
nowadays in financial institutions. According to the Basel Committee on Banking Su-
pervision, CCR is defined as the risk that the counterparty to a transaction could default
before the final settlement of the transaction’s cash flows [1]. When the counterparty
defaults, the non-defaulting party suffers possible losses due to the uncompleted pay-
ments of contractual cash flows. CCR only plays a role in the Over-The-Counter (OTC)
derivatives, which are contracts privately negotiated between counterparties. Deriva-
tives traded on the regular exchange are generally not affected by CCR, as the exchange
guarantees the cash flows promised by the derivatives to the counterparties.

Prior to the credit crisis in 2007, CCR was not considered to be a significant factor
when trading OTC. The larger derivative counterparties were perceived as being too big
to fail, and CCR was often overlooked due to their high credit ratings. For many years, it
was common practice in the industry to value OTC derivative products without consid-
ering CCR, assuming that the likelihood of counterparty default was negligible.

However, during the 2007 financial crisis, numerous corporate collapses occurred,
including large financial institutions such as Lehman Brothers. Consequently, market
participants became aware that the "too big to fail" mentality was not applicable, and
CCR should be taken into account when valuing OTC contracts for any financial en-
tity. After the crisis, new regulations were established with regards to the modelling and
quantification of CCR, which financial institutions are obligated to adhere appropriately.
To this day, the development of effective CCR models remains a key priority for financial
institutions.

The first step in quantifying and managing CCR is the computation of exposure pro-
files for the OTC derivatives. Exposure can be seen as the maximal amount of money
that can be lost if the default of a counterparty occurs. The future exposure of a finan-
cial contract cannot be predicted with certainty as it is dependent on the behavior of
uncertain risk factors, such as interest rates and exchange rates. Therefore, only a dis-
tribution of the Mark-to-Market (MtM) price of the portfolio can be obtained for future
time points based on stochastic models of the risk factors. Mathematically, exposure is
defined as the positive part of this MtM price distribution. This exposure distribution
then indicates the probability of which a certain exposure value occurs.

Once the exposure distribution is computed, different exposure measures can be
quantified. Two important exposure measures, which are also incorporated in the Basel
II regulations, are the Expected Exposure (EE) and Potential Future Exposure (PFE). The
EE is the expectation of the exposure distribution, while the PFE represents the 97.5 %
quantile of the exposure distribution. The Basel III regulations introduce a new measure
for CCR called Credit Value Adjustment (CVA). CVA is defined as the difference between
the risk-neutral valuation of a financial derivative contract and its valuation that consid-
ers the possibility of counterparty default. In other words, CVA is the market value of CCR
[2]. The computation of CVA also depends on exposure profiles, i.e. the term-structure
of EE, driving the need of the industry for fast and accurate computation methods of
these exposure quantities.

The standard method in the industry to compute exposure profiles, if not the only
method, is the Monte Carlo (MC) simulation. With this method, future values of the
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risk factors are simulated according to pre-selected stochastic models. These simulated
scenarios are then used to price all the derivatives in the portfolio at a future time point,
resulting in an approximation of the total exposure distribution of the portfolio. Once
this exposure distribution is computed, CCR measures like PFE or CVA can be quantified.
MC is a robust and flexible method, suitable for portfolios consisting of exotic and path-
dependent derivatives. However, the convergence rate for the Monte Carlo method is
slow and many simulations are required to obtain an accurate estimate of the exposure
distribution, making it a time consuming method. Much of the research regarding CCR
has therefore been focused on faster and more efficient computation of the exposure
profiles than the standard MC method. A literature review on this topic will be presented
in Section 1.4.1.

1.3. NUMERICAL INTEGRATION
Since a multivariate expectation is essentially a multi-dimensional integral, it can be
solved using general high-dimensional integration techniques. Therefore, a brief intro-
duction of different numerical integration methods is provided in this section.

STANDARD NUMERICAL METHODS

The trapezoidal rule is a simple and widely used numerical integration method. This
method approximates the area under a curve by computing the sum of the areas of
trapezoids that fit under the curve. While this rule is relatively easy to use, it has certain
limitations in terms of accuracy and sensitivity to the shape of the integrated function.
Specifically, the trapezoidal rule is a first-order accurate method, which implies that the
error in the approximation is proportional to h2, where h denotes the distance between
two consecutive grid points.

A more accurate integration scheme is the Clenshaw-Curtis method, proposed in
[3]. This method employs a sum of Chebyshev polynomials to approximate the inte-
grated function and can provide high accuracy for functions that exhibit significant os-
cillation or irregular behaviour. Additionally, the Clenshaw-Curtis method converges
exponentially to the true value of the integral, which implies that it may require only a
small number of function evaluations to achieve a high level of accuracy. The Clenshaw-
Curtis quadrature rule also has the advantage of being able to compute the weights in
an efficient way using fast Fourier transform (FFT) techniques. This makes the method
particularly suitable for problems that involve a large number of function evaluations.

Another class of integration methods is the Gaussian quadrature rules. These quadra-
ture rules use a weighted sum of function values at specific points to approximate the in-
tegral. These methods are typically more accurate than the trapezoidal rule and Clenshaw-
Curtis method, but can be more difficult to implement. Gaussian quadrature rules can
achieve exact integration for polynomials up to a certain degree, and they can also pro-
vide highly accurate approximations for other functions. To achieve such accuracy, Gaus-
sian quadrature rules use non-uniformly spaced nodes, which lead to greater accuracy
for the integration of functions that are not uniformly distributed across the integration
interval.
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MONTE CARLO METHODS

Monte Carlo methods are a class of computational algorithms that use random sampling
to solve mathematical problems. In the context of numerical integration, the key idea in
the Monte Carlo methods is to estimate the value of an integral by generating a large
number of random points in the domain of integration and then computing the aver-
age of the function values at those points. By the law of large numbers, this will then
converge to the true value of the integral when increasing the number of random points.

Monte Carlo methods have some advantages over the standard numerical methods
presented before. For example, Monte Carlo methods can be used for high-dimensional
integration or complicated domains, where standard quadrature methods may not be
practical or accurate. However, the convergence rate of the Monte Carlo methods can
be quite slow. Consequently, a lot of random points have to be generated to obtain an
accurate approximation, making the method computationally expensive and hence can
lead to slow computation times.

Significant efforts have been made to increase the convergence speed of Monte Carlo
algorithms through the implementation of efficient sampling techniques and variance
reduction methods. In Section 1.4.1, an extensive literature review on the application of
Monte Carlo methods within the framework of CCR is presented.

MACHINE LEARNING TECHNIQUES

Machine learning techniques have been increasingly used for numerical integration in
recent years. These methods offer a promising alternative to traditional numerical in-
tegration methods, particularly for high-dimensional or complex functions. A common
approach involves the use of machine learning models to approximate the integrand
function, which can then be used to estimate the integral value. Several machine learn-
ing techniques have been utilized in the context of numerical integration, such as neural
networks, Gaussian processes and support vector machines (SVMs). In Section 1.4.1,
an overview of recent literature is provided in which machine learning techniques have
been applied in the context of CCR.

SPARSE GRID TECHNIQUES

Sparse grid methods are a class of numerical integration methods that use a sparse set of
grid points to approximate integrals. These methods are particularly effective for high-
dimensional integration problems, as they can reduce the number of function evalua-
tions required to achieve a given level of accuracy.

This reduction of function evaluations is achieved by partitioning the input space
into a set of lower-dimensional grids, and then selectively evaluating the integrand on
only a subset of these grids. This selective evaluation strategy allows for more efficient
use of computational resources while still accurately approximating the integral.

One of the most commonly used sparse grid algorithms is Smolyak’s algorithm [4]. It
works by recursively building a set of tensor-product grids of increasing resolution and
selectively evaluating the integrand on only a subset of these grids.

Another approach to construct sparse grids is to make use of hierarchical basis func-
tions, such as wavelets or Chebyshev polynomials. These basis functions can be used
to construct sparse grids that accurately approximate the integrand with fewer function
evaluations.
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Sparse grid techniques have been employed in the literature of quantitative finance
to solve high-dimensional expectations. Section 1.4.2 presents some literature on the
application of sparse grid methods to price multi-asset options.

1.4. LITERATURE REVIEW
As various numerical integration methods have been introduced in the previous section,
a literature review is performed how these numerical integration techniques are utilized
in the field of quantitative finance to evaluate multivariate expectations. Specifically,
the focus of this literature review is on the quantification methods of CCR. However, an
additional section on option pricing methods is included, as the solver developed in this
thesis will also be applied to price multi-asset options.

1.4.1. COUNTERPARTY CREDIT RISK

MONTE CARLO BASED METHODS

The Monte Carlo approach is the standard approach in the industry to compute expo-
sure profiles and CVA prices. However, the downside is the slow convergence rate, be-
cause of which numerous simulations are required and hence is computationally inten-
sive. Therefore, a lot of research is done on improving the MC framework.

The Least Squares Monte Carlo (LSMC) method, introduced in [5], is a regression
based method often used when dealing with path-dependent or other exotic instru-
ments. The benefit of LSMC is that nested Monte Carlo simulation can be avoided when
dealing with path-dependent derivatives, which is a very time consuming method. In
[6], LSMC was used to speed up exposure calculations of a portfolio consisting of exotic
instruments. The speed of computing the PFE and EE profiles was accelerated in aver-
age by a factor of 60 compared to the standard MC framework. In [7] they showed that
the MSE of crude Monte Carlo estimators of EPE, CVA, and EEPE can be substantially re-
duced by solving approximate MSE minimization problems that specify how to achieve
an approximately optimal balance between bias squared and variance. However, the
method does depend on numerical experiments for model calibration, and worse per-
formance can be expected when estimating the tail of the distribution.

The Monte Carlo-Tree (MC-Tree) method combines the MC method with the bino-
mial tree. It was shown that the MC-Tree method is more accurate than LSMC for a single
American option at similar computational cost [8]. The method is only tested with op-
tions depending on a single asset. Pricing multi-asset options, or other derivatives with
multiple risk factors, requires the use of multinomial trees, resulting in greater complex-
ity of the method.

Another Monte Carlo based approach is the so-called Stochastic Grid Bundling Method
(SGBM). It was introduced in [9] in the context of pricing multi-dimensional Bermu-
dan options, but later applied to CVA and exposure profiles of options [10] and interest
rate derivatives [11], [12]. With SGBM, Monte Carlo paths within the same region of
realisation are bundled, assuming these have similar properties. Computation of the
MtM prices is then performed locally in these bundles by means of local regression. The
method shows a significant variance reduction compared to the LSMC methods, espe-
cially when estimating the distribution’s tail (for PFE calculations). However, the conver-
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gence rate is similar to LSMC methods at a higher computational cost.
In [13], the Monte Carlo simulation is accelerated using Chebyshev polynomials as

approximation for the original pricing function. An EPE and PFE profile on a Bermudan
Swaption was considered. The calculation via the Chebyshev approximation decreases
the computational effort compared to the benchmark full-revaluation, without any loss
of accuracy. Furthermore, the incremental computational effort of increasing number
of scenarios in the Monte Carlo simulation is negligible [14], [15]. However, only expo-
sure at the level of individual contracts has been taken into account, with consideration
given to only one risk factor. Furthermore, the method cannot be utilized for dynami-
cally changing portfolios, as the pricing function of the total portfolio would change ac-
cordingly. Moreover, as the number of risk factors increases, the number of Chebyshev
coefficients that must be solved at each time point would increase exponentially.

Finite Difference Monte Carlo (FDMC) method uses the scenario generation of the
Monte Carlo method and the pricing approach of the finite difference method. The
method calculates option prices based on the option pricing partial differential equa-
tion, for an entire grid of underlying values. Therefore, this method can easily be used
to compute CVA sensitivities, which is done for vanilla and barrier options in [10] and
Bermuda options in [16] under Heston’s model. The method shows accurate results for
single instruments with one or two risk factors. However, applying FDMC on more risk
factors becomes impracticable, as the differential equation needs to be discretized over
each dimension space corresponding to each risk factor.

Another way of computing CVA sensitivities is the so-called pathwise sensitivity method,
described in [17]. The key idea is to interchange the differentiation and expectation op-
erators within the valuation formula. The pathwise sensitivity method can be applied
under mild conditions regarding the smoothness of the payoff function and the stochas-
tic processes of the risk factors involved. In [18], a new method is presented to apply the
pathwise sensitivity method also to Barrier options with discontinuous payoff. Com-
pared to the finite difference method, there is no extra Monte Carlo simulation required
to "shock" the parameters, resulting in a computational advantage.

The literature on CVA calculations also involves the quantification of Wrong-Way
Risk (WWR). A literature review on the inclusion of WWR in CVA calculations can be
found in Appendix A.1.

MACHINE LEARNING METHODS

Machine learning methods provide new techniques for computing exposure profiles.
The Bank for International Settlements (BIS) points out machine learning as one of the
main drivers of the ongoing transformation of the financial sector [19]. Machine learn-
ing may provide alternatives to costly numerical methods in many areas of the financial
industry, but its wide adoption is challenged by requirements on transparency, reliability
and accountability.

A popular technique used is the Gaussian Process Regression (GPR), as is done for
CVA calculations in [20],[21]. GPR is a supervised learning method, in which regression
and probabilistic classification problems can be solved. The prediction is probabilistic
(Gaussian), which means that one can compute empirical confidence intervals. Based
on these intervals, decisions can be made if one should refit the prediction in some re-
gion of interest. The benefit of GPR is that the uncertainty of the predictions are already
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quantified in the model. It can also be used to price path-dependent options by fitting
the continuation values through GPR, as is done for Bermudan options in [22].

Another popular machine learning method involves the use of neural networks. For
example, the standard LSMC method is adapted in [23], in which the least-square re-
gression is replaced with a neural network approximation. Numerous studies have been
done on the application of neural networks in the context of exposure and CVA calcula-
tion [24]–[29]. As mentioned before, these methods show promising results in terms of
fast computation, but the complexity and lack of transparency prevent the use of these
techniques in the real world so far.

1.4.2. OPTION PRICING

In this thesis, the solver developed is utilized in the context of pricing multi-asset op-
tions. Therefore, a brief overview of the primary option evaluation methods available in
the literature is presented.

Under the premise of no-arbitrage, the values of multi-asset options are determined
by multivariate expectations under an equivalent martingale measure. Consequently,
the Monte Carlo-based and machine learning methods discussed in the previous sec-
tion, which are specifically designed for computing multivariate expectation problems,
can also be employed to estimate the multi-asset option values

A different approach to computing option values involves the use of Fourier tech-
niques. One of the most popular used methods of this type is the COS method, which
was introduced by Fang and Oosterlee in [30]. The essence of the method lies in approx-
imating the probability density function, which appears in the expectation, through the
use of its Fourier-cosine series expansion. It has been established that the Fourier-cosine
series coefficients have a closed-form solution with the characteristic function. This al-
lows the COS method to be applied to a broad class of asset price processes for which
the characteristic function is available, including exponential Lévy processes and affine
jump diffusion processes [31]. For smooth density functions, COS method is optimal in
terms of error convergence and in computational complexity for European options.

The Feynman-Kac theorem provides a connection between the multivariate expec-
tation of the option’s payoff value and the solution of the corresponding pricing par-
tial differential equation (PDE). Therefore, another way to compute option values is to
solve the corresponding pricing PDE. Techniques to solve PDE’s such as finite difference
schemes can then be applied to obtain the option’s value. The main benefit of the PDE
approach is that the option’s value can be generated for the entire discretization range of
the underlying stock values simultaneously. The PDE approach is commonly employed
when only one or two stock processes are involved in the option’s value. However, deal-
ing with multi-asset options through the PDE approach can become impracticable, as
the discretization must be performed for every underlying stock process, resulting in a
high-dimensional grid to evaluate.

The direct numerical integration techniques discussed in Section 1.3 can be used to
approximate multivariate expectations and hence also approximate option values. How-
ever, the standard quadrature rules are not practical for multi-asset options due to their
exponential computational complexity. Recently, researchers have explored the use of
adaptive, sparse grids techniques for pricing multi-asset options [32]–[34]. Another re-
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cent paper focuses on evaluating multi-asset basket options using adaptive sparse grid
techniques [35]. The method described in here will be compared with the solver devel-
oped in this thesis to investigate the competitiveness of the method with recently devel-
oped methods in the literature.

1.5. THESIS OBJECTIVE AND OUTLINE
The goal of this thesis is to develop a generic and efficient solver for multivariate expec-
tation problems, with a focus on its application in the field of quantitative finance. The
solver, which is referred to as the COS-CPD method, comprises two main components:
the COS method and a tensor decomposition technique called CPD. The COS method
will be used to recover the portfolio distribution at future time points, from which the EE
and PFE quantities can be derived.

The replacement of the Monte Carlo method by the COS method to compute PFE
profiles has been studied in a previous master thesis carried out at FF Quant [36], which
included portfolios with a maximum of three risk factors. When applying the COS method,
the characteristic function of the portfolio value has to be evaluated. In [36], this charac-
teristic function was approximated by directly employing the Clenshaw-Curtis quadra-
ture method. However, as the dimension of integration is determined by the number of
risk factors, this approach is only feasible when dealing with portfolios that involve up
to two or three risk factors. This is because high-dimensional integration becomes im-
practicable with the Clenshaw-Curtis quadrature rule (or any other standard quadrature
method) due to its exponential growth in computational costs.

However, portfolios contain easily more than three risk factors in practice. In order
to apply the COS approach on portfolios with more than three risk factors, an alterna-
tive method of evaluating the characteristic function has to be developed. Therefore,
this thesis proposes an improvement on the COS approach by reducing the dimension
of integration for the characteristic function. This is done in two steps. First, the joint
density function of the risk factors, appearing in the characteristic function, is replaced
by a dimension-reduced Fourier-cosine series expansion, obtained via CPD. In this way,
the computational complexity of computing the Fourier coefficient tensor is reduced to
a linear growth with respect to the number of dimensions. The application of CPD to
decompose the joint density into a Fourier-cosine series expansion can be applied to
any multivariate expectation problem, which shows the generic nature of the method.
Secondly, we make use of the specific portfolio structure. Although a derivative portfolio
can consist of many risk factors, each individual contract comprises two paying legs that
depend on only one or two risk factors. By dividing the portfolio into segments that share
the same risk factors, the evaluation of the characteristic function can be reduced to the
calculation of only one- and two-dimensional integrals, which can be solved numeri-
cally again using the Clenshaw-Curtis quadrature rule. Consequently, the characteristic
function can be obtained by solving only one- and two-dimensional integrals, making
the method applicable to portfolios with more than three risk factors.

The outline of the thesis is as follows: Chapter 2 provides the necessary mathemat-
ical foundation for modeling, formulating, and solving the relevant quantities involved
in counterparty credit risk and option pricing. After that, Chapter 3 presents an intro-
duction to the concept of Canonical Polyadic Decomposition (CPD) and explains how
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this decomposition technique can be used in the context of Fourier-cosine series ex-
pansions to decrease the computational complexity of approximating the Fourier co-
efficients. A supervised learning algorithm is presented to obtain the CPD factor ma-
trices, from which the Fourier coefficient tensor can be constructed. This algorithm is
numerically analysed in Chapter 4 to obtain optimal parameter settings that will be used
later when applying the CPD algorithm in the context of CCR quantification and option
pricing. The methodology of the COS-CPD method to solve multivariate expectations
is described in Chapter 5. Additionally, the methodology is presented in detail for the
generation of PFE and EE values in the context of CCR quantification. Subsequently,
a theoretical error analysis of the COS-CPD method is outlined in Chapter 6, in which
each error source is identified and assigned a theoretical upper bound. In Chapter 7, the
COS-CPD method is applied to quantify counterparty credit risk for portfolios of three
and five risk factors, with numerical results compared to the Monte Carlo method. To
demonstrate the versatility of the COS-CPD method, Chapter 8 presents the application
of the COS-CPD method into the context of multi-asset option pricing, as the evaluation
of a six-dimensional basket option is considered. The numerical results are compared in
both accuracy and computation time with a recently introduced sparse grid method for
solving multi-asset basket options to show the competitiveness of the method. Chapter 9
provides a summary of all the findings, draws a conclusion on the method, and suggests
future research directions.





2
MATHEMATICAL FRAMEWORK

In this chapter, all the relevant mathematical tools are presented to formulate, model
and solve the CRR quantification and option pricing problems.

2.1. STOCHASTIC CALCULUS
This section contains definitions and theorems from the field of stochastic calculus. The
notation is based on [37], [38]. With these results, the stochastic models of the risk factors
can be defined and analysed.

Definition 2.1.1 (Filtration). Let (Ω,F ,P) be a probability space. A filtration on (Ω,F ,P)
is a family of sub σ-fields {Ft , t ≥ 0} of F indexed by t ∈ [0,∞), such that Fs ⊂ Ft for
every s ≤ t ≤∞.

Definition 2.1.2 (Adapted process). A process X = {X t , t ≥ 0} is said to be adapted to a
filtration {Ft , t ≥ 0} if for all t ≥ 0, X t is Ft measurable.

Definition 2.1.3 (Martingale). Let M = {Mt , t ≥ 0} be a process defined on the probability
space (Ω,F ,P) equipped with a filtration {Ft , t ≥ 0}. Then M is said to be a martingale if

1. M is an adapted process.

2. For all t ≥ 0, Mt is integrable.

3. M satisfies the martingale property, which reads

E[Mt |Fs ] = Ms , ∀ 0 ≤ s < t .

Definition 2.1.4 (Semimartingale). A stochastic process X = {X t , t ≥ 0} is called a semi-
martingale if it can be decomposed as follows:

X = X0 +M + A,

where the random variable X0 is finite and F0-measurable, the stochastic process M is a
local martingale and the stochastic process A has finite variation.

11
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Definition 2.1.5 (Brownian Motion). A real-valued process {W (t ), t ≥ 0} is called a Brow-
nian motion if

1. Starting at 0: W (0) = 0.

2. Normally distributed increments: For all 0 ≤ s < t , W (t )−W (s) ≃ N (0, t − s).

3. Independent increments: For 0 ≤ t0 < t1 < ·· · < tn , the random variables Yi :=
W (ti )−W (ti−1), i = 1, . . . ,n are independent.

4. Continuous trajectories: The map t 7→W (t ) is continuous.

Definition 2.1.6 (Itô Integral). For any square-integrable adapted process g (t ) with con-
tinuous sample paths, the Itô integral is given by:

I (T ) =
∫ T

0
g (t )dW (t ) := lim

m→∞ Im(T ), in L2.

Here, Im(T ) = ∫ T
0 gm(t )dW (t ) for some elementary process gm(t ) =∑n−1

j=0 η j 1[t j ,t j+1), satis-
fying:

lim
m→∞E

[∫ T

0
(gm(t )− g (t ))2d t

]
= 0,

where η j is Ft j measurable for all j = 0,1, . . . ,n −1 and square-integrable.

Theorem 2.1.1 (Itô Isometry). For any stochastic process g (t ), satisfying the usual regu-
larity conditions, the following equality holds,

E

[(∫ T

0
g (t )dW (t )

)2
]
=

∫ T

0
E[g 2(t )]d t .

Theorem 2.1.2 (Itô’s Formula). Let f ∈C 2(R) and consider a continuous semimartingale
X with decomposition X = M + A. Then, the stochastic process ( f (X t ))t≥0 is also a semi-
martingale and holds

f (X t ) = f (X0)+
∫ t

0

∂ f

∂x
(Xu)d Xu + 1

2

∫ t

0

∂2 f

∂x2 (Xu)d [X ]u ,

with [X ] denotes the quadratic variation of the process (X t )t≥0.

Itô’s formula is often expressed in differential form:

d f (X t ) = ∂ f

∂x
(X t )d X t + 1

2

∂2 f

∂x2 (X t )d [X ]t .

Definition 2.1.7 (Girsanov’s Theorem). Let (Ω,F ,P) be a probability space. In addi-
tion, let (Wt )t≥0 be a Brownian motion defined on (Ω,F ,P) with natural filtration Ft =
σ(W (s), 0 ≤ s ≤ t ). Let (Lt )t≥0 be a (local) P−martingale, and define the process (Zt )t≥0

via the stochastic exponential,

Zt := E (Lt ) = eLt− 1
2 [L]t .
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Then, Zt is a P-martingale, and a new probability measure Q, equivalent with P, can be
defined via the Radon–Nikodym derivative such that

dQ

dP

∣∣∣
Ft

= Zt .

Furthermore, the Brownian motion Wt under the new measure Q is given by

W̃t =Wt − [W,L]t ,

where [W,L] denotes the quadratic covariance between the processes Wt and Lt .

2.2. CCR QUANTIFICATION
In this section, we present the mathematical framework for quantifying CCR. Most of the
notation used in this framework is derived from [37], [39]. First, the concept of exposure
is defined and two exposure related measures are formulated. After that, we introduce
the concept of CVA and derive a formula for calculating the CVA of a portfolio.

2.2.1. EXPOSURE PROFILES
In order to present the definition of exposure for a derivative portfolio, it is important
to clarify what is meant by the "value" of a portfolio. In this thesis, the mark-to-market
(MtM) value will be used, which is formulated in the next definition.

Definition 2.2.1 (Mark-to-market). Mark-to-market (MtM) is a method of measuring the
fair value of financial products based on current market conditions. In context of CCR, the
MtM with respect to a particular counterparty defines what could be potentially lost today
if default occurs.

Definition 2.2.2 (Exposure for single derivative). The exposure Et at time t for a single
derivative contract is defined as,

Et = E(X t ) = max(V (X t ),0), 0 ≤ t ≤ T,

where X t indicate the risk factors involved and V (X t ) the MtM value of the derivative
contract at time t .

In practice, two counterparties often trade several derivative contracts with one an-
other, which are grouped together in one or more portfolios. In this case, CCR can be
mitigated using a technique called netting.

Definition 2.2.3 (Netting agreement). A netting agreement is a legally binding contract
that allows aggregation, and therefore possible offsetting, of multiple transactions with
one counterparty.

Definition 2.2.4 (Exposure on counterparty level). Let V =∑N
i=1 Vi be a portfolio consist-

ing of N derivative contracts traded with one counterparty. The exposure of the portfolio
in the case of no netting is given by

E c
t = max(V1(X t ),0)+·· ·+max(VN (X t ),0), 0 ≤ t ≤ T.
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If netting is allowed, the exposure of the netting set, denoted with E n
t , is of the following

form,

E n
t = max

(
N∑

i=1
Vi (X t ),0

)
, 0 ≤ t ≤ T.

Since max(X +Y ,0) ≤ max(X ,0)+max(Y ,0), netting always reduces the exposure of
the portfolio and therefore also the CCR.

Once the exposure distribution at a future time point is known, different measures to
quantify CCR can be extracted. One of these measures often used in the industry is the
expected exposure, which also plays a central role in the context of CVA.

Definition 2.2.5 (Expected Exposure). The expected (positive) exposure (EE) at time t is
defined as the expectation of the exposure profile Et ,

EEt = E[Et ] = E[E(X t )], 0 ≤ t ≤ T.

For risk management purposes, the potential future exposure is computed. This
measure can be viewed as the worst exposure given a certain confidence interval. Math-
ematically, the PFE is found by taking a specific quantile of the exposure distribution.

Definition 2.2.6 (Potential Future Exposure). The potential future exposure (PFE) at time
t is defined as the α-quantile of the exposure distribution Et ,

PF Eα,t = inf {x ∈R :α≤ FEt (x)},

where FEt (x) :=P(Et ≤ x) is the cumulative distribution function of the exposure Et under
real-world measure P. For PFE calculations, the quantile α= 97.5% is commonly used.

2.2.2. CREDIT VALUE ADJUSTMENT (CVA)
CVA is by definition the difference between the risk-free portfolio value and the true port-
folio value that takes into account the possibility of a counterparty’s default [2]. In other
words, CVA is the market value of counterparty credit risk,

CV A =V (default free)−V (credit risky).

There are a variety of different models for CVA. If only the credit risk of one counterparty
is taken into account, the model is referred to as unilateral CVA. However, if the credit
risk of both counterparties is considered, a bilateral CVA model is utilized.

Before presenting the mathematical formula for unilateral CVA, the definition of the
recovery rate is presented.

Definition 2.2.7 (Recovery rate). The recovery rate Rc is the percentage amount that a
creditor receives in relation to claims on a defaulted counterparty.

For a constant recovery rate Rc , the formula for the unilateral CVA is as follows,

CV A(t ) = (1−Rc )EQ
[
D(t ,T )1tD≤T max(VtD ,0)|Ft

]
,
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where Rc denote the (constant) recovery rate, D(t ,T ) the stochastic discount factor de-
fined in Definition 2.3.2, tD the time of default, 1 the indicator function and VtD the MtM
value of the portfolio at time of default. A derivation of this formula can be found in [40].
Using the tower property for expectations we obtain

CV A(t ) = (1−Rc )EQ
[
EQ

[
D(t ,T )1tD≤T max(VtD ,0)|FtD

] |Ft

]
= (1−Rc )EQ

[
1tD≤T E

Q
[
D(t ,T )max(VtD ,0)|FtD

] |Ft

]
.

Note that the expectation of the exposure is conditional on the counterparty default oc-
curring at time tD . When assuming independence between exposure and the default
time tD , CVA can be approximated with

CV A(t ) = (1−Rc )
∫ T

t
EQ

[
D(t ,T )max(V (tD ,T ),0)

∣∣∣tD = z
]

ftD (z) d z

= (1−Rc )
∫ T

t
EQ

[
D(t ,T )max(V (tD ,T ),0)

∣∣∣tD = z
]

dFtD (z)

≈ (1−Rc )
m∑

k=1
EETk q(Tk−1,Tk ), (2.1)

where EETk denotes the (discounted) expected exposure as defined in 2.2.5 and q(Tk−1,Tk ) :=
FtD (Tk )−FtD (Tk−1) the probability of default between time Tk−1 and Tk . The assumption
of independence between exposure and default time may lead to an underestimation of
the risk, resulting in a potential significant loss. The phenomenon which is not mod-
elled in this scenario is commonly referred to as wrong-way risk, which is presented in
the next definition.

Definition 2.2.8 (Wrong-way risk). In the context of CVA, wrong-way risk occurs when-
ever there is an adverse co-dependence between the exposure to a counterparty and the risk
that the counterparty will default, while right-way risk occurs whenever the is a favourable
co-dependence.

Wrong-way risk removes the assumption of independence between the expected ex-
posure and the probability of default. Hence, the model presented in 2.1 cannot be used
when wrong-way risk has to be incorporated in the model. Appendix A provides a liter-
ature review on various techniques that can be utilized to account for wrong-way risk in
CVA models.

Bilateral CVA models add an additional term called Debit Value Adjustment (DVA),
arising from the credit risk of the reporting institution. In other words, it represents the
counterparty credit risk from the point of view of the "seller". DVA is a very controversial
topic due to its potential to increase the accounting value of a derivatives portfolio, while
the creditworthiness of the institution is decreasing. Therefore, the Basel III framework
does not include DVA as part of the CVA capital charge [41].
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2.3. INTEREST RATE FRAMEWORK
This section is devoted to the mathematical formulation of several interest rate related
quantities used in the market. Additionally, it introduces two popular interest rate deriva-
tives and provides a valuation formula for each. The final part of this section elaborates
on the Gaussian one factor model, which is used throughout this thesis to model the
short rate. Properties of this model are analyzed, and an expression for the Zero-coupon
Bond (ZCB) price under this model is derived.

2.3.1. INTEREST RATE DEFINITIONS AND PRODUCTS
The definitions presented in this section are taken from [42]. We start with the concept
of the money-savings account or bank account. This is considered as a risk-free invest-
ment, which accrues according to a continuously compounded interest rate. This rate is
also known as the instantaneous spot rate, or briefly as short rate.

Definition 2.3.1 (Bank account). The value of a bank account is defined as B(t ) at time
t ≥ 0. We assume B(0) = 1 and that the bank account evolves according to the following
differential equation:

dB(t ) = r (t )B(t )d t , B(0) = 1,

where r (t ) is the instantaneous spot rate. As a consequence,

B(t ) = e
∫ t

0 r (s) d s . (2.2)

The above definition shows that investing a unit amount at time 0 in the bank ac-
count yields the value in 2.2 at time t .

Definition 2.3.2 (Stochastic discount factor). The (stochastic) discount factor D(t ,T ) be-
tween two time instants t and T is the amount at time t that is “equivalent” to one unit of
currency payable at time T , and is given by

D(t ,T ) = B(t )

B(T )
= e−

∫ T
t r (s) d s .

Definition 2.3.3 (Zero-coupon bond). A T -maturity zero-coupon bond (pure discount
bond) is a contract that guarantees its holder the payment of one unit of currency at time
T , with no intermediate payments. The contract value at time t < T is denoted by P (t ,T ).
Clearly, P (T,T ) = 1 for all T . The zero-coupon bond can be viewed as the expectation of
the stochastic discount factor D(t ,T ),

P (t ,T ) = EQ [D(t ,T )|Ft ] = EQ
[

e−
∫ T

t r (s) d s | Ft

]
,

where the superscriptQ denotes that the expectation is taken under the risk-neutral prob-
ability measure.

An alternative to continuous compounding is simple compounding, which applies
when the interest accrues proportionally to the time of the investment. Simple com-
pounding is used to define interbank rates like the LIBOR. For an amount Mt invested at
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time t with simply-compounded interest rate r (t ,T ), the value of the investment at time
T is then as follows:

MT = (1+ r (t ,T ))τ(t ,T )Mt ,

where τ(t ,T ) denotes the time difference between t and T .
A special case is when Mt = P (t ,T ). The interest rate for which MT = 1 is called the
simply-compounded spot interest rate, and is presented in the next definition.

Definition 2.3.4 (Simply-compounded spot interest rate). The simply-compounded spot
interest rate prevailing at time t for the maturity T is denoted by L(t ,T ) and is the constant
rate at which an investment has to be made to produce an amount of one unit of currency
at maturity, starting from P (t ,T ) units of currency at time t , when accruing occurs pro-
portionally to the investment time. In formulas:

L(t ,T ) = 1−P (t ,T )

τ(t ,T )P (t ,T )
,

where P (t ,T ) is the ZCB at time t with maturity T , and τ(t ,T ) is the year fraction accord-
ing to the day-count convention, usually Act365.

Another type of interest rates are the so-called forward rates. Forward rates are inter-
est rates that can be locked in today for an investment in a future time period. To define
the forward rate, three specific time instants have to be established, which include the
current time t at which the rate is being considered, the expiry time T , and the matu-
rity S, where t ≤ T ≤ S. Forward rates are typically agreed upon through a Forward-Rate
Agreement (FRA). This contract gives the holder an interest rate payment for the period
between T and S. At the maturity S, a fixed payment based on a fixed rate K is exchanged
against a floating payment based on the spot rate L(T,S) resetting in T and with maturity
S. Basically, this contract allows one to lock-in the interest rate between times T and S at
a desired value K , with the rates in the contract that are simply compounded. The payoff
of a FRA contract at time S is therefore

V F R A(t ,T,S,τ(T,S), N ,K ) = Nτ(T,S)(K −L(T,S))

= N [P (t ,S)τ(T,S)K −P (t ,T )+P (t ,S)],
(2.3)

where τ(t ,T ) is the year fraction, P (t ,T ) is the ZCB at time t with maturity T and N is the
notional amount of the transaction. In general, forward contracts are traded without any
initial cash flow between the two parties at time t . This is achieved by selecting a fixed
rate K that ensures that the value of the FRA contract is zero at time t . It is clear from 2.3
that there exists a unique value for K that renders the FRA a fair contract at time t . This
value for K is called the simply-compounded forward interest rate and is defined below.

Definition 2.3.5 (Simply-compounded forward interest rate). The simply-compounded
forward interest rate prevailing at time t for the expiry T > t and maturity S > T is denoted
by F (t ;T,S) and is defined by

F (t ;T,S) = 1

τ(T,S)

(
P (t ,T )

P (t ,S)
−1

)
.

It is the value of the fixed rate K in a prototypical FRA with expiry T and maturity S that
renders the FRA a fair contract at time t .
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The forward rate F (t ;T,S) may thus be viewed as an estimate of the future spot rate
L(T,S) based on the market conditions at time t . If the maturity time S gets infinitely
close to expiry time T , the instantaneous forward rate is obtained.

Definition 2.3.6 (Instantaneous forward interest rate). The instantaneous forward in-
terest rate prevailing at time t for the maturity T > t is denoted by f (t ,T ) and is defined
as

f (t ,T ) = lim
S→T + F (t ,T,S) =−∂ lnP (t ,T )

∂T
.

