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List of symbols

symbol description unit

d water depth with respect to a reference level [m]
f Coriolis parameter [1/s]
fx Coriolis force component in x-direction (per unit mass) [m/s2]
fy Coriolis force component in y-direction (per unit mass) [m/s2]
fz Coriolis force component in z-direction (per unit mass) [m/s2]
g gravitational acceleration [m/s2]
H total water depth (ζ + d) [m]
k turbulent kinetic energy [m2/s2]
lm mixing length [m]
p pressure [kg/(ms2)]
p̄ time-averaged pressure [kg/(ms2)]
pa atmospheric pressure [kg/(ms2)]
u flow velocity component in x-direction [m/s]
ū time-averaged flow velocity component in x-direction [m/s]
U depth-averaged flow velocity component in x-direction [m/s]
v flow velocity component in y-direction [m/s]
v̄ time-averaged flow velocity component in y-direction [m/s]
V depth-averaged flow velocity component in y-direction [m/s]
w flow velocity component in z-direction [m/s]
w̄ time-averaged flow velocity component in z-direction [m/s]

α
ζ

’reflection coefficient’ (water level boundary) [s2]
αU ’reflection coefficient’ (velocity boundary) [s]
ε dissipation rate of turbulent kinetic energy [m2/s3]
ζ free surface elevation with respect to a reference level [m]
κ Von Kármán constant [-]
ν kinematic viscosity [m2/s]
νt eddy viscosity [m2/s]

ν2D
t part of horizontal eddy viscosity due to ”2D turbulence” [m2/s]
νH

t horizontal eddy viscosity [m2/s]
νV

t vertical eddy viscosity [m2/s]
ρ density [kg/m3]
ρ0 reference density [kg/m3]
σ transformed vertical coordinate [-]
τ time step [s]

τbx bed shear stress in x-direction [1/(ms)]
τby bed shear stress in y-direction [1/(ms)]
~τs wind stress [1/(ms)]
φ geophysical latitude [-]
Ω angular speed of the earth [1/s]
Ω rotation vector of the earth [1/s]
ω transformed vertical flow velocity component [m/s]
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1 Introduction

The computer program Delft3D-FLOW can be used to compute a numerical approximation
of the solution of the shallow-water equations. The shallow-water equations describe the flow
of water in rivers, lakes and shallow seas, like the North Sea. The result of a Delft3D-FLOW
simulation can be used to solve the transport equations for some contaminant or to determine
whether dykes along a river need to be heightened.

The solution obtained by Delft3D-FLOW is the product of a modelling process subject to
uncertainties and errors (AIAA, 1998), see Figure 1. The first step in this process is the derivation
of the shallow-water equations, which comprise a physical model for the natural water flows.
Lack of knowledge on the physical aspects (turbulence, boundary conditions) in this step is the
general cause of uncertainty within the modelling process. This may be the cause of the difference
between experimental and computational data (Oberkampf and Blottner, 1998). Uncertainty
will not be dealt with in this report.

The analytical (i.e. exact) solution of the shallow-water equations can not be determined,
so an approximation will have to be calculated. The next step in the modelling process is
the construction of a numerical model for the shallow-water equations. During this construction
truncation errors are made. When solving the numerical model small errors, like rounding errors
and iteration errors, are unavoidable. To a certain extent it is possible to calculate an upper
bound for these errors.

?

?

?

�

�

�

Natural water flow

model uncertainties

Physical model

truncation errors

Numerical model

iteration errors, rounding errors

Solution

Figure 1. Uncertainties and errors in the various steps of the solution process.

The aim of this research is to track down, explain and quantify numerical errors in Delft3D-
FLOW and, if necessary, find solutions to reduce these errors. For this purpose several test cases
will be set up, which show erroneous results. Then the computations which cause these errors
will have to be located, so the errors can be evaluated. Finally, a solution will be suggested and
tested.

In the second chapter the shallow-water equations will be derived and their boundary conditions
will be discussed. The third chapter focuses on the staggered grid, the numerical scheme and
the procedure for solving the numerical equations. In the fourth chapter test cases are stated
and illustrated.
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2 Flow model

The Navier-Stokes equations are a general model which can be used to model water flows in
many applications. However, when considering a problem in which the horizontal scale is much
larger than the vertical one the three-dimensional shallow-water equations will suffice.

First we will derive the Reynolds-averaged Navier-Stokes equations describing turbulent
flows for which the length scale of the turbulence is much smaller than that of the problem.
Then we will derive the three-dimensional shallow-water equations under the assumption that
the pressure is hydrostatically distributed. These equations will be transformed to σ-coordinates,
after which the boundary conditions and the turbulence modelling will be discussed.

2.1 Reynolds-averaged Navier-Stokes equations

The Navier-Stokes equations are given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ ν4u− fx

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ0

∂p

∂y
+ ν4v − fy (1)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ0

∂p

∂z
+ ν4w − fz −

ρ

ρ0
g,

where u, v and w denote the velocity components in the x-, y- and z-direction respectively,
ρ the density, ρ0 the reference density, p the pressure, ν the kinematic viscosity and fx, fy

and fz represent the components of the Coriolis forces per unit mass. They are defined by
(fx, fy, fz)T = −2Ω × (u, v, w)T , where Ω is the earth’s rotation vector. The Navier-Stokes
equations in (1) are valid under the assumption that the density is constant or if the Boussinesq
approximation applies.

Assumption 1 (Boussinesq approximation). The Boussinesq approximation states that
if density variations are small the density may be assumed constant in all terms except the
gravitational term.

Due to turbulence eddies small variations occur in the flow velocities and pressure. Usually
these variations are too small to be represented in a numerical scheme unless the grid is chosen
very fine. To deal with this phenomenon we first decompose the velocities and the pressure as
follows

u = ū + u′, v = v̄ + v′, w = w̄ + w′ and p = p̄ + p′, (2)

where the overbar represents time-averaged quantities. For instance ū is defined by

ū(t) :=
1
T

∫ t+T

t
u(τ)dτ.

The period T should be larger than the turbulence time scale, but smaller than long periodic
effects such as the tidal scale. The turbulent fluctuations are given by u′, v′, w′ and p′. Note
that the time-averages of these fluctuations are zero, i.e. 1

T

∫ t+T
t u′ dτ = 0.

When substituting (2) into (1) and averaging the resulting equations over time the Reynolds-
averaged Navier-Stokes equations or simply Reynolds equations arise for turbulent flows. They
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read

∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+ w̄

∂ū

∂z
+

∂u′u′

∂x
+

∂u′v′

∂y
+

∂u′w′

∂z
= − 1

ρ0

∂p̄

∂x
− f̄x (3a)

∂v̄

∂t
+ ū

∂v̄

∂x
+ v̄

∂v̄

∂y
+ w̄

∂v̄

∂z
+

∂v′u′

∂x
+

∂v′v′

∂y
+

∂v′w′

∂z
= − 1

ρ0

∂p̄

∂y
− f̄y (3b)

∂w̄

∂t
+ ū

∂w̄

∂x
+ v̄

∂w̄

∂y
+ w̄

∂w̄

∂z
+

∂w′u′

∂x
+

∂w′v′

∂y
+

∂w′w′

∂z
= − 1

ρ0

∂p̄

∂z
− f̄z −

ρ

ρ0
g. (3c)

The correlations between fluctuating velocity components (u′u′, u′v′, etc.) are unknown. These
correlations are responsible for a loss of momentum in the mean flow direction and therefore
appear to act as stresses on the fluid. They are called Reynolds stresses. These stresses are much
larger than the viscous stresses which have therefore been neglected.

Assumption 2 (Eddy viscosity concept or Boussinesq hypothesis). Reynolds stresses
like viscous stresses depend on the deformation of the mean flow. Thus, the Reynolds stresses
are modelled as

u′v′ = −νt

(
∂v̄

∂x
+

∂ū

∂y

)
, (4)

where νt is the so-called eddy viscosity. This eddy viscosity is a priori unknown and a suitable
expression has to be constructed (see section 2.5).

2.2 Three-dimensional shallow-water equations

We speak of shallow water only when a flow satisfies certain characteristic relations.

Assumption 3 (Shallow water). (i) The characteristic horizontal length scale is much larger
than the characteristic vertical length scale. (ii) The characteristic vertical velocity is small in
comparison with the characteristic horizontal velocity (Jin, 1993).