Intuitively, the instantaneous forward interest rate f (t ,T ) is a forward interest rate at
time t whose maturity is very close to its expiry T , i.e. f (t ,T ) ≈ F (t ;T,T +∆T ) with ∆T
small.

A popular interest rate derivative is the Interest Rate Swap (IRS), which can be con-
sidered as a generalization of the FRA. An IRS is a derivative exchanging two different
legs, often a fixed and a floating leg. During the contract, both legs pay coupons at pre-
arranged dates T := {Tα+1, ...,Tβ}. Throughout this thesis, we will assume that the pay-
ments for the fixed and floating leg are at the same dates. However, the payment dates
for fixed and floating leg can differ 1. For the the fixed leg, the payment is based on a fixed
interest rate K , whereas the floating leg pays a coupon depending on the forward rate.
At time Ti−1, the interest rate is reset for the coupon payment in the period [Ti−1,Ti ].
In case the fixed leg is paid and the floating leg is received, the IRS is called a Payer IRS
(PFS), while in the other case we have a Receiver IRS (RFS). The MtM of an IRS is the
(expected) discounted payoff, which can be found by discounting all the cash flows of
the fixed and floating leg,

V I RS (t ,T ,τ, N ,K ) = η̄
β∑

i=α+1
V F R A(t ,Ti−1,Ti ,τi , N ,K )

= η̄N
β∑

i=α+1
τi P (t ,Ti )(K −F (t ;Ti−1,Ti ))

= η̄
[
−N P (t ,Tα)+N P (t ,Tβ)+N

β∑
i=α+1

τi K P (t ,Ti )

]
, (2.4)

with η̄= 1 for a RFS and η̄=−1 for a PFS. Furthermore, N denotes the notional amount,
K the fixed rate, T the set of payment dates and τ := {τα+1, . . . ,τβ} the set of year frac-
tions.

2.3.2. INTEREST RATE MODELS
One of the first steps in the quantification of CCR is to select an appropriate interest rate
model. There is a great variety of (stochastic) short rate models available. One-factor
short rate models describe interest rate movements with only one stochastic factor that
determines the future evolution of the interest rate. These models are popular for their
simplicity and, in certain cases, the availability of a closed-form solution. A well-known

1A typical IRS in the market has a fixed leg with annual payments and a floating leg with quarterly or semian-
nual payments.
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one-factor model for the short rate was introduced by Vasicek in [43]. Vasicek’s model
was the first one to capture mean reversion, an essential characteristic of the interest
rate process. However, under Vasicek’s model, it is theoretically possible for the interest
rate to become negative, which was considered as an unrealistic scenario for a long time.
This drawback was fixed in the Cox–Ingersoll–Ross (CIR) model [44]. Another popular
model used in the industry is the Hull-White (HW) model introduced in [45]. This model
is also an extension of Vasicek’s model, as the constant drift and volatility parameters are
now defined as a deterministic function of time. Because of this feature, the HW model
is capable of calibrating the model on the entire term structure observed in the market,
while this is not possible for the (simpler) Vasicek model.

In this thesis, the Gaussian One Factor (G1++) model will be used to model the short
rate. The G1++ model is equivalent to the Hull-White model, but has a more convenient
expression for the corresponding ZCB formula. The derivation of the G1++ model below
is based on [46].

In the G1++ model, the shot rate dynamics under the risk-neutral measure are of the
form

r (t ) = x(t )+β(t ),

where the shifted short rate x(t ) follows an Ornstein-Uhlenbeck process:

d x(t ) =−ax(t )d t +σdW (t ), x(t0) = 0,

where a is a positive constant, σ the volatility and W (t ) is a standard Brownian motion.
The function β(t ) is deterministic and is found by the exact fitting of the model to the
term structure observed in the market. The solution x(t ) of the Ornstein-Uhlenbeck
process is known and given by

x(t ) = x(t0)e−a(t−t0) +σ
∫ t

t0

e−a(t−s)dW (s).

A derivation for this solution can be found in Appendix B.1. Since x(t0) = 0, we can see
that x(t ) is normally distributed with mean and variance

E
[
x(t )|Ft0

]= x(t0)e−a(t−t0) = 0,

Var
[
x(t )|Ft0

]= σ2

2a

(
1−e−2a(t−t0)) .

As β(t ) is a deterministic function, r (t ) is also normally distributed, with conditional
mean and variance

E [r (t )|Fs ] = E[
x(t )+β(t )|Fs

]= E [x(t )|Fs ]+β(t ) = x(s)e−a(t−s) +β(t ),

Var[r (t )|Fs ] = Var
[
x(t )+β(t )|Fs

]= Var[x(t )|Fs ] = σ2

2a

(
1−e−2a(t−s)) .

From Definition 2.3.3, the value of a ZCB under the risk-neutral measure Q is

P (t ,T ) = EQ
[

e−
∫ T

t r (s) d s | Ft

]
.
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For the G1++ model, this ZCB formula can be expressed as

P (t ,T ) = A(t ,T )e−B(t ,T )x(t ), (2.5)

where

A(t ,T ) = P M (0,T )

P M (0, t )
e

1
2 [V (t ,T )−V (0,T )+V (0,t )],

B(t ,T ) = 1

a

[
1−e−a(T−t )] .

V (t ,T ) is the variance of
∫ T

t x(s)d s conditional on Ft given by

V (t ,T ) = σ2

a2

(
T − t −2

1e−a(T−t )

a
+ 1−e−2a(T−t )

2a

)
.

A proof for this ZCB expression is given in Appendix B.2. A crucial observation is that
the ZCB formula for the G1++ model only depends on the shifted short rate process x(t ),
together with the market discount curve P M . The ZCB pricing formula in 2.5 will play a
central role within the simulation framework, as it can be used to derive all other rates.
This allows for the valuation of different derivatives to be expressed in terms of zero-
coupon bonds. For example, the value of an IRS presented in 2.4 is written as a linear
combination of different zero-coupon bonds.

2.4. FOREIGN EXCHANGE FRAMEWORK
Foreign Exchange (FX) derivatives are another type of liquid financial products traded
in the OTC market. In 2021, around 17% of the total value of outstanding derivatives on
the OCT market was related to FX type of products [47]. FX derivatives are characterised
by payments in two currencies, often referred to as the domestic and foreign currency.
The conversion between two currencies is done using the FX rate, which will be denoted
with X .

Definition 2.4.1 (Foreign Exchange rate). The foreign exchange (FX) rate is a rate at which
one (domestic) currency will be exchanged for another (foreign) currency and affects trade
and the movement of money between countries.

The convention in literature is to set the FX rate X (t ) as the amount of domestic
currency needed to buy one unit of foreign currency at time t . Using this relation, an
amount N f in foreign currency can be exchanged with an amount of N d = N f · X in
domestic currency.

To compute the value of a FX product, all the cash flows of the contract must be ex-
pressed into the same valuation currency. Throughout this thesis, the domestic currency
will be used as the valuation currency, implying that the cash flows from the traded legs
in the foreign currency will be converted to the domestic currency.
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2.4.1. FX PRODUCTS

One of the most traded FX products is the so-called FX forward. This contract is an
agreement to exchange a certain amount of the domestic currency N d for an amount
of foreign currency N f at a fixed exchange rate X̃T on a specified future time point T .
The value of the FX contract will be expressed in the domestic currency, requiring the
conversion of the cash flow of the foreign currency to the domestic currency using the
exchange rate X (t ). Consequently, the value of a FX forward at time t ≤ T , in which the
domestic notional is paid and foreign notional is received, has the following form,

VF X (t ) = N f P f (t ,T )X (t )−N d P d (t ,T )

= N d

X̃T
P f (t ,T )X (t )−N d P d (t ,T )

= N d
[

P f (t ,T )
X (t )

X̃T
−P d (t ,T )

]
,

where N d is the notional amount in domestic currency, P d and P f the ZCB value in the
domestic and foreign currency and X (t ) the exchange rate at time t .

Similar to the interest forward rate in the FRA contract discussed before, the ex-
change rate X̃T is often chosen such that the value of the contract is fair at initial time t .
The exchange rate for which the value is fair is called the FX forward rate.

Definition 2.4.2 (FX forward rate). The FX forward rate prevailing at time t for the ma-
turity T > t is denoted by XF (t ;T ) and is defined by

XF (t ;T ) = P f (t ,T )

P d (t ,T )
X (t ).

Here P d ,P f are the zero-coupon bonds in the domestic and foreign currency respectively.
X (t ) is the exchange rate at time t defined as the amount of units in domestic currency
for one unit of foreign currency. XF is the value of the FX exchange rate in a FX forward
agreement with maturity T that renders the FX forward a fair contract at time t .

Another multi-currency derivative is the Cross-Currency Swap (XCS). The XCS is sim-
ilar to the IRS derivative defined in 2.4. However, the payments’ legs now consist of dif-
ferent currencies. There are three types of cash flows possible in a XCS, namely the fixed-
for-fixed, fixed-for-floating and floating-for-floating. These indicate the fixed or floating
types of the traded legs. In the fixed-for-floating XCS, one receives a fixed amount of one
currency and pays the floating amount of the other currency. For example, the value of
a fixed-for-floating XCS, in which one receives the fixed foreign currency and pays the
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domestic floating currency, can be valued as

VXC S (t ) =
β∑

i=α+1

[
N f X (t )Kτi P f (t ,Ti )−N d F d (t ,Ti−1,Ti )τi P d (t ,Ti )

]
=−N d

β∑
i=α+1

F d (t ,Ti−1,Ti )τi P d (t ,Ti )+N f X (t )K
β∑

i=α+1
τi P f (t ,Ti )

= N d
[

P d (t ,Tβ)−P d (t ,Tα)
]
+N f X (t )K

β∑
i=α+1

τi P f (t ,Ti ),

where N d , N f are the notional amounts in the domestic and foreign currency, P d and P f

the ZCB value in the domestic and foreign currency, τi the time fraction between time
between time Ti and Ti+1, K the fixed rate and X (t ) the exchange rate at time t .

2.4.2. FX RATE MODEL
The exchange rate X is not a deterministic value, but continuously changes based on
the value of both currencies. Therefore, the exchange rate is not known at future time
points, and has to be modelled according to a suitable stochastic process. In this section,
the Geometric Brownian Motion (GBM) model is described, which will be used as the FX
rate model throughout the thesis.

The dynamics of the GBM model are given by

d X (t ) =µX (t )d t +σX (t )dW P(t ),

where µ is the drift parameter, σ the volatility and P indicates the real-world measure.
A closed-form solution of the GBM model can be found by applying Itô’s formula from
Theorem 2.1.2 with f (x) = log(x), resulting in

log(X (t )) = log(X (0))+
(
µ− 1

2
σ2

)
t +σW P(t ),

X (t ) = X (0)e
(
µ− 1

2σ
2)

t+σW P(t ).

From the properties of the Brownian motion, we find that X (t ) is log-normally distributed,
i.e,

log(X (t )) ∼ N

(
log(X (0))+

(
µ− 1

2
σ2

)
t , σ2t

)
.

2.5. OPTION BASICS
This section covers the basic concepts that are used in option pricing, which will be used
in Chapter 8 when the COS-CPD method is applied in the context of option pricing. The
definitions presented are modified from [37] and [48].

The holder of an option contract has the right to trade in an underlying asset in the
future at a predetermined price. As the name already indicates, the contract is charac-
terised by the optionality of the contract. If the underlying assets does not perform in a
favourable way, the holder can choose to not trade in the asset.
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Options trading represents a significant portion of overall trading activity in many
financial markets. The European call and put options are the most basic option which
can be traded, and their definitions are presented here.

Definition 2.5.1 (European Call Option). A European call option gives its holder the right
(but not the obligation) to purchase from the writer a prescribed asset S, at a prescribed
time in the future T , for a prescribed price K .

Definition 2.5.2 (European Put Option). A European put option gives its holder the right
(but not the obligation) to sell the writer a prescribed asset S, at a prescribed time in the
future T , for a prescribed price K .

The prescribed time in future is called the maturity or exercise time T . The prescribed
price is often referred to as the strike price K .

American-style options are another popular type of traded options. American op-
tions provide the holder with the flexibility to exercise the option at any time prior to
the exercise time T , while European-style options can only be exercised at maturity.
This added flexibility of American-style options often makes them more expensive than
European-style options, as there is a greater possibility of the option being exercised.
Within this thesis, only European-style options will be considered.

At maturity time T , the holder of the option can either exercise or can choose to
not trade in the asset. Therefore, the payoff can be represented as is given in the next
definition.

Definition 2.5.3 (Payoff European Call/Put Option). The payoffs of a European call and
put option at maturity T are given by

Hcal l (T,S) := max(S(T )−K ,0)

Hput (T,S) := max(K −S(T ),0) ,

where S(T ) denotes the value of the underlying asset at maturity and K the strike price.

Options can exhibit a more complicated payoff function, which are commonly re-
ferred to as exotic options, due to the presence of exotic features in their payoff structure.
Such options may incorporate path-dependent characteristics, whereby the final payoff
depends on the movement of the stock price throughout the option’s lifetime. Addition-
ally, exotic options may involve multiple underlying assets. These options are exclusively
traded in the OTC market, since they are customized by financial institutions to meet the
specific requirements of their clients. Popular examples of exotic options are

• Barrier options: These options are dependent on whether or not the underlying
asset price crosses a pre-defined barrier level during the option’s lifetime.

• Asian options: These options have a payoff based on the average price of the un-
derlying asset over a certain period of time.

• Lookback options: These options have a payoff based on the maximum or mini-
mum price of the underlying asset over a certain period of time.
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• Basket options: These options have a payoff based on multiple underlying assets.

In the field quantitative finance, a lot of research is devoted to find the fair value of the
option before expiry time t < T . The word "fair" refers to the sense that it is acceptable
by both the buyer and the seller of the option. One of the key principles on which option
valuation theory rests is the no-arbitrage principle. The concept of arbitrage is presented
in the following definition.

Definition 2.5.4 (Arbitrage). An investment strategy is called an arbitrage if the value
process V of the strategy satisfies the following two properties:

• P (VT > (1+ r )V0) > 0

• P (VT ≥ (1+ r )V0) = 1,

where r denotes the risk-free interest rate in a money-savings account and T the maturity
time.

In other words, the no-arbitrage principle assures that there is never an opportunity
to make a risk-free profit that gives a greater return than that provided by the interest
from a bank deposit.

One of the most important results in option value theory is the derivation of the par-
tial differential equation (PDE) by Fischer Black and Myron Scholes to price European
options, published in 1973 [49]. Assuming that the asset price process S is modelled
according to a geometric Brownian motion, the value of an European option can be rep-
resented as the solution of the following PDE,

∂V

∂t
+ r S

∂V

∂S
+ 1

2
σ2S2 ∂

2V

∂S2 − r V = 0. (2.6)

The derivation of the Black-Scholes PDE involves several steps, including the creation of
a replicating portfolio. The concept of this replicating portfolio is to create a portfolio
of the underlying asset and a risk-free asset that replicates the payoff of the option. In
other words, by adjusting the amount of the underlying asset and the risk-free asset in
the portfolio, one can create a combination of these two assets that has the same value
as the option at any point in time. By the no-arbitrage principle, two portfolios with
identical cash flows must have the same value. Therefore, the value of the option must be
equal to the value of the replicating portfolio at any point in time. Using the replication
strategy, Black and Scholes were able to derive the pricing PDE for European options.

An alternative approach to derive the Black-Scholes PDE is by applying the theory
of martingales. This approach involves the construction of a risk-neutral or equivalent
martingale probability measure, which is a probability measure under which the dis-
counted asset price process is a martingale. The First Fundamental Theorem of Asset
Pricing (FTAP I) ensures the existence of an equivalent martingale measure in case the
no-arbitrage principle holds. By using this measure, the expected value of the option at
maturity can be discounted to its value at time t < T ,

Vt = EQ
[
e−r (T−t )VT

]
= EQ [

e−r (T−t )H(S,T )
]

, (2.7)



2.6. THE COS METHOD

2

25

where H(T,S) denotes the payoff function of the option. The measure Q indicates that
the expectation is taken under the risk-neutral measure.

The value of the option can be derived either by solving the pricing PDE presented
in 2.6, or by evaluating the discounted expected payoff obtained from 2.7. By the no-
arbitrage principle, these approaches should then lead to the same value. The equiva-
lence of both approaches is proved in the famous Feynman-Kac theorem, which con-
nects the discounted expectation as the closed-form solution to the Black-Scholes PDE.

2.6. THE COS METHOD
The COS method was introduced in the context of option pricing by Fang and Oosterlee
in [30]. However, the essence of the method is to recover the unknown Probability Den-
sity Function (PDF) from its Fourier-cosine series expansion, with the key insight that the
series coefficients are almost readily available from the characteristic function, which is
very often easier to derive than the density function itself. Therefore, the COS method
can also be used in the context of CCR to compute the exposure density function of a
derivative portfolio. Once this exposure density function is computed, CRR measures
such as the PFE and EE can be derived from it.

The COS method belongs to the family of Fourier-based methods. These methods
are all based on the fact that the density function and its corresponding characteristic
function, f (x) and φ(ω), are an example of a Fourier pair,

φ(ω) =
∫
R

e iωx f (x) d x (2.8)

f (x) = 1

2π

∫
R

e−iωxφ(ω) dω (2.9)

As already mentioned, the COS method recovers the density function by computing its
Fourier-cosine series expansion. Any real function has a cosine expansion when it is
finitely supported. Furthermore, the Fourier-cosine series expansion gives an optimal
approximation of functions with a finite support [50]. Therefore, the derivation starts
with a truncation of the infinite integration range in 2.9. The existence of a Fourier trans-
form implies that the integrands in 2.9 have to decay to zero at ±∞, so we can truncate
the integration range in a proper way without losing accuracy. Suppose this truncation
domain is given by [a,b] ∈R. The Fourier-cosine series expansion on [a,b] is then of the
form

f (x) =
∞∑′

k=0
Ak ·cos

(
kπ

x −a

b −a

)
,

with the coefficients given by

Ak = 2

b −a

∫ b

a
f (x) ·cos

(
kπ

x −a

b −a

)
d x. (2.10)

The symbol
∑′ indicates that the first term in the summation is weighted by one-half.

The key part of the COS method lies in the connection between the Fourier-cosine co-
efficients Ak and the characteristic function. Since the density function is truncated to
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the finite interval [a,b], the corresponding characteristic function has to be computed
on this finite interval as well. The density only has a small loss of accuracy on [a,b], so
that the truncated integral approximates the infinite counterpart in 2.8 very well, i.e.,

φ̂(ω) :=
∫ b

a
e iωx f (x)d x ≈

∫
R

e iωx f (x)d y =φ(ω) (2.11)

Comparing 2.11 with the coefficients Ak in 2.10, we obtain

Ak ≡ 2

b −a
Re

{
φ̂

(
kπ

b −a

)
·exp

(
−i

kaπ

b −a

)}
, (2.12)

with Re{·} denotes the real part of the argument. From 2.11 we have φ̂(ω) ≈φ(ω), result-
ing in Ak ≈ Fk with

Fk ≡ 2

b −a
Re

{
φ

(
kπ

b −a

)
·exp

(
−i

kaπ

b −a

)}
, (2.13)

where φ(ω) denotes the characteristic function on the infinite domain. Therefore, the
COS method provides the following formula for approximating the density function,

f̂ (x) ≈
∞∑′

k=0
Fk cos

(
kπ

x −a

b −a

)
,

and truncate the summation, so that

f̂ (x) ≈
N−1∑′
k=0

Fk cos
(
kπ

x −a

b −a

)
. (2.14)

Since the Fourier-cosine series expansions of so-called entire functions2 exhibit an expo-
nential convergence [50], we can expect that the formula in 2.14 gives a highly accurate
approximation, already for small value for N , to density functions that have no singular-
ities on [a,b].

The Cumulative Distribution Function (CDF) can also be found with the COS method.
The COS formula for the CDF can be directly derived from the PDF expression in 2.14. To
do this, the definition of the CDF is used, which is given as the integral of the probability
density function,

F (x) =
∫ x

−∞
f (t ) d t

Similar to the PDF calculation, the infinite interval is truncated to [a, x]. Then, the
COS formula for the PDF can be inserted to obtain

F (x) ≈
∫ x

a
f (t ) d t

≈
∫ x

a

∞∑′
k=0

Fk cos

(
kπ

t −a

b −a

)
d t

2Entire functions are functions without any singularities anywhere in the complex plane, except at ∞.
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Since the cosine basis functions are bounded, Fubini’s theorem allows to interchange
integration and summation,

F̂ (x) =
∞∑′

k=0
Fk

∫ x

a
cos

(
kπ

t −a

b −a

)
d t

When integrating the cosine basis functions, the value k = 0 has to be treated separately,
as the basis function takes the form cos

(
0 ·π x−a

b−a

)= 1 in this case. Doing so, we find

∫ x

a
cos

(
kπ

t −a

b −a

)
=

{
(x −a) if k = 0,
b−a
kπ sin

(
kπ x−a

b−a

)
if k ̸= 0.

Therefore, the COS formula to recover the CDF is given by

F̂ (x) = F0

2
(x −a)+

∞∑
k=1

Fk
b −a

kπ
sin

(
kπ

x −a

b −a

)
.

Again, the series summation is truncated to end up with

F̂ (x) = F0

2
(x −a)+

N−1∑
k=1

Fk
b −a

kπ
sin

(
kπ

x −a

b −a

)
(2.15)

From this, it can be seen that the series coefficients Fk can be used to recover both the
PDF and CDF. Therefore, the goal within the COS method is to obtain the coefficients
Fk in a fast and accurate way, which essentially boils down to the computation of the
characteristic function. In the context of exposure distributions, it turns out that both
the CDF and PDF will be of importance when computing the PFE and EE. Once the co-
efficients Fk are computed, the exposure CDF will be used to find the PFE, while the EE
can be obtained in an efficient way using the exposure PDF. Chapter 5 will focus on the
computation of the characteristic function to obtain the coefficients Fk , from which the
exposure distribution can be recovered using 2.14 and 2.15.





3
CANONICAL POLYADIC

DECOMPOSITION (CPD)

This chapter introduces the concept of Canonical Polyadic Decomposition (CPD) and
how it can be applied to the computation of Fourier-cosine series expansions. As a ten-
sor decomposition technique, CPD aims to reduce the computational complexity that
arises from calculations involving multi-dimensional tensors. The CPD process repre-
sents a high-dimensional tensor as a product of smaller and simpler factors, making it
more efficient to perform calculations. As a result, CPD is effectively used for dimension
reduction in multi-dimensional problems. Along CPD, there are many other decompo-
sition techniques in literature, such as the Higher-Order Singular Value Decomposition
(HOSVD). The technique of tensor decomposition has been successfully applied in var-
ious fields, including as signal processing, statistics and machine learning [51]–[53].

This chapter begins with a basic introduction to the field of tensors, followed by a
section on the methodology of CPD. Finally, the application of CPD in the context of
Fourier-cosine series expansions is presented to demonstrate its ability to reduce the
computational complexity of constructing high-dimensional Fourier-cosine series.

3.1. TENSOR DEFINITIONS AND NOTATION
This section covers some fundamental definitions and concepts in tensor calculus, which
will be of importance when the CPD technique is explained in the next section. The con-
tent in this section is based on [54] and [55].

A tensor is a multi-dimensional array. The number of dimensions (ways) of a tensor
is its order, often denoted by N . Each dimension (way) is called a mode. The nth-mode
of a tensor is often referred to as mode-n. For example, a scalar can be described as a
zero-order tensor, a vector is a first-order tensor, and a matrix is a second-order tensor.
Tensors of order three or higher are called higher-order tensors. An N th-order tensor X

needs N sets of indices {in}, n = 1, · · · , N to indicate one specific element. Each index in

runs from 1 to In , addressing the mode-n of X . As a convention, a N th-order tensor can

29
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be explicitly denoted as X = RI1×···×IN , where In for n = 1, · · · , N directly indicates the
number of elements in the n-th mode.

Another concept that has to be introduced is one of the tensor fibers. Fibers can be
seen as the higher-order analogue of matrix rows and columns. A fiber is defined by
fixing every index but one. When extracted from the tensor, fibers are always assumed
to be oriented as column vectors. For example, a matrix column is a mode-1 fiber and a
matrix row is a mode-2 fiber. Third-order tensors have column, row, and tube fibers, as
is illustrated in Figure 3.1.

Figure 3.1: Fibers of a third-order tensor [56]

Higher-order tensor calculations can be quite involved and abstract. Therefore, ten-
sors are often transformed into a matrix form, on which well-known matrix operations
can be applied. Reordering the elements of a N th-order tensor array into a matrix is
called unfolding or matricization. For instance, a 2×3×4 tensor can be arranged as a
6×4, 2×12 or 3×8 matrix. There exists different ways of unfolding a tensor in a matrix,
but for the applications in this thesis only the mode-n unfolding is relevant to discuss.
A more general treatment of unfolding techniques can be found in [57]. The mode-n
unfolding of a tensor X ∈ RI1×···×IN is denoted by X(n) and arranges the mode-n fibers
to be the columns of the resulting matrix. Since the unfolding technique can be quite
abstract when explaining it for a general N th-order tensor, the idea of unfolding will be
illustrated with an example of a third-order tensor. Let X ∈ R4×3×2 be a third-order ten-
sor with elements given by X [i , j ,k] = xi j k . The mode-1 unfolding is found by taking
the column fibers (see Figure 3.1a) as the columns of the resulting matrix, which results
in a matrix of size 4×6,

X(1) =


x111 x121 x131 x112 x122 x132

x211 x221 x231 x212 x222 x232

x311 x321 x331 x312 x322 x332

x411 x421 x431 x412 x422 x432


Similarly, the mode-2 unfolding is constructed by taking the row fibers (see Figure 3.1b)
as the columns of the resulting matrix, which gives a matrix of size 3×8,

X(2) =
x111 x211 x311 x411 x112 x212 x312 x412

x121 x221 x321 x421 x122 x222 x322 x422

x131 x231 x331 x431 x132 x232 x332 x432
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Finally, the mode-3 unfolding is found by taking the tube fibers (see Figure 3.1c) as the
columns of the resulting matrix, obtaining a matrix of size 2×12,

X(3) =
[

x111 x211 x311 x411 x121 x221 x321 x421 x131 x231 x331 x431

x112 x212 x312 x412 x122 x222 x322 x422 x132 x232 x332 x432

]
The ordering of the columns for the mode-n unfolding used in literature can be different.
However, the specific permutation of columns is not important so long as it is consistent
across related calculations.

The process of unfolding transforms a tensor into a matrix form, allowing for the use
of well-known (and less abstract) matrix operations. Several matrix products will be of
importance in the sections that follow, and their definitions will be introduced here.

Definition 3.1.1 (Outer Product). Let u ∈Rm , v ∈Rn be two vectors. Their outer product is
denoted with u◦v ∈ Rm×n , and the resulting matrix can be obtained by multiplying each
element of u by each element of v,

u◦v =


u1v1 u1v2 · · · u1vn

u2v1 u2v2 · · · u2vn
...

...
. . .

...
um v1 um v2 · · · um vn


= [

u · v1 u · v2 · · · u · vn
]

Definition 3.1.2 (Kronecker Product). The Kronecker product of matrices A ∈ RI×J and
B ∈RK×L is denoted with A⊗B ∈RI K×JL , and is defined by

A⊗B =


a11B a12B · · · a1J B
a21B a22B · · · a2J B

...
...

. . .
...

aI 1B aI 2B · · · aI J B


Definition 3.1.3 (Khatri-Rao Product). The Khatri-Rao product can be viewed as the column-
wise Kronecker product. Given the matrices A ∈RI×K and B ∈RJ×K , the Khatri-Rao prod-
uct, denoted with A⊙B ∈RI J×K , is defined by

A⊙B = [
a1 ⊗b1 a2 ⊗b2 · · · aK ⊗bK

]
Definition 3.1.4 (Hadamard Product). The Hadamard product is the element-wise ma-
trix product. Therefore, given the matrices A,B ∈ RI×J , the Hadamard product A ⊛B ∈
RI×J produces the matrix

A⊛B =


a11b11 a12b12 · · · a1J b1J

a21b21 a22b22 · · · a2J b2J
...

...
. . .

...
aI 1bI 1 aI 2bI 2 · · · aI J bI J
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The final definition presented in this section refers to the Frobenius norm of a tensor,
which is similar to the matrix Frobenius norm. The Frobenius norm frequently appears
in optimization problems regarding tensor decomposition, as the objective function is
often minimized in terms of the Frobenius norm. This will also be the case in the CPD
method described in the next section, as can be seen in 3.3.

Definition 3.1.5 (Frobenius Norm). Given a tensor X ∈RI1×I2×···×IN , its Frobenius norm,
often abbreviated with F-norm, is defined as the square root of the sum of the squares of
all its elements:

||X ||F =
√√√√ I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1
x2

i1i2...iN

3.2. INTRODUCTION TO CPD
This section provides the general idea of the CPD technique. These results will be used
in the subsequent sections, where CPD is applied in the context of Fourier-cosine series.
Within the CPD approach, rank-one tensors play a central role. A N th-order tensor X is
called a rank-one tensor if it can be written as an outer product of N vectors, i.e.,

X = a1 ◦a2 ◦ · · · ◦aN .

With CPD, a N th-order tensor is factorised into a sum of component rank-one tensors,

X = JA1, A2, . . . ,AN KR =
R∑

r=1
a1

r ◦a2
r ◦ · · · ◦aN

r , (3.1)

where An = [an
1 , . . . , an

R ] ∈ RIn×R for n = 1, . . . , N . The rank R is the defined as the mini-
mum number of components needed to synthesize X . This minimal rank is often called
the canonical rank. Every tensor admits a CPD of finite rank, and is unique under mild
conditions [51]. However, determining this canonical rank is a NP-hard problem, imply-
ing that there is no algorithm to find its value [58]. In practice, a lower rank R̃ is used to
approximate the original tensor,

X ≈
R̃∑

r=1
a1

r ◦a2
r ◦ · · · ◦aN

r .

These lower-rank CPD models are widely applied to break the curse of dimensionality.
The expression in 3.1 can also be written element-wise as follows,

X [i1, . . . , iN ] =
R∑

r=1

N∏
n=1

An[in ,r ] =
R∑

r=1

N∏
n=1

an
r [in], (3.2)

which will be useful in the context of the Fourier-cosine series in the subsequent sec-
tions.

To obtain a CPD of a given tensor, the factor matrices {An}N
n=1 have to be solved. This

can be done by minimizing the least square error between the original tensor and the
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CPD approximation,

min
{An }N

n=1

∣∣∣∣X − JA1, A2, . . . ,AN KR
∣∣∣∣2

F = min
{An }N

n=1

∣∣∣∣∣
∣∣∣∣∣X −

R∑
r=1

a1
r ◦a2

r ◦ · · · ◦aN
r

∣∣∣∣∣
∣∣∣∣∣
2

F

, (3.3)

where F denotes the Frobenius norm as defined in 3.1.5. Initially, this minimization
problem seems sophisticated, as the objective function includes N matrices to solve for.
However, this optimization problem consists of a multilinear form, and a very popular
method to solve such problems is called Alternating Least Squares (ALS). The key idea
of ALS is to update the variables cyclically, while keeping all but one fixed. To illustrate
this idea, we first combine the technique of tensor unfolding and Khatri-Rao product to
construct a connection between tensor modes and factor matrices [51],

X(n) = An
(⊙i ̸=n Ai

)T , n = 1, . . . , N ,

where (⊙i ̸=n Ai
)= AN ⊙·· ·⊙An+1 ⊙An−1 ⊙·· ·⊙A1.

Minimizing the Frobenius norm of these N tensor modes is equivalent to minimizing 3.3
and therefore we can consider the following minimization problems,

min
{An }N

n=1

∣∣∣∣∣∣X(n) −An
(⊙i ̸=n Ai

)T
∣∣∣∣∣∣2

F
, n = 1, . . . , N .

Note that the problem above is multilinear in the factor matrices {An}N
n=1. However, we

can apply the ALS algorithm by updating the factor matrices iteratively. Fixing all factor
matrices except An , the problem becomes (conditionally) linear in An , so that we may
update

An ← argmin
An

∣∣∣∣∣∣X(n) −An
(⊙i ̸=n Ai

)T
∣∣∣∣∣∣2

F
.

In this way, the factor matrices are updated one by one until the stopping criterion is
satisfied.

3.3. OUR CONTRIBUTION 1: DIMENSION-REDUCED FOURIER-
COSINE SERIES EXPANSIONS VIA CPD

Having introduced the concept of CPD, this section describes how it can be applied to re-
duce the dimensionality of Fourier-cosine series expansions for multi-variate functions.
Therefore, some general theory on Fourier-cosine series will be presented first.

For a one-dimensional function f (x), its Fourier-cosine expansion in the interval
[a,b] is given by

f (x) =
∞∑′

k=0
αk cos

(
kπ

x −a

b −a

)
,
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with the coefficients αk being defined by the following one-dimensional integrals,

αk = 2

b −a

∫ b

a
f (x)cos

(
kπ

x −a

b −a

)
d x.

The prime at the sum,Σ′, indicates the division by two of the first term in the summation.
In practice, the Fourier-cosine expansion is truncated, resulting in an approximation of
the function, i.e.

f (x) ≈
K−1∑′
k=0

αk cos
(
kπ

x −a

b −a

)
.

In this one-dimensional framework, the Fourier coefficients can be stored as a first-order
tensor (or vector) α= [α0, . . . ,αK−1].

Fourier-cosine expansions can also be used to approximate multivariate functions.
In the two-dimensional case, the Fourier-cosine expansion of the function f (x1, x2) on
[a1,b1]× [a2,b2] has the form,

f (x1, x2) ≈
K−1∑′
k1=0

K−1∑′
k2=0

αk1,k2 cos

(
k1π

x1 −a1

b1 −a1

)
,cos

(
k2π

x2 −a2

b2 −a2

)
with the coefficients now being defined by the two-dimensional integrals given by

αk1,k2 =
2

b1 −a1

2

b2 −a2

∫ b1

a1

∫ b2

a2

f (x1, x2)cos

(
k1π

x1 −a1

b1 −a1

)
cos

(
k2π

x2 −a2

b2 −a2

)
d x1d x2.

In this case, the Fourier coefficients can be stored as a second-order tensor (or matrix)

α=


α0,0 α0,1 . . . α0,K−1

α1,0
. . .

...
...

. . .
...

αK−1,0 . . . . . . αK−1,K−1


In general, a N -dimensional Fourier-cosine expansion on the domain [a1,b1]×·· ·×[aN ,bN ]
is given by

f (x1, . . . , xN ) ≈
K−1∑
k1=0

· · ·
K−1∑

kN=0
αk

N∏
n=1

cos

(
knπ

xn −an

bn −an

)
, (3.4)

where k = (k1, . . . ,kN ) ∈ NN is a multi-index. The coefficients αk are defined by the fol-
lowing N -dimensional integrals,

αk =
N∏

n=1

(
2

bn −an

)∫ b1

a1

· · ·
∫ bN

aN

f (x1, . . . , xN )
N∏

n=1
cos

(
knπ

xn −an

bn −an

)
d x1 · · ·d xN .

The Fourier coefficients can now be represented as a N th-order tensor, withα ∈RK×K×···×K .
These derivations show that the number of Fourier coefficients scales exponentially with
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O (K N ). Furthermore, an increase in dimensionality also adds an additional computa-
tional cost of the coefficients itself, as the number of dimensions of integration grows.

To avoid the exponential growth in the computational complexity for increasing N ,
the CPD technique can be used to approximate the Fourier coefficient tensor with a sum
of rank-1 tensors,

α≈ JA1,A2, . . . ,AN KR =
R∑

r=1
a1

r ◦a2
r ◦ · · · ◦aN

r .

Consequently, the CPD approximation is obtained by computing the N factor matri-
ces {An}N

n=1 of sizes K ×R. Therefore, the computational complexity of computing the
Fourier coefficients drops from O (K N ) to O (N K R), which makes this approach suitable
for computing multi-dimensional Fourier-cosine series. The methodology of computing
the factor matrices will be presented in Section 3.4.

Once the factor matrices are computed, the Fourier coefficient tensor can be written
as in Equation 3.2 to obtain

α[k1, . . . ,kN ] =
R∑

r=1

N∏
n=1

an
r [kn].