These assumptions allow that the terms ∂w̄
∂x and ∂w̄

∂y are neglected. Also the difference between
the horizontal and the vertical length scale justifies a distinction between a horizontal (νH

t ) and
a vertical (νV

t ) eddy viscosity. But more importantly, the momentum equation in the vertical
direction reduces to the hydrostatic pressure distribution

∂p̄

∂z
= −ρg. (5)

Integrating this equation results in

p̄(x, y, z, t) = g

∫ ζ

z
ρ dz + pa, (6)

where ζ = ζ(x, y, t) is the free surface level against the reference plane z = 0 and pa is the
atmospheric pressure. Substituting this result in the pressure term of (3a) and using Leibnitz’
integration rule, yields

− 1
ρ0

∂p̄

∂x
= −ρg

ρ0

∂ζ

∂x
− g

ρ0

∫ ζ

z

∂ρ

∂x
dz′ − 1

ρ0

∂pa

∂x
.

The horizontal pressure gradient is described by differences of the water level ζ through the
barotropic term, the first term on the right-hand-side, and by density differences in horizontal
direction through the baroclinic term, the second term. The last term on the right-hand side
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describes the contribution of the atmospheric pressure. If we had taken ρ constant, (6) would
read p̄ = ρg(ζ − z) + pa and for the pressure term of (3a) we would have

− 1
ρ0

∂p̄

∂x
= −g

∂ζ

∂x
− 1

ρ0

∂pa

∂x
.

From this point on we will consider the density constant and neglect the atmospheric pressure
gradient. Note that in Delft3D-FLOW these simplifications are not carried through.

Substituting equations (4) and (6) in equations (3a) and (3b) yields, dropping the overbar,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −g

∂ζ

∂x
+ fv

+ 2
∂

∂x

(
νH

t

∂u

∂x

)
+

∂

∂y

(
νH

t

(
∂u

∂y
+

∂v

∂x

))
+

∂

∂z

(
νV

t

∂u

∂z

) (7)

and

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −g

∂ζ

∂y
− fu

+
∂

∂x

(
νH

t

(
∂u

∂y
+

∂v

∂x

))
+ 2

∂

∂y

(
νH

t

∂v

∂y

)
+

∂

∂z

(
νV

t

∂v

∂z

)
,

(8)

where f , the Coriolis parameter, is defined by

f = 2Ω sinφ

with Ω the angular speed of the earth and φ the latitude. The equations (7), (8) and the
incompressible continuity equation

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (9)

are called the shallow-water equations. Together with initial and boundary conditions they can
be used to compute the flow velocity components.

Integrating the continuity equation along the vertical axis results in

w(x, y, ζ, t)− w(x, y, d, t) = −
∫ ζ

−d

∂u

∂x
dz −

∫ ζ

−d

∂v

∂y
dz, (10)

where d = d(x, y) is the water depth below the reference plane z = 0. Morphological changes of
the bed due to the water flow are in general very small and they are therefore neglected. Thus
d is not dependent on the time. Equation (10) can be rewritten by using substitutions for w at
the bottom and the water surface. For z = ζ(x, y, t) we have

w =
dζ

dt
=

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
. (11)

A similar condition at the bottom reads

w = −u
∂d

∂x
− v

∂d

∂y
. (12)

Substituting (11) and (12) into (10) and using Leibnitz’ integration rule, yields

∂ζ

∂t
= − ∂

∂x

∫ ζ

−d
u dz − ∂

∂y

∫ ζ

−d
v dz. (13)
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2.3 Transformed equations in σ-coordinates

The bottom and the water surface are usually not parallel to the reference plane (z = 0). In order
to cope with uneven bottom topographies in numerical applications a transformation is applied
to so-called σ-coordinates (Phillips, 1957). This transformation stretches the vertical direction,
such that the transformed water depth is constant in space and time. The σ-coordinates are
defined by

x̃ = x, ỹ = y, σ =
z − ζ

H
, t̃ = t,

where H = H(x, y, t) = ζ + d is the water depth. The time-derivative in σ-coordinates reads

∂

∂t
=

∂

∂t̃
+

∂σ

∂t̃

∂

∂σ
.

For the spatial derivatives in the horizontal directions similar expressions hold. In the vertical
direction we have

∂

∂z
=

1
H

∂

∂σ
.