This expression can now be inserted into 3.4,

f (x1, . . . , xN ) ≈
K−1∑
k1=0

· · ·
K−1∑

kN=0

R∑
r=1

N∏
n=1

an
r [kn]cos

(
knπ

xn −an

bn −an

)
. (3.5)

To simplify the notation, we define vn[kn] := cos
(
knπ

xn−an
bn−an

)
. Substituting this into 3.5,

we have

f (x1, . . . , xN ) ≈
K−1∑
k1=0

· · ·
K−1∑

kN=0

R∑
r=1

N∏
n=1

an
r [kn]vn[kn]

=
R∑

r=1

K−1∑
k2,...,kN=0

N∏
n=2

an
r [kn]vn[kn]

K−1∑
k1=0

a1
r [k1]v1[k1]︸ ︷︷ ︸
f1,r (x1)

.

By carrying out the computations in this manner, the expression for f (·) is greatly sim-
plified to

f (x1, . . . , xN ) ≈
R∑

r=1
f1,r (x1) · · · fN ,r (xN ) (3.6)

Each univariate function in 3.6 can be expressed as

fn,r =
K−1∑
kn=0

an
r [kn]vn[kn] = vT

n An[:,r ], (3.7)
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showing that each component fn,r represents an univariate Fourier-cosine series. Con-
sequently, the Fourier-cosine series found with CPD can be expressed as a product of
univariate Fourier-cosine series. This is different from the standard Fourier-series ex-
pansion, which results in N nested summations over all the expansion terms. The ab-
sence of these nested summations in the CPD expression will have a great computational
benefit when evaluating expectations of multi-variate functions, such as the character-
istic function in the context of exposure and option price computations. This will be
made more clear in the corresponding chapters. Combining 3.6 and 3.7, the output of
the constructed Fourier-cosine series for a given input vector (x1, . . . , xN ) can be written
in terms of the Hadamard product,

ŷ = (
vT

1 A1 ⊛ · · ·⊛vT
N AN

)
1 = (

⊛N
n=1vT

n An
)

1. (3.8)

3.4. HIDDEN TENSOR FACTORIZATION
This section outlines the procedure for deriving the factor matrices {An}N

n=1 to construct
the CPD model of the Fourier coefficient tensor, which has been developed in our work-
ing paper at FF Quant [59] and [60].

Normally, the CPD technique is applied to the full tensor on which the decomposi-
tion has to be performed. However, this approach is not feasible for the Fourier coeffi-
cient tensor, as it requires to still compute all the Fourier coefficients first, which takes
O

(
K N

)
computations to solve the N -dimensional integrals. This will become impracti-

cable for large values of N . Therefore, we want a method to construct the factor matrices
An without computing the full tensor first. Kargas and Sidiropoulos presented a way of
avoiding the computation of the full tensor in [61]. The idea is to transform the problem
into a regression model, in which the distance between the exact function values and the
truncated Fourier-cosine series values is minimized,

min
1

M

M∑
m=1

L
(
ym − f (xm)

)
,

where L(·) denotes the loss function, ym the exact function value in the point xm and
f (xm) the approximated function value from the truncated Fourier-cosine series. Fur-
thermore, M represents the total number of sampling points used to train the function
f (·). With this approach, the Fourier coefficients are fitted directly on the training data.
The key now is to replace the original Fourier coefficient tensor by the CPD representa-
tion in Equation 3.8, where we use the squared error as the loss function to obtain,

min
{An }N

n=1

1

M

M∑
m=1

(
ym − (

⊛N
n=1

(
Vn[:,m]T An

))
1
)2

,

where Vn ∈RK×M with Vn[k,m] = cos
(
kπ

xm
n −an

bn−an

)
. The value xm

n denotes the value of the

nth coordinate in sampling point xm . The ALS algorithm can now be exploited to solve
the factor matrices iteratively. Fixing all factor matrices except for An we have,

min
An

1

M

M∑
m=1

(
ym −Vn[:,m]T An Qn[:,m]

)2
, (3.9)
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where Qn ∈RR×M with

Qn = (
⊛i ̸=n

(
AT

i Vi
))

. (3.10)

Solving this minimization problem generates the CPD model of the Fourier-cosine series
without pre-calculating the full coefficient tensor. Therefore, this approach is referred to
as the Fourier Series Approximation via Hidden Tensor Factorization (FSA-HTF), as it
bypasses the population of the full coefficient tensor. The minimization problem in 3.9
is conceptually similar to a linear least squares problem, which belongs to the family of
convex optimization problems. Therefore, the (global) minimum is found by setting the
gradient equal to zero,

2

M

M∑
m=1

(
ym −Vn[:,m]T An Qn[:,m]

) ·−Vn[:,m]QT
n [:,m] = 0.

This leads to the following system of linear equations that needs to be solved to obtain
the factor matrices {An}N

n=1,

1

M

M∑
m=1

(
Vn[:,m]T An Qn[:,m]

)
Vn[:,m]QT

n [:,m] = 1

M

M∑
m=1

ym V[:,m]QT [:,m]. (3.11)

Note that 3.11 is not a standard linear system of the form Ax = b, which has to be solved
for the unknown vector x. Instead, the system can be seen as a matrix equation, in which
the unknown matrix An has to be solved. A previous thesis done at FF Quant showed
how to transform 3.11 into a equation of the form Ax = b by vectorizing the factor ma-
trix An [60]. Furthermore, it was shown that the Conjugate Gradient (CG) method con-
verges faster and is more accurate compared to the Stochastic Gradient Descent (SGD)
method, which is normally a popular method for solving optimization problems in ma-
chine learning. Therefore, the CG method will also be used throughout this thesis to
solve 3.11. The pseudo code for computing the factor matrices {An}N

n=1 using the FSA-
HTF approach is provided in Algorithm 1. This code will be employed in the next chapter,
when an extensive numerical analysis is performed on the dimension-reduced Fourier-
cosine series via CPD.
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Algorithm 1 FSA-HTF

Input: K ,R, M ,a,b,maxCG ,maxALS ,εCG ,εALS

Generate training grid X on [a,b] with M points
Compute exact function values y on the grid X
Initialize {An ∈RK×R }N

n=1
Generate {Vn ∈RK×M }N

n=1
while i tALS < maxALS and error in factor matrices > εALS do

for n = 1 to N do
Compute Qn via (3.10)
while i tCG < maxCG and CG error > εCG do

Compute An with CG via (3.11)
Update CG error

end while
end for
Update error in factor matrices

end while
return {An}N

n=1



4
CONVERGENCE TESTS FOR CPD

In this chapter, an extensive numerical analysis is conducted on the application of Al-
gorithm 1 derived in the previous chapter to construct Fourier-cosine series via CPD.
The goal is to get an insight in the various parameters involved in the algorithm and to
quantify their effect on accuracy when altered. This information will be used in future
chapters when the CPD algorithm is applied in the context of exposure calculation and
option pricing.

The first section examines the impact of overfitting the model, which is a common
issue in supervised learning methods. A correlation is established between the number
of expansion terms in the Fourier-cosine series and the number of training data points
required to achieve optimal fitting with the CPD algorithm. Subsequently, the effect of
the sampling frequency of the training data on accuracy levels and different types of
functions is analyzed.

The remainder of this chapter focuses on a sensitivity analysis of the CPD algorithm
to evaluate the impact on the accuracy of the reconstructed Fourier-cosine series when
different parameter settings are used. The analysis is divided into examples in the one-,
two- and multi-dimensional case, each of which applies the CPD algorithm to the (stan-
dard) normal density function.

4.1. PREVENT OVERFITTING
The CPD algorithm described in Chapter 3 is a supervised learning technique for approx-
imating the Fourier coefficient tensor. In the context of supervised learning, the model
is built by minimizing the misfit between the training data and the model output, which
results in a minimization problem. For the coefficient tensor, this minimization problem
can be expressed as

min
αk

1

M

M∑
m=1

(
ym −

[
K−1∑
k1=0

· · ·
K−1∑

kN=0
αk

N∏
n=1

cos

(
knπ

xm
n −a

b −a

)])2

, (4.1)
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where k = (k1, · · · ,kN ) is a multi-index and xm
n the value of the nth coordinate in sam-

pling point xm . The objective is to minimize the sum of squares of the total misfits
between the training data values ym assigned to the sample xm , and the values of the
Fourier-cosine series expansion evaluated at the same sample xm . The minimization
problem in 4.1 involves K N Fourier coefficients for which the minimization problem has
be solved. Therefore, the number K N can be viewed as the degree of "flexibility" the
model has in minimizing the misfit with the training data. The number of training data
points is denoted with M . For the remainder of the analysis that follows, we will assume
that the number of training points is equal for each dimension. Hence, the total number
of training point can be written as M = mN , with m being the number of training points
per dimension. The value M represents the level of "constraint" within the model, as the
model tries to match these training data points when solving the minimization prob-
lem. Three parameter settings can now be selected in the CPD algorithm when solving
the Fourier coefficient tensor:

• K < m. In this case, there is not enough flexibility in the model to match all the
training data points. The CPD model can only minimize the distance between the
obtained Fourier-cosine series and the training data points. An example of this
scenario is shown in Figure 4.1. The output of the CPD model is derived using
Equation 3.8. However, it should be noted that the CPD model for this scenario is
still applicable to the overall function, making it a suitable approximation for the
non-training data.

Figure 4.1: Reconstructed Fourier-cosine series of the density function of a standard normal random variable
using the CPD algorithm in the scenario K < m. The training data points used to construct the CPD approxi-
mation are indicated with the black dots. For this example, K = 10 and m = 30 were used.

• K > m. In this scenario, the CPD model possesses sufficient flexibility to accurately
fit all of the training data. However, there is extra flexibility left to produce weird
behaviour between the training data points, as can be seen in Figure 4.2. The ob-
tained Fourier-cosine series does not represent the global function anymore, but
only matches in the training data points. This phenomenon is known as overfit-
ting, and is an important aspect to be aware of when using supervised learning
methods.
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Figure 4.2: Reconstructed Fourier-cosine series of the density function of a standard normal random variable
using the CPD algorithm in the scenario K > m. The training data points used to construct the CPD approxi-
mation are indicated with the black dots. For this example, K = 60 and m = 30 were used.

• K = m. The degree of flexibility in the model corresponds to the degree of con-
straints, resulting in a fit that aligns with all training data points and provides an
approximation of the global function. This is also illustrated in Figure 4.3.

Figure 4.3: Reconstructed Fourier-cosine series of the density function of a standard normal random variable
using the CPD algorithm in the scenario K = m. The training data points used to construct the CPD approxi-
mation are indicated with the black dots. For this example, K = m = 30 was used.

Based on these observations, it is concluded that the optimal parameter choice in the
CPD algorithm is to take K = m. In that case, the approximated Fourier-cosine series
can match all the training data points, while still providing an approximation for the
global function on the whole expansion interval.

4.2. SAMPLING FREQUENCY TRAINING DATA
Given that the choice of K = m is an optimal parameter setting in the CPD algorithm, the
next analysis will focus on the number of training data points m required to obtain an
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accurate fit for the recovered Fourier-cosine series. The number of training data points
is influenced by the interval width in which the function is approximated and the func-
tion’s characteristics. The interval width is equivalent to the Fourier expansion interval
[a,b]. Since we focus on density functions, the interval width can be chosen based on the
percent-point function (ppf) (also called quantile function) of the corresponding distri-
bution. By using the ppf, a desired tolerance level can be used to control the error that
originates from the truncation of the infinite domain on which the density function is
defined. As the tolerance level decreases, the interval width will increase.

The sampling frequency is the reciprocal of the sampling distance, which will be de-
noted with ∆m. The impact of different tolerance levels on the sampling frequency to
recover the Fourier-cosine series of the standard normal density function is shown in
Figure 4.4. The error ||αk − α̂k ||∞ is defined as the maximum difference between the
exact and approximated Fourier-cosine coefficients. The exact coefficients can be de-
rived from Equation 2.13 in the COS method, since the characteristic function of the
normal distribution has an analytical expression. As expected, an increase in the sam-
pling frequency leads to a higher accuracy of the computed Fourier coefficients, until
the tolerance level becomes the dominant error. After that, an increase in the sampling
frequency will not improve the accuracy of the coefficients. Therefore, it is important to
choose the sampling frequency based on the selected tolerance level in the expansion
interval [a,b].

(a) Sampling distance ∆m (b) Sampling Frequency 1/∆m

Figure 4.4: L∞ error of the Fourier-cosine coefficients for the standard normal density, computed using CPD
with different sampling frequencies of the training data.

In addition to the interval width, the function’s characteristics can also affect the re-
quired sampling frequency to achieve accurate results. The convergence speed of the
Fourier-cosine series depends on the smoothness of the function, which will be further
discussed in a theoretical error analysis in Chapter 6.

As our focus is on evaluating expectations, only functions of the form g (x) f (x) are
considered, in which g (x) is referred to as the target function and f (x) is the density
function. For this test, the density function f (x) is taken as the standard normal density
function, with a tolerance level of 10−12 used for the expansion interval [a,b]. The results
for several functions of the form g (x) f (x) are shown in Figure 4.5. The error |α0 − α̂0|
is calculated as the difference between the first Fourier coefficient of the CPD approxi-
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mation and the exact solution, as an analytical solution can be found for α0 using the
properties of the expectation,

E[g (X )] :=
∫ ∞

−∞
g (x) f (x) d x ≈

∫ b

a
g (x) f (x) d x := b −a

2
α0.

Therefore, the expectation of the target function g (x) is calculated to determine the
exact value of the Fourier coefficient α0. It should be noted that not all functions at-
tain an error of the prescribed tolerance level of 10−12. This is because the tolerance
level of the truncated interval [a,b] is based only on the ppf of the density function and
does not account for the target function. However, the target function can still attain
large values outside the truncated interval [a,b]. For example, the evaluation of ex at
the endpoint b gives e7,034 = O

(
103

)
. Consequently, the product ex · f (x) is of order

O
(
103 ·10−12

)=O
(
10−9

)
at the endpoint b. Therefore, the CPD approximation can only

achieve an accuracy of O
(
10−9

)
, as observed in Figure 4.5.

For the remainder of this thesis, the CPD algorithm will be applied only to the den-
sity function itself. However, when using CPD as a direct integration method to evaluate
multivariate expectations, the magnitude of the target function outside the truncated
interval [a,b] has to be taken into account. An explanation on how to use the CPD algo-
rithm as a direct integration method is provided in appendix C.

Figure 4.5: Error in the first Fourier coefficient α0 using the CPD algorithm for different sampling frequencies.
The functions f (x), x2 · f (x) and ex · f (x), cos(x)· f (x) and cos(2x)· f (x) are considered, with f (x) denoting the
standard normal density function. The tolerance level in the expansion interval [a,b] is set to 10−12.

4.3. SENSITIVITY ANALYSIS

This section focuses on a sensitivity analysis of the CPD algorithm to evaluate the im-
pact on the accuracy of the constructed Fourier-cosine series when different parameter
settings are used. The analysis is structured into examples featuring one, two, and mul-
tiple dimensions, each of which implements the CPD algorithm on the normal density
function.
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4.3.1. ONE-DIMENSIONAL CASE

In the one-dimensional scenario, the Fourier coefficient tensor simplifies to a rank-1
tensor, represented as α= [α0, . . . ,αK−1]. As the CPD method decomposes a tensor into
a sum of R rank-1 components, the Fourier coefficient tensor is already synthesized for
R = 1. Furthermore, only one factor matrix A1 needs to be computed, which makes it
unnecessary to perform the ALS part of the algorithm for updating the factor matrices.
As the rank and the ALS updating in the one-dimensional case do not play a role, the
accuracy for different number of training data points M and expansion terms K can be
examined.

For this sensitivity analysis, the number of training points is fixed at M = m = 50
and the value of K varies from 5 to 120. The interval for the Fourier expansion, [a,b] =
[−7.034,7.034], is selected using the ppf of the standard normal distribution with a tol-
erance level of 10−12. In the CG part of the algorithm for solving A1, the tolerance level is
set at εCG = 10−12, and the maximum number of CG iterations is maxCG = K ·R = K . This
value is based on the theoretical convergence of the CG method. As the (vectorized) sys-
tem in 3.11 solves for a factor matrix of size K ·R, the CG method converges in no more
than K ·R iterations in case of symmetric, positive definite (SPD) matrices. Although the
SPD criteria are not met, it still provides an indication for the maximum value of CG it-
erations. This concept will be further discussed in the two-dimensional scenario when
the rank in the CPD algorithm plays a role.

The accuracy of the approximated Fourier-cosine series can be determined once A1

is computed. By using Equation 3.8, the output of the CPD model can be generated for
any data point x ∈ [a,b] and compared with the exact function value of the normal den-
sity function at that point. The accuracy of the model is then established using both the
output of the model and the accuracy of the Fourier coefficients themselves. The error
||αk −α̂k ||∞ is computed by comparing the approximated coefficients with the exact val-
ues, which can be derived using the COS method, since the characteristic function of
the normal distribution is known in closed form. The results of this sensitivity analysis
are depicted in Figure 4.6, which distinguishes between the accuracy for training and
non-training data. The accuracy of the output for the non-training data is fully deter-
mined by the computed Fourier coefficients and hence these two error plots show the
same behaviour. For K < m, all three errors converge exponentially with increasing K .
In this scenario, the accuracy of the fitted function is limited by the series truncation
error at level K . However, as K increases, the series truncation error decreases and the
function fits better to the data. The minimum error attainable for the Fourier coeffi-
cients and non-training data is of order O

(
10−12

)
, which is due to the interval truncation

error of the Fourier-cosine series expansion on [a,b]. When K > m, the reconstructed
Fourier-cosine series no longer represents the global function due to overfitting, as ex-
plained in Section 4.1. As a result, the error in the Fourier coefficients and non-training
data increases significantly, while the fitted function reaches machine precision for the
training data, as it is able to match all the training points when solving the minimization
problem.

As previously discussed in Section 4.1, the optimal choice for the parameters K and
m in the algorithm is to set K = m. To evaluate the convergence rate of the Fourier coeffi-
cients in this situation, the value of K = m is increased from 5 to 35. Figure 4.7 illustrates
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Figure 4.6: Error in the CPD approximation of the Fourier-cosine series for the standard normal distribution.
The number of training data points is set to M = 50. The error in the Fourier coefficients is defined as ||αk −
α̂k ||∞

the convergence rate of the Fourier coefficients and the error in the (non-) training data
for K = m. In this scenario, the computed Fourier-cosine series can exactly match all
of the training data points, which results in a horizontal line close to machine precision
for these points. The error in the non-training data and Fourier coefficients is entirely
determined by the series truncation error at level K . As K increases, the series trun-
cation error decreases, which leads to a error decrease in the Fourier coefficients and
non-training data. After 30 expansion terms, the interval truncation error on [a,b] be-
comes the dominant source of error. This indicates that a further increase in the number
of expansion terms will not decrease the error anymore.

Figure 4.7: L∞ error in the CPD approximation of the Fourier-cosine series for the standard normal density
function in the scenario K = m. The error is presented for the (non-) training data and the Fourier coefficients.
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4.3.2. TWO-DIMENSIONAL CASE
In the one-dimensional analysis, the Fourier coefficient tensor is always synthesized
when we set R = 1 in the CPD algorithm. This changes when considering the two-
dimensional case, where the Fourier coefficient tensor can be represented as a K ×K
matrix. The CPD algorithm will approximate this tensor by a sum of R rank-1 compo-
nents. The analysis will be performed using the standard bivariate normal density func-
tion, which allows for the introduction of correlation between the random variables. As a
result, a differentiation will be made between the independent and correlated scenarios.

INDEPENDENT VARIABLES

In case the two random variables are independent, the density function can be written
as a product of the marginals,

f (x, y) = f1(x) f2(y),

where f1(x) and f2(y) representing two univariate normal density functions. Using this
relation in the Fourier-cosine series, we obtain

K−1∑
k1=0

K−1∑
k2=0

αk1,k2 cos

(
k1π

x −a1

b1 −a1

)
cos

(
k2π

y −a2

b2 −a2

)

=
[

K−1∑
k1=0

αx
k1

cos

(
k1π

x −a1

b1 −a1

)]
·
[

K−1∑
k2=0

α
y
k2

cos

(
k2π

y −a2

b2 −a2

)]

=
K−1∑
k1=0

K−1∑
k2=0

αx
k1
α

y
k2

cos

(
k1π

x −a1

b1 −a1

)
cos

(
k2π

y −a2

b2 −a2

)
. (4.2)

From Equation 4.2, it can be deduced that the Fourier coefficient tensor α can be ex-
pressed as the outer product of the Fourier coefficient vectors of the marginal distribu-
tions, i.e. α = αx ◦αy . As a result, the Fourier coefficient tensor is a rank-1 tensor, and
can be synthesized using only one rank-1 tensor in the CPD algorithm. Therefore, the
rank in the CPD algorithm is set to R = 1 for an independent density function. Similar
to the one-dimensional case, the convergence of the Fourier coefficients is evaluated for
different parameter settings. Furthermore, the error in the reconstructed Fourier-cosine
series for both training and non-training data is analyzed. The ALS part of the algorithm
must also be used, as two factor matrices A1 and A2 have to be computed. The number
of training points is set to m = 30 per dimension, which results in a total of M = m2 = 900
training points. The number of expansion terms per dimension K ranges from 5 to 60,
and the Fourier expansion interval is defined by utilizing a tolerance level of 10−12, so
that [a,b]2 = [−7.034,7.034]2. The parameters in the CG part are the same as in the one-
dimensional case, but a new stopping criterion for the ALS updating must be introduced.
Once both factor matrices are computed using CG, the relative improvement in the first
Fourier coefficient is taken as the stopping criterion.∣∣∣∣∣αi+1

0 −αi
0

αi
0

∣∣∣∣∣< εALS
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For this analysis, the tolerance level in the ALS part is set to εALS = 10−12, with a maxi-
mum number of ALS iterations set to maxALS = 5. The convergence of the two-dimensional
Fourier-cosines series is illustrated in Figure 4.8. The results are similar to the one-
dimensional analysis, which is expected in the case of independent random variables,
as the density can be written as a product of the one-dimensional marginals. Hence,
the resulting Fourier-cosine series can be written as a product of the univariate Fourier-
cosine series, which was already shown in Equation 4.2. Therefore, the convergence rate
of the CPD model for the bivariate density function will be of the same order as the con-
vergence rate for the univariate density functions.

(a) m = 30 (b) K = m

Figure 4.8: Error in the CPD approximation of the Fourier-cosine series for the bivariate normal density func-
tion. The error is presented for the (non-) training data and the Fourier coefficients.

CORRELATED VARIABLES

In the event of a correlation between the two random variables, Equation 4.2 does not
longer hold, and the Fourier coefficient tensor cannot be synthesized using only a sin-
gle rank-1 tensor. Therefore, the effect of different ranks used in the CPD algorithm for
the approximation of the Fourier coefficient tensor can now be assessed. A sensitivity
analysis is performed for the bivariate normal density function with varying levels of
correlation between the two random variables. To study the impact of the rank choice
on the performance of the CPD algorithm, the Fourier coefficient tensor will be approx-
imated with a rank ranging from R = 1 to R = 30. We set K = m = 30 in each dimension,
which makes a total of K 2 = m2 = 900 expansion terms and training data points. The tol-
erance level in the integration truncation range [a,b]2 is set at 10−12 based on the ppf of
the normal distribution. The stopping criteria in the CG solver has to be selected care-
fully. Similar to the one-dimensional case, the CG solver will have a tolerance level in
the relative residual of 10−12. However, the maximum number of CG iterations will de-
pend on the rank R used in the CPD. The CG method is applied to the vectorized form of
Equation 3.11 to solve for the factor matrices A1,A2 ∈ RK×R , which results in a solution
vector of size K ·R. Therefore, a larger system must be solved within the CG algorithm for
higher ranks. This leads to an increase in the number of CG iterations required to reach
the desired accuracy. Since the CG method needs at most K ·R iterations in case of SPD
matrices, this will be used as an indication for the maximum number of CG iterations in
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the CPD algorithm. The ALS criteria are the same as in the independent case. Further-
more, the difference |α0−α̂0| will be used to quantify the error, as the analytical solution
for the first Fourier coefficient α0 can be easily obtained.

The outcomes of this analysis are depicted in Figure 4.9a. When ρ = 0, the results
align with those of the independent scenario. This is expected, as zero correlation im-
plies independence in case of the normal distribution. In the presence of correlation,
the Fourier coefficients exhibit initial exponential convergence as the rank increases, but
eventually oscillate around a certain accuracy level. These equilibrium levels are close to
the corresponding series truncation errors, as this error source increases when correla-
tion is introduced. Table 4.1 shows the order of the series truncation error for the differ-
ent correlation levels in case K = 30 expansion terms per dimension are utilized. These
results are found by computing the exact Fourier coefficients with the two-dimensional
COS method introduced in [62].

Table 4.1: Order of the Fourier-cosine series truncation error of the bivariate normal density function for dif-
ferent correlation levels, in case K = 30 expansion terms per dimension are used.

ρ = 0 ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7
O

(
10−16

)
O

(
10−12

)
O

(
10−11

)
O

(
10−9

)
O

(
10−7

)
From this, we can see that the CPD approximation of the Fourier coefficients in Fig-

ure 4.9a is converging up or close to the accuracy level of the series truncation error,
which then becomes the dominant error source. Consequently, the error due to the
lower-rank approximation in the CPD shows a stable exponential convergence in this
experiment. Additionally, if the correlation level increases, a higher rank in the CPD al-
gorithm is required to obtain the best possible approximation. Figure 4.9b illustrates
that the direction of the correlation does not affect the convergence rate in the CPD ap-
proximation.

(a) Different correlation levels. (b) Positive and negative correlation.

Figure 4.9: Impact of the correlation level on the error in the first Fourier coefficientα0 for different rank. In (a)
different levels of (positive) correlation are used, while the difference between positive and negative correlation
of the same order is presented in (b). For all tests we took K = m = 30.

To highlight the importance of selecting a sufficient number of CG iterations, a com-
parative test is performed to assess the effect of the maximum number of CG iterations.
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A fixed number of CG iterations for all ranks is compared with the dynamically chang-
ing number K ·R, which was already used in the previous analysis. The fixed number of
CG iterations is set to 30. Figure 4.10 shows the need for a dynamic number of CG iter-
ations over a fixed number. It can be seen from 4.10b that the number of CG iterations
required to achieve the desired accuracy increases along with the rank, which is what
we expected, as a larger system of equations has to be solved in the CG algorithm. For a
rank of 7 or higher, more than 30 iterations are needed to accurately solve for the factor
matrix A1. When using a fixed number of 30 CG iterations, the desired accuracy cannot
be obtained and the final error in the Fourier coefficients will be enlarged, as can be seen
in 4.10a.

(a) Error in the first Fourier coefficient α0. (b) Number of iterations needed in the CG when solving
factor matrix A1.

Figure 4.10: Impact of insufficient iterations used in the CG solver when computing A1 and A2. The error in the
first Fourier coefficient is presented in (a), while (b) shows the number of CG iterations needed for an accuracy
in the relative residual of 10−12. Parameters are set to K = m = 30 and ρ = 0.3.

Since A1,A2 ∈ RK×R , the computational complexity of computing the Fourier coeffi-
cient tensor with CPD is reduced from O

(
K 2

)
to O (2K R). Hence, choosing a higher rank

will increase the computational complexity. Consequently, the total computation time
for the construction of A1 and A2 will increase with R, as shown in Figure 4.11.

4.3.3. MULTI-DIMENSIONAL CASE
The final part of the sensitivity analysis focuses on the application of the CPD algorithm
to construct multivariate Fourier-cosine series up to six variables. Again, this will be
performed using the multivariate normal density function with a maximum of six ran-
dom variables involved. In the subsequent chapters on exposure computation and op-
tion pricing, we will encounter these multivariate normal distributions, which makes it
beneficial to already gain insights in the behavior of the CPD algorithm for these multi-
dimensional scenarios.

For multi-dimensional problems, two crucial factors often play a role when numeri-
cal methods are employed; the memory storage and the computation time. In the one-
and two-dimensional tests, it is possible to choose a sufficient number of training data
points without encountering memory overflow or excessive computation time. How-
ever, this changes when we deal with more dimensions. The total number of training
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Figure 4.11: Computation time of the CPD algorithm for different rank to construct factor matrices A1 and A2.

points, given by M = mN (with N representing the dimension of the problem), grows ex-
ponentially. This leads to a substantial impact on the memory storage and computation
time required in the CPD algorithm. To manage all dimensions, we choose K = m = 12
per dimension for the next analysis. Consequently, a suitable tolerance level must be
selected in the expansion interval [a,b]N to achieve optimal convergence with this sam-
pling frequency. To determine the best tolerance level, a test is conducted where the
tolerance level is varied from 10−6 to 10−12.

The independent case is considered first and therefore, we set R = 1. The stopping
criteria in the CG and ALS parts are the same as for the two-dimensional analysis. The
convergence results for different dimensions, along with the computation time needed
to construct the Fourier-cosine series with CPD, are shown in Figure 4.12. The conver-
gence of the first Fourier coefficient is consistent across dimensions, although there is
a slight increase due to the accumulation of the truncation errors from the expansion
interval. The tolerance level selected in the expansion interval has a significant effect on
the final error. For instance, a tolerance level of 10−6 produces less error compared to a
more accurate tolerance level of 10−12.

As previously discussed in Section 4.2, the expansion intervals corresponding to tol-
erance levels of 10−10 and 10−12 are too wide when using only 12 training data points
in each dimension (i.e. the sampling frequency is too low for these expansion inter-
vals). This leads to a loss of accuracy in the computed Fourier coefficients. To achieve
the desired accuracy for those tolerance levels, more training points are required. The
computation time increases exponentially in dimension, as depicted in Figure 4.12b.

Next, the influence of an increasing number of training points on the computation
time is investigated. To maximize impact of the exponential growth in the number of
training points, the six-dimensional case is considered. The number of training points
in each dimension will range from m = 5 to m = 12, which results in a total of M = m6

points. Based on the previous result, the tolerance level for this test in the expansion in-
terval has been set to 10−8. Figure 4.13 shows the exponential convergence of the Fourier
coefficients, which has been previously observed, along with an exponential increase in
computational time as the number of training points increases. This result illustrates
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(a) Error in the first Fourier-coefficient α0 for different
tolerances levels on [a,b]N .

(b) Computation time per dimension.

Figure 4.12: Application of the CPD method on the standard normal density function for dimension 1 up to
6. The error in the first Fourier coefficient for different tolerance levels (a) and the computation time in each
dimension (b) are shown. Parameter values used for this test are K = m = 12 and R = 1.

the impact of the exponential growth of the number of training points, as the addition of
only one extra training point per dimension results in a significant increase in the total
computational time.

Figure 4.13: Error in the first Fourier coefficient and computation time using CPD on the six-dimensional
normal density. For this test we have K = m and R = 1.

The impact of different levels of correlation is already exploited in the two-dimensional
case. However, in the multi-dimensional case, the number of correlated random vari-
ables can also have an impact on the performance of the CPD algorithm. One can ex-
pect that the performance will be affected if the number of correlated variables changes.
Therefore, a test is conducted using the four-dimensional normal density function with
varying numbers of correlated variables. The results shown in Figure 4.14 indicate that
the number of correlated variables does indeed have an impact on the final error of the
CPD approximation. An increase in the number of correlated variables leads to a decline
in performance due to the more complex correlation structure within the density func-
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tion. Consequently, the Fourier coefficient tensor becomes more difficult for the CPD
algorithm to approximate with a lower-rank tensor.

Figure 4.14: Error in the first Fourier coefficient of the four-dimensional normal density function for different
number of correlated random variables. Parameters are K = m = 12 and all correlations are set to 10%.



5
OUR NOVEL METHOD: THE

COS-CPD METHOD

This chapter introduces a new method we developed in this thesis, the COS-CPD method,
for evaluating multivariate expectations that is based on the combination of CPD with
Fourier-cosine series. The central concepts of the method are the replacement of the
joint density function by a dimension-reduced Fourier-cosine series, obtained through
the CPD approach, and the use of the COS method in order to derive the distribution of a
function of multiple random variables. More precisely, the representation of the Fourier-
cosine series obtained via the CPD approach is shown to have a more favorable form
when numerical integration is performed than the traditional Fourier-cosine series. The
COS method is utilized when the distribution of a function of a random variable has to
be recovered from its characteristic function, which is essentially a multivariate expec-
tation. Therefore, the CPD technique can be used to replace the joint density function
within the characteristic function, which leads to a reduction in the dimension of the
integration. Once the characteristic functions are obtained by solving the dimension-
reduced numerical integration, the PDF and CDF of the desired distribution can be de-
rived using the COS method. Hence, we name the method as the COS-CPD.

The first section of this chapter presents an overview of the COS-CPD method in
the context of solving multivariate expectations in general. The application of the CPD
technique to replace the joint density function with a dimension-reduced Fourier-cosine
series is demonstrated.

As this thesis focuses on financial applications, the next sections are devoted to the
implementation of the COS-CPD method in the calculation of netting-set level exposure,
where the PFE and EE can be computed. It is demonstrated that the COS-CPD method
can greatly reduce the dimensionality of the problem by separating the different risk
factors involved in the derivative portfolio.
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5.1. SOLVING MULTIVARIATE EXPECTATIONS
The focus of this thesis is on applications in the financial sector, specifically exposure
computation and option valuation. These problems in essence boil down to the evalu-
ation of multivariate expectations, which is a widely studied topic in various disciplines
related to probability theory and statistics. The COS-CPD method, presented in this
chapter, provides a solution for efficient computation of multivariate expectations and
can therefore be applied to any situation where such evaluations are required. This sec-
tion briefly shows the basics of the COS-CPD method and its application in a general
context for multivariate expectation computation. The remainder of this chapter will
focus again on the application of the COS-CPD method in the context of exposure cal-
culation.

To illustrate the general principle of the method, consider a multivariate random
variable X = (X1, · · · , XN ) with corresponding joint density function f (·). A common
problem in probability theory is the computation of the expectation of a target function
g (·), defined on this multivariate random variable X under a certain probability measure,
i.e.,

E
[
g (X)

]= ∫
RN

g (x1, · · · , xN ) f (x1, · · · , xN ) d x1 · · ·d xN .

The first step in the COS-CPD method is to replace the joint density function with the
dimension-reduced Fourier-cosine series obtained via CPD, as given in Equation 3.6 and
Equation 3.7, i.e.

f (x1, · · · , xN ) ≈
R∑

r=1

N∏
n=1

fn,r (xn) =
R∑

r=1

N∏
n=1

vT
n An[:,r ], (5.1)

with {An}N
n=1 the factor matrices and {vn}N

n=1 the cosine basis functions. Next, this re-
duced version of the Fourier-cosine series expansion is inserted into the multivariate
expectation to obtain

E
[
g (X)

]≈ ∫
RN

g (x1, · · · , xN )
R∑

r=1

N∏
n=1

vT
n An[:,r ] d x1 · · ·d xN

=
R∑

r=1

∫
RN

g (x1, · · · , xN )
N∏

n=1
vT

n An[:,r ] d x1 · · ·d xN . (5.2)

As the derivation of 5.2 only involves the replacement of the joint density function by
its dimension-reduced Fourier-cosine series, we want to emphasize that the COS-CPD
method up to this point can be applied to any multivariate expectation problem. De-
pending on the properties of the target function g (·), the N -dimensional integral in 5.2
can possibly be solved by evaluating only lower dimensional integrals. For example, the
characteristic function evaluation in the context of netting-set level exposure can be re-
duced to only evaluating one- or two-dimensional integrals, which will be shown in the
next section.
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5.2. COMPUTING POTENTIAL FUTURE EXPOSURE
This section provides the methodology of COS-CPD method in the context of exposure
calculation. To obtain the PFE of a derivative portfolio at a future time point, the entire
distribution of the exposure has to be computed. Using the COS method, the PDF and
CDF profile of the exposure can be approximated by its Fourier-cosine series,

fE (x) ≈
K−1∑′
k=0

Fk cos

(
kπ

x − l

u − l

)

FE (x) ≈ F0

2
(x − l )+

K−1∑
k=1

Fk
u − l

kπ
sin

(
kπ

x − l

u − l

)
,

where the coefficients Fk are of the following form,

Fk ≡ 2

u − l
Re

{
φE

(
kπ

u − l

)
·exp

(
−i

klπ

u − l

)}
.