The hydrostatic pressure relation (5) after transforming to σ-coordinates and integrating along
the vertical axis, reads

p̃ = pa + gH

∫ 0

σ
ρ(x̃, ỹ, σ′, t̃) dσ′. (14)

The transformed vertical velocity is defined by

ω := H
Dσ

Dt̃
= H

[
∂

∂t

(
z − ζ

H

)
+ u

∂

∂x

(
z − ζ

H

)
+ v

∂

∂y

(
z − ζ

H

)]
= w −

(
∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y

)
− σ

(
∂H

∂t
+ u

∂H

∂x
+ v

∂H

∂y

)
. (15)

The horizontal velocities u and v remain strictly horizontal after the transformation. Hence
ũ = u and ṽ = v. When we use equation (15) on equation (9), noting that H and ζ are not
dependent on σ, but ũ and ṽ are, and assuming that d is not time-dependent, we obtain the
continuity equation in transformed coordinates:

∂ζ

∂t̃
+

∂Hũ

∂x̃
+

∂Hṽ

∂ỹ
+

∂ω

∂σ
= 0. (16)

Integrating equation (16) from the bottom to the surface and using Leibnitz’ integration rule,
yields

∂ζ

∂t̃
+

∂HU

∂x̃
+

∂HV

∂ỹ
= 0, (17)

where U and V are depth-averaged velocities defined by U =
∫ 0
−1 ũ dσ and V =

∫ 0
−1 ṽ dσ.

The momentum equations in x- and y-direction in σ-coordinates are, dropping the tilde,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

ω

H

∂u

∂σ
= − 1

ρ0

(
∂p

∂x
+

∂σ

∂x

∂p

∂σ

)
+ fv + Fx +

1
H2

∂

∂σ

(
νV

t

∂u

∂σ

)
(18)

and

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

ω

H

∂v

∂σ
= − 1

ρ0

(
∂p

∂y
+

∂σ

∂y

∂p

∂σ

)
− fu + Fy +

1
H2

∂

∂σ

(
νV

t

∂v

∂σ

)
. (19)
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The terms Fx and Fy represent the horizontal viscosity terms. They are given by

Fx =
(

∂

∂x
+

∂σ

∂x

∂

∂σ

)
τxx +

(
∂

∂y
+

∂σ

∂y

∂

∂σ

)
τxy

and

Fy =
(

∂

∂x
+

∂σ

∂x

∂

∂σ

)
τxy +

(
∂

∂y
+

∂σ

∂y

∂

∂σ

)
τyy,

where the Reynolds stresses τxx, τxy and τyy satisfy

τxx = 2νH
t

(
∂u

∂x
+

∂σ

∂x

∂u

∂σ

)
τxy = νH

t

(
∂u

∂y
+

∂σ

∂y

∂u

∂σ
+

∂v

∂x
+

∂σ

∂x

∂v

∂σ

)
τyy = 2νH

t

(
∂v

∂y
+

∂σ

∂y

∂v

∂σ

)
.

For large scale problems with coarse horizontal grids, i.e. when shear-stresses along the boun-
daries may be neglected, the forces Fx and Fy may be simplified. First the horizontal eddy
viscosity νH

t is assumed constant and then the horizontal eddy viscosity terms are reduced to
the Laplace operator:

Fx = νH
t 4u and Fy = νH

t 4v (20)

with4 = ∂2

∂x2 + ∂2

∂y2 . After application of this simplification we allow the horizontal eddy viscosity
to vary in space.

Finally we will look at the horizontal pressure gradient in σ-coordinates, which can be
written as

∂p

∂x
+

∂σ

∂x

∂p

∂σ
=

∂p

∂x
− 1

H

(
∂ζ

∂x
+ σ

∂H

∂x

)
∂p

∂σ
.

Substituting the integrated hydrostatic pressure relation (14) results in

∂pa

∂x
+ g

∂

∂x

(
H

∫ 0

σ
ρ dσ′

)
+ gρ

(
∂ζ

∂x
+ σ

∂H

∂x

)
.

This expression has been implemented in Delft3D-FLOW. If we take the density constant
and neglect the atmospheric pressure gradient, the horizontal pressure gradient reduces to the
barotropic term gρ ∂ζ

∂x as shown before in the previous section.

2.4 Boundary conditions

Due to the impermeability of the surface and the bottom the following conditions apply:

ω|σ=−1 = ω|σ=0 = 0.

By imposing these conditions we neglect evaporation, rainfall and exchange with the ground
water. At the sea bed the boundary conditions for the momentum equations are given by

νV
t

H

∂u

∂σ

∣∣∣∣
σ=−1

=
1
ρ
τbx (21)

and
νV

t

H

∂v

∂σ

∣∣∣∣
σ=−1

=
1
ρ
τby (22)
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with τbx and τby the components of the bed shear stress in x- and y-direction, respectively.
Wind stresses are responsible for non-homogeneous boundary conditions for the momentum

equations at the free surface. They read

νV
t

H

∂u

∂σ

∣∣∣∣
σ=0

=
1
ρ
|~τs| cos θ (23)

and
νV

t

H

∂v

∂σ

∣∣∣∣
σ=0

=
1
ρ
|~τs| sin θ (24)

with |~τs| the wind stress and θ the angle between the wind stress vector and x-axis.