Therefore, the problem boils down to the evaluation of the characteristic function of the
exposure, φE , which is defined as

φE (ω) =
∫
RN

e iωE(x1,...,xN ) f (x1, . . . , xN ) d x1 . . .d xN (5.3)

=
∫
RN

e iωmax[V (x1,...,xN ),0] f (x1, . . . , xN ) d x1 . . .d xN , (5.4)

with f (x1, . . . , xN ) representing the joint probability density function of the driving risk
factors of the portfolio. The number of dimensions of this integration is therefore deter-
mined by the number of risk factors involved.

The presence of the maximum operator in the expression of the exposure creates a
discontinuity in both the PDF and CDF of the exposure. Because of this, the resulting
Fourier-cosine series of the exposure PDF and CDF, recovered via the COS method, has
to capture this discontinuity behaviour as well. However, the recovered function has to
be at least continuous in order for the Fourier-cosine series to converge [50]. Otherwise,
the Fourier-cosine series does not converge at the discontinuity points and will have
a slower convergence close to these discontinuity points. This discontinuity leads to
oscillatory behavior in the Fourier-cosine series around these points, known as the Gibbs
phenomenon. The convergence theory on Fourier-cosine series is discussed in Section
6.1, which provides information on the type of convergence for various function classes.

However, in the case of evaluating netting-set level exposure, the maximum operator
can be omitted in the calculation of the characteristic function. This results in the re-
covery of the continuous PDF and CDF functions of the MtM value of the portfolio. The
exposure distribution is then obtained by applying the maximum operator to the port-
folio distribution afterwards. In this manner, the distribution of the continuous function
V is recovered by the Fourier-cosine series in the COS method, leading to a fast conver-
gence of the Fourier-cosine series. For example, the CDF profile of the exposure at the
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netting-set level can be found by applying the following transformation,

FE (x) =
{

FV (x) if x ≥ 0

0 if x < 0,

where FV denotes the CDF of the MtM value of the portfolio. Therefore, the remain-
ing analysis focuses on the calculation of the characteristic function of the MtM of the
portfolio,

φV (ω) =
∫
RN

e iωV (x1,...,xN ) f (x1, . . . , xN ) d x1 . . .d xN . (5.5)

For a low-dimensional integral (N ≤ 3), the characteristic function can be approximated
directly using a standard numerical integration method such as Trapezoidal rule or Clenshaw-
Curtis. This approach has already been studied in a recent thesis done at FF Quant up
to 3 dimensions, which shows promising results in computing the PFE and EE with the
COS method [36]. However, this direct integration approach is not suitable for high-
dimensional integrals (N > 3), as these quadrature methods suffer from the so-called
"curse of dimension", meaning that the computational complexity grows exponentially
with respect to the number of dimensions. Therefore, the COS-CPD method is devel-
oped in this thesis to alleviate the curse of dimension.

The COS-CPD approach to compute the exposure distribution takes two fundamen-
tal steps. The first step has already been discussed in Section 5.1 in the context of gen-
eral multivariate expectations. In this step, the joint density function f (x1, . . . , xN ) of
the driving risk factors is decomposed into a dimension-reduced Fourier-cosine series,
computed with CPD, i.e.,

f (x1, · · · , xN ) ≈
R∑

r=1

N∏
n=1

fn,r (xn) =
R∑

r=1

N∏
n=1

vT
n An[:,r ],

with {An}N
n=1 the factor matrices and {vn}N

n=1 the cosine basis functions. Inserting this
result into 5.5 gives the following expression for φV ,

φV (ω) ≈
∫
RN

e iωV (x1,...,xN )
R∑

r=1

N∏
n=1

vT
n An[:,r ] d x1 . . .d xN

=
R∑

r=1

∫
RN

e iωV (x1,...,xN )
N∏

n=1
vT

n An[:,r ] d x1 . . .d xN . (5.6)

The second step is to observe that the portfolio value is a linear combination of all
the paying and receiving legs of the individual contracts. Although the portfolio may be
influenced by many risk factors, each contract leg is associated with only one or two risk
factors. For instance, a FX forward contract is governed by three risk factors, but its indi-
vidual legs are influenced by one (for the domestic currency leg) or two (for the foreign
currency leg) risk factors. By grouping all the legs that are associated with the same risk
factors, the portfolio can be represented as a linear combination of small subportfolios
that share one to two common risk factors. If there are M such subportfolios (i.e. M
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different combinations of risk factors present in the portfolio legs), the portfolio can be
expressed as

V (x1, · · · , xN ) =
M∑

m=1
Vm(xm),

with Vm the total value of all the legs depending on the risk factor combination xm :=
(x1

m , . . . x#xm
m ). The symbol #xm indicates the number of risk factors involved in combi-

nation xm . To make notation easier in a later stage, we make a distinction between the
disjoint and non-disjoint combinations,

V (x1, . . . , xN ) =
M1∑

m1=1
Vm1 (xm1 )+

M∑
m2=M1+1

Vm2 (xm2 ). (5.7)

The first M1 combinations of risk factors are disjoint with all the other combinations,
i.e.

xi ∩x j =; for i ̸= j , ∀ i ∈ {1, . . . , M1}, j ∈ {1, . . . , M }.

The other M−M1 combinations contain overlapping risk factors. Next, it is assumed that
the first M1 disjoint combinations contain the risk factors (x1, . . . xN1 ), while the remain-
ing combinations consist of the risk factors (xN1+1, . . . xN ). Inserting equation 5.7 for V
into 5.6 we obtain

φV (ω) ≈
R∑

r=1

∫
RN

e iωV (x1,...,xN )
N∏

n=1
vT

n An[:,r ] d x1 . . .d xN

=
R∑

r=1

∫
RN

e
iω

[∑M1
m1=1 Vm1 (xm1 )+∑M

m2=M1+1 Vm2 (xm2 )
] N∏

n=1
vT

n An[:,r ] d x1 . . .d xN

=
R∑

r=1

∫
RN

e
iω

∑M1
m1=1 Vm1 (xm1 )

e
iω

∑M
m2=M1+1 Vm2 (xm2 )

N∏
n=1

vT
n An[:,r ] d x1 . . .d xN

=
R∑

r=1

∫
RN1

e
iω

∑M1
m1=1 Vm1 (xm1 )

N1∏
n=1

vT
n An[:,r ] d x1 . . .d xN1

·
∫
RN−N1

e
iω

∑M
m2=M1+1 Vm2 (xm2 )

N∏
n=N1+1

vT
n An[:,r ] d xN1+1 . . .d xN

:=
R∑

r=1
I (V1) · I (V2),

with I (V1) and I (V2) given by

I (V1) :=
∫
RN1

e
iω

∑M1
m1=1 Vm1 (xm1 )

N1∏
n=1

vT
n An[:,r ] d x1 . . .d xN1

I (V2) :=
∫
RN−N1

e
iω

∑M
m2=M1+1 Vm2 (xm2 )

N∏
n=N1+1

vT
n An[:,r ] d xN1+1 . . .d xN .



5

58 5. OUR NOVEL METHOD: THE COS-CPD METHOD

The integral I (V1) regarding the disjoint combinations can be split into a product of in-
tegrals of all individual combinations. Since the risk factors (x1, . . . xN1 ) occur in the dis-
joint combinations, an ordering of these risk factors can be made over all M1 risk factor
groups, which will be denoted with,

x1 = {x1, · · · , xl1 }

x2 = {xl1+1, · · · , xl2 }

...

xm1 = {xl(m1−1)+1, · · · , xlm1
}

...

xM1 = {xl(M1−1)+1, · · · , xN1 }.

Using this notation, the integral I (V1) can be written as

I (V1) =
∫
RN1

e
iω

∑M1
m1=1 Vm1 (xm1 )

N1∏
n=1

vT
n An[:,r ] d x1 . . .d xN1

=
∫
RN1

M1∏
m1=1

e iωVm1 (xm1 )
N1∏

n=1
vT

n An[:,r ] d x1 . . .d xN1

=
M1∏

m1=1

∫
R

#xm1
e iωVm1 (xm1 )

lm1∏
n=l(m1−1)+1

vT
n An[:,r ] d xn . (5.8)

Working out the matrix-vector products vT
n An results in an element-wise expression for

I (V1),

I (V1) =
M1∏

m1=1

 K−1∑
k1,··· ,k#xm1 =0

lm1∏
i=l(m1−1)+1

Ai [ki ,r ]
∫
R

#xm1
e iωVm1 (xm1 )

lm1∏
n=l(m1−1)+1

vn[kn] d xn

 ,

where the integration variables {xi }N1
n=1 are contained in the cosine basis functions {vn}N1

n=1.
The integral I (V2) containing the overlapping risk factors cannot be split into a prod-

uct of integrals. However, the dimension of integration can still be reduced due to the
characteristics of the portfolio function V . To avoid illegible equations and an excess
of notation details, only a simplified example will be provided in which the approach of
solving I (V2) will be clear. Let (x1, x2), (x1, x3) be two risk factor combinations occurring
in the paying and receiving legs of the portfolio with overlapping risk factor x1. Then,
the integral I (V2) that has to be solved is in essence of the following form,Ñ

R3
e iωV1(x1,x2)+V2(x1,x3) cos(x1)cos(x2)cos(x3) d x1d x2d x3.

At first sight, a three-dimensional integral has to be solved. When using quadrature
methods to solve this problem numerically, this results in a three-dimensional grid of
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all points in which the quadrature rule has to evaluate the integrand. However, this can
be avoided by rewriting the integral as follows,Ñ

R3
e iωV1(x1,x2)+V2(x1,x3) cos(x1)cos(x2)cos(x3) d x1d x2d x3 =Ñ

R3
e iωV1(x1,x2)e iωV2(x1,x3) cos(x1)cos(x2)cos(x3) d x1d x2d x3 =∫

R
cos(x1)

[Ï
R2

e iωV1(x1,x2)e iωV2(x1,x3) cos(x2)cos(x3) d x2d x3

]
d x1 =∫

R
cos(x1)

[∫
R

e iωV1(x1,x2) cos(x2) d x2

∫
R

e iωV2(x1,x3) cos(x3) d x3

]
d x1.

From this, it can be seen that only the two-dimensional grids of (x1, x2) and (x1, x3) has to
be generated, which saves a significant amount of computational costs. For example, if
100 grid points are used for each dimension, a three-dimensional grid consists of O

(
106

)
elements, while a two-dimensional grid only has O

(
104

)
elements.

The portfolios studied in this thesis will only contain disjoint groups of risk factors,

xi ∩x j =; for i ̸= j , ∀ i , j ∈ {1, . . . , M },

and hence we will focus from now on this scenario. When all the risk factor combinations
are disjoint, the characteristic function can be simplified using only the expression found
in 5.8 for I (V1) with M1 = M ,

φV (ω) ≈
R∑

r=1
I (V1)

=
R∑

r=1

M∏
m1=1

∫
R

#xm1
e iωVm1 (xm1 )

lm1∏
n=l(m1−1)+1

vT
n An[:,r ] d xn . (5.9)

Since xm only contains one or two risk factors, the N -dimensional integral from 5.6
is simplified to a product of one- and two-dimensional integrals. These integrals can
be efficiently computed using fast numerical integration techniques such as Clenshaw-
Curtis. Also note from 5.1 that the Fourier-cosine series generated using CPD is ex-
pressed as a product of N univariate Fourier-cosine series. This is different from the
standard Fourier-series expansion, which involves N nested summations over all the ex-
pansion terms. The absence of these nested summations in the CPD expression leads to
smaller matrix-vector products as described in 5.9.

The integration range is truncated to the domain on which the Fourier-cosine series
for the joint density function is defined,

φ̂V (ω) =
R∑

r=1

M∏
m1=1

∫ bm1

am1

e iωVm1 (xm1 )
lm1∏

n=l(m1−1)+1
vT

n An[:,r ] d xn , (5.10)

where [am1 ,bm1 ] := [al(m1−1)+1,bl(m1−1)+1]×·· ·× [alm1
,blm1

]. The series coefficients Fk can
now be computed via the formula from the COS method,

Fk ≡ 2

u − l
Re

{
φ̂V

(
kπ

u − l

)
·exp

(
−i

klπ

u − l

)}
, (5.11)
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from which the PDF and the CDF of the MtM value can be recovered, i.e.,

fV (x) ≈
K−1∑′
k=0

Fk cos

(
kπ

x − l

u − l

)
, (5.12)

FV (x) ≈ F0

2
(x − l )+

K−1∑
k=1

Fk
u − l

kπ
sin

(
kπ

x − l

u − l

)
. (5.13)

As mentioned before, the exposure distribution can be found by applying the maximum
operator afterwards on the recovered PDF and CDF of the MtM value, because the dis-
tribution of the total MtM value of a netting set coincides with the distribution of the
exposure on [0,+∞]. Once the CDF of the exposure is computed, the PFE can be ex-
tracted by taking the 97.5% quantile. The methodology for calculating the PFE using the
COS-CPD method is presented in the form of pseudo code in Algorithm 2.

Note that the CPD part can be done "off-line" in advance. As long as the model pa-
rameters do not change, which is usually the case in practice for XVA or option valua-
tions, the trained CPD results can be re-used till the next re-calibration of the models.

Algorithm 2 COS-CPD for netting-set level PFE

Input: K ,R, M ,a,b,maxCG ,maxALS ,εCG ,εALS ,KCOS , Nquad ,V
Compute factor matrices {An}N

n=1 using Algorithm 1
Group portfolio V into parts with same risk factors
Set the COS support [l ,u]
for k = 1 to Kcos do

Compute φV (ω) from (5.9) using the Clenshaw–Curtis quadrature method
end for
Compute coefficients Fk in (5.11)
Compute CDF of the MtM value with (5.13)
Derive exposure CDF by flooring the CDF of the MtM value
Find the 97.5% quantile of the exposure CDF to obtain the PFE
return PFE

5.3. COMPUTING EXPECTED EXPOSURE
This section presents how the COS-CPD method can be used to compute the expected
exposure of a derivative portfolio V . The expected exposure is a fundamental quantity
when it comes to XVA pricing, including CVA. To begin with, the expression of the ex-
pected exposure as in definition 2.2.5 is repeated,

EEt = E[E(X t )] =
∫
RN

max[Vt (x1, . . . , xN ),0] f (x1, . . . , xN ) d x1 . . .d xN .

Instead of considering the risk factors as the integration variables, the integral can also
be defined directly in terms of the portfolio V , resulting in the following one-dimensional
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integral,

EEt =
∫
R

max(v,0) fV (v) d v.

Computing the expected exposure in this way is most of the time not possible, as it re-
quires the PDF of the whole portfolio, fV , which has often no closed-form expression.
Nevertheless, the Fourier-cosine series of fV , as described in Equation 5.12, has already
been calculated in the preceding section during the calculation of PFE, and therefore, it
can be inserted into the formula to attain the expected exposure,

EEt =
∫
R

max(v,0)
K−1∑′
k=0

Fk cos

(
kπ

v − l

u − l

)
d v

=
K−1∑′
k=0

Fk

∫
R

max(v,0)cos

(
kπ

v − l

u − l

)
d v.

The integration range is truncated to the interval [l ,u] on which the Fourier-cosine series
is defined,

EEt =
K−1∑′
k=0

Fk

∫ u

l
max(v,0)cos

(
kπ

v − l

u − l

)
d v (5.14)

=
∫ max(u,0)

max(l ,0)
v cos

(
kπ

v − l

u − l

)
d v.

Without loss of generality, it is assumed that u > 0 (otherwise we directly find EEt = 0).
For the forthcoming derivations, we will make the assumption that l ≤ 0. However, the
derivations in case l > 0 are identical.

The integral obtained can be solved analytically using integration by parts,∫ u

0
v cos

(
kπ

v − l

u − l

)
d v =

[
v sin

(
kπ

v − l

u − l

)
u − l

kπ

]u

v=0
−

∫ u

0
sin

(
kπ

v − l

u − l

)
u − l

kπ
d v

= u − l

kπ
[u sin(kπ)−0]+

(
u − l

kπ

)2 [
cos

(
kπ

v − l

u − l

)]u

v=0

= u − l

kπ
u sin(kπ)+

(
u − l

kπ

)2 (
cos(kπ)−cos

(
kπ

−l

u − l

))
=

(
u − l

kπ

)2 (
cos(kπ)−cos

(
kπ

−l

u − l

))
=

(
u − l

kπ

)2 (
(−1)k −cos

(
kπ

l

u − l

))
.

The case k = 0 has to be treated separately, as the integrand in this scenario is given by

v cos
(
0 ·π v−l

u−l

)
= v . Hence, the integral for k = 0 is given by∫ u

0
v d v = 1

2
u2.
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Therefore, the value of the integral can be summarized in the following way,

∫ u

0
v cos

(
kπ

v − l

u − l

)
d v =


1
2 u2 if k = 0(

u−l
kπ

)2 (
(−1)k −cos

(
kπ l

u−l

))
if k ̸= 0.

The results for the case l > 0 can be obtained in the same way, and are given by

∫ u

l
v cos

(
kπ

v − l

u − l

)
d v =


1
2

(
u2 − l 2

)
if k = 0(

u−l
kπ

)2 (
(−1)k −1

)
if k ̸= 0.

These values can now be inserted into 5.14 to obtain the final expression for the expected
exposure,

EEt =


F0
4 u2 +∑K−1

k=1 Fk

(
u−l
kπ

)2 (
(−1)k −cos

(
kπ l

u−l

))
if l ≤ 0

F0
4

(
u2 − l 2

)+∑K−1
k=1 Fk

(
u−l
kπ

)2 (
(−1)k −1

)
if l > 0.

(5.15)

As a result, the EE can be directly derived from the Fourier-series coefficients Fk that
were already computed during the PFE calculation. The pseudo code for computing the
EE using the COS-CPD method can be found in Algorithm 3.

Algorithm 3 COS-CPD for netting-set level EE

Input: Coefficients Fk obtained via PFE calculation in Algorithm 2
Compute EE via (5.15)
return EE



6
ERROR ANALYSIS OF THE

COS-CPD METHOD

This chapter focuses on a theoretical error analysis of the COS-CPD method to solve
multivariate expectations. The convergence of errors from both the CPD part and the
COS method will be investigated. Since both the COS method and the CPD part make
use of Fourier-cosine series, the first section of this chapter examines the convergence
of Fourier series in general. Subsequently, the error resulting from the CPD computa-
tion of the dimension-reduced Fourier-cosine series, corresponding to the joint density
function, is analyzed. This is done by identifying the various error sources present and,
when possible, deriving theoretical bounds for the errors. The analysis of the CPD part
is generic for solving any multivariate expectation, as it only concerns the decomposi-
tion of the joint density function. The COS method is then employed in the context of
exposure quantification to generate the portfolio distribution, which involves evaluating
the characteristic function. Similar to the CPD part, the error sources present in the COS
method are isolated, after which a theoretical upper bound is derived.

6.1. CONVERGENCE OF FOURIER-COSINE SERIES
This section contains some general theory on the convergence of Fourier-series, mostly
taken from [50]. The different types of convergence rates are discussed, together with
the corresponding series truncation error. The main result is then found in Proposition
6.1.3, which shows the convergence rate of the Fourier-cosine series for different classes
of functions.

Definition 6.1.1 (Algebraic Index of Convergence). The algebraic index of convergence
n(≥ 0) is the largest number for which

lim
k→∞

|Ak |kn <∞, k >> 1,

where the Ak are the coefficients of the series. An alternative definition is that if the coeffi-
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cients of a series, Ak , decay asymptotically as

Ak ∼O

(
1

kn

)
, k >> 1,

then n is the algebraic index of convergence.

Definition 6.1.2 (Exponential Index of Convergence). If the algebraic index of conver-
gence n(≥ 0) is unbounded – in other words, if the coefficients, Ak , decrease faster than
1/kn for any finite n – the series is said to have exponential convergence. Alternatively, if

Ak ∼O
(
e−γkr

)
, k >> 1,

with γ, constant, the ‘asymptotic rate of convergence’, for some r > 0, then the series shows
exponential convergence. The exponent r is the index of convergence.
For r < 1, the convergence is called subgeometric.
For r = 1, the convergence is either called supergeometric with

Ak ∼O
(
k−ne−(k/ j ) ln(k)

)
,

(for some j > 0), or geometric with

Ak ∼O
(
k−ne−γk

)
. (6.1)

Proposition 6.1.1 (Series truncation error of algebraically converging series). It can be
shown that the series truncation error of an algebraically converging series behaves like

∞∑
k=K

1

kn ∼ 1

(n −1)(K −1)n−1 .

The proof can be found in [63].

Proposition 6.1.2 (Series truncation error of geometrically converging series). If a se-
ries has geometrical convergence, then the error after truncation of the expansion after K
terms, ET (K −1), reads

ET (K −1) ∼ P∗e−(K−1)ν.

Here, constant ν> 0 is called the asymptotic rate of convergence of the series, which satis-
fies

ν= lim
n→∞(− log |ET (n)|/n),

and P∗ > 0 denotes a factor which varies less than exponentially with K −1 .

Proposition 6.1.3 (Convergence of Fourier-cosine series). If g (x) ∈ C∞([a,b] ⊂ R), then
its Fourier-cosine series expansion on [a,b] has geometric convergence. The constant γ in
6.1 is determined by the location in the complex plane of the singularities nearest to the
expansion interval. Exponent n is determined by the type and strength of the singularity.
If a function g (x), or any of its derivatives, is discontinuous, its Fourier-cosine series coef-
ficients show algebraic convergence. Integration-by-parts shows that the algebraic index
of convergence, n, is at least as large as n’, with the n’-th derivative of g (x) integrable.

References to the proof of this proposition are available in [50]. The theory presented
here will be used in the upcoming sections to find an upper bound for the truncation
error of the Fourier-cosine series in both the CPD part and the COS method.
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6.2. ERROR ANALYSIS CPD
The CPD technique is utilized to decompose the joint probability density function f (x1, . . . , xN )
into a dimensionality reduced version of its Fourier-cosine series expansion. Algorithm 1
is executed to obtain the components of the Fourier coefficient tensor. Along the deriva-
tion steps of the algorithm, different errors sources are introduced, which we will track
and analyze in the next section.

6.2.1. ERROR SOURCES
The first error arises from the truncation of the infinite Fourier-cosine series expansion,
which results in approximation f1,

f1 =
K−1∑
k1=0

· · ·
K−1∑

kN=0
αk

N∏
n=1

cos

(
knπ

xn −an

bn −an

)
,

where k = {k1, . . . ,kN } ∈ NN is a multi-index. Then, the Fourier coefficients αk are ap-
proximated using the CPD algorithm. Assuming the correct rank used in the tensor de-
composition (i.e. the rank for which the coefficient tensor is synthesized1), we obtain
approximation f2,

f2 =
K−1∑
k1=0

· · ·
K−1∑

kN=0

R∑
r=1

a1
r [k1] · ... ·aN

r [kN ]
N∏

n=1
cos

(
knπ

xn −an

bn −an

)
.

Next, a lower-rank approximation, denoted with R̃, of the Fourier coefficient tensor is
computed. This results in the final approximation of the Fourier-cosine series of the
joint density function, given by f3,

f (x1, . . . , xN ) ≈ f3 =
K−1∑
k1=0

. . .
K−1∑

kN=0

R̃∑
r=1

a1
r [k1] · ... ·aN

r [kN ]
N∏

n=1
cos

(
knπ

xn −an

bn −an

)
.

6.2.2. THEORETICAL ERROR BOUNDS
The previous section showed that each of the three steps introduces an error when de-
composing the joint density into a dimension-reduced Fourier-cosine series with CPD;
the series truncation error, the decomposition error of the Fourier coefficients using CPD
and the lower-rank approximation error. That is,

1. The series truncation error,

ε1 := f − f1 =
∞∑

k1=K
. . .

∞∑
kN=K

αk

N∏
n=1

cos

(
knπ

xn −an

bn −an

)
.

2. The decomposition error using the CPD technique via Algorithm 1 (assuming the
correct rank is used),

ε2 := f1 − f2 =
K−1∑
k1=0

. . .
K−1∑

kN=0

[
αk −

R∑
r=1

a1
r [k1] · . . . ·aN

r [kN ]

]
N∏

n=1
cos

(
knπ

xn −an

bn −an

)
.

1A tensor X is synthesized if the CPD decomposition matches the original tensor, i.e. X =∑R
r=1 a1

r ◦a2
r ◦· · ·◦aN

r .
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3. The lower-rank approximation error,

ε3 := f2 − f3 =
K−1∑
k1=0

. . .
K−1∑

kN=0

[
R∑

r=1
a1

r [k1] · . . . ·aN
r [kN ]−

R̃∑
r=1

a1
r [k1] · . . . ·aN

r [kN ]

]
N∏

n=1
cos

(
knπ

xn −an

bn −an

)
.

The truncation error of the Fourier-cosine series, denoted as ε1, can be approximated
by utilizing the theory introduced in Section 6.1. It can be observed that the error con-
verges exponentially in K (assuming that all summations are truncated using the same
value K ) for density functions belonging to the class C∞([a1,b1]× ·· · × [aN ,bN ]). This
results in an upper bound for ε1 given by,

|ε1| < Pe−(K−1)ν,

with ν > 0 and P > 0 being a term that varies less than exponentially with K . A density
function with discontinuity in one of its derivatives results in an algebraic convergence
of the Fourier-cosine series expansion, for which the error can be bounded as follows,

|ε1| < 1

(n −1)(K −1)n−1 ,

with n the algebraic index of convergence of the series, as defined in Definition 6.1.1.
The next error to be examined involves the decomposition of the Fourier coefficient

tensor through the CPD algorithm, assuming that the correct rank is utilized for syn-
thesizing the Fourier coefficient tensor. These coefficients are determined by solving
the system of equations for the factor matrices {An}N

n=1 presented in Equation 3.11. As
previously noted in the corresponding chapter, the multilinear system of equations is
equivalent to a linear least squares problem, which belongs to the class of convex opti-
mization problems. As a result, the system will have a unique solution provided that the
number of data points utilized for fitting is greater than or equal to the number of un-
known parameters. In this context, a unique solution is then obtained for K ≤ m. Based
on the findings in Section 4.1, it was concluded that the optimal choice for the parameter
is to set K = m for each dimension. Therefore, the constraint of K ≤ m is satisfied, and
we can assume that the system will have a unique solution. As this part of the analysis
still assumes the correct rank in the CPD, the error ε2 depends solely on the error made
while solving Equation 3.11 for all matrices {An}N

n=1. The system is solved by utilizing the
ALS algorithm, where each factor matrix is solved iteratively using the CG method. Thus,
two parameters control ε2: (1) the stopping criterion implemented within the CG solver
and (2) the stopping criterion in the outer ALS loop. These stopping criteria are defined
by the tolerance levels, εCG and εALS , respectively. The overall error in computing the
coefficients is then bounded by

|ε2| = |εALS |+ |εCG |
≤O (max(|εCG |, |εALS |)) .

In practice, the tolerance levels in the CG and ALS procedure are set to a high accuracy
level, for example O

(
10−10

)
. As a result, ε2 will be dominated by the other error sources.
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The final error ε3 that arises in the CPD procedure is due to the application of a
lower-rank approximation for the Fourier coefficient tensor. This error is challenging
to quantify as it involves the determination of the correct rank of a tensor, which is an
NP-problem [58]. Consequently, no algorithm is available to acquire the correct rank
of a tensor. However, the results of the numerical tests presented in Chapter 4, specifi-
cally in Figure 4.9, suggest that there is an exponential error convergence with increasing
rank for the different correlation levels, up to the point that the series truncation error
becomes the dominant error source. Nevertheless, since this is only a single numerical
test, further analysis is necessary to confirm the potential exponential convergence of
ε3.

By combining the results for the three error sources, it is possible to formulate an up-
per bound for the total error in the CPD computation. For the smooth density functions
considered in this thesis, the upper bound is given by

|εC PD | < Pe−(K−1)v +O (max(|εCG |, |εALS |))+|ε3|. (6.2)

6.3. ERROR ANALYSIS COS METHOD
Using the COS method, it is possible to recover the portfolio’s density function, fV , and
cumulative distribution function, FV . The error analysis in this section will be done on
the former, and that for the latter can be done in a similar way. We employ the same
approach as in [30].

6.3.1. ERROR SOURCES

To obtain the density fV , multiple steps are involved, each of which introduces an error.
The first error arises from the truncation of the infinite Fourier-cosine series expansion,
from which we obtain approximation f 1

V ,

f 1
V =

KCOS−1∑
k=0

Ak cos

(
kπ

v − l

u − l

)

=
KCOS−1∑

k=0

2

u − l
Re

{
φ̂V

(
kπ

u − l

)
·exp

(
−i

klπ

u − l

)}
cos

(
kπ

v − l

u − l

)
,

with k = {k1, . . . ,kN } ∈ NN a multi-index. Then, the Fourier coefficients Ak are replaced
by Fk to obtain approximation f 2

V ,

f 2
V =

KCOS−1∑
k=0

2

u − l
Re

{
φV

(
kπ

u − l

)
·exp

(
−i

klπ

u − l

)}
cos

(
kπ

v − l

u − l

)
.

Finally, the characteristic function is numerically integrated with the Clenshaw-Curtis
quadrature rule, denoted with φCC

V . Therefore, the final approximation is given by f 3
V ,

fV (v) ≈ f 3
V =

KCOS−1∑
k=0

2

u − l
Re

{
φCC

V

(
kπ

u − l

)
·exp

(
−i

klπ

u − l

)}
cos

(
kπ

v − l

u − l

)
.
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6.3.2. THEORETICAL ERROR BOUNDS
By examining the error sources present in the COS method, it becomes clear that there
are three main factors contributing to the overall error: the series truncation error, the
error from the substitution of Fourier coefficients Ak with Fk , and the numerical inte-
gration error in the calculation of the characteristic function. Hence, the total error is
bounded by the sum of these three individual error components,

1. The series truncation error,

ε1 := fV − f 1
V =

∞∑
k=KCOS

Ak cos

(
kπ

v − l

u − l

)
=

∞∑
k=KCOS

2

u − l
Re

{
φ̂V

(
kπ

u − l

)
·exp

(
−i

klπ

u − l

)}
cos

(
kπ

v − l

u − l

)
.

2. Replacement of the coefficients Ak by Fk ,

ε2 := f 1
V − f 2

V =
KCOS−1∑

k=0

2

u − l
Re

{∫
R\[l ,u]

e i kπ V (v)−l
u−l fV (v) d v

}
cos

(
kπ

v − l

u − l

)
.

3. Numerical integration error of the characteristic function with the Clenshaw-Curtis
quadrature rule,

ε3 := f 2
V − f 3

V =
KCOS−1∑

k=0

2

u − l
Re

{[
φV

(
kπ

u − l

)
−φCC

V

(
kπ

u − l

)]
·exp

(
−i

klπ

u − l

)}
cos

(
kπ

v − l

u − l

)
.

The first two error components are well studied in literature, including the original
paper of the COS method by Fang and Oosterlee [30]. Therefore, these error sources will
be discussed only briefly. The series truncation error ε1 is similar to the one described in
the CPD error analysis in Section 6.2. Consequently, we can use the theory from Section
6.1 to conclude that the error converges exponentially in K for density functions in the
class C∞([a,b]), resulting in a upper bound for ε1 given by,

|ε1| < Pe−(K−1)ν,

with ν > 0 and P > 0 a term that varies less than exponentially with K. In case fV has
a discontinuity in one of its derivatives, an algebraic convergence of the Fourier-cosine
series expansion will be obtained, for which the error can be bounded as follows,

|ε1| < 1

(n −1)(K −1)n−1 ,

with n the algebraic index of convergence of the series, as defined in Definition 6.1.1.
Next, we will analyze the error ε2 that arises from replacing the coefficients Ak with

FK . This error is affected by the integration truncation errors, as proven in the following
lemma.
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Lemma 6.3.1. Error ε2 consists of integration range truncation errors, and can be bounded
by:

|ε2| ≤Q · |ε4|,
where Q is a positive constant dependent on the number of expansion terms KCOS and

ε4 :=
∫
R\[l ,u]

fV (v) d v.

Proof. The proof is similar to the one presented in [30]. First, we assume that the func-
tion fV (v) is a real function. Since fV represent a joint density function, this assumption
holds for all our encountered problems. In case fV is real, we can write ε2 in the following
way,

ε2 =
KCOS−1∑

k=0

2

u − l

{∫
R\[l ,u]

cos

(
V (v)− l

u − l

)
fV (v) d v

}
·cos

(
kπ

v − l

u − l

)
.

Next, the triangular inequality is applied to obtain an upper bound for ε2. Taking abso-
lute values on both sides we find

|ε2| ≤
KCOS−1∑

k=0

2

u − l

{∣∣∣∣∫
R\[l ,u]

cos

(
V (v)− l

u − l

)
fV (v) d v

∣∣∣∣} ·
∣∣∣∣cos

(
kπ

v − l

u − l

)∣∣∣∣
≤

KCOS−1∑
k=0

2

u − l

{∣∣∣∣∫
R\[l ,u]

cos

(
V (v)− l

u − l

)
fV (v) d v

∣∣∣∣} ,

where we have used that |cos(x)| ≤ 1. Since fV considers a density function, we have
fV ≥ 0, so that we find

|ε2| ≤
KCOS−1∑

k=0

2

u − l

{∣∣∣∣∫
R\[l ,u]

cos

(
V (v)− l

u − l

)
fV (v) d v

∣∣∣∣}

≤
KCOS−1∑

k=0

2

u − l

{∫
R\[l ,u]

∣∣∣∣cos

(
V (v)− l

u − l

)∣∣∣∣ ∣∣ fV (v) d v
∣∣}

≤
KCOS−1∑

k=0

2

u − l

{∫
R\[l ,u]

fV (v) d v

}
= 2KCOS

u − l
·
{∫

R\[l ,u]
fV (v) d v

}
=Q ·ε4,

where Q := 2KCOS
u−l depends on the number cosine expansion terms KCOS , and ε4 repre-

sented the integration range truncation error,

ε4 :=
∫
R\[l ,u]

fV (v) d v.

The size of ε4 error depends on the integration range [l ,u].
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Finally, the integration error of the characteristic function via the Clenshaw-Curtis
is investigated. Therefore, we present the following lemma, which is adapted from the
working paper [64].

Lemma 6.3.2. The error in the recovered density function fV due to the numerical inte-
gration is bounded by,

|ε3| ≤ KCOS · |ε(J ,T OL)|,

where KCOS denotes the number of expansion terms in the Fourier-cosine approximation
of fV , J is the number of points adopted in the Clenshaw-Curtis quadrature rule, TOL is
the integration range truncation error, and ε(J ,T OL) is the total error arising from the
approximation of the characteristic function, which converges to 0 as J →∞ and T OL →
0.

Proof. First, the Fourier-cosine series expansion without the numerical integration error
is considered, which is given by

fV (v) =
KCOS−1∑

k=0
Fk cos

(
kπ

v − l

u − l

)
. (6.3)

Including the numerical integration error when solving the characteristic function, we
have

f̂V (v) =
KCOS−1∑

k=0
(Fk +ε(J ,T OL,k))cos

(
kπ

v − l

u − l

)
, (6.4)

where ε(J ,T OL,k) represents the numerical error due to the Clenshaw-Curtis quadra-
ture rule, utilized with J quadrature points. Note that this error depends on the expan-
sion number k. The total error due to the numerical integration can now be obtained by
taking the difference of 6.3 and 6.4,

|ε3| =
∣∣ f̂V − fV

∣∣= ∣∣∣∣∣KCOS−1∑
k=0

ε(J ,T OL,k)cos

(
kπ

v − l

u − l

)∣∣∣∣∣
≤

KCOS−1∑
k=0

∣∣∣∣ε(J ,T OL,k)cos

(
kπ

v − l

u − l

)∣∣∣∣
≤

KCOS−1∑
k=0

|ε(J ,T OL,k)| .

Next, we observe that the set of errors {ε(J ,T OL,k),k ≥ 0} has a uniform bound. This
can be demonstrated by considering the approximation of the characteristic function
φ(ω), denoted with φ̂(ω). In the context of the COS-CPD method, numerical integra-
tion is performed on functions of the form e iωV (x) cos

(
kπ x−a

b−a

)
, where V (x) is the part of

the pricing function that corresponds to the risk factor x. For this integrand, we have
|e iωV (x)| ≤ 1 for allω= kπ/(b−a),k ≥ 0 and |cos

(
kπ x−a

b−a

) | ≤ 1 for all k ≥ 0. By using these
bounds, we can determine that the integration error can be bounded independently of
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k. Consequently, there exists a uniform bound, denoted by ε(J ,T OL), that applies to all
k. Since ε(J ,T OL) bounds each ε(J ,T OL,k), we can write

|ε3| =
∣∣ f̂V − fV

∣∣≤ KCOS−1∑
k=0

|ε(J ,T OL,k)|

≤
KCOS−1∑

k=0

|ε(J ,T OL)|

= KCOS · |ε(J ,T OL)|.