Assumption 4 (Wind stress). The expression for the wind stress is

|~τs| = ρaCdU
2
10

where ρa is the air density, U10 is the wind speed 10 metres above the water surface and Cd is
the wind drag coefficient, which depends on U10.

This dependence is empirical and several implementations are possible, for example a linear
relation, a constant value for Cd or a combination of the two.

The conditions at the vertical boundary planes are divided in open and closed boundary condi-
tions. Closed boundaries are situated at the transition between land and water. Open boundaries
are virtual ”water-water” boundaries. These open boundaries have been introduced in order to
limit the computational area.

At the closed boundaries the flow condition prohibiting flow through the boundary reads

n ·
(

u

v

)∣∣∣∣
(x,y)=(xb,yb)

= 0 ∀σ ∈ [−1, 0]

where (xb, yb) is any point on the closed boundary and n consists of the first two components
of the outward normal of the vertical boundary plane in that point. The slip condition imposed
along the closed boundaries depend on the scale of the problem. In large scale problems the
tangential shear stresses along closed boundaries can be neglected (free slip condition). For
small scale problems this influence is not negligible and is taken into account through a partial
slip condition.

At open boundaries the water level, the velocity or the discharge should be prescribed. The
velocity at an open boundary is chosen perpendicular to that boundary for computational
reasons. For an open boundary one of the following three boundary conditions can be prescribed.
They are

ζ = Fζ(t) (prescribing the water level),
U = FU (t) (prescribing the normal velocity component), (25)
Q = FQ(t) (prescribing the discharge),

where ζ is the free surface level (see page 5), U the depth-averaged normal velocity component
(see page 7) and Q the discharge through the boundary plane. For simplicity we have assumed
that the open boundary is perpendicular to the x-axis, so we only have to specify the velocity
component along the x-axis. We will speak of a left and a right open boundary.
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For the boundary conditions of the velocity and the discharge type a profile has to be
prescribed in the vertical direction. This profile can be uniform or logarithmic. Also a complete
3D-profile can be prescribed in which for various depths different conditions are specified.

If an outgoing wave at an open boundary is not prescribed exactly then that wave will
(partially) reflect at the boundary and propagate as a disturbance in the area. The boundary
conditions in (25) will in general cause wave reflections. A non-reflective boundary condition
is based on the Riemann invariants U ± 2

√
gH. The boundary condition specified by the user

would then be
U ± 2

√
gH = FR(t)

with ”+” for the left and ”−” for the right boundary. For numerical purposes it is convenient
to have a linearised boundary condition.

Assumption 5. The variations of the water level ζ (with respect to the reference plane) are
small in comparison with the water depth d.

Under this assumption the linearised Riemann invariants read

U ± 2
√

gH = U ± 2
√

g(ζ + d) = U ± 2
√

gd± ζ
2g

2
√

g(ζ + d)
+O(ζ2)

≈ U ± 2
√

gd± ζ

√
g

d
.

To reduce the reflective properties of the water level and velocity boundary conditions in (25)
the time-derivative of the Riemann invariant is added. The new boundary conditions are

ζ + α
ζ

∂

∂t

(
U ± 2

√
gH
)

= Fζ(t),

U + αU

∂

∂t

(
U ± 2

√
gH
)

= FU (t)

for the water level and the velocity respectively. The reflection coefficients α
ζ

and αU should be
chosen sufficiently small to damp short waves introduced by the initial conditions.

2.5 Turbulence closure models

In water flows small eddies occur due to turbulence. The grid used in numerical applications
is usually too coarse to resolve the turbulent quantities u′, v′ and w′. Though initially they
appear in the Reynolds-averaged Navier-Stokes equations (3), due to Assumption 2, the eddy
viscosity concept (on page 5) they have vanished. However, an unknown parameter νt, the eddy
viscosity, has been introduced, for which in shallow waters a horizontal and a vertical one are
distinguished. In this section possible expressions or models for νt are treated, which are an
important part of the eddy viscosity concept.

The horizontal eddy viscosity, νH
t , is usually chosen constant. Physically this is unsound,

because the eddy viscosity is a flow property, but for large scale problems it has proved to
be sufficiently accurate. The vertical eddy viscosity, νV

t , is computed according to one of the
turbulence closure models. The models in which suitable expressions for νt are given or calculated
are called turbulence closure models. The following models are available:

1. Constant coefficient.
2. Algebraic turbulence closure model.
3. k–L turbulence closure model.
4. k–ε turbulence closure model.
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The first model is the simplest but also the most unrealistic as it will lead to a laminar flow.
The other models are based on the eddy viscosity concept of Kolmogorov and Prandtl. In this
concept the eddy viscosity is related to a characteristic length scale, L, and a characteristic
velocity scale, U . This relation reads

νV
t ∼ LU .

The explicit form, also known as the Kolmogorov-Prandtl expression, is

νV
t = c′µlm

√
k,

where c′µ is constant derived from the empirical constant cµ in the k–ε model, lm is the mixing
length and k is the turbulent kinetic energy. The last three models differ in their prescription
for lm and k.

In the algebraic model an expression is given for lm and k. For the mixing length one of the
most common choices is given by the Bakhmetev distribution which reads

lm = κ(z + d)

√
1− z + d

H

with κ the Von Kármán constant, κ ≈ 0.41. An algebraic expression for k depends on the
friction velocities or the velocity gradients.

In the k–L closure model the mixing length is analytically prescribed by lm = cDk3/2/ε,
where cD is a model coefficient, ε is the dissipation rate of turbulent kinetic energy and the
turbulent kinetic energy follows from a transport equation.

The k–ε closure model uses transport equations for both the turbulent kinetic energy k as
well as the dissipation rate of turbulent kinetic energy ε. These transport equations read

∂k

∂t
+ u

∂k

∂x
+ v

∂k

∂y
+

ω

H

∂k

∂σ
=

1
H2

∂

∂σ

(
νV

t

σk

∂k

∂σ

)
+ Pk + Bk − ε,

∂ε

∂t
+ u

∂ε

∂x
+ v

∂ε

∂y
+

ω

H

∂ε

∂σ
=

1
H2

∂

∂σ

(
νV

t

σε

∂ε

∂σ

)
+ Pε + Bε − c2ε

ε2

k
,

where c2ε is a model coefficient, σk/ε is the Prandtl-Schmidt number, Pk/ε is the production
term and Bk/ε is the buoyancy term. These equations can be solved with appropriate initial and
boundary conditions. Detailed descriptions of these models are beyond the scope of this report.
For more information we refer to Launder and Spalding (1972) and Rodi (1985).

Large eddy simulation

Large eddies occur mainly in rivers, harbours and estuaries. Especially in harbours they are
unwanted, since they cause sediment precipitation, making it necessary to dredge regularly.

The closure models mentioned above recognise the difference between a horizontal and a
vertical eddy viscosity. These models prescribe a constant value for the horizontal eddy viscosity,
because that is sufficient for large scale problems. However, this approach is physically unsound
because the eddy viscosity depends on the local flow characteristics, and it should therefore not
be used if large eddies (at least larger than the grid size) play an important role.

The field of large eddy simulation is still highly in development. An ’easy’ possibility is
to design a new closure model for the horizontal eddy viscosity. Uittenbogaard et al. (1992)
proposed the following definition for the horizontal eddy viscosity

νH
t = ν2D

t + νV
t ,

11



where ν2D
t is the part due to ”2D turbulence” and νV

t , the vertical eddy viscosity, is the part due
to ”3D turbulence”. Bijvelds (2001) constructed the ’two-length-scale k–ε model’ to calculate
ν2D

t in which is assumed that large eddies are quasi-2D, so a depth-averaged version of the
k–ε closure model can be used.
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3 Numerical scheme for the shallow-water equations

The analytical solution of the shallow-water equations can only be calculated in a very small
number of cases, which however do not occur in nature. A numerical approximation is therefore
almost inevitable. In Delft3D-FLOW a finite difference scheme on a staggered grid is chosen
using an ADI solver in conjunction with a Gauss-Seidel iteration. In the next sections these
numerical methods will be discussed.

3.1 Shallow-water equations in appropriate form

The equations which are actually going to be numerically approximated are the horizontal
momentum equations (18) and (19), the continuity equation (16) and the integrated continuity
equation (17). The pressure in the momentum equations is given by equation (14). Substituting
(14) in the pressure terms of the momentum