The integrated functions considered in the COS-CPD method take the form e iωV ·
cos

(
kπ v−a

b−a

)
, which are analytic functions. Therefore, we know that the convergence of

the Clenshaw-Curtis quadrature rule will be exponential in the number of quadrature
points, as can be found in Theorem 19.3 from [65].

Collecting all the results, we can conclude that the total error in the COS method
converges exponentially for density functions in C∞([a,b]), and the upper bound can be
formulated as

|εCOS | < Pe−(KCOS−1)ν+Q · |ε4|+KCOS · |ε(J ,T OL)|. (6.5)

With the derivation of the error upper bounds for both the COS and CPD compo-
nents, we can establish an upper bound for the total error in the COS-CPD method.
Since the error in the CPD computation is related with the numerical integration error
ε(J ,T OL), we can insert the expression of εC PD from 6.2 into the upper bound for the
COS method in 6.5. This allows us to derive the following upper bound for the total error
in the COS-CPD method,

|εCOS−C PD | < Pe−(KCOS−1)ν+Q · |ε4|+KCOS · |g (ε(J ,T OL),εC PD ) |,

where g represents the relation between the errors arising from the numerical integra-
tion and the CPD computation.





7
APPLICATION OF COS-CPD IN

COUNTERPARTY CREDIT RISK

QUANTIFICATIONS

In this chapter, we will examine the application of the COS-CPD method in the context
of exposure calculation. The first section covers the modelling and numerical results of
a three-dimensional model of risk factors. To accomplish this, the general methodol-
ogy outlined in Chapter Chapter 5 is adapted to this three-dimensional model. Once the
model is established, the numerical results of calculating the PFE and EE profiles using
the COS-CPD method will be presented. First, the COS-CPD method will be tested on a
single XCS contract to evaluate the validity of the method and conduct a sensitivity anal-
ysis on the rank used in the CPD approximation. After determining a suitable rank, the
COS-CPD method will be applied to netting-set level exposures by considering portfo-
lios of up to 1000 interest rate and FX derivatives. The accuracy of the COS-CPD method
will be analyzed, and the results will be compared with those obtained using the MC ap-
proach, for a range of different numbers of simulated paths. Additionally, a comparison
will be made between the COS-CPD and MC methods in terms of computation time for
generating the exposure profiles.

The second section will present the COS-CPD method for computing the PFE and
EE profile in a five-dimensional model of risk factors, in order to demonstrate the ap-
plication of the method in a high-dimensional setting. The structure of this section
will be similar to that of the three-dimensional case. Specifically, the COS-CPD model
will be specified for the five-dimensional model, after which numerical results regarding
netting-set level exposure will be presented and compared with the MC approach.

73
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7.1. THREE-DIMENSIONAL CASE

7.1.1. MODEL
In the three-dimensional model, the risk factors will include two interest rates from dif-
ferent currencies and the exchange rate that relates these currencies. The G1++ model
will be employed to model the short rate processes rd (t ), r f (t ). The subscripts d and f
indicate whether the domestic or foreign interest rate process is being considered. Since
only the shifted short-rate processes xd (t ), x f (t ) are of significance, only the Ornstein-
Uhlenbeck dynamics of these processes will be taken into account. Additionally, a GBM
model will be utilized to model the corresponding FX rate. In the context of risk manage-
ment, the computation of PFE and EE profiles is often performed using the real-world
measure P. Therefore, the dynamics of the three-dimensional system of risk factors are
given by 

d xd (t ) =−ad xd (t )d t +σd dW Pd

d ,

d x f (t ) =−a f x f (t )d t +σ f dW P f

f ,

d X (t ) =µX (t )d t +σX (t )dW Pd

X ,

(7.1)

with ad , a f the mean-reversion coefficients and σd ,σ f the volatilities of the domestic
and foreign currency. The parameters µ and σ are the drift and volatility in the FX rate
process, respectively.

The goal is to compute the PFE and EE of a derivative portfolio V , which contains
various interest rate and FX products depending on the risk factors xd , x f and X . Using
the COS-CPD method, the CDF and PDF of the MtM value of the portfolio will be recov-
ered via the COS method. As presented in Equation 5.5, this requires the evaluation of
the following characteristic function,

φV (ω) =
Ñ

R3
e iωV (xd ,x f ,X ;t ) f (xd , x f , X ; t ) d xd d x f d X ,

with f (xd , x f , X ; t ) representing the joint density function of the risk factors. The param-
eter t is included to emphasize that the distribution of the risk factors is time dependent.

It was established in Section 2.4.2 that the FX rate under the GBM model is log-
normally distributed. It will be more convenient to work with the normal distribution
in the remainder of the computations. Therefore, the logarithm of the FX-rate will be
considered, for which the dynamics are given by

d log(X t ) =
(
µ− 1

2
σ2

)
d t +σdW Pd

X .

The characteristic function can be expressed in terms of log(X t ) as follows,

φV (ω) =
Ñ

R3
e iωV (xd ,x f ,e log(X );t ) f̃ (xd , x f , log(X ); t ) d xd d x f d log(X ), (7.2)

where the tilde symbol, f̃ (·), indicates a change of the joint density function. Since
the short-rate processes xd and x f are normally distributed as well, the joint density
f̃ (xd , x f , log(X ); t ) is now transformed into a multivariate normal distribution.
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The first step in the COS-CPD method is to decompose the joint density function
into its Fourier-cosine series using the dimension-reduced CPD technique. The joint
density expressed in 7.2 incorporates all time-dependent parameters of the model. Con-
sequently, it is necessary to execute a new CPD approximation of the density for each
future time point at which the PFE and EE have to be computed. This approach can
result in a substantial computational cost, particularly when exposure profiles under
consideration extend to multiple years in the future. However, it is possible to reduce
the impact of the time dependency of the joint density function by re-writing the state
variables xd , x f and X , using the properties of the normal distribution,

xd
d∼µxd +σxd (t )Zd (t ),

x f
d∼µx f +σx f (t )Z f (t ),

log(X t ) d∼µX (t )+σX (t )ZX (t ),

where Zd , Z f , ZX are standard normally distributed, i.e. Zd , Z f , ZX ∼ N (0,1). The time
parameter t indicates that the correlation is still time-dependent between the new state
variables, and are given by

Cor(Zd , Z f ) =

ρd f

ad +a f
(1−e−(ad+a f )t )√

1

2ad
(1−e−2ad t )

√
1

2a f
(1−e−2a f t )

,

Cor(Zd , ZX ) =
ρd X

ad
(1−e−ad t )√

1

2ad
(1−e−2ad t )

p
t

,

Cor(Z f , ZX ) =

ρ f X

a f
(1−e−a f t )√

1

2a f
(1−e−2a f t )

p
t

.

A proof for these correlation expressions can be found in Appendix B.3. In this way,
the joint density function is transformed into the multivariate standard normal density,
which only captures the correlation structure of the model. Consequently, a CPD oper-
ation needs to be performed only if the correlations structure changes significantly. In
order to obtain insight into the factors that contribute to changes in the correlation, the
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Taylor series expansion centered around t = 0 is examined,

Cor(Zd , Z f ) ≈ ρd f −
ρd f (ad −a f )2

24
t 2 +O

(
t 4) ,

Cor(Zd , ZX ) ≈ ρd X − ρd X a2
d

24
t 2 +O

(
t 4) ,

Cor(Z f , ZX ) ≈ ρ f X −
ρ f X a2

f

24
t 2 +O

(
t 4) .

We can see that the correlation change over time is dominated by the magnitude of the
mean-reversion coefficients, together with their difference. Hence, these parameter val-
ues can provide an indication of the number of CPD operations needed to calculate ex-
posure profiles over a particular time horizon.

Expressing 7.2 in terms of the state variables Zd , Z f and ZX results in

φV (ω) =
Ñ

R3
e

iωV (µxd
+σxd

(t )Zd , µx f
+σx f

(t )Z f , µX (t )+σX (t )ZX ;t )
f (Zd , Z f , ZX ; t ) d Zd d Z f d ZX

=
Ñ

R3
e iωṼ (Zd ,Z f ,ZX ;t ) f (Zd , Z f , ZX ; t ) d Zd d Z f d ZX ,

where Ṽ (·) indicates that the portfolio function is written in terms of the new state vari-
ables Zd , Z f , ZX .

As mentioned before, the first step is to decompose the joint density function into its
Fourier-cosine series using CPD. As shown in Equation 3.6, the resulting Fourier-cosine
series is of the form

f (Zd , Z f , ZX ; t ) =
R∑

r=1

3∏
n=1

vT
n An[:,r ],

where {An}3
n=1 the factor matrices and {vn}3

n=1 the cosine basis functions of the state vari-
ables Zd , Z f and ZX . The integration range of the characteristic function will be trun-
cated according to the expansion interval of the Fourier-cosine series. This expansion
interval is determined by the PPF of the standard normal distribution at a specified level
of accuracy. As all state variables have a standard normal distribution, the expansion
interval will be the same for each dimension, resulting in the cubic integration domain
[a,b]3. After the first COS-CPD step, the characteristic function is given by,

φ̂V (ω) =
R∑

r=1

Ñ
[a,b]3

e iωṼ (Zd ,Z f ,ZX ;t )
3∏

n=1
vT

n An[:,r ] d Zd d Z f d ZX .

The second step in the COS-CPD method is to combine the paying and receiving
legs with the same risk factors involved. In this three-dimensional model, two distinct
groups of risk factors arise in the portfolio legs; (1) the domestic currency xd , and (2)
the foreign currency x f together with the exchange rate X . The general formula for the
characteristic function in the case of disjoint risk factor groups was derived in Equation
5.8. In this case, it can be expressed as follows,
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φ̂V (ω) =
R∑

r=1

Ñ
[a,b]3

e iω
[
Ṽ1(Zd ;t )+Ṽ2(Z f ,ZX ;t )

] 3∏
n=1

vT
n An[:,r ] d Zd d Z f d ZX

=
R∑

r=1

Ñ
[a,b]3

e iωṼ1(Zd ;t )e iωṼ2(Z f ,ZX ;t )
3∏

n=1
vT

n An[:,r ] d Zd d Z f d ZX

=
R∑

r=1

∫
[a,b]

e iωṼ1(Zd ;t )vT
1 A1[:,r ] d Zd ·

Ï
[a,b]2

e iωṼ2(Z f ,ZX ;t )vT
2 A2[:,r ]vT

3 A3[:,r ] d Z f d ZX .

(7.3)

Equation 7.3 can also be presented element-wise by working out the inner products
vT A[:,r ],

φ̂V (ω) =
R∑

r=1

{
K−1∑
k1=0

A1[k1,r ]
∫

[a,b]
e iωṼ1(Zd ;t ) cos

(
k1π

Zd −a

b −a

)
d Zd

}
·{

K−1∑
k2=0

K−1∑
k3=0

A2[k2,r ]A3[k3,r ]
Ï

[a,b]2
e iωṼ2(Z f ,ZX ;t ) cos

(
k2π

Z f −a

b −a

)
cos

(
k3π

ZX −a

b −a

)
d Z f d ZX

}
.

This expression can now be inserted in the COS formulas from 2.14 and 2.15 to recover
the PDF and CDF of the MtM value of the portfolio, after which the PFE and EE can be
derived.

7.1.2. NUMERICAL RESULTS
With the completion of the modeling phase, we can assess the performance of the COS-
CPD method through numerical analysis. This analysis starts by calculating the PFE and
EE profile for a single XCS. After that, the COS-CPD method is applied at the level of
a netting set by computing the exposure profiles of a portfolio comprising up to 1000
derivatives. The results of this analysis are then compared in both accuracy and compu-
tation time with those obtained via the standard MC approach.

The selection of model parameters in this study is consistent with the methodology
outlined in [66]. Specifically, the parameters for the three-dimensional model described
in 7.1 are set as follows:

ad = 1%, a f = 5%, µ= 0.8%, σd = 0.7%, σ f = 1.2%, σ= 2%.

The domestic currency represents the United States dollar (USD), while the Japanese yen
(JPY) is modelled as the foreign currency. The initial exchange rate is set to X (0) = 105.00
yen per dollar.

In order to compute the zero-coupon bond (ZCB) price under the G1++ model, the
market discount curves for both the domestic and foreign currencies are required. These
will be defined as P M

d (0,T ) = e−0.02T and P M
f (0,T ) = e−0.05T , respectively. Additionally,

the correlation structure between the risk factors is specified as ρd f = 25%, ρd X =−15%,
and ρ f X =−15%.

Next, the parameters used in the CPD model will be outlined. Specifically, the num-
ber of training data points per dimension will be set at m = 12, resulting in a total of
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M = m3 = 123 training data points. As determined in the sensitivity analysis of the
CPD model in Chapter 4, the number of expansion terms per dimension will be set at
K = m = 12. Additionally, Figure 4.12a showed that employing a tolerance level of 10−8

in the expansion interval of [a,b]3 is a suitable choice in the case K = m = 12. This ex-
pansion interval is then given by [−5.612,5.612]3, using the PPF of the standard normal
distribution. Furthermore, the tolerance levels in the CG solver and the ALS updating
will be set to 10−12, with a maximum of 5 ALS iterations and K ·R iterations within the
CG solver per factor matrix, where the rank R will be varied in the analysis of the single
XCS to determine a suitable value during the netting-set level analysis.

The appropriate number of expansion terms in the COS formula and Clenshaw-
Curtis quadrature points is based on the numerical analysis presented in [36]. There-
fore, we will use 32 expansion terms in the COS method and 50 quadrature points per
dimension in the Clenshaw-Curtis integration.

Before the numerical tests are performed, it is necessary to determine the number
of CPD approximations of the joint density function that must be generated due to the
time-varying nature of the correlation structure, as was explained in the previous sec-
tion. From Figure 7.1, it can be observed that for the mean reversion coefficients used
in this analysis, the correlation structure remains nearly constant over a 15-year pe-
riod (the longest duration considered). Therefore, only one CPD execution is performed
for the joint density function, with correlation structure ρd f = 25%, ρd X = −15% and
ρ f X =−15%, which is then used for all time points to compute the PFE and EE profile.

Figure 7.1: Correlation between state variables Zd , Z f , and ZX over a period of 15 years.

CROSS-CURRENCY SWAP

The cross-currency swap (XCS) examined in this analysis has an initiation date of Tα = 1
year and concludes at Tβ = 10 years, at which point 10 payments have been made. In
order to ensure a fair value of the contract at the initial time t = 0, the fixed rate is set to
K = 0.02. The domestic notional is set to Nd = 1000. In determining the COS support
[l ,u] on which the PDF and CDF will be recovered, the rule-of-thumb provided in [36]
will be employed. Specifically, [l ,u] = [±Nd /2] = [±500] for t ≤ 9 years and [±50] for
9 < t < 10.
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The PFE and EE of the XCS will be evaluated at 50 distinct time points. At each time
point, the PDF and CDF of the MtM value of the XCS will be obtained. Subsequently,
the exposure distribution can be obtained by taking the maximum of the MtM value
and zero. An illustration of the recovered PDF and CDF profiles for both the MtM value
and the exposure at time t = 3.4 can be found in Figure 7.2. By applying the maximum
operator on the MtM distribution afterwards, there is no Gibbs phenomena occurring at
the discontinuity point in the exposure distribution. This outcome is not achievable if
the PDF and CDF of the exposure were recovered directly using the maximum operator
in the evaluation. Consequently, a higher level of accuracy of the exposure PDF and CDF
is obtained by this approach.

(a) PDF of the MtM value and the exposure. (b) CDF of the MtM value and the exposure.

Figure 7.2: Recovered PDF and CDF of the MtM value and the exposure of the XCS at time t = 3.4 using the
COS-CPD method.

Figure 7.3 illustrates the PFE and EE profile of the XCS using the COS-CPD method,
employing a rank 5 approximation in the CPD. The profile was generated using 50 equidis-
tant time points from t = 0 up to t = 11. The Monte Carlo simulation was used as a
benchmark, as it was computed using 5 million paths for each risk factor. The PFE an
EE profiles presented in Figure 7.3 are typical for a XCS derivative. The PFE and EE be-
gin with a zero value, as the fixed rate K is chosen such that the initial value of the XCS
is zero. Due to the uncertainty in the movement of the risk factors, the PFE and EE in-
creases. The saw-tooth pattern observed is a consequence of intermediate payments
over time. Once a payment is settled, the value of the PFE and EE drops as the total
potential loss is reduced. Then the exposure rises again due to the uncertainty in the
development of the risk factors. At some point, the PFE and EE start to decrease, as most
of the payments have been made and hence the remaining value of the XCS decreases as
well. After the maturity date Tβ = 10, the PFE and EE profile are zero again. The profile
generated using the COS-CPD method is consistent with the MC benchmark, indicating
the validity of the mathematical derivation of the COS-CPD method.

In order to determine an appropriate rank within the CPD, it is necessary to quantify
the error present in COS-CPD estimations. To this end, the relative error in the COS-CPD
for various ranks is presented in Table 7.1. A MC benchmark of five million paths per risk
factor serves as the reference value. The relative error then illustrates the difference be-
tween the two methods, expressed as a percentage of the MC benchmark. For example,
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Figure 7.3: The PFE and EE profile of the XCS computed using both the COS-CPD method and a MC benchmark
using 5 ·106 simulations. The PFE and EE values are computed for 50 distinct time points.

the relative error in the PFE is computed using the following formula:

Relative Error PFE = |PF ECOS−C PD −PF EMC |
PF EMC

.

The maximum error represents the largest relative error at all time points, while the time-
averaged error is defined as the average of all relative errors computed for all time points.
As seen in Table 7.1, the maximum error in the EE approximation can be decreased with a
higher rank approximation. However, the maximum error in the PFE does not improve as
the rank increases, suggesting that this error peak may be cause by an improper selection
of the COS support for certain time points. Based on the time-averaged errors, a rank 10
approximation in the CPD part is sufficient to achieve acceptable results for both PFE
and EE. Therefore, remaining numerical analysis in the three-dimensional case will be
carried out using the rank 10 approximation in the CPD.

Table 7.1: Maximum and time-averaged relative error in the PFE and EE computation of the XCS using the COS-
CPD method for different rank, using a MC benchmark of 5 ·106 paths. The PFE and EE values are computed
for 50 distinct time points.

Max Error (%) Time-averaged Error (%)
rank PFE EE PFE EE

5 2.38 4.39 0.34 0.65
10 2.38 0.55 0.48 0.24
15 2.38 0.51 0.45 0.24

To highlight the significance of a changing COS support for t > 9, a comparison is
made assuming the support is fixed at [−500,500]. As the majority of the payments have
been made near maturity time Tβ = 10, the MtM value of the XCS will not be affected
by most realisations of the risk factors. As a result, the corresponding PDF and CDF will
be centered very closely around a single value, resulting in a steep PDF and CDF profile.
This steepness of the recovered CDF near maturity is depicted in 7.4a. When using a
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COS support of [−500,500], the number of expansion terms is insufficient to accurately
recover the CDF. This leads to oscillatory behavior in the CDF profile and hence an inac-
curate approximation of the PFE value, as can be seen from 7.4b. To resolve this issue,
either the COS support must be decreased to a smaller interval or the number of expan-
sion terms must be increased. This will reduce the oscillatory behavior and enhance the
accuracy of the PFE calculation. As can be observed, a COS support of [−50,50] is able
to capture the steepness of the recovered CDF, resulting in accurate PFE values close to
maturity.

(a) CDF for different COS support at t = 9.9. (b) PFE for different COS support at t > 9.0.

Figure 7.4: Recovered CDF of the MtM value of the XCS at time t = 9.9 for different COS support [l ,u], together
with the PFE profile when using different COS support for t > 9.0.

NETTING-SET LEVEL EXPOSURE

This section focuses on the COS-CPD method in the context of netting-set level expo-
sure. The PFE and EE profile of various portfolio sizes will be examined. The portfolios
are generated randomly using a Python script and consist of four distinct types of liquid
derivatives, namely FRA, IRS, FX, and XCS products. In all types of products, the pay-
ment legs may be in either domestic or foreign currency. The maturity and notional for
these products are also generated randomly, as well as the fixed rate and the number of
payments (if applicable) until maturity. All the portfolios up to 100 derivatives used in
this numerical analysis can be found in Appendix E.

We will analyze the COS-CPD method for portfolio sizes up to 1000 derivatives. Simi-
lar to the individual XCS analysis, a MC simulation of 5 million paths will be employed as
a benchmark to evaluate the accuracy of the COS-CPD model. Furthermore, all parame-
ter values are identical to the ones used in the XCS analysis. In regards to the rank in the
CPD model, a rank 10 approximation will be adopted based on the findings in Table 7.1.

Figure 7.5 illustrates the PFE and EE profile of the netting-set level exposure for a
portfolio consisting of 100 derivatives. The PFE and EE values were evaluated at 50
equidistant time points, ranging from t = 0 to the longest maturity present, which was
T = 14.7 for this particular portfolio. In line with the methodology from [36], the COS
support is set at [−3000,15000] at t = 0. Additionally, the COS support is altered to
[−1000,2000] when the PFE value drops below 1500. However, an additional change in
COS support is implemented here. Starting from t = 13.7, which corresponds to the last
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year, the COS support is set at [−125,125], based on the few remaining coupon values
that have yet to be exchanged.

The EE profile begins to decline slightly in the initial four years as the derivatives with
a short maturity date expire and no longer have an impact on the portfolio exposure.
Conversely, the PFE profile increases during these initial years as the uncertainty in the
development of the risk factors increases with time. As a result, the recovered exposure
PDF will have a wider range of possible outcomes, leading to a higher 97.5% quantile of
the distribution and hence an increase in the PFE value. After around five years, both
the EE and PFE values decrease rapidly, indicating that a large number of derivatives
mature during this period up to year eight. As the final maturity date approaches, the
number of active derivatives in the portfolio decreases to zero, resulting in the PFE and
EE converging to zero at maturity.

Figure 7.5: PFE and EE profile at a netting-set level for a portfolio consisting of 100 derivatives, computed at 50
equidistant points.

In practice, the computation of PFE and EE profiles is not performed only once for
the entire lifetime of the portfolio. Instead, these profiles are computed frequently, with
a focus on the exposure values close to the current time point. This is because financial
institutions have to allocate a certain amount of capital reserve based on the computed
exposure levels. Therefore, the accuracy of the PFE and EE values within the first few
years is of more importance, and so the error quantification discussed next will focus on
the estimations made in the first three years of the portfolio’s lifetime. Again, 50 equidis-
tant time point are considered within this time period, on which the PFE and EE values
of the netting-set portfolio are computed. The resulting PFE and EE profiles are shown
in Figure 7.6a, from which can be observed that The COS-CPD estimation is again con-
sistent with the MC benchmark of 5 ·106 paths. The relative error is displayed in Figure
7.6b. It shows a peak of 0.40% at the first time point, as the COS support might be too
wide for the first time step. Although this level of accuracy is still satisfactory, it could
be improved by choosing a more appropriate COS support for the first time steps. After
that, the relative error for both the PFE and EE is below 0.10%, which demonstrates the
accuracy of the COS-CPD approach compared to the MC benchmark.
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(a) PFE and EE profile up to time t = 3.0. (b) Relative error in the COS-CPD method as a percent-
age of the MC benchmark.

Figure 7.6: The PFE and EE profile of the netting-set level exposure the portfolio consisting of 100 derivatives
for the first 3 years, together with the relative error in the resulting PFE and EE values (as a percentage of the
MC benchmark).

Table 7.2 illustrates the CPU time1 and accuracy for both the COS-CPD method and
the MC method when utilizing various numbers of paths, ranging from 1 ·105 to 1 ·106.
The time-averaged error is calculated using the relative differences over all time points,
expressed as a percentage of the MC benchmark of 5 ·106 paths. It is observed that the
accuracy of the Monte Carlo estimation improves with an increase in the number of sim-
ulations, which is to be expected. Additionally, the computation time of the MC simula-
tion exhibits an approximately linear trend, implying that the computation time doubles
when the number of simulations is doubled. The COS-CPD approach is more accurate
compared to the MC estimate using 1·105 simulations. The other two MC estimates show
slightly better accuracy in the PFE compared to the the COS-CPD approach, mainly as a
result of the error peak at the first time point previously discussed. However, this differ-
ence in accuracy is practically negligible, while the computation time of the COS-CPD
method is significantly faster in comparison to all MC estimations. For example, the
COS-CPD is a factor of 15 faster when using 5 · 105 MC paths and even 30 times faster
than the MC approach utilizing 1 ·106 paths.

Table 7.2: The accuracy and CPU time (in seconds) required to calculate the PFE and EE of netting-set level
exposure of the portfolio with 100 derivatives, evaluated at 50 time points up to time t = 3.0. The time-averaged
error was calculated by averaging the relative errors over the 50 time points.

CPU Time1 (s) Time-averaged Error (%)
PFE EE

MC (1 ·105) 53.7 0.116 0.007
MC (5 ·105) 325.2 0.031 0.001
MC (1 ·106) 644.5 0.021 0.001
COS-CPD 22.5 0.057 0.006

1The decomposition of the joint density function into its Fourier-cosine series using CPD is not included here,
as this can be done "off-line" and has to be executed only once.
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The COS-CPD method offers an additional advantage in that the computation time
is less sensitive to the number of derivatives in the portfolio. This in contrast to the MC
method, in which the computation time increases significantly as the number of deriva-
tives in the portfolio increases. As shown in Table 7.3, the computation time for the MC
method nearly doubles when the portfolio size is doubled, while the COS-CPD method
exhibits only a slight increase in computation time. The effect of the portfolio size on
the computation time is particularly evident when examining the portfolio consisting
of 1000 derivatives. In this scenario, the COS-CPD algorithm still requires less than one
minute to calculate the PFE and EE profiles at 50 time points, while the MC method using
5 ·105 simulation paths takes approximately 50 minutes to generate the same profiles.

To understand the different impact on the computation time for both methods, the
computational complexity of both methods have to be analysed when an additional
derivative is added to the total portfolio. For the MC method, the portfolio has to be eval-
uated on all simulated paths, which will be denoted by Npaths . Adding an extra deriva-
tive to the portfolio requires evaluating this derivative on all simulated paths, resulting
in an extra Npaths evaluations to compute the portfolio value. Therefore, the compu-
tational complexity for evaluating an extra derivative in the the MC method is of order
O

(
Npaths

)
. Since the number of paths is often chosen in the order of 105 or 106, doubling

the portfolio size, as in Table 7.3, will have a significant negative impact on the total com-
putation time. On the other hand, The COS-CPD method comes down to the evaluation
of multiple characteristic functions, which are approximated by using the Clenshaw-
Curtis quadrature method. Therefore, the portfolio is only evaluated on the total num-
ber of quadrature points used in the numerical integration, which will be denoted by
Nquad per dimension. As only one- and two-dimensional integrals have to be computed,
adding an extra derivative to the portfolio will require an additional Nquad evaluations in
the one-dimensional integrals and N 2

quad evaluations for the two-dimensional integrals.

Hence, the computational complexity for evaluating an extra derivative in the COS-CPD

method is O
(
N 2

quad

)
. Since the number of quadrature points per dimension is set to 50,

we will have N 2
quad << Npaths , and an increase in the portfolio size will have almost no

effect on the computation time in the COS-CPD method, while the MC method exhibits
a significant increase in computation time.

Table 7.3: Comparison of the CPU time (in seconds) needed to compute the PFE and EE profile for a netting-set
portfolio with 10, 20 and 50 time steps, respectively. The MC measurements were performed with 5 ·105 paths.

Number of Derivatives COS-CPD MC COS-CPD MC COS-CPD MC
25 3.7 18.4 7.7 39.3 20.2 103.9
50 3.9 33.7 8.1 71.9 20.9 189.7

100 4.1 57.4 8.7 124.2 22.5 325.2
1000 10.5 546.1 22.1 1163.3 55.9 2995.4
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7.2. FIVE-DIMENSIONAL CASE

7.2.1. MODEL
In order to obtain the five-dimensional model of risk factors, the three-dimensional
model from 7.1 is extended with an additional short rate process and its exchange rate
with the domestic currency. Thus, the five-dimensional model is characterized by

d xd (t ) =−ad xd (t )d t +σd dW Pd

d ,

d x f1 (t ) =−a f1 x f1 (t )d t +σ f1 dW P f1

f1
,

d x f2 (t ) =−a f2 x f2 (t )d t +σ f2 dW P f2

f1
,

d X1(t ) =µ1X1(t )d t +σ1X1(t )dW Pd

X1
,

d X2(t ) =µ2X2(t )d t +σ2X2(t )dW Pd

X2
.

(7.4)

The processes xd , x f1 and X1 are consistent with those in the three-dimensional model,
where xd represents the (domestic) USD short rate, x f1 represents the JPY short rate and
X1 models the USD/JPY exchange rate. The second foreign currency x f2 introduced here
will be representing the Euro (EUR), and X2 represents the USD/EUR exchange rate.

In the five-dimensional case, the evaluation of the characteristic function requires to
solve a five-dimensional integral,

φV (ω) =
∫
R5

e iωV (xd ,x f1 ,x f2 ,X1,X2;t ) f (xd , x f1 , x f2 , X1, X2; t ) d xd d x f1 ,d x f2 ,d X1,d X2.

In the same way as done for the three-dimensional model, the logarithm of the ex-
change rates is used to obtain a multivariate normal distribution describing the risk fac-
tors in model 7.4. Furthermore, the state variables are again expressed in terms of the
standard normal distribution to reduce the time dependency of the joint density func-
tion. This leads to the computation of the following characteristic function,

φV (ω) =
∫
R5

e iωṼ (Zd ,Z f1 ,Z f2 ,ZX1 ,ZX2 ;t ) f (Zd , Z f1 , Z f2 , ZX1 , ZX2 ) d Zd d Z f1 d Z f2 d ZX1 d ZX2 .

Consequently, the first step of the COS-CPD method is to decompose the five-dimensional
standard normal distribution into its Fourier-cosine series using CPD, which can be ex-
pressed as

f (Zd , Z f1 , Z f2 , ZX1 , ZX2 ) =
R∑

r=1

5∏
n=1

vT
n An[:,r ],

where {An}5
n=1 the factor matrices and {vn}5

n=1 the cosine basis functions of the state vari-
ables Zd , Z f1 , Z f2 , ZX1 and ZX2 .

The second step of the COS-CPD method expresses the portfolio as a linear combi-
nation of all the individual legs and grouping the legs that share the same risk factors.
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In this five-dimensional model, there will be three distinct groups of risk factors present
in the portfolio legs: (1) the domestic USD currency xd , (2) the JPY currency and the
USD/JPY exchange rate (x f1 , X1), and (3) the EUR currency and the USD/EUR exchange
rate (x f2 , X2). Therefore, the characteristic function for this five-dimensional model can
be expressed as

φ̂V (ω) =
R∑

r=1

∫
[a,b]5

e
iω

[
Ṽ1(Zd ;t )+Ṽ2(Z f1 ,ZX1 ;t )+Ṽ3(Z f2 ,ZX2 ;t )

] 5∏
n=1

vT
n An[:,r ] d Zd d Z f1 d Z f2 d ZX1 d ZX2

=
R∑

r=1

∫
[a,b]5

e iωṼ1(Zd ;t )e iωṼ2(Z f1 ,ZX1 ;t )e iωṼ3(Z f2 ,ZX2 ;t )
5∏

n=1
vT

n An[:,r ] d Zd d Z f1 d Z f2 d ZX1 d ZX2

=
R∑

r=1
I (Zd ) · I (Z f1 , X1) · I (Z f2 , X2), (7.5)

where I (Zd ), I (Z f1 , X1) and I (Z f2 , X2) are defined by

I (Zd ) =
∫

[a,b]
e iωṼ1(Zd ;t )vT

1 A1[:,r ] d Zd ,

I (Z f1 , X1) =
∫

[a,b]2
e iωṼ2(Z f1 ,ZX1 ;t )vT

2 A2[:,r ]vT
3 A3[:,r ] d Z f1 d ZX1 ,

I (Z f2 , X2) =
∫

[a,b]2
e iωṼ2(Z f2 ,ZX2 ;t )vT

4 A4[:,r ]vT
5 A5[:,r ] d Z f2 d ZX2 .

Just as in the three-dimensional scenario, the five-dimensional integral for the character-
istic function is decomposed into products of only one- and two-dimensional integrals
that can be calculated using a direct quadrature rule, such as Clenshaw-Curtis. Once the
characteristic functions are computed, the COS method can be applied again to obtain
the exposure PDF and CDF, from which the PFE and EE of the portfolio can be obtained.

7.2.2. NUMERICAL RESULTS
The numerical analysis will be equivalent to the one employed in the three-dimensional
setting. Therefore, the analysis starts with the calculation of the PFE and EE profile
considering only two XCS contracts, in which a sensitivity analysis is preformed on the
rank used in the CPD approximation. Once a suitable rank is determined, the COS-CPD
method is applied in the context of netting-set level exposure by considering portfo-
lios comprising up to 1000 derivatives. The results of this analysis are again compared
in both accuracy and computation time with those obtained via the standard MC ap-
proach.

The parameters and correlation values for the processes xd , x f1 , and X1 are equiva-
lent to those of the three-dimensional model. For the euro short rate x f2 and USD/EUR
exchange rate, the following parameter values are utilized:

a f2 = 0.6%, µ2 = 0.6%, σ f2 = 2.0%, σ2 = 1.5%.
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The initial USD/EUR exchange rate is set to X2(0) = 1/1.35 euro per dollar, based on
the set-up from [67]. The market discount curve for the euro will be identical to that of
the Japanese yen, with P M

f2
(0,T ) = e−0.05T .

Furthermore, the correlation structures with the new processes x f2 and X2 must be
established. In accordance with the methodology outlined in [66], the correlation level
with the new currency and exchange rate is set to:

ρd , f2 = 25%, ρ f1, f2 = 25%, ρd ,X2 =−15%, ρ f1,X2 =−15%

Additionally, the correlation between the exchange rates X1 and X2 is determined
using historical data of the USD/JPY and USD/EUR exchange rates from 01-01-2003 to
01-01-2023, obtained via Yahoo Finance. The correlation based on this data was found
to be ρX1,X2 = 60%.

In the CPD model, the parameters are equivalent to those of the three-dimensional
case, with the exception that a new rank in the CPD approximation will be established
in the next section. Again, only one CPD approximating of the joint density function will
be used for all time points, as the correlation structure of the state variables is nearly
constant over time for the chosen model parameters. The number of expansion terms in
the COS method is set to 32, and 50 quadrature points per dimension are used again in
the Clenshaw-Curtis integration.

TWO XCS PRODUCTS

The same methodology used in the three-dimensional case is employed here to deter-
mine an appropriate rank to use in the CPD approximation. In this case, the PFE and EE
of two XCS products combined are computed. One XCS product consists of USD and JPY
paying legs, while the other has payments occurring in the USD and EUR currencies, re-
sulting that all five risk factors from the model in 7.4 are being involved in this example.
The characteristics of both XCS contracts are presented in Appendix E.4. The analysis of
the relative error is again performed by considering only the first three years of the con-
tract’s lifetime. Figure 7.7 shows the PFE and EE profile of the two XCS contracts using
the COS-CPD method, with a rank of R = 20 used in the CPD approximation. The pro-
files were generated using 20 equidistant time points from t = 0 up to t = 3.0. The plot
demonstrates that the COS-CPD method is also consistent with the MC benchmark in
this five-dimensional example, which was again simulated with 5 million paths per risk
factors.

The relative error, as a percentage of the MC benchmark, is again utilized to quan-
tify the error made in the COS-CPD method for different values of the rank in the CPD
approximation. Table 7.4 displays the maximum and time-averaged error for four differ-
ent number of rank, ranging from R = 10 up to R = 25. The maximum error in both the
PFE and EE reduces for every increase in the number of rank. The time averaged-error
shows similar results for the rank 10 and 15 approximation, but decreases when a rank
20 or 25 is used. Since an increase of rank does not have a significant impact on the com-
putation time when evaluating the characteristic function in Equation 7.5, the rank-25
approximation in the CPD part will be used in the next section when the netting-set level
exposure is discussed.
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Figure 7.7: The PFE and EE profile of two XCS derivatives computed using both the COS-CPD method and a
MC benchmark using 5·106 simulations. The profile is generated using 20 equidistant time points up to t = 3.0

Table 7.4: Relative error in the PFE and EE computation of two XCS products up to time t = 3.0 with 20 time
steps using the COS-CPD method for different rank, using a MC benchmark of 5 ·106 paths.

Max Error (%) Time-averaged Error (%)
rank PFE EE PFE EE

10 0.67 0.68 0.22 0.37
15 0.53 0.51 0.26 0.42
20 0.33 0.22 0.12 0.08
25 0.20 0.12 0.09 0.08

NETTING-SET LEVEL EXPOSURE

The netting-set level exposure for portfolio sizes up to 1000 derivatives will now be con-
sidered for the five-dimensional model. The portfolios are constructed in a similar way
to the ones used in the three-dimensional section, but now also consisting of derivatives
with paying legs in the euro currency. The portfolios used during this analysis can be
found in Appendix E. Based on the findings from Table 7.4, the rank-25 approximation
will be adopted in the CPD model.

First, the PFE and EE profiles were constructed for a portfolio consisting of 100 deriva-
tives. For the entire lifespan of the portfolio, 50 equidistant time points were used, rang-
ing from t = 0 to the maturity date of the final derivative in the portfolio, which was
T = 14.7 for this specific portfolio. The results for both the COS-CPD and MC bench-
mark are illustrated in Figure 7.8, showing again a complete overlap of the COS-CPD
estimates with the MC benchmark values. Regarding the COS support, a rule-of-thumb
based on the one utilized in the three-dimensional case is used. Therefore, the COS sup-
port is set at [−3000,10000] at starting date t = 0. Additionally, the COS support is altered
to [−1000,2000] when the PFE value drops below 1500. For the last year of the portfolio’s
lifetime, starting from t = 13.7, the COS support is set at [−125,125] to cope with the
remaining coupon values that have yet to be exchanged.

The error quantification will be equivalent to the three-dimensional analysis. There-
fore, only the first 3 years of the portfolio’s lifetime are considered in the error analysis.
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Figure 7.8: PFE and EE profile at a netting-set level for a portfolio consisting of 100 derivatives, computed at 50
equidistant time points. The MC benchmark was generated using 5 ·106 simulated paths.

The PFE and EE values within the first 3 years of the netting-set portfolio are computed
for 50 equidistant time points The resulting PFE and EE profiles are shown in Figure
7.9a, while the relative error is displayed in Figure 7.9b. The error in the PFE values fluc-
tuates between 0.05% and 0.25% for the majority of the time points, while the EE error is
bounded by 0.15% for all time points. The relative error in the EE shows less volatile be-
havior, which is to be expected, as the EE is computed by taking the average over the ex-
posure distribution. Consequently, the under- and over estimations for this distribution
can be cancelled out. As the maximum error over all time points is around 0.30%, these
results show that the COS-CPD approximation in this five-dimensional model, even with
high correlation structures up to 60%, still has a sufficient accuracy to match the PFE and
EE profiles of the MC benchmark within acceptable range.

(a) PFE and EE profile up to time t = 3.0.
(b) Relative error in the COS-CPD method as a percent-
age of the MC benchmark.

Figure 7.9: The PFE and EE profile of the netting-set level exposure the portfolio consisting of 100 derivatives
for the first 3 years, together with the relative error in the resulting PFE and EE values (as a percentage of the
MC benchmark).

Table 7.5 displays the CPU time1 and relative error for both the COS-CPD method
and the MC method, utilizing different number of simulated paths. As expected, the ac-
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curacy of the Monte Carlo estimation improves as the number of simulations increases.
Additionally, the linear trend in the computation time can be observed again. The COS-
CPD approach exhibits a comparable accuracy to the MC estimation with 105 paths.
Similar to the three-dimensional case, the other two MC estimates show slightly better
accuracy in the PFE and EE compared to the the COS-CPD approach. The error in the
COS-CPD method is increased a minimal amount compared to the three-dimensional
results, which might be caused by an increase in error of the CPD approximation. As
already mentioned, the increase in dimension and a high correlation structure of 60%
make it more difficult to approximate the Fourier-cosine series of the density function
using CPD, as was observed during the numerical analysis done in Chapter 4. Despite
these slightly less accurate estimates, which are still satisfactory, the computation time
of the COS-CPD method is again significantly faster in comparison to all MC estima-
tions. For this five-dimensional case, the COS-CPD method is still a factor of 10 faster
when using 5 ·105 MC paths and almost 20 times faster than the MC approach utilizing
1 ·106 paths.

Table 7.5: The accuracy and CPU time (in seconds) required to calculate the PFE and EE of netting-set-level
exposure of the portfolio with 100 derivatives evaluated at 50 time points up to time t = 3.0. The time-averaged
error was calculated by averaging the relative differences over the 50 time points.

CPU Time1 (s) Time-averaged Error (%)
PFE EE

MC (1 ·105) 51.4 0.117 0.024
MC (5 ·105) 312.5 0.054 0.006
MC (1 ·106) 623.7 0.039 0.003
COS-CPD 36.9 0.137 0.087

As previously demonstrated through the three-dimensional analysis, the performance
of the COS-CPD and MC methods are again compared for various portfolio sizes utilizing
10, 20, or 50 time steps. The results of this comparison are presented in Table 7.6. It can
be observed that the computation time grows linearly in the number of time steps for
both methods. This outcome is to be expected, as the computation time for the PFE and
EE value per time step should be equal for both the COS-CPD and MC method. Sim-
ilarly to the three-dimensional case, the increase in computation time for an increas-
ing number of derivatives is significantly smaller for the COS-CPD method. This is due
to the computational complexity of evaluating the portfolio, as explained in the three-
dimensional case. Adding an extra derivative requires to evaluate this derivative on all
simulated paths in case of the MC method, which is 5·105 in this example. Consequently,
the number of evaluations increases significantly in the MC method for an increase in
portfolio size, resulting in a substantial impact on the computation time. The computa-
tion of the COS method primarily consists of evaluating of the characteristic functions on
the quadrature points. The total number of quadrature points for the two-dimensional
integrals is 502 = 2500, which means that evaluating extra derivatives on these quadra-
ture points does not have a significant impact on the computation time. Therefore, The
COS-CPD method is more efficient in handling portfolios that contain a large number of
derivatives.
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Table 7.6: Comparison of the CPU time (in seconds) needed to compute the PFE and EE profile for a netting-set
portfolio with 10, 20 and 50 time steps, respectively. For the MC method, 5 ·105 paths are considered

Number of Derivatives COS-CPD MC COS-CPD MC COS-CPD MC
25 7.5 17.2 16.0 38.1 41.2 101.8
50 7.7 32.9 16.5 71.2 42.6 187.6

100 8.2 54.8 17.4 118.4 44.4 312.5
1000 16.0 504.5 33.9 1110.3 87.4 2945.0





8
APPLICATION OF COS-CPD IN

MULTI-DIMENSIONAL OPTION

PRICING

The COS-CPD method is a technique for evaluating multivariate expectations and can
be applied to any field that deals with such expectations. To illustrate the generality of
the COS-CPD method, it will also be applied in the context of option pricing, which is
another relevant topic studied in the field of finance. Similar to the exposure calculations
in the previous chapter, evaluating multivariate expectations plays a central role when
valuating options.

This chapter focuses on the application of the COS-CPD method to a six-dimensional
basket option, where the option’s payoff is dependent on six different stock prices. The
COS-CPD method can effectively reduce the dimensionality of the problem, as demon-
strated in the context of exposure calculation in the previous chapter. Consequently, the
COS-CPD method can be an efficient method for evaluating high-dimensional options.

First, the methodology for applying the COS-CPD method to the six-dimensional
basket option will be discussed, including the modeling process. After that, some nu-
merical results are presented, comparing the accuracy and computation time of the
COS-CPD method with a recently introduced sparse grid method in [35] for evaluating
multi-asset options.

8.1. SIX-DIMENSIONAL BASKET OPTION

8.1.1. MODEL

In this section, we will examine basket options that are equivalent to those discussed
in [35]. This will allow us to make a comparison with the recently proposed method
that employs sparse grid techniques. The basket options under consideration are six-
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dimensional and have a payoff given by:

H p
basket (S(T );K ) = max

(
K − 1

6

6∑
i=1

Si (T ), 0

)
,

where S = (S1, · · · ,S6) represents the prices of the six stocks, K is the strike price, T is the
maturity time of the option, and the superscript p denotes that we are dealing with a put
option. It is important to note that as we are only considering European options, mean-
ing that they can only be exercised at maturity. Similar to the exchange rate processes,
the stock prices will be modeled using a GBM,

dSi =µi Si d t +σi Si dW P
i ,

where µi and σi denote the drift factor and the volatility of stock Si , respectively. In
the context of option pricing, the dynamics of the underlying stochastic processes have
to be in accordance with the no-arbitrage principle. Therefore, a change of measure
is required to the risk-neutral measure, often denoted with Q. Under the risk-neutral
measure, the dynamics of the stock prices are given by

dSi = r Si d t +σi Si dW Q

i ,

where r represents the (constant) interest rate. The stock prices are modelled using
GBM, which results in lognormal distributions. To make the calculations more conve-
nient, we will consider the dynamics of the logarithm of the stock prices, represented by
X = (X1, · · · , X6). As a result, X follows a multivariate normal distribution, and the payoff
can be expressed in terms of the logarithmic stock prices as

H p
basket (X(T );K ) = max

(
K − 1

6

6∑
i=1

e Xi (T ), 0

)
.

The value of this six-dimensional basket option can now be obtained by evaluating the
discounted expected payoff. Assuming a constant interest rate r , the option value at
time t is given by

Vt = e−r (T−t )EQ
[
H p

basket (X(T );K )
]= e−r (T−t )EQ

[
max

(
K − 1

6

6∑
i=1

e Xi (T ), 0

)]
,

where the superscript Q indicates that the expectation is taken under the risk-neutral
measure. Computing the multivariate expectation directly requires to solve a six-dimensional
integral. As noted in the calculation of exposures in the previous chapter, direct integra-
tion methods as Clenshaw-Curtis cannot be utilized in these high-dimensional scenar-
ios, due to the presence of the "curse of dimensionality" in these quadrature techniques.
As a result, alternative methods such as Monte Carlo and sparse grids techniques have
been developed to mitigate this exponential growth in high-dimensional situations.

The COS-CPD method provides an alternative way to circumvent the high-dimensionality
of the problem. In fact, it can be simplified to the evaluation of only one-dimensional
integrals, as will be shown in the upcoming derivations. Instead of directly computing
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the expectation, the density function of the payoff, denoted with fH , is approximated
with its Fourier-cosine series using the COS formula,

fH (x) ≈
N−1∑′
n=0

Fn cos

(
nπ

x − l

u − l

)
,

where the coefficients Fk are of the following form,

Fn ≡ 2

u − l
Re

{
φH

( nπ

u − l

)
·exp

(
−i

nlπ

u − l

)}
. (8.1)

Therefore, the characteristic function φH has to be evaluated, which is of the form

φH (ω) =
∫
R6

e iωH
p
basket (X(T );K ) f (X(T ))dX(T )

=
∫
R6

e iω·max
(
K− 1

6
∑6

i=1 e Xi (T ), 0
)

f (X(T ))dX(T ). (8.2)

Expression 8.2 is equivalent with the characteristic function of the portfolio exposure in
Equation 5.3. Therefore, the derivations from now on are analogous to the methodology
described in Chapter 5 on exposure computation. The same technique can be used by
omitting the maximum operator during the computation of the characteristic function.
In this way, the contract is considered first as it was a forward contract, with payoff

H̃ f or w ar d = K − 1

6

6∑
i=1

e Xi (T ).

Once the PDF of the payoff regarding the forward contract is obtained, the maximum
operator can be applied afterwards to find the PDF of the option payoff. The character-
istic function in case of the forward payoff is given by

φH̃ (ω) =
∫
R6

e iω·(K− 1
6

∑6
i=1 e Xi (T ))

f (X(T ))dX(T ). (8.3)

The first step in the COS-CPD is to decompose the six-dimensional joint density
function into its Fourier-cosine series using CPD. Before that, the density function is
made independent of the maturity time T , so that a single CPD approximation can be
utilized for all possible maturity times. This is achieved by expressing the multivariate
random variable X in terms of the standard normal distribution as follows:

Xi (T ) ∼µX
i (T )+σX

i (T )Zi , i = 1, . . . ,6,

with Zi = 1p
T

Wi (T ) ∼ N (0,1). The mean µX
i and standard deviation σX

i are given by

µX
i = log(Xi (0))+

(
r − σ2

i

2

)
T,

σX
i =

√
σ2

i T .
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The time-independence of the correlations structure of the new state variables Z := (Z1, · · · , Z6)
can be proven as follows,

Cor
(
Zi , Z j

)= Cov
(
Zi , Z j

)
= Cov

(
1p
T

Wi (T ),
1p
T

W j (T )

)
= Cov

(
Wi (T ),W j (T )

)
T

= ρi j T

T
= ρi j ,

where ρi j denotes the correlation between stock Si and S j . Therefore, only one CPD
approximation of the joint density can be used for all maturity times T .

With this transformation, the characteristic function in 8.3 can be written as

φH̃ (ω) =
∫
R6

e
iω·

(
K− 1

6
∑6

i=1 eµ
X
i +σX

i Zi

)
f (Z)dZ,

with Z := (Z1, · · · , Z6) the standard normal state variables. Once the density function f (Z)
is decomposed into its Fourier-cosine series using CPD, it can be expressed as

f (Z) =
R∑

r=1

6∏
n=1

vT
n An[:,r ],

where {An}6
n=1 the factor matrices and {vn}6

n=1 the cosine basis functions of the state vari-
ables Z. Inserting this back into the characteristic function we obtain

φH̃ (ω) =
∫
R6

e
iω·

(
K− 1

6
∑6

i=1 eµ
X
i +σX

i Zi

)
R∑

r=1

6∏
n=1

vT
n An[:,r ]dZ

=
R∑

r=1

∫
R6

e
iω·

(
K− 1

6
∑6

i=1 eµ
X
i +σX

i Zi

)
6∏

n=1
vT

n An[:,r ]dZ

=
R∑

r=1
e iω·K

∫
R6

6∏
i=1

e
iω·

(
− 1

6 eµ
X
i +σX

i Zi

)
6∏

n=1
vT

n An[:,r ]dZ

=
R∑

r=1
e iω·K 6∏

n=1

∫
R

e
iω·

(
− 1

6 eµ
X
n +σX

n Zn
)
vT

n An[:,r ]d Zn . (8.4)

Therefore, the six-dimensional problem is simplified to evaluating only one-dimensional
integrals, which is a significant dimension reduction. The Clenshaw-Curtis quadrature
method can once again be applied to the one-dimensional integrals to obtain an ap-
proximation for the characteristic function. Expression 8.4 can then be inserted in the
Fourier coefficients Fk in 8.1 to compute the PDF of the forward payoff. To obtain the
expected payoff of the basket option, the exact same methodology as described Section
5.3 for the EE computation can be applied. Therefore, the expected payoff of the basket
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option, and thus its value, can be found by applying formula 5.15 with the obtained co-
efficients Fk . For example, in case l ≤ 0, the option value at time t can be computed with
the following formula (note the discount factor),

Vt = e−r (T−t )

{
F0

4
u2 +

N−1∑
n=1

Fn

(
u − l

nπ

)2 (
(−1)n −cos

(
nπ

l

u − l

))}
. (8.5)

An additional advantage when using the COS-CPD method, is that the strike price K can
be extracted from the integral computations, as can be seen from Equation 8.4. Conse-
quently, the option value can be computed for multiple strike prices simultaneously with
no significant additional computational cost. This is in contrast to methods that directly
evaluate the multivariate expectations, such as the sparse grid techniques, which can
only evaluate for one strike price at a time. Furthermore, the joint density function f (Z)
only captures the correlation structures between the different stocks, so that the CPD
approximation can be used as long as the same correlation structure is present. As pre-
viously stated, the CPD part can be carried out "off-line", and the results can be re-used
until the next re-calibration of the model parameters.

8.1.2. NUMERICAL RESULTS
This section presents the numerical outcomes for the accuracy and computation of the
COS-CPD method in calculating a six-dimensional basket put option. As the results will
be compared with the sparse grid method proposed in [35], we will employ the same
setup here to ensure a fair comparison of the accuracy results. Accordingly, we will set
the constant interest rate to r = 0, the option’s maturity time to T = 1, the strike price
to K = 60, and the initial stock price for all stocks to Si (0) = 100, i = 1, ...,6. The nu-
merical results will examine two sets of volatility parameters, which are given by σ1 =
(0.4,0.4,0.4,0.4,0.4,0.4) and σ2 = (0.2,0.3,0.4,0.5,0.6,0.7). Furthermore, we assume that
the stocks are independent.

Regarding the CPD component, the parameters used are similar to those utilized in
the exposure distribution calculations in Chapter 7. Hence, the number of expansion
terms and training points per dimension is set to KC PD = m = 12, with a tolerance level
of 10−8 for the expansion interval [a,b]6. However, since the stocks are modelled in-
dependently, a rank R = 1 approximation is already sufficient to synthesize the Fourier
coefficient tensor.

The Clenshaw-Curtis algorithm with 50 quadrature points is used to assess the one-
dimensional integrals. Additionally, the number of cosine expansion terms employed
in the COS approximation of the payoff density is varied from N = 32 up to N = 128,
so that the impact for different expansion sizes on the accuracy of the resulting option
value can be assessed. For all results generated, the COS support is set to the interval
[l ,u] = [−400,200].

With the COS-CPD method, the complete payoff distribution is generated first, from
which the final option value can be derived. For the parameter values described above,
the payoff density is illustrated in Figure 8.1. Only the strike price is changed to K = 100
to make the truncation of the forward payoff density more visible.

The COS-CPD method generates the complete payoff distribution of the option, from
which the final option value can be obtained. Figure 8.1 illustrates the recovered payoff
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density of the basket forward contract, which is truncated to zero for negative outcomes
to find the payoff density of the basket put option. The results are generated with the
parameter values described above. Only the strike price is changed to K = 100 for this
specific numerical test to enhance the visibility of the truncation of the forward payoff
density.

Figure 8.1: Recovered payoff density of the six-dimensional basket put option with the COS-CPD method,
utilizing N = 64 expansion terms in the COS approximation. Regarding the option, the parameters used were
r = 0, T = 1, K = 100, σ1 = (0.4,0.4,0.4,0.4,0.4,0.4) and Si (0) = 100, i = 1, · · · ,6.

After computing the payoff density, Equation 8.5 is used to determine the option
value. The option value will be computed using 32, 64 and 128 expansion terms in the
COS approximation. The results are then compared for accuracy and computation time
with those obtained using the sparse grid method described in [35]. The results for two
sets of volatility parameters, σ1 and σ2, are presented in Table 8.1 and Table 8.2, respec-
tively. The relative error for both methods is determined by taking a Monte Carlo esti-
mation of 109 paths as the reference value. As expected, the accuracy of the COS-CPD
method improves with an increasing number of expansion terms. Clearly, 32 expansion
terms are insufficient to provide an accurate approximation of the option value. How-
ever, using 64 expansion terms already leads to a factor 10 more accurate result for theσ1

parameter set compared to the sparse grid method . This accuracy is slightly improved
again when 128 expansion terms are used. It is important to note that the comparison of
computation times between the two methods must be done with caution, as they were
generated using different computers1. Nonetheless, these findings suggest that the COS-
CPD method provides a significantly faster computation time compared to the sparse
grid evaluation, even when using a less powerful computer.

As previously mentioned, the COS-CPD method has the additional advantage that
the option value can be generated for multiple strike prices K simultaneously, with-
out having significant extra computational costs. To demonstrate this advantage, a nu-
merical test is performed in which the COS-CPD method is employed to value the six-

1The COS-CPD results are generated with a Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz (8 CPU cores), with
the code written in Python 3.8.10. For the sparse grid method in [35], a cluster machine is used with the
following characteristics: clock speed 2.1 GHz, #CPU cores: 72, and memory per node 256 GB. Furthermore,
the computer code is written in MATLAB (version R2021b).
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Table 8.1: Comparison in computation time (in seconds) and accuracy of the COS-CPD method with the
sparse grid method from [35] in pricing a six-dimensional basket put option with volatility parameters σ1 =
(0.4,0.4,0.4,0.4,0.4,0.4). The relative error for both methods is derived by using a Monte Carlo benchmark uti-
lizing 109 paths.

Method Option Value CPU Time1 Relative Error
COS-CPD (N = 32) 0.013777 0.008 2.36
COS-CPD (N = 64) 0.004120 0.017 0.0054
COS-CPD (N = 128) 0.004116 0.033 0.0043
Sparse Grid - 2.0 0.029

Table 8.2: Comparison in computation time (in seconds) and accuracy of the COS-CPD method with the
sparse grid method from [35] in pricing a six-dimensional basket put option with volatility parameters σ2 =
(0.2,0.3,0.4,0.5,0.6,0.7). The relative error for both methods is derived by using a Monte Carlo benchmark uti-
lizing 109 paths.

Method Option Value CPU Time Relative Error
COS-CPD (N = 32) 0.007646 0.047 0.3981
COS-CPD (N = 64) 0.012729 0.091 0.0021
COS-CPD (N = 128) 0.012721 0.181 0.0015
Sparse Grid - 2.1 0.0033

dimensional basket option for the strike price vector K = (75,76, . . . ,100). The resulting
option value curve is presented in Figure 8.2, together with a Monte Carlo estimation us-
ing 108 simulated paths. Table 8.3 shows the computation time required to generate this
option value curve, as well as the maximum relative error made in the computed option
prices. Similar to the previous findings, utilizing 64 and 128 expansion terms provide a
significantly more accurate result compared to the estimations with 32 expansion terms.
However, the most crucial point to note is that the computation time required to gener-
ate the option values for the strike price vector K is almost identical to the computation
times presented in Table 8.2. These findings show that the increase in computational
costs is indeed almost negligible when evaluating the option value for a range of strike
prices simultaneously. This advantage is significant compared to the sparse grid-related
method, which can only compute the option value for one strike price at a time.

Table 8.3: Computation time (in seconds) and accuracy of the COS-CPD method to price the six-dimensional
basket put option for the strike price vector K = (75,76, . . . ,100). The volatility parameters are σ2 =
(0.2,0.3,0.4,0.5,0.6,0.7) and the relative error is derived by using a Monte Carlo benchmark utilizing 108 paths.

CPU Time Max Relative Error
COS-CPD (N = 32) 0.046 0.01100
COS-CPD (N = 64) 0.091 0.00059
COS-CPD (N = 128) 0.194 0.00057
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Figure 8.2: Value of the six-dimensional basket put option for the strike vector K = (75,76, . . . ,100). The volatil-
ity parameters are σ2 = (0.2,0.3,0.4,0.5,0.6,0.7) and N = 64 COS expansion terms are utilized.
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In this thesis, we developed a generic and efficient solver for multivariate expectation
problems, with two detailed examples of its application in the field of quantitative fi-
nance. The solver, which is referred to as the COS-CPD method, comprises two main
components: the COS method and a tensor decomposition technique called CPD.

The primary focus of this thesis was the application of the COS-CPD method in quan-
tifying Counterparty Credit Risk, more precisely, the netting-set level PFE and EE profiles
of liquid derivative portfolios. Although a previous Master’s thesis at FF Quant [36] had
replaced the Monte Carlo method with the COS method to calculate exposure profiles,
this method had limitations in the number of dimensions, i.e. it has difficulties to handle
portfolios with more than three risk factors.

We showed that the COS-CPD method can tackle this limitation, as it leads to a re-
duction of the dimension of integration for the characteristic function. This reduction is
achieved through two steps. First, the joint density function of the risk factors is replaced
by a dimension-reduced Fourier-cosine series expansion. The CPD technique is utilized
to decompose the Fourier coefficient tensor, which lowers the computational complex-
ity from exponential to linear with respect to the number of dimensions. Note that this
step is generic and is applicable to any multivariate expectation problem. Secondly, the
portfolio structure was exploited such that the portfolio can be divided into segments
that share the same risk factors. Together with the first step, this reduces the evaluation
of the characteristic function, as defined by a multidimensional integral, to the calcu-
lation of a few one- and two-dimensional integrals. These integrals can then solved by
the Clenshaw-Curtis quadrature rule. As a result, the COS-CPD method is applicable to
portfolios with more than three risk factors.

The CPD approximation of the joint density function is derived using the Hidden
Tensor Factorization approach, which circumvents the need to compute the entire Fourier
coefficient tensor. With the application of CPD, the Fourier-cosine series expansion of
the joint density could be represented as a product of univariate Fourier-cosine series,

101
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which gives great computational benefit, as effectively the dimensionality of the Fourier-
cosine series expansion is greatly reduced. Furthermore, the CPD approximation of the
joint density function of the risk factors can be done "off-line" in advance. As long as the
model parameters of the risk factors do not change, the trained CPD coefficients can be
re-used. In other words, the CPD only needs to be updated in the next re-calibration of
the risk factor models. Extensive numerical tests and analyses were performed to gain
insights into the impact of various parameters on and their sensitivity to the accuracy
of the COS-CPD method. Based on these results, an optimal parameter setting could
be determined for the COS-CPD method either in the context of CCR quantification or
option pricing.

A careful theoretical error analysis was also conducted for the COS-CPD method,
wherein the COS and CPD components were individually examined. The analysis showed
that the COS part exhibits exponential convergence in case of smooth density functions.
For the CPD part, the error resulting from the low-rank approximation of the tensor was
not theoretically quantified, as determining the correct rank of a tensor is an NP-hard
problem. However, numerical experiments showed that the CPD converges for increas-
ing rank to the optimal accuracy level for different correlation levels, up to the point that
the series truncation error becomes the dominant error source.

The accuracy and computational time of the COS-CPD method in calculating the
PFE an EE profiles were compared to those of the Monte Carlo method. Portfolios with
three and five risk factors were considered, each consisting up to 1000 derivatives. The
results showed that for the same level of accuracy, the COS-CPD method greatly out-
performs the MC method in computation time. More importantly, the time difference
increases with larger portfolio sizes due to the fact that the computational complexity
of the COS-CPD method is not driven by the number of trades, while MC is. Therefore,
when considering portfolios up to five risk factors, the COS-CPD method can be a much
more efficient alternative for the MC method, particularly for large portfolios.

To demonstrate the generic nature of the COS-CPD method, another example was
selected from the financial industry: multi-dimensional option pricing. More precisely,
the COS-CPD method was used to price a six-dimensional basket option. The numerical
results were compared with those of a recently developed sparse grid method to price
multi-asset options. This comparison showed that the COS-CPD method outperformed
the sparse grid method both in accuracy and computational time. Furthermore, the
COS-CPD method allows the computation of the option value for multiple strike prices
simultaneously, with no significant additional computational cost.

In the example of CCR quantification, the COS-CPD method was only applied on
netting-set level. However, counterparty-level CCR quantification is also common in
practice. The computation of counterparty-level exposure brings an extra challenge, as
the maximum operator in the evaluation of the characteristic functions cannot be elim-
inated. Consequently, it is not possible to directly divide the portfolios into groups with
common risk factors. A future research focus could be on how to utilize the COS-CPD
method in this case.

The portfolios considered in this thesis consist of at most five risk factors. In practice,
the number of risk factors can easily be higher. Therefore, future research also includes
the extension of the application of the COS-CPD method for portfolios with more than
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five risk factors, by first testing the limitation of the CPD algorithm in terms of the maxi-
mum number of dimensions it can handle. One approach to further reduce the compu-
tational cost in the CPD calibration step, is to identify and exclude cosine basis functions
with negligible coefficients. The idea then is to filter in only the principal basis functions
for each risk factor by, for example, examining the univariate Fourier-cosine series ex-
pansions of the marginal distributions of the risk factors. This could greatly reduce the
computational complexity of the CPD computation, while having a minimal impact on
the accuracy.

Finally, the COS support [l ,u] used in the numerical tests was mainly based on rule-
of-thumbs. As a too wide or too small COS support can lead to significant errors in the
recovered distribution, it is important to find out how the COS support should be de-
fined. This is particularly relevant in the context of exposure distributions, as the distri-
bution changes over time, and therefore, the COS support has to be adapted accordingly.
Since the portfolio contains a lot of information already on the potential exposure, one
possible solution could be to use this portfolio information to find a suitable COS sup-
port.
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A
ADDITIONAL LITERATURE REVIEW

A.1. WRONG-WAY RISK
Often, the assumption is made that the exposure and probability of default are inde-
pendent when computing CVA. This results in convenient models to work with, but the
so-called wrong-way risk cannot be captured in this way. Wrong-way risk is an impor-
tant aspect to consider when it comes to pricing CVA. In the context of CVA, Wrong-
way risk occurs whenever there is an adverse co-dependence between the exposure to
a counterparty and the risk that the counterparty will default, while right-way risk oc-
curs whenever the is a favourable co-dependence [40]. Two main approaches to include
wrong-way risk is either using copula techniques or stochastic credit models to relate
the probability of default and exposure.

Copula techniques incorporating wrong-way risk are described [68]–[70]. Often the
Gaussian Copula is used for convenience, but the theory is general and any copula can
be used. The application of copulas requires the marginal distribution of both the expo-
sure and the probability of default. For the probability of default, an analytic form on the
distribution is often imposed and hence the marginal distribution is known. However,
the marginal distribution of the exposure is only known in analytical form for a few sim-
ple products. Generally, the marginal distribution has to be derived empirically from the
Monte Carlo simulation.

Another approach similar to the copulas is to model the hazard rate as a function
of a risk factor, for example a short rate, associated with the expected exposure. This
idea described in [71] is very straightforward and introduces a dependence between the
exposure and the hazard rate in an intuitive way. The calibration of the model, however,
is difficult.

Stochastic credit models assume some dynamics for the hazard rate, for example
an Ornstein-Uhlenbeck process with jumps [40] or an Cox-Ingersoll-Ross (CIR) model
[72]. The advantages of using a stochastic process for credit in right-way/wrong-way
risk models are considerable. Firstly it is a dynamical model for a process that is clearly
dynamic as credit spreads are very volatile. The doubly stochastic nature of the credit
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process is therefore fully captured. Secondly it is more intuitive as the credit process
is directly linked to other assets through diffusive correlations and jump relationships.
Calibration is still problematic as the volatility of the credit process must be chosen.

An analytical expression for CVA with wrong-way risk for basic futures and forward
contracts is derived in [73]. Instead of using the default dynamics, the credit deteriora-
tion dynamics are used.



B
MATHEMATICAL PROOFS

B.1. SOLUTION ORNSTEIN-UHLENBECK PROCESS

Proposition B.1.1 (Dynamics Orstein-Uhlenbeck Process). Let the Ornstein-Uhlenbeck
process x(t ) be defined by the following stochastic differential equation,

d x(t ) =−ax(t )d t +σdW (t ), x(t0) = x0,

where a is a positive constant, σ the volatility and W (t ) is a standard Brownian mo-
tion. An analytical solution to this stochastic differential equation can be derived, which
is given by

x(t ) = x0e−a(t−t0) +σ
∫ t

t0

e−a(t−s)dW (s).

Proof. The solution to the Ornstein-Uhlenbeck process can be found by applying Itô’s
formula to the function f (t , x) = eat x, which gives the following result,

deat x(t ) = ∂ f

∂t
d t + ∂ f

∂x
d x + 1

2

∂2 f

∂x2 d [x]

= aeat xd t +eat d x + 1

2
·0 ·d [x]

= aeat xd t +eat [−axd t +σdW ]

= eatσdW.
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The solution can now be obtained by integrating both sides from t0 to t ,∫ t

t0

deas x(s) =σ
∫ t

t0

eas dW (s)

eat x(t )−eat0 x(t0) =σ
∫ t

t0

eas dW (s)

eat x(t ) = eat0 x(t0)+σ
∫ t

t0

eas dW (s)

x(t ) = x0e−a(t−t0) +σ
∫ t

t0

e−a(t−s)dW (s).

B.2. ZERO-COUPON BOND FORMULA UNDER THE G1++ MODEL
Proposition B.2.1 (Zero-Coupon Bond Formula G1++ Model). Let the short rate process
be modelled according to the G1++ dynamics,

r (t ) = x(t )+β(t ),

where the shifted short rate process x(t ) follows an Ornstein-Uhlenbeck process,

d x(t ) =−ax(t )d t +σdW (t ), x(0) = 0,

Then, the ZCB formula can be expressed as

P (t ,T ) = A(t ,T )e−B(t ,T )x(t ),

where

A(t ,T ) = P M (0,T )

P M (0, t )
e

1
2 [V (t ,T )−V (0,T )+V (0,t )]

B(t ,T ) = 1

a

[
1−e−a(T−t )] .

V (t ,T ) is the variance of
∫ T

t x(s)d s conditional on the natural filtration Ft of the Brown-
ian motion, and is given by

V (t ,T ) = σ2

a2

(
T − t −2

1e−a(T−t )

a
+ 1−e−2a(T−t )

2a

)
.

Proof. The general formula for the ZCB price is presented in Definition 2.3.3, and is re-
peated here,

P (t ,T ) = EQ
[

e−
∫ T

t r (s)d s ∣∣Ft

]
.
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Inserting the G1++ model for the short rate process yields

P (t ,T ) = EQ
[

e−
∫ T

t x(s)+β(s)d s ∣∣Ft

]
= e−

∫ T
t β(s)d sEQ

[
e−

∫ T
t x(s)∣∣Ft

]
. (B.1)

To evaluate the expectation, the integration of the short rate process is considered first.
The solution of the short rate process x(t ) was derived in Proposition B.1.1. Applying Fu-
bini’s Theorem for stochastic integral (see [74]), the integration of the short rate process
gives the following result,∫ T

t
x(s)d s =

∫ T

t

[
x(t )e−a(s−t ) +σ

∫ s

t
e−a(s−u)dW (u)

]
d s

=−x(t )

a

[
e−a(T−t ) −1

]+σ∫ T

t

∫ s

t
e−a(s−u)dW (u)d s

(Fubini) =−x(t )

a

[
e−a(T−t ) −1

]+σ∫ T

t

∫ T

u
e−a(s−u)d sdW (u)

=−x(t )

a

[
e−a(T−t ) −1

]+σ∫ T

t
− 1

a

[
e−a(T−u) −1

]
dW (u)

= x(t )

a

[
1−e−a(T−t )]+ σ

a

∫ T

t

[
1−e−a(T−u)]dW (u).

By the properties of the Itô integral, we find that
∫ T

t x(s)d s conditional on Ft is again
normally distributed with mean and variance

EQ
[∫ T

t
x(s)d s

∣∣Ft

]
= x(t )

a

[
1−e−a(T−t )] ,

Var

[∫ T

t
x(s)d s

∣∣Ft

]
= Var

[
σ

a

∫ T

t

[
1−e−a(T−u)]dW (u)

]
= σ2

a2 E
Q

[(∫ T

t

[
1−e−a(T−u)]dW (u)

)2 ∣∣∣Ft

]

(Itô’s Isometry) = σ2

a2

∫ T

t

(
1−e−a(T−u))2

du

= σ2

a2

(
T − t −2

1−e−a(T−t )

a
+ 1−e−2a(T−t )

2a

)
(B.2)

:=V (t ,T )

Since
∫ T

t x(s)d s is normally distributed, the moment generating function can be utilized
to find the expectation in B.1. If Z ∼ N (µ,σ2), the moment generating function gives

E
[
e t Z

]= e tµ+ 1
2σ

2t 2
. Using this property we obtain

EQ
[

e−
∫ T

t x(s)∣∣Ft

]
= e−

x(t )
a

[
1−e−a(T−t )]+ 1

2 V (t ,T ). (B.3)
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The ZCB price should fit the market discount curve for all maturities T . Consequently,
the ZCB formula has to satisfy P (0,T ) = P M (0,T ), where P M (0,T ) denotes the discount
factor observed in the market. Evaluating the ZCB formula at t = 0 yields

P (0,T ) = e−
∫ T

0 β(s)d sEQ
[

e−
∫ T

0 x(s)∣∣Ft

]
= e−

∫ T
0 β(s)d s e−

x(0)
a

[
1−e−aT ]+ 1

2 V (0,T )

(x(0) = 0) = e−
∫ T

0 β(s)d s e
1
2 V (0,T ).

Therefore, the following relation with the market discount curve is obtained,

P M (0,T ) = e−
∫ T

0 β(s)d s e
1
2 V (0,T ) =⇒ e−

∫ T
0 β(s)d s = P M (0,T )e−

1
2 V (0,T ). (B.4)

Finally, the expressions from B.4 and B.3 are used to obtain the ZCB formula under the
G1++ short rate model,

P (t ,T ) = e−
∫ T

t β(s)d sEQ
[

e−
∫ T

t x(s)∣∣Ft

]
= e−

∫ T
0 β(s)d s+∫ t

0 β(s)d s ·e−
x(t )

a

[
1−e−a(T−t )]+ 1

2 V (t ,T )

= P M (0,T )

P M (0, t )
e−

1
2 V (0,T )+ 1

2 V (0,t ) ·e
−x(t )

a

[
1−e−a(T−t )]+ 1

2 V (t ,T )

= A(t ,T )e−B(t ,T )x(t ),

with

A(t ,T ) = P M (0,T )

P M (0, t )
e

1
2 [V (t ,T )−V (0,T )+V (0,t )]

B(t ,T ) = 1

a

[
1−e−a(T−t )] .

V (t ,T ) was derived in B.2, and is the variance of
∫ T

t x(s)d s conditional on the natural
filtration Ft of the Brownian motion, and is given by

V (t ,T ) = σ2

a2

(
T − t −2

1e−a(T−t )

a
+ 1−e−2a(T−t )

2a

)
.



B.3. CORRELATION STRUCTURE OF STATE VARIABLES

B

119

B.3. CORRELATION STRUCTURE OF STATE VARIABLES
Proposition B.3.1. The correlation structure of the standard normally distributed state
variables Zd , Z f , and ZX , derived from the model in 7.1, is given by

Cor(Zd , Z f ) =

ρd f

ad +a f
(1−e−(ad+a f )t )√

1

2ad
(1−e−2ad t )

√
1

2a f
(1−e−2a f t )

,

Cor(Zd , ZX ) =
ρd X

ad
(1−e−ad t )√

1

2ad
(1−e−2ad t )

p
t

,

Cor(Z f , ZX ) =

ρ f X

a f
(1−e−a f t )√

1

2a f
(1−e−2a f t )

p
t

.

Proof. We start with the solution of the processes xd , x f and X ,

xd (t ) = xd (0)e−ad t +σd

∫ t

0
e−ad (t−s)dWd (s),

x f (t ) = x f (0)e−a f t +σ f

∫ t

0
e−a f (t−s)dW f (s),

log(X (t )) = log(X (0))+
(
µ− 1

2
σ2

)
t +σWX (t ).

These processes consist of a deterministic and stochastic part. The stochastic part due
to the Brownian motion will be denoted with the state variables Ẑd (t ), Ẑ f (t ) and ẐX (t ),
so that we find

xd (t ) = xd (0)e−ad t +σd Ẑd (t ),

x f (t ) = x f (0)e−a f t +σ f Ẑ f (t ),

log(X (t )) = log(X (0))+
(
µ− 1

2
σ2

)
t +σẐX (t ).

From the properties of the Brownian motion and the Itô integral, we know that Ẑd (t ),
Ẑ f (t ) and ẐX (t ) are normally distributed with mean zero. Therefore, normalising these
state variables yields

Ẑd (t ) =
∫ t

0
e−ad (t−s)dWd (s) =σẐd

Zd (t ),

Ẑ f (t ) =
∫ t

0
e−a f (t−s)dW f (s) =σẐ f

Z f (t ),

ẐX (t ) =WX (t ) =σẐX
ZX (t ),
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where Zd (t ), Z f (t ) and ZX (t ) have a standard normal distribution, i.e. Zd , Z f , ZX ∼
N (0,1). The time parameter t indicates the time-dependence of the correlation struc-
ture.

To obtain the the correlation between Zd and Z f , the following expression has to be
computed,

Cor
(
Zd , Z f

)= Cov
(
Zd , Z f

)
σZdσZ f

= Cov
(
Zd , Z f

)
= Cov

(
1

σẐd

Ẑd ,
1

σẐ f

Ẑ f

)

= Cov
(
Ẑd , Ẑ f

)
σẐd

σẐ f

. (B.5)

The covariance between Ẑd and Ẑ f can be obtained using Itô’s Isometry property. If
ρd f represents the correlation between the Brownian motions of the processes, then the
covariance is given by

Cov
(
Ẑd , Ẑ f

)= Cov

(∫ t

0
e−ad (t−s)dWd (s),

∫ t

0
e−a f (t−s)dW f (s)

)
(Itô’s Isometry) =

∫ t

0
e−(ad+a f )(t−s)d

[
Wd ,W f

]
s

= ρd f

∫ t

0
e−(ad+a f )(t−s)d s

= ρd f e−(ad+a f )t
[

1

ad +a f
e(ad+a f )s

]t

s=0

= ρd f

ad +a f

(
1−e−(ad+a f )t ) .

The standard deviation of the processes Ẑd and Ẑ f is obtained by computing the corre-
sponding variance. Making use of the Itô Isometry property again we find

σ2
Ẑd

= Var

(∫ t

0
e−ad (t−s)dWd (s)

)
=

∫ t

0
e−2ad (t−s)d s

= 1

2ad
e−2ad t [

e2ad s]t
s=0

= 1

2ad

(
1−e−2ad t ) . (B.6)

The variance for Ẑ f can be found in a similar way. Therefore, the correlation between Zd
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and Z f is given by

Cor
(
Zd , Z f

)= Cov
(
Ẑd , Ẑ f

)
σẐd

σẐ f

=

ρd f

ad +a f
(1−e−(ad+a f )t )√

1

2ad
(1−e−2ad t )

√
1

2a f
(1−e−2a f t )

.

The correlation between Zd and ZX has a similar expression as found in B.5,

Cor(Zd , ZX ) = Cov
(
Ẑd , ẐX

)
σẐd

σẐX

.

If ρd X denotes the correlation between the Brownian motions Wd and WX , the covari-
ance has the following form,

Cov
(
Ẑd , ẐX

)= Cov

(∫ t

0
e−ad (t−s)dWd (s),WX (t )

)
= Cov

(∫ t

0
e−ad (t−s)dWd (s),

∫ t

0
dWX (s)

)
= ρd X

∫ t

0
e−(ad (t−s)d s

= ρd X

ad

(
1−e−ad t ) .

The variance of the Brownian motion WX (t ) is t , so that σẐX
=p

t . As σ2
Ẑd

was already

computed in B.6, the correlation can now be computed,

Cor(Zd , ZX ) = Cov
(
Ẑd , ẐX

)
σẐd

σẐX

=
ρd X

ad
(1−e−ad t )√

1

2ad
(1−e−2ad t )

p
t

.

The correlation between Z f and ZX can be found in the exact same way, so that we have

Cor
(
Z f , ZX

)= Cov
(
Ẑ f , ẐX

)
σẐ f

σẐX

=

ρ f X

a f
(1−e−a f t )√

1

2a f
(1−e−2a f t )

p
t

.





C
CPD AS DIRECT INTEGRATION

METHOD

This section shows how the technique of CPD in the context of Fourier-cosine series can
be used to compute a multivariate expectation in a direct way. Therefore, consider a
multivariate random variable X = (X1, · · · , XN ) with corresponding joint density function
f (·). The multivariate expectation of g (·) is defined as

E
[
g (X)

]= ∫
RN

g (x1, · · · , xN ) f (x1, · · · , xN ) d x1 · · ·d xN . (C.1)

Instead of decomposing only the joint density function with CPD into its Fourier-cosine
series, as is done within the COS-CPD method, this technique is now applied on the full
integrand. Consequently, the dimension-reduced Fourier-cosine series of the function
g (x) f (x) is generated with CPD. Equation 3.5 shows that this approximation takes the
following form,

g (x) f (x) ≈
K−1∑
k1=0

...
K−1∑

kN=0

R∑
r=1

N∏
n=1

an
r [kn]vn[kn],

with {an
r }N

n=1 the columns of the factorized matrices {An}N
n=1 and {vn}N

n=1 the cosine basis
functions (i.e. vn[kn] = cos

(
knπ

xn−a
b−a

)
). Assuming that the Fourier-cosine series expan-
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sion is constructed on [a,b]N , the expectation in (C.1) can be computed as follows,

E
[
g (X)

]= ∫
RN

g (x) f (x) dx

≈
∫

[a,b]N

K−1∑
k1=0

...
K−1∑

kN=0

R∑
r=1

N∏
n=1

an
r [kn]vn[kn] dx

=
K−1∑
k1=0

...
K−1∑

kN=0

R∑
r=1

∫
[a,b]N

N∏
n=1

an
r [kn]vn[kn] dx

=
K−1∑
k1=0

...
K−1∑

kN=0

R∑
r=1

a1
r [k1] · ... ·aN

r [kN ]
∫

[a,b]N

N∏
n=1

vn[kn] dx. (C.2)

The integral that has to be evaluated, consists of the product of the cosine basis func-
tions. Therefore, the integrand is given by

N∏
n=1

vn[kn] = cos
(
k1π

x1 −a

b −a

)
· · ·cos

(
kNπ

xN −a

b −a

)
.

Using the fact that this product of cosine basis functions is a separable function (i.e.
it can be written in the form f (x1)g (x2) · · ·h(xN )), the N -dimensional integral can be
written as product of N one-dimensional integrals,∫

[a,b]N

N∏
n=1

vn[kn] d x1d · · ·xN =
∫

[a,b]N
cos

(
k1π

x1 −a

b −a

)
· · ·cos

(
kNπ

xN −a

b −a

)
d x1 · · ·xN

=
∫ b

a
cos

(
k1π

x1 −a

b −a

)
d x1 · · ·

∫ b

a
cos

(
kNπ

xN −a

b −a

)
d xN

=
N∏

n=1

∫ b

a
cos

(
knπ

xn −a

b −a

)
d xn . (C.3)

When integrating the cosine basis functions, a distinction has to be made between kn = 0
and kn ̸= 0. For kn = 0, the cosine basis functions are

vn[0] = cos
(
0 ·πxn −a

b −a

)
= 1,

while for kn ̸= 0 we have

vn[kn] = cos
(
kn ·πxn −a

b −a

)
.

Consequently, integrating the cosine basis functions over the domain [a,b] we obtain

∫ b

a
cos

(
knπ

xn −a

b −a

)
d xn =


(b −a), if kn = 0

b−a
knπ

sin(knπ), if kn = 1,2, ...,K −1.

Since sin(knπ) = 0 for kn ∈N, all integral values are zero for kn = 1,2, ...,K −1,

∫ b

a
cos

(
knπ

xn −a

b −a

)
d xn =


(b −a), if kn = 0

0, if kn = 1,2, ...,K −1
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Therefore, the product of the integrals in (C.3) is non-zero only for k1 = k2 = ... = kN = 0.
This results in a great simplification of the formula for the expectation in (C.2):

E
[
g (X)

]= K−1∑
k1=0

...
K−1∑

kN=0

R∑
r=1

a1
r [k1] · · · · ·aN

r [kN ]
∫ b

a

N∏
n=1

vn[kn] dx

=
R∑

r=1
a1

r [0] · · · · ·aN
r [0](b −a)N

= (b −a)N
R∑

r=1
a1

r [0] · · · · ·aN
r [0].

So the final expression to approximate the expectation of g ()̇ on the domain [a,b]N is
given by,

E
[
g (X)

]≈ (b −a)N
R∑

r=1
a1

r [0] · · · · ·aN
r [0].

This formula can be easily generalized to different grid sizes [an ,bn] for n = 1, ..., N .
Then, the approximation of the expectation on the domain [a1,b1]× ...× [aN ,bN ] is as
follows,

E
[
g (X)

]≈ (b1 −a1) · · · (bN −aN )
R∑

r=1
a1

r [0] · · · · ·aN
r [0].

Note that for this direct integration approach with CPD, only the first rows the factor
matrices {An}N

n=1 are required to compute the expectation value.





D
CLENSHAW-CURTIS QUADRATURE

Throughout this thesis, the Clenshaw-Curtis quadrature is used as numerical integration
method. Typically, the algorithm is described for integration of a function f (x) over the
interval [−1,1]. The first step is to employ the variable substitution x = cos(θ), which will
transform the integration problem into the following form,∫ 1

−1
f (x) d x =

∫ π

0
f (cos(θ))sin(θ)dθ.

Then, this integral can be solved by considering the Fourier-cosine series of f (cos(θ)),

f (cos(θ)) = a0

2
+

∞∑
k=1

ak cos(kθ).

Inserting the Fourier-cosine series into the integral we find,∫ π

0
f (cos(θ))sin(θ)dθ =

∫ π

0

[
a0

2
+

∞∑
k=1

ak cos(kθ)

]
sin(θ) dθ

= a0 +
∞∑

k=1

2a2k

1− (2k)2 .

Consequently, the integration problem is translated to the computation of the Fourier
coefficients, which are defined by

ak = 2

π

∫ π

0
f (cos(θ))cos(kθ) dθ, k ∈N.

The coefficients can be approximated using the type-I discrete cosine transform (DCT-I).
If N +1 quadrature points are employed, the coefficients can be expressed as

ak ≈ 2

N

[
f (1)

2
+ f (−1)

2
(−1)k +

N−1∑
n=1

f (cos(nπ/N ))cos(nkπ/N )

]
,

127



D

128 D. CLENSHAW-CURTIS QUADRATURE

for k = 0, . . . , N . The advantage of using this approach is that the coefficients can be
computed efficiently with FFT algorithms, which reduces the computational complexity
from O

(
N 2

)
to O

(
N log N

)
. Furthermore, the function f (cos(θ)) is even and periodic by

construction, such that the Fourier-cosine series converges exponentially if the original
function f (x) is sufficiently smooth.

Because only the even coefficients contribute to the integral value, an alternative
approach of computing the coefficients is to use a DCT-I of order N /2 (assuming that N
is an even number),

a2k ≈ 2

N

[
f (1)+ f (−1)

2
+ f (0)(−1)k +

N /2−1∑
n=1

{
f (cos(nπ/N ))+ f (−cos(nπ/N ))

}
cos(nkπ/(N /2))

]
.

Once the Fourier coefficients are computed, the Clenshaw-Curtis quadrature approxi-
mation of the integral is given by∫ 1

−1
f (x) d x ≈ a0 +

N∑
k=1

k even

2a2k

1− (2k)2 .

The derivations presented above are based on the integration interval [−1,1]. How-
ever, the same technique can be employed for any domain [a,b] by utilizing the following
change of variables,

x = b −a

2
x̃ + b +a

2
.

In that case, the integration can be transformed again to the interval [−1,1] on which the
methodology described above can be applied again,∫ b

a
f (x) d x =

∫ 1

−1
f

(
b −a

2
x̃ + b +a

2

)
b −a

2
d x̃

= b −a

2

∫ 1

−1
f

(
b −a

2
x̃ + b +a

2

)
d x̃.



E
PORTFOLIOS

This appendix contains the portfolios up to 100 derivatives used in the numerical exper-
iments of Chapter 7 to compute netting-set level PFE an EE profiles.
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E.1. PORTFOLIO 100 DERIVATIVES 3D

TradeId ProductType PayOrReceive Ccy Notional IsFixed StartDate Coupon CouponFrequency NumberOfCoupons Maturity

0 FRA -1 USD 968 ONWAAR 0,255556 IBOR 1,777778
0 FRA 1 USD 968 WAAR 0,255556 0,011 1,777778
1 FRA -1 USD 2160 ONWAAR 1,438889 IBOR 7,019444
1 FRA 1 USD 2160 WAAR 1,438889 0,033 7,019444
2 FRA -1 JPY 68563 ONWAAR 0,511111 IBOR 5,072222
2 FRA 1 JPY 68563 WAAR 0,511111 0,023 5,072222
3 FRA -1 JPY 106856 WAAR 0,086111 0,012 8,713889
3 FRA 1 JPY 106856 ONWAAR 0,086111 IBOR 8,713889
4 FRA -1 USD 1910 WAAR 1,525 0,054 6,6
4 FRA 1 USD 1910 ONWAAR 1,525 IBOR 6,6
5 FRA 1 JPY 244011 ONWAAR 0,341667 IBOR 2,372222
5 FRA -1 JPY 244011 WAAR 0,341667 0,043 2,372222
6 FRA -1 JPY 110295 WAAR 0,761111 0,021 9,894444
6 FRA 1 JPY 110295 ONWAAR 0,761111 IBOR 9,894444
7 FRA -1 JPY 154244 WAAR 0,172222 0,005 7,275
7 FRA 1 JPY 154244 ONWAAR 0,172222 IBOR 7,275
8 FRA -1 JPY 198682 ONWAAR 0,341667 IBOR 5,919444
8 FRA 1 JPY 198682 WAAR 0,341667 0,012 5,919444
9 FRA -1 USD 1591 WAAR 0,425 0,033 8,033333
9 FRA 1 USD 1591 ONWAAR 0,425 IBOR 8,033333

10 FRA 1 JPY 148287 WAAR 0,425 0,016 6,005556
10 FRA -1 JPY 148287 ONWAAR 0,425 IBOR 6,005556
11 FRA -1 JPY 245248 WAAR 0,761111 0,018 1,777778
11 FRA 1 JPY 245248 ONWAAR 0,761111 IBOR 1,777778
12 FRA 1 JPY 101599 WAAR 0,425 0,023 4,483333
12 FRA -1 JPY 101599 ONWAAR 0,425 IBOR 4,483333
13 FRA -1 USD 811 ONWAAR 1,186111 IBOR 6,763889
13 FRA 1 USD 811 WAAR 1,186111 0,048 6,763889
14 FRA 1 JPY 94341 ONWAAR 0,341667 IBOR 0,844444
14 FRA -1 JPY 94341 WAAR 0,341667 0,028 0,844444
15 FRA 1 JPY 75371 WAAR 1,438889 0,026 4,988889
15 FRA -1 JPY 75371 ONWAAR 1,438889 IBOR 4,988889
16 FRA 1 USD 1791 WAAR 1,013889 0,043 1,525
16 FRA -1 USD 1791 ONWAAR 1,013889 IBOR 1,525
17 FRA 1 USD 2459 WAAR 0,675 0,048 5,244444
17 FRA -1 USD 2459 ONWAAR 0,675 IBOR 5,244444
18 FRA 1 JPY 105362 ONWAAR 1,438889 IBOR 4,483333
18 FRA -1 JPY 105362 WAAR 1,438889 0,031 4,483333
19 FRA -1 USD 658 WAAR 0,341667 0,022 7,444444
19 FRA 1 USD 658 ONWAAR 0,341667 IBOR 7,444444
20 FRA -1 USD 1936 ONWAAR 1,1 IBOR 8,713889
20 FRA 1 USD 1936 WAAR 1,1 0,008 8,713889
21 FRA -1 JPY 229981 ONWAAR 1,186111 IBOR 2,705556
21 FRA 1 JPY 229981 WAAR 1,186111 0,054 2,705556
22 FRA 1 USD 1479 WAAR 1,013889 0,05 8,116667
22 FRA -1 USD 1479 ONWAAR 1,013889 IBOR 8,116667
23 FRA 1 USD 2455 WAAR 1,691667 0,007 4,733333
23 FRA -1 USD 2455 ONWAAR 1,691667 IBOR 4,733333
24 FRA 1 JPY 196459 ONWAAR 0,675 IBOR 7,275
24 FRA -1 JPY 196459 WAAR 0,675 0,043 7,275
25 FRA 1 USD 689 ONWAAR 0,675 IBOR 7,275
25 FRA -1 USD 689 WAAR 0,675 0,036 7,275
26 FRA -1 JPY 169941 WAAR 1,611111 0,034 2,627778
26 FRA 1 JPY 169941 ONWAAR 1,611111 IBOR 2,627778
27 FRA 1 USD 1948 ONWAAR 0,172222 IBOR 8,791667
27 FRA -1 USD 1948 WAAR 0,172222 0,034 8,791667
28 FRA 1 JPY 211128 ONWAAR 1,438889 IBOR 8,541667
28 FRA -1 JPY 211128 WAAR 1,438889 0,022 8,541667
29 FRA 1 JPY 124135 WAAR 1,525 0,053 7,613889
29 FRA -1 JPY 124135 ONWAAR 1,525 IBOR 7,613889
30 IRS 1 JPY 109990 ONWAAR 0,341667 JPY_3M 3 7 1,861111
30 IRS -1 JPY 109990 WAAR 0,341667 0,02 6 4 1,861111
31 IRS -1 USD 1214 ONWAAR 0,930556 USD_3M 3 7 2,455556
31 IRS 1 USD 1214 WAAR 0,930556 0,048 3 7 2,455556
32 IRS -1 JPY 86571 WAAR 1,691667 0,05 1 11 2,541667
32 IRS 1 JPY 86571 ONWAAR 1,691667 JPY_1M 1 11 2,541667
33 IRS -1 USD 1634 WAAR 0,930556 0,014 1 5 1,269444
33 IRS 1 USD 1634 ONWAAR 0,930556 USD_1M 1 5 1,269444
34 IRS -1 USD 2149 ONWAAR 0,425 USD_6M 6 22 11,07778
34 IRS 1 USD 2149 WAAR 0,425 0,016 6 22 11,07778
35 IRS -1 USD 2489 ONWAAR 0,597222 USD_3M 3 5 1,611111
35 IRS 1 USD 2489 WAAR 0,597222 0,046 3 5 1,611111
36 IRS -1 JPY 210504 ONWAAR 1,611111 JPY_1M 1 20 3,216667
36 IRS 1 JPY 210504 WAAR 1,611111 0,014 1 20 3,216667
37 IRS 1 JPY 192237 ONWAAR 1,691667 JPY_3M 3 20 6,513889
37 IRS -1 JPY 192237 WAAR 1,691667 0,028 3 20 6,513889
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38 IRS -1 JPY 185564 ONWAAR 1,438889 JPY_6M 6 9 5,497222
38 IRS 1 JPY 185564 WAAR 1,438889 0,017 6 9 5,497222
39 IRS -1 USD 1045 WAAR 0,511111 0,029 3 24 6,344444
39 IRS 1 USD 1045 ONWAAR 0,511111 USD_3M 3 24 6,344444
40 IRS -1 USD 1611 WAAR 1,013889 0,04 6 12 6,6
40 IRS 1 USD 1611 ONWAAR 1,013889 USD_6M 6 12 6,6
41 IRS -1 USD 1163 WAAR 1,438889 0,04 12 14 14,63056
41 IRS 1 USD 1163 ONWAAR 1,438889 USD_12M 12 14 14,63056
42 IRS -1 USD 1567 WAAR 0,425 0,036 6 21 10,57222
42 IRS 1 USD 1567 ONWAAR 0,425 USD_3M 3 41 10,57222
43 IRS 1 USD 2272 ONWAAR 1,525 USD_6M 6 27 14,71667
43 IRS -1 USD 2272 WAAR 1,525 0,025 12 14 14,71667
44 IRS 1 USD 1217 WAAR 1,611111 0,032 3 21 6,686111
44 IRS -1 USD 1217 ONWAAR 1,611111 USD_3M 3 21 6,686111
45 IRS 1 JPY 60121 ONWAAR 1,355556 JPY_3M 3 11 3,888889
45 IRS -1 JPY 60121 WAAR 1,355556 0,055 6 6 3,888889
46 IRS -1 USD 1982 WAAR 1,691667 0,007 6 8 5,244444
46 IRS 1 USD 1982 ONWAAR 1,691667 USD_3M 3 15 5,244444
47 IRS -1 USD 744 ONWAAR 0,172222 USD_6M 6 9 4,230556
47 IRS 1 USD 744 WAAR 0,172222 0,045 6 9 4,230556
48 IRS 1 USD 2002 ONWAAR 1,611111 USD_3M 3 20 6,430556
48 IRS -1 USD 2002 WAAR 1,611111 0,041 3 20 6,430556
49 IRS 1 USD 1687 WAAR 0,172222 0,027 6 14 6,763889
49 IRS -1 USD 1687 ONWAAR 0,172222 USD_6M 6 14 6,763889
50 FX -1 USD 1832 WAAR 2,541667
50 FX 1 JPY 192360 WAAR 2,541667
51 FX -1 JPY 169451 WAAR 5,583333
51 FX 1 USD 1613,819 WAAR 5,583333
52 FX -1 USD 870 WAAR 9,641667
52 FX 1 JPY 91350 WAAR 9,641667
53 FX 1 JPY 201390 WAAR 2,541667
53 FX -1 USD 1918 WAAR 2,541667
54 FX -1 JPY 85705 WAAR 4,569444
54 FX 1 USD 816,2381 WAAR 4,569444
55 FX -1 USD 1158 WAAR 1,525
55 FX 1 JPY 121590 WAAR 1,525
56 FX -1 USD 1895 WAAR 4,569444
56 FX 1 JPY 198975 WAAR 4,569444
57 FX 1 JPY 155295 WAAR 7,102778
57 FX -1 USD 1479 WAAR 7,102778
58 FX -1 USD 2439 WAAR 7,613889
58 FX 1 JPY 256095 WAAR 7,613889
59 FX -1 USD 1457 WAAR 5,072222
59 FX 1 JPY 152985 WAAR 5,072222
60 FX -1 JPY 192469 WAAR 3,555556
60 FX 1 USD 1833,038 WAAR 3,555556
61 FX -1 USD 2231 WAAR 4,569444
61 FX 1 JPY 234255 WAAR 4,569444
62 FX -1 JPY 233123 WAAR 2,030556
62 FX 1 USD 2220,219 WAAR 2,030556
63 FX 1 JPY 229005 WAAR 10,14722
63 FX -1 USD 2181 WAAR 10,14722
64 FX 1 USD 819,6857 WAAR 7,613889
64 FX -1 JPY 86067 WAAR 7,613889
65 FX -1 JPY 218258 WAAR 1,525
65 FX 1 USD 2078,648 WAAR 1,525
66 FX 1 USD 1955,229 WAAR 7,613889
66 FX -1 JPY 205299 WAAR 7,613889
67 FX 1 USD 625,3714 WAAR 4,058333
67 FX -1 JPY 65664 WAAR 4,058333
68 FX 1 USD 1690,495 WAAR 2,030556
68 FX -1 JPY 177502 WAAR 2,030556
69 FX 1 JPY 194460 WAAR 4,569444
69 FX -1 USD 1852 WAAR 4,569444
70 FX -1 USD 1091 WAAR 9,641667
70 FX 1 JPY 114555 WAAR 9,641667
71 FX -1 USD 2315 WAAR 8,627778
71 FX 1 JPY 243075 WAAR 8,627778
72 FX -1 JPY 159930 WAAR 1,013889
72 FX 1 USD 1523,143 WAAR 1,013889
73 FX -1 JPY 121809 WAAR 1,013889
73 FX 1 USD 1160,086 WAAR 1,013889
74 FX 1 JPY 88935 WAAR 7,613889
74 FX -1 USD 847 WAAR 7,613889
75 FX -1 JPY 139698 WAAR 7,102778
75 FX 1 USD 1330,457 WAAR 7,102778
76 FX 1 USD 2094,029 WAAR 0,511111
76 FX -1 JPY 219873 WAAR 0,511111
77 FX 1 USD 2309,581 WAAR 8,627778
77 FX -1 JPY 242506 WAAR 8,627778
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78 FX 1 USD 1728,952 WAAR 8,627778
78 FX -1 JPY 181540 WAAR 8,627778
79 FX 1 JPY 192570 WAAR 8,116667
79 FX -1 USD 1834 WAAR 8,116667
80 XCS 1 USD 1742 WAAR 1,269444 0,05 3 16 5,072222
80 XCS -1 JPY 182910 ONWAAR 1,269444 JPY_3M 3 16 5,072222
81 XCS -1 JPY 79631 WAAR 0,172222 0,033 12 15 14,37778
81 XCS 1 USD 758,3905 ONWAAR 0,172222 USD_12M 12 15 14,37778
82 XCS -1 USD 2283 ONWAAR 1,1 USD_6M 6 20 10,74444
82 XCS 1 JPY 239715 WAAR 1,1 0,006 6 20 10,74444
83 XCS -1 USD 1296 ONWAAR 0,341667 USD_12M 12 6 5,413889
83 XCS 1 JPY 136080 WAAR 0,341667 0,043 6 11 5,413889
84 XCS -1 JPY 126486 ONWAAR 1,525 JPY_6M 6 7 4,569444
84 XCS 1 USD 1204,629 WAAR 1,525 0,044 3 13 4,569444
85 XCS -1 JPY 255527 WAAR 1,525 0,053 3 15 5,072222
85 XCS 1 USD 2433,59 ONWAAR 1,525 USD_3M 3 15 5,072222
86 XCS -1 USD 635 WAAR 0,172222 0,052 3 25 6,261111
86 XCS 1 JPY 66675 ONWAAR 0,172222 JPY_3M 3 25 6,261111
87 XCS 1 USD 2294,257 ONWAAR 1,438889 USD_3M 3 13 4,483333
87 XCS -1 JPY 240897 WAAR 1,438889 0,011 3 13 4,483333
88 XCS -1 USD 738 WAAR 1,355556 0,041 3 4 2,116667
88 XCS 1 JPY 77490 ONWAAR 1,355556 JPY_3M 3 4 2,116667
89 XCS -1 JPY 93759 ONWAAR 0,425 JPY_12M 12 10 9,555556
89 XCS 1 USD 892,9429 WAAR 0,425 0,054 12 10 9,555556
90 XCS -1 USD 528 ONWAAR 0,425 USD_3M 3 9 2,455556
90 XCS 1 JPY 55440 WAAR 0,425 0,008 3 9 2,455556
91 XCS 1 JPY 120540 ONWAAR 0,597222 JPY_12M 12 8 7,7
91 XCS -1 USD 1148 WAAR 0,597222 0,007 12 8 7,7
92 XCS 1 JPY 168210 ONWAAR 0,172222 JPY_6M 6 5 2,202778
92 XCS -1 USD 1602 WAAR 0,172222 0,008 6 5 2,202778
93 XCS 1 USD 1162,971 ONWAAR 1,269444 USD_1M 1 8 1,861111
93 XCS -1 JPY 122112 WAAR 1,269444 0,014 1 8 1,861111
94 XCS -1 USD 1273 WAAR 1,186111 0,042 3 15 4,733333
94 XCS 1 JPY 133665 ONWAAR 1,186111 JPY_3M 3 15 4,733333
95 XCS 1 JPY 110040 WAAR 1,013889 0,034 6 17 9,130556
95 XCS -1 USD 1048 ONWAAR 1,013889 USD_6M 6 17 9,130556
96 XCS 1 USD 531,0857 ONWAAR 0,597222 USD_3M 3 29 7,7
96 XCS -1 JPY 55764 WAAR 0,597222 0,05 6 15 7,7
97 XCS 1 JPY 240975 WAAR 1,611111 0,014 12 8 8,713889
97 XCS -1 USD 2295 ONWAAR 1,611111 USD_12M 12 8 8,713889
98 XCS 1 JPY 252735 WAAR 1,186111 0,051 3 25 7,275
98 XCS -1 USD 2407 ONWAAR 1,186111 USD_3M 3 25 7,275
99 XCS -1 JPY 252329 WAAR 0,844444 0,049 6 10 5,413889
99 XCS 1 USD 2403,133 ONWAAR 0,844444 USD_3M 3 19 5,413889
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TradeId ProductType PayOrReceive Ccy Notional IsFixed StartDate Coupon CouponFrequency NumberOfCoupons Maturity

0 FRA -1 USD 658 WAAR 0,341667 0,022 7,444444
0 FRA 1 USD 658 ONWAAR 0,341667 IBOR 7,444444
1 FRA -1 USD 1936 ONWAAR 1,1 IBOR 8,713889
1 FRA 1 USD 1936 WAAR 1,1 0,008 8,713889
2 FRA -1 JPY 229981 ONWAAR 1,186111 IBOR 2,705556
2 FRA 1 JPY 229981 WAAR 1,186111 0,054 2,705556
3 FRA 1 USD 1479 WAAR 1,013889 0,05 8,116667
3 FRA -1 USD 1479 ONWAAR 1,013889 IBOR 8,116667
4 FRA 1 USD 2455 WAAR 1,691667 0,007 4,733333
4 FRA -1 USD 2455 ONWAAR 1,691667 IBOR 4,733333
5 FRA 1 JPY 196459 ONWAAR 0,675 IBOR 7,275
5 FRA -1 JPY 196459 WAAR 0,675 0,043 7,275
6 FRA 1 USD 689 ONWAAR 0,675 IBOR 7,275
6 FRA -1 USD 689 WAAR 0,675 0,036 7,275
7 FRA -1 JPY 169941 WAAR 1,611111 0,034 2,627778
7 FRA 1 JPY 169941 ONWAAR 1,611111 IBOR 2,627778
8 FRA 1 USD 1948 ONWAAR 0,172222 IBOR 8,791667
8 FRA -1 USD 1948 WAAR 0,172222 0,034 8,791667
9 FRA 1 JPY 211128 ONWAAR 1,438889 IBOR 8,541667
9 FRA -1 JPY 211128 WAAR 1,438889 0,022 8,541667

10 FRA 1 JPY 124135 WAAR 1,525 0,053 7,613889
10 FRA -1 JPY 124135 ONWAAR 1,525 IBOR 7,613889
11 FRA 1 JPY 244011 ONWAAR 0,341667 IBOR 2,372222
11 FRA -1 JPY 244011 WAAR 0,341667 0,043 2,372222
12 FRA -1 JPY 110295 WAAR 0,761111 0,021 9,894444
12 FRA 1 JPY 110295 ONWAAR 0,761111 IBOR 9,894444
13 IRS -1 USD 1567 WAAR 0,425 0,036 6 21 10,57222
13 IRS 1 USD 1567 ONWAAR 0,425 USD_3M 3 41 10,57222
14 IRS 1 USD 2272 ONWAAR 1,525 USD_6M 6 27 14,71667
14 IRS -1 USD 2272 WAAR 1,525 0,025 12 14 14,71667
15 IRS 1 USD 1217 WAAR 1,611111 0,032 3 21 6,686111
15 IRS -1 USD 1217 ONWAAR 1,611111 USD_3M 3 21 6,686111
16 IRS 1 JPY 60121 ONWAAR 1,355556 JPY_3M 3 11 3,888889
16 IRS -1 JPY 60121 WAAR 1,355556 0,055 6 6 3,888889
17 IRS -1 USD 1982 WAAR 1,691667 0,007 6 8 5,244444
17 IRS 1 USD 1982 ONWAAR 1,691667 USD_3M 3 15 5,244444
18 IRS -1 USD 744 ONWAAR 0,172222 USD_6M 6 9 4,230556
18 IRS 1 USD 744 WAAR 0,172222 0,045 6 9 4,230556
19 IRS 1 USD 2002 ONWAAR 1,611111 USD_3M 3 20 6,430556
19 IRS -1 USD 2002 WAAR 1,611111 0,041 3 20 6,430556
20 IRS 1 USD 1687 WAAR 0,172222 0,027 6 14 6,763889
20 IRS -1 USD 1687 ONWAAR 0,172222 USD_6M 6 14 6,763889
21 IRS -1 USD 1045 WAAR 0,511111 0,029 3 24 6,344444
21 IRS 1 USD 1045 ONWAAR 0,511111 USD_3M 3 24 6,344444
22 IRS -1 USD 1611 WAAR 1,013889 0,04 6 12 6,6
22 IRS 1 USD 1611 ONWAAR 1,013889 USD_6M 6 12 6,6
23 IRS 1 JPY 192237 ONWAAR 1,691667 JPY_3M 3 20 6,513889
23 IRS -1 JPY 192237 WAAR 1,691667 0,028 3 20 6,513889
24 IRS -1 JPY 185564 ONWAAR 1,438889 JPY_6M 6 9 5,497222
24 IRS 1 JPY 185564 WAAR 1,438889 0,017 6 9 5,497222
25 FX 1 USD 1955,229 WAAR 7,613889
25 FX -1 JPY 205299 WAAR 7,613889
26 FX 1 USD 625,3714 WAAR 4,058333
26 FX -1 JPY 65664 WAAR 4,058333
27 FX 1 USD 1690,495 WAAR 2,030556
27 FX -1 JPY 177502 WAAR 2,030556
28 FX 1 JPY 194460 WAAR 4,569444
28 FX -1 USD 1852 WAAR 4,569444
29 FX -1 USD 1091 WAAR 9,641667
29 FX 1 JPY 114555 WAAR 9,641667
30 FX -1 USD 2315 WAAR 8,627778
30 FX 1 JPY 243075 WAAR 8,627778
31 FX -1 JPY 159930 WAAR 1,013889
31 FX 1 USD 1523,143 WAAR 1,013889
32 FX -1 JPY 121809 WAAR 1,013889
32 FX 1 USD 1160,086 WAAR 1,013889
33 FX 1 JPY 88935 WAAR 7,613889
33 FX -1 USD 847 WAAR 7,613889
34 FX -1 JPY 139698 WAAR 7,102778
34 FX 1 USD 1330,457 WAAR 7,102778
35 FX 1 USD 2094,029 WAAR 0,511111
35 FX -1 JPY 219873 WAAR 0,511111
36 FX 1 USD 2309,581 WAAR 8,627778
36 FX -1 JPY 242506 WAAR 8,627778
37 FX 1 USD 1728,952 WAAR 8,627778
37 FX -1 JPY 181540 WAAR 8,627778
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38 XCS -1 USD 2283 ONWAAR 1,1 USD_6M 6 20 10,74444
38 XCS 1 JPY 239715 WAAR 1,1 0,006 6 20 10,74444
39 XCS -1 USD 1296 ONWAAR 0,341667 USD_12M 12 6 5,413889
39 XCS 1 JPY 136080 WAAR 0,341667 0,043 6 11 5,413889
40 XCS -1 JPY 126486 ONWAAR 1,525 JPY_6M 6 7 4,569444
40 XCS 1 USD 1204,629 WAAR 1,525 0,044 3 13 4,569444
41 XCS -1 JPY 255527 WAAR 1,525 0,053 3 15 5,072222
41 XCS 1 USD 2433,59 ONWAAR 1,525 USD_3M 3 15 5,072222
42 XCS -1 USD 635 WAAR 0,172222 0,052 3 25 6,261111
42 XCS 1 JPY 66675 ONWAAR 0,172222 JPY_3M 3 25 6,261111
43 XCS 1 USD 2294,257 ONWAAR 1,438889 USD_3M 3 13 4,483333
43 XCS -1 JPY 240897 WAAR 1,438889 0,011 3 13 4,483333
44 XCS -1 USD 738 WAAR 1,355556 0,041 3 4 2,116667
44 XCS 1 JPY 77490 ONWAAR 1,355556 JPY_3M 3 4 2,116667
45 XCS -1 JPY 93759 ONWAAR 0,425 JPY_12M 12 10 9,555556
45 XCS 1 USD 892,9429 WAAR 0,425 0,054 12 10 9,555556
46 XCS -1 USD 528 ONWAAR 0,425 USD_3M 3 9 2,455556
46 XCS 1 JPY 55440 WAAR 0,425 0,008 3 9 2,455556
47 XCS 1 JPY 120540 ONWAAR 0,597222 JPY_12M 12 8 7,7
47 XCS -1 USD 1148 WAAR 0,597222 0,007 12 8 7,7
48 XCS 1 JPY 168210 ONWAAR 0,172222 JPY_6M 6 5 2,202778
48 XCS -1 USD 1602 WAAR 0,172222 0,008 6 5 2,202778
49 XCS 1 USD 1162,971 ONWAAR 1,269444 USD_1M 1 8 1,861111
49 XCS -1 JPY 122112 WAAR 1,269444 0,014 1 8 1,861111
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TradeId ProductType PayOrReceive Ccy Notional IsFixed StartDate Coupon CouponFrequency NumberOfCoupons Maturity

0 FRA 1 USD 1479 WAAR 1,013889 0,05 8,116667
0 FRA -1 USD 1479 ONWAAR 1,013889 IBOR 8,116667
1 FRA 1 USD 2455 WAAR 1,691667 0,007 4,733333
1 FRA -1 USD 2455 ONWAAR 1,691667 IBOR 4,733333
2 FRA 1 JPY 196459 ONWAAR 0,675 IBOR 7,275
2 FRA -1 JPY 196459 WAAR 0,675 0,043 7,275
3 FRA -1 JPY 110295 WAAR 0,761111 0,021 9,894444
3 FRA 1 JPY 110295 ONWAAR 0,761111 IBOR 9,894444
4 FRA -1 JPY 169941 WAAR 1,611111 0,034 2,627778
4 FRA 1 JPY 169941 ONWAAR 1,611111 IBOR 2,627778
5 FRA 1 USD 1948 ONWAAR 0,172222 IBOR 8,791667
5 FRA -1 USD 1948 WAAR 0,172222 0,034 8,791667
6 FRA -1 JPY 245248 WAAR 0,761111 0,018 1,777778
6 FRA 1 JPY 245248 ONWAAR 0,761111 IBOR 1,777778
7 IRS -1 USD 1634 WAAR 0,930556 0,014 1 5 1,269444
7 IRS 1 USD 1634 ONWAAR 0,930556 USD_1M 1 5 1,269444
8 IRS -1 USD 2149 ONWAAR 0,425 USD_6M 6 22 11,07778
8 IRS 1 USD 2149 WAAR 0,425 0,016 6 22 11,07778
9 IRS -1 USD 2489 ONWAAR 0,597222 USD_3M 3 5 1,611111
9 IRS 1 USD 2489 WAAR 0,597222 0,046 3 5 1,611111

10 IRS -1 JPY 210504 ONWAAR 1,611111 JPY_1M 1 20 3,216667
10 IRS 1 JPY 210504 WAAR 1,611111 0,014 1 20 3,216667
11 IRS 1 JPY 192237 ONWAAR 1,691667 JPY_3M 3 20 6,513889
11 IRS -1 JPY 192237 WAAR 1,691667 0,028 3 20 6,513889
12 IRS -1 USD 1567 WAAR 0,425 0,036 6 21 10,57222
12 IRS 1 USD 1567 ONWAAR 0,425 USD_3M 3 41 10,57222
13 IRS -1 USD 1045 WAAR 0,511111 0,029 3 24 6,344444
13 IRS 1 USD 1045 ONWAAR 0,511111 USD_3M 3 24 6,344444
14 FX -1 USD 870 WAAR 9,641667
14 FX 1 JPY 91350 WAAR 9,641667
15 FX 1 JPY 201390 WAAR 2,541667
15 FX -1 USD 1918 WAAR 2,541667
16 FX -1 JPY 85705 WAAR 4,569444
16 FX 1 USD 816,2381 WAAR 4,569444
17 FX 1 JPY 229005 WAAR 10,14722
17 FX -1 USD 2181 WAAR 10,14722
18 FX -1 USD 1895 WAAR 4,569444
18 FX 1 JPY 198975 WAAR 4,569444
19 FX 1 JPY 155295 WAAR 7,102778
19 FX -1 USD 1479 WAAR 7,102778
20 FX -1 USD 2439 WAAR 7,613889
20 FX 1 JPY 256095 WAAR 7,613889
21 XCS -1 USD 1296 ONWAAR 0,341667 USD_12M 12 6 5,413889
21 XCS 1 JPY 136080 WAAR 0,341667 0,043 6 11 5,413889
22 XCS -1 JPY 126486 ONWAAR 1,525 JPY_6M 6 7 4,569444
22 XCS 1 USD 1204,629 WAAR 1,525 0,044 3 13 4,569444
23 XCS -1 JPY 255527 WAAR 1,525 0,053 3 15 5,072222
23 XCS 1 USD 2433,59 ONWAAR 1,525 USD_3M 3 15 5,072222
24 XCS -1 USD 635 WAAR 0,172222 0,052 3 25 6,261111
24 XCS 1 JPY 66675 ONWAAR 0,172222 JPY_3M 3 25 6,261111
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0 XCS 1 USD 1742 WAAR 0,23424 0,05 3 16 5,754
0 XCS -1 JPY 182910 ONWAAR 0,23424 JPY_3M 3 16 5,754
1 XCS -1 USD 1000 WAAR 0,031 0,02 3 20 8,1
1 XCS 1 EUR 740,74 ONWAAR 0,031 EUR_3M 3 20 8,1
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0 FRA -1 JPY 198682 ONWAAR 0,341667 IBOR 5,919444
0 FRA 1 JPY 198682 WAAR 0,341667 0,012 5,919444
1 FRA -1 USD 1591 WAAR 0,425 0,033 8,033333
1 FRA 1 USD 1591 ONWAAR 0,425 IBOR 8,033333
2 FRA 1 JPY 148287 WAAR 0,425 0,016 6,005556
2 FRA -1 JPY 148287 ONWAAR 0,425 IBOR 6,005556
3 FRA -1 JPY 245248 WAAR 0,761111 0,018 1,777778
3 FRA 1 JPY 245248 ONWAAR 0,761111 IBOR 1,777778
4 FRA 1 JPY 101599 WAAR 0,425 0,023 4,483333
4 FRA -1 JPY 101599 ONWAAR 0,425 IBOR 4,483333
5 FRA -1 USD 811 ONWAAR 1,186111 IBOR 6,763889
5 FRA 1 USD 811 WAAR 1,186111 0,048 6,763889
6 FRA 1 JPY 94341 ONWAAR 0,341667 IBOR 0,844444
6 FRA -1 JPY 94341 WAAR 0,341667 0,028 0,844444
7 FRA 1 JPY 75371 WAAR 1,438889 0,026 4,988889
7 FRA -1 JPY 75371 ONWAAR 1,438889 IBOR 4,988889
8 FRA 1 USD 1791 WAAR 1,013889 0,043 1,525
8 FRA -1 USD 1791 ONWAAR 1,013889 IBOR 1,525
9 FRA 1 USD 2459 WAAR 0,675 0,048 5,244444
9 FRA -1 USD 2459 ONWAAR 0,675 IBOR 5,244444

10 FRA 1 JPY 105362 ONWAAR 1,438889 IBOR 4,483333
10 FRA -1 JPY 105362 WAAR 1,438889 0,031 4,483333
11 FRA -1 USD 658 WAAR 0,341667 0,022 7,444444
11 FRA 1 USD 658 ONWAAR 0,341667 IBOR 7,444444
12 FRA -1 USD 1936 ONWAAR 1,1 IBOR 8,713889
12 FRA 1 USD 1936 WAAR 1,1 0,008 8,713889
13 FRA -1 JPY 229981 ONWAAR 1,186111 IBOR 2,705556
13 FRA 1 JPY 229981 WAAR 1,186111 0,054 2,705556
14 FRA 1 USD 1479 WAAR 1,013889 0,05 8,116667
14 FRA -1 USD 1479 ONWAAR 1,013889 IBOR 8,116667
15 FRA 1 USD 2455 WAAR 1,691667 0,007 4,733333
15 FRA -1 USD 2455 ONWAAR 1,691667 IBOR 4,733333
16 FRA -1 USD 2160 ONWAAR 1,438889 IBOR 7,019444
16 FRA 1 USD 2160 WAAR 1,438889 0,033 7,019444
17 FRA -1 JPY 68563 ONWAAR 0,511111 IBOR 5,072222
17 FRA 1 JPY 68563 WAAR 0,511111 0,023 5,072222
18 FRA 1 JPY 124135 WAAR 1,525 0,053 7,613889
18 FRA -1 JPY 124135 ONWAAR 1,525 IBOR 7,613889
19 FRA -1 USD 1910 WAAR 1,525 0,054 6,6
19 FRA 1 USD 1910 ONWAAR 1,525 IBOR 6,6
20 FRA 1 JPY 244011 ONWAAR 0,341667 IBOR 2,372222
20 FRA -1 JPY 244011 WAAR 0,341667 0,043 2,372222
21 FRA 1 EUR 1570 ONWAAR 1,238 IBOR 8,3456
21 FRA -1 EUR 1570 WAAR 1,238 0,026 8,3456
22 FRA 1 EUR 754 ONWAAR 0,678 IBOR 0,84444
22 FRA -1 EUR 754 WAAR 0,678 0,031 0,84444
23 FRA 1 EUR 987 ONWAAR 0,551 IBOR 8,3321
23 FRA -1 EUR 987 WAAR 0,551 0,044 8,3321
24 FRA 1 EUR 832 ONWAAR 1,134 IBOR 4,6645
24 FRA -1 EUR 832 WAAR 1,134 0,036 4,6645
25 FRA 1 EUR 1234 ONWAAR 1,005 IBOR 7,8843
25 FRA -1 EUR 1234 WAAR 1,005 0,05 7,8843
26 FRA 1 EUR 728 ONWAAR 0,355 IBOR 3,441
26 FRA -1 EUR 728 WAAR 0,355 0,048 3,441
27 FRA 1 EUR 505 ONWAAR 1,112 IBOR 4,496
27 FRA -1 EUR 505 WAAR 1,112 0,026 4,496
28 IRS -1 JPY 86571 WAAR 1,691667 0,05 1 11 2,541667
28 IRS 1 JPY 86571 ONWAAR 1,691667 JPY_1M 1 11 2,541667
29 IRS -1 USD 1634 WAAR 0,930556 0,014 1 5 1,269444
29 IRS 1 USD 1634 ONWAAR 0,930556 USD_1M 1 5 1,269444
30 IRS -1 USD 2149 ONWAAR 0,425 USD_6M 6 22 11,07778
30 IRS 1 USD 2149 WAAR 0,425 0,016 6 22 11,07778
31 IRS -1 USD 2489 ONWAAR 0,597222 USD_3M 3 5 1,611111
31 IRS 1 USD 2489 WAAR 0,597222 0,046 3 5 1,611111
32 IRS -1 JPY 210504 ONWAAR 1,611111 JPY_1M 1 20 3,216667
32 IRS 1 JPY 210504 WAAR 1,611111 0,014 1 20 3,216667
33 IRS 1 JPY 192237 ONWAAR 1,691667 JPY_3M 3 20 6,513889
33 IRS -1 JPY 192237 WAAR 1,691667 0,028 3 20 6,513889
34 IRS -1 JPY 185564 ONWAAR 1,438889 JPY_6M 6 9 0,56768
34 IRS 1 JPY 185564 WAAR 1,438889 0,017 6 9 0,56768
35 IRS -1 USD 1045 WAAR 0,511111 0,029 3 24 6,344444
35 IRS 1 USD 1045 ONWAAR 0,511111 USD_3M 3 24 6,344444
36 IRS -1 USD 1611 WAAR 1,013889 0,04 6 12 6,6
36 IRS 1 USD 1611 ONWAAR 1,013889 USD_6M 6 12 6,6
37 IRS -1 USD 1214 ONWAAR 0,930556 USD_3M 3 7 2,455556
37 IRS 1 USD 1214 WAAR 0,930556 0,048 3 7 2,455556
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38 IRS -1 USD 1567 WAAR 0,425 0,036 6 21 10,57222
38 IRS 1 USD 1567 ONWAAR 0,425 USD_3M 3 41 10,57222
39 IRS 1 USD 2272 ONWAAR 1,525 USD_6M 6 27 14,71667
39 IRS -1 USD 2272 WAAR 1,525 0,025 12 14 14,71667
40 IRS 1 USD 1217 WAAR 1,611111 0,032 3 21 6,686111
40 IRS -1 USD 1217 ONWAAR 1,611111 USD_3M 3 21 6,686111
41 IRS 1 JPY 60121 ONWAAR 1,355556 JPY_3M 3 11 3,888889
41 IRS -1 JPY 60121 WAAR 1,355556 0,055 6 6 3,888889
42 IRS 1 EUR 843 ONWAAR 1,7743 EUR_3M 3 15 5,23453
42 IRS -1 EUR 843 WAAR 1,7743 0,045 6 8 5,23453
43 IRS 1 EUR 612 ONWAAR 0,67775 EUR_3M 3 17 4,8932
43 IRS -1 EUR 612 WAAR 0,67775 0,045 6 9 4,8932
44 IRS -1 EUR 1004 ONWAAR 0,96543 EUR_6M 6 23 6,5432
44 IRS 1 EUR 1004 WAAR 0,96543 0,045 12 12 6,5432
45 IRS 1 EUR 964 ONWAAR 1,5543 EUR_12M 12 7 3,9555
45 IRS -1 EUR 964 WAAR 1,5543 0,045 6 13 3,9555
46 IRS -1 EUR 2134 ONWAAR 1,2355 EUR_1M 1 13 8,5434
46 IRS 1 EUR 2134 WAAR 1,2355 0,045 1 13 8,5434
47 IRS -1 EUR 786 ONWAAR 0,75443 EUR_3M 3 8 0,9865
47 IRS 1 EUR 786 WAAR 0,75443 0,045 3 8 0,9865
48 IRS 1 EUR 659 ONWAAR 1,6566 EUR_3M 3 15 7,5456
48 IRS -1 EUR 659 WAAR 1,6566 0,045 6 8 7,5456
49 IRS 1 EUR 1890 ONWAAR 0,4323 EUR_1M 1 20 13,3454
49 IRS -1 EUR 1890 WAAR 0,4323 0,045 1 20 13,3454
50 IRS -1 EUR 755 ONWAAR 1,1453 EUR_6M 6 17 9,3432
50 IRS 1 EUR 755 WAAR 1,1453 0,045 6 17 9,3432
51 FX -1 USD 1158 WAAR 1,525
51 FX 1 JPY 121590 WAAR 1,525
52 FX -1 USD 1895 WAAR 4,569444
52 FX 1 JPY 198975 WAAR 4,569444
53 FX 1 JPY 155295 WAAR 7,102778
53 FX -1 USD 1479 WAAR 7,102778
54 FX -1 USD 2439 WAAR 7,613889
54 FX 1 JPY 256095 WAAR 7,613889
55 FX -1 USD 1457 WAAR 5,072222
55 FX 1 JPY 152985 WAAR 5,072222
56 FX -1 JPY 192469 WAAR 3,555556
56 FX 1 USD 1833,038 WAAR 3,555556
57 FX -1 USD 2231 WAAR 0,564354
57 FX 1 JPY 234255 WAAR 0,564354
58 FX -1 JPY 233123 WAAR 2,030556
58 FX 1 USD 2220,219 WAAR 2,030556
59 FX 1 JPY 229005 WAAR 10,14722
59 FX -1 USD 2181 WAAR 10,14722
60 FX 1 USD 819,6857 WAAR 7,613889
60 FX -1 JPY 86067 WAAR 7,613889
61 FX -1 JPY 218258 WAAR 1,525
61 FX 1 USD 2078,648 WAAR 1,525
62 FX 1 USD 1955,229 WAAR 7,613889
62 FX -1 JPY 205299 WAAR 7,613889
63 FX 1 USD 625,3714 WAAR 4,058333
63 FX -1 JPY 65664 WAAR 4,058333
64 FX 1 USD 1690,495 WAAR 2,030556
64 FX -1 JPY 177502 WAAR 2,030556
65 FX 1 JPY 194460 WAAR 4,569444
65 FX -1 USD 1852 WAAR 4,569444
66 FX -1 USD 1091 WAAR 9,641667
66 FX 1 JPY 114555 WAAR 9,641667
67 FX -1 USD 2315 WAAR 8,627778
67 FX 1 JPY 243075 WAAR 8,627778
68 FX -1 JPY 159930 WAAR 1,013889
68 FX 1 USD 1523,143 WAAR 1,013889
69 FX -1 JPY 121809 WAAR 1,013889
69 FX 1 USD 1160,086 WAAR 1,013889
70 FX 1 JPY 88935 WAAR 7,613889
70 FX -1 USD 847 WAAR 7,613889
71 FX -1 JPY 139698 WAAR 7,102778
71 FX 1 USD 1330,457 WAAR 7,102778
72 FX -1 EUR 1130 WAAR 8,095432
72 FX 1 USD 1525,5 WAAR 8,095432
73 FX -1 USD 1230 WAAR 6,668454
73 FX 1 EUR 911,111 WAAR 6,668454
74 FX -1 JPY 180545 WAAR 9,754562
74 FX 1 EUR 1273,686 WAAR 9,754562
75 FX -1 EUR 790 WAAR 6,356744
75 FX 1 USD 1066,5 WAAR 6,356744
76 FX -1 EUR 1354 WAAR 4,597553
76 FX 1 JPY 191929,5 WAAR 4,597553
77 FX -1 USD 689 WAAR 10,87653
77 FX 1 EUR 510,37 WAAR 10,87653
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78 FX -1 JPY 115765 WAAR 5,785532
78 FX 1 EUR 816,684 WAAR 5,785532
79 FX -1 EUR 935 WAAR 8,854324
79 FX 1 USD 1262,25 WAAR 8,854324
80 FX -1 USD 1774 WAAR 3,754346
80 FX 1 EUR 1314,074 WAAR 3,754346
81 XCS -1 JPY 126486 ONWAAR 1,525 JPY_6M 6 7 4,569444
81 XCS 1 USD 1204,629 WAAR 1,525 0,044 3 13 4,569444
82 XCS -1 JPY 255527 WAAR 1,525 0,053 3 15 5,072222
82 XCS 1 USD 2433,59 ONWAAR 1,525 USD_3M 3 15 5,072222
83 XCS -1 USD 635 WAAR 0,172222 0,052 3 25 1,06535
83 XCS 1 JPY 66675 ONWAAR 0,172222 JPY_3M 3 25 1,06535
84 XCS 1 USD 2294,257 ONWAAR 1,438889 USD_3M 3 13 4,483333
84 XCS -1 JPY 240897 WAAR 1,438889 0,011 3 13 4,483333
85 XCS -1 USD 738 WAAR 1,355556 0,041 3 4 2,116667
85 XCS 1 JPY 77490 ONWAAR 1,355556 JPY_3M 3 4 2,116667
86 XCS -1 JPY 93759 ONWAAR 0,425 JPY_12M 12 10 9,555556
86 XCS 1 USD 892,9429 WAAR 0,425 0,054 12 10 9,555556
87 XCS -1 USD 528 ONWAAR 0,425 USD_3M 3 9 2,455556
87 XCS 1 JPY 55440 WAAR 0,425 0,008 3 9 2,455556
88 XCS 1 JPY 120540 ONWAAR 0,597222 JPY_12M 12 8 7,7
88 XCS -1 USD 1148 WAAR 0,597222 0,007 12 8 7,7
89 XCS 1 JPY 168210 ONWAAR 0,172222 JPY_6M 6 5 2,202778
89 XCS -1 USD 1602 WAAR 0,172222 0,008 6 5 2,202778
90 XCS 1 USD 1162,971 ONWAAR 1,269444 USD_1M 1 8 1,861111
90 XCS -1 JPY 122112 WAAR 1,269444 0,014 1 8 1,861111
91 XCS -1 USD 1273 WAAR 1,186111 0,042 3 15 4,733333
91 XCS 1 JPY 133665 ONWAAR 1,186111 JPY_3M 3 15 4,733333
92 XCS 1 JPY 110040 WAAR 1,013889 0,034 6 17 9,130556
92 XCS -1 USD 1048 ONWAAR 1,013889 USD_6M 6 17 9,130556
93 XCS 1 USD 531,0857 ONWAAR 0,597222 USD_3M 3 29 7,7
93 XCS -1 JPY 55764 WAAR 0,597222 0,05 6 15 7,7
94 XCS 1 JPY 240975 WAAR 1,611111 0,014 12 8 8,713889
94 XCS -1 USD 2295 ONWAAR 1,611111 USD_12M 12 8 8,713889
95 XCS 1 EUR 1245 WAAR 0,86543 0,034 6 15 4,765469
95 XCS -1 USD 1680,75 ONWAAR 0,86543 USD_6M 6 15 4,765469
96 XCS -1 EUR 978 WAAR 0,99437 0,025 12 11 5,867678
96 XCS 1 JPY 138631,5 ONWAAR 0,99437 JPY_6M 6 21 5,867678
97 XCS 1 USD 1432 WAAR 1,43532 0,053 6 13 0,786887
97 XCS -1 EUR 1060,741 ONWAAR 1,43532 EUR_3M 3 25 0,786887
98 XCS -1 JPY 224565 WAAR 0,24743 0,044 1 9 8,965343
98 XCS 1 EUR 1584,233 ONWAAR 0,24743 EUR_1M 1 9 8,965343
99 XCS 1 EUR 774 WAAR 1,04342 0,021 3 17 10,54321
99 XCS -1 JPY 109714,5 ONWAAR 1,04342 JPY_3M 3 17 10,54321
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0 FRA -1 JPY 245248 WAAR 0,761111 0,018 1,777778
0 FRA 1 JPY 245248 ONWAAR 0,761111 IBOR 1,777778
1 FRA 1 JPY 101599 WAAR 0,425 0,023 4,483333
1 FRA -1 JPY 101599 ONWAAR 0,425 IBOR 4,483333
2 FRA -1 USD 811 ONWAAR 1,186111 IBOR 6,763889
2 FRA 1 USD 811 WAAR 1,186111 0,048 6,763889
3 FRA 1 JPY 94341 ONWAAR 0,341667 IBOR 0,844444
3 FRA -1 JPY 94341 WAAR 0,341667 0,028 0,844444
4 FRA 1 JPY 75371 WAAR 1,438889 0,026 4,988889
4 FRA -1 JPY 75371 ONWAAR 1,438889 IBOR 4,988889
5 FRA -1 USD 1936 ONWAAR 1,1 IBOR 8,713889
5 FRA 1 USD 1936 WAAR 1,1 0,008 8,713889
6 FRA -1 JPY 229981 ONWAAR 1,186111 IBOR 2,705556
6 FRA 1 JPY 229981 WAAR 1,186111 0,054 2,705556
7 FRA 1 USD 1479 WAAR 1,013889 0,05 8,116667
7 FRA -1 USD 1479 ONWAAR 1,013889 IBOR 8,116667
8 FRA 1 EUR 754 ONWAAR 0,678 IBOR 6,05323
8 FRA -1 EUR 754 WAAR 0,678 0,031 6,05323
9 FRA 1 EUR 550 ONWAAR 0,551 IBOR 8,3321
9 FRA -1 EUR 550 WAAR 0,551 0,044 8,3321

10 FRA 1 EUR 832 ONWAAR 1,134 IBOR 4,6645
10 FRA -1 EUR 832 WAAR 1,134 0,036 4,6645
11 FRA 1 EUR 435 ONWAAR 1,005 IBOR 7,8843
11 FRA -1 EUR 435 WAAR 1,005 0,05 7,8843
12 FRA 1 EUR 728 ONWAAR 0,355 IBOR 3,441
12 FRA -1 EUR 728 WAAR 0,355 0,048 3,441
13 FRA 1 EUR 505 ONWAAR 1,112 IBOR 4,496
13 FRA -1 EUR 505 WAAR 1,112 0,026 4,496
14 IRS -1 USD 2489 ONWAAR 0,597222 USD_3M 3 5 1,611111
14 IRS 1 USD 2489 WAAR 0,597222 0,046 3 5 1,611111
15 IRS -1 JPY 210504 ONWAAR 1,611111 JPY_1M 1 20 3,216667
15 IRS 1 JPY 210504 WAAR 1,611111 0,014 1 20 3,216667
16 IRS 1 JPY 192237 ONWAAR 1,691667 JPY_3M 3 20 6,513889
16 IRS -1 JPY 192237 WAAR 1,691667 0,028 3 20 6,513889
17 IRS -1 JPY 185564 ONWAAR 1,438889 JPY_6M 6 9 5,497222
17 IRS 1 JPY 185564 WAAR 1,438889 0,017 6 9 5,497222
18 IRS -1 USD 1045 WAAR 0,511111 0,029 3 24 6,344444
18 IRS 1 USD 1045 ONWAAR 0,511111 USD_3M 3 24 6,344444
19 IRS -1 USD 1611 WAAR 1,013889 0,04 6 12 6,6
19 IRS 1 USD 1611 ONWAAR 1,013889 USD_6M 6 12 6,6
20 IRS -1 USD 1214 ONWAAR 0,930556 USD_3M 3 7 2,455556
20 IRS 1 USD 1214 WAAR 0,930556 0,048 3 7 2,455556
21 IRS -1 USD 1567 WAAR 0,425 0,036 6 21 10,57222
21 IRS 1 USD 1567 ONWAAR 0,425 USD_3M 3 41 10,57222
22 IRS 1 USD 2272 ONWAAR 1,525 USD_6M 6 27 14,71667
22 IRS -1 USD 2272 WAAR 1,525 0,025 12 14 14,71667
23 IRS -1 EUR 432 ONWAAR 1,2355 EUR_1M 1 13 8,5434
23 IRS 1 EUR 432 WAAR 1,2355 0,045 1 13 8,5434
24 IRS -1 EUR 786 ONWAAR 0,75443 EUR_3M 3 8 5,73453
24 IRS 1 EUR 786 WAAR 0,75443 0,045 3 8 5,73453
25 IRS 1 EUR 659 ONWAAR 1,6566 EUR_3M 3 15 7,5456
25 IRS -1 EUR 659 WAAR 1,6566 0,045 6 8 7,5456
26 IRS 1 EUR 845 ONWAAR 0,4323 EUR_1M 1 20 13,3454
26 IRS -1 EUR 845 WAAR 0,4323 0,045 1 20 13,3454
27 FX -1 USD 2439 WAAR 7,613889
27 FX 1 JPY 256095 WAAR 7,613889
28 FX -1 USD 1457 WAAR 5,072222
28 FX 1 JPY 152985 WAAR 5,072222
29 FX -1 JPY 192469 WAAR 3,555556
29 FX 1 USD 1833,038 WAAR 3,555556
30 FX -1 USD 2231 WAAR 4,569444
30 FX 1 JPY 234255 WAAR 4,569444
31 FX -1 JPY 233123 WAAR 2,030556
31 FX 1 USD 2220,219 WAAR 2,030556
32 FX 1 JPY 229005 WAAR 10,14722
32 FX -1 USD 2181 WAAR 10,14722
33 FX 1 USD 819,6857 WAAR 7,613889
33 FX -1 JPY 86067 WAAR 7,613889
34 FX -1 JPY 218258 WAAR 1,525
34 FX 1 USD 2078,648 WAAR 1,525
35 FX -1 JPY 180545 WAAR 9,754562
35 FX 1 EUR 1273,686 WAAR 9,754562
36 FX -1 EUR 790 WAAR 6,356744
36 FX 1 USD 1066,5 WAAR 6,356744
37 FX -1 EUR 1354 WAAR 4,597553
37 FX 1 JPY 191929,5 WAAR 4,597553



E.6. PORTFOLIO 50 DERIVATIVES 5D

E

141

TradeId ProductType PayOrReceive Ccy Notional IsFixed StartDate Coupon CouponFrequency NumberOfCoupons Maturity

38 FX -1 USD 689 WAAR 10,87653
38 FX 1 EUR 510,37 WAAR 10,87653
39 XCS -1 USD 635 WAAR 0,172222 0,052 3 25 6,261111
39 XCS 1 JPY 66675 ONWAAR 0,172222 JPY_3M 3 25 6,261111
40 XCS 1 USD 2294,257 ONWAAR 1,438889 USD_3M 3 13 4,483333
40 XCS -1 JPY 240897 WAAR 1,438889 0,011 3 13 4,483333
41 XCS -1 USD 738 WAAR 1,355556 0,041 3 4 2,116667
41 XCS 1 JPY 77490 ONWAAR 1,355556 JPY_3M 3 4 2,116667
42 XCS -1 JPY 93759 ONWAAR 0,425 JPY_12M 12 10 9,555556
42 XCS 1 USD 892,9429 WAAR 0,425 0,054 12 10 9,555556
43 XCS -1 USD 528 ONWAAR 0,425 USD_3M 3 9 2,455556
43 XCS 1 JPY 55440 WAAR 0,425 0,008 3 9 2,455556
44 XCS 1 JPY 120540 ONWAAR 0,597222 JPY_12M 12 8 7,7
44 XCS -1 USD 1148 WAAR 0,597222 0,007 12 8 7,7
45 XCS 1 JPY 168210 ONWAAR 0,172222 JPY_6M 6 5 2,202778
45 XCS -1 USD 1602 WAAR 0,172222 0,008 6 5 2,202778
46 XCS 1 JPY 110040 WAAR 1,013889 0,034 6 17 9,130556
46 XCS -1 USD 1048 ONWAAR 1,013889 USD_6M 6 17 9,130556
47 XCS 1 USD 531,0857 ONWAAR 0,597222 USD_3M 3 29 7,7
47 XCS -1 JPY 55764 WAAR 0,597222 0,05 6 15 7,7
48 XCS 1 JPY 240975 WAAR 1,611111 0,014 12 8 8,713889
48 XCS -1 USD 2295 ONWAAR 1,611111 USD_12M 12 8 8,713889
49 XCS 1 EUR 1245 WAAR 0,86543 0,034 6 15 4,765469
49 XCS -1 USD 1680,75 ONWAAR 0,86543 USD_6M 6 15 4,765469
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0 FRA -1 USD 2160 ONWAAR 1,438889 IBOR 7,019444
0 FRA 1 USD 2160 WAAR 1,438889 0,033 7,019444
1 FRA -1 JPY 68563 ONWAAR 0,511111 IBOR 5,072222
1 FRA 1 JPY 68563 WAAR 0,511111 0,023 5,072222
2 FRA 1 JPY 124135 WAAR 1,525 0,053 7,613889
2 FRA -1 JPY 124135 ONWAAR 1,525 IBOR 7,613889
3 FRA -1 USD 1910 WAAR 1,525 0,054 6,6
3 FRA 1 USD 1910 ONWAAR 1,525 IBOR 6,6
4 FRA 1 EUR 435 ONWAAR 1,005 IBOR 7,8843
4 FRA -1 EUR 435 WAAR 1,005 0,05 7,8843
5 FRA 1 EUR 728 ONWAAR 0,355 IBOR 3,441
5 FRA -1 EUR 728 WAAR 0,355 0,048 3,441
6 FRA 1 EUR 505 ONWAAR 1,112 IBOR 4,496
6 FRA -1 EUR 505 WAAR 1,112 0,026 4,496
7 IRS -1 USD 2149 ONWAAR 0,425 USD_6M 6 22 11,07778
7 IRS 1 USD 2149 WAAR 0,425 0,016 6 22 11,07778
8 IRS -1 USD 2489 ONWAAR 0,597222 USD_3M 3 5 1,611111
8 IRS 1 USD 2489 WAAR 0,597222 0,046 3 5 1,611111
9 IRS -1 JPY 210504 ONWAAR 1,611111 JPY_1M 1 20 3,216667
9 IRS 1 JPY 210504 WAAR 1,611111 0,014 1 20 3,216667

10 IRS 1 JPY 192237 ONWAAR 1,691667 JPY_3M 3 20 6,513889
10 IRS -1 JPY 192237 WAAR 1,691667 0,028 3 20 6,513889
11 IRS 1 EUR 964 ONWAAR 1,5543 EUR_12M 12 7 3,9555
11 IRS -1 EUR 964 WAAR 1,5543 0,045 6 13 3,9555
12 IRS -1 EUR 432 ONWAAR 1,2355 EUR_1M 1 13 8,5434
12 IRS 1 EUR 432 WAAR 1,2355 0,045 1 13 8,5434
13 FX -1 USD 1457 WAAR 5,072222
13 FX 1 JPY 152985 WAAR 5,072222
14 FX -1 JPY 192469 WAAR 3,555556
14 FX 1 USD 1833,038 WAAR 3,555556
15 FX -1 USD 2231 WAAR 4,569444
15 FX 1 JPY 234255 WAAR 4,569444
16 FX -1 EUR 790 WAAR 6,356744
16 FX 1 USD 1066,5 WAAR 6,356744
17 FX -1 EUR 1354 WAAR 4,597553
17 FX 1 JPY 191929,5 WAAR 4,597553
18 FX -1 USD 1774 WAAR 3,754346
18 FX 1 EUR 1314,074 WAAR 3,754346
19 XCS -1 USD 738 WAAR 1,355556 0,041 3 4 2,116667
19 XCS 1 JPY 77490 ONWAAR 1,355556 JPY_3M 3 4 2,116667
20 XCS -1 JPY 93759 ONWAAR 0,425 JPY_12M 12 10 9,555556
20 XCS 1 USD 892,9429 WAAR 0,425 0,054 12 10 9,555556
21 XCS -1 USD 528 ONWAAR 0,425 USD_3M 3 9 2,455556
21 XCS 1 JPY 55440 WAAR 0,425 0,008 3 9 2,455556
22 XCS 1 JPY 120540 ONWAAR 0,597222 JPY_12M 12 8 7,7
22 XCS -1 USD 1148 WAAR 0,597222 0,007 12 8 7,7
23 XCS -1 EUR 978 WAAR 0,99437 0,025 12 11 5,867678
23 XCS 1 JPY 138631,5 ONWAAR 0,99437 JPY_6M 6 21 5,867678
24 XCS 1 USD 1432 WAAR 1,43532 0,053 6 13 12,65334
24 XCS -1 EUR 1060,741 ONWAAR 1,43532 EUR_3M 3 25 12,65334
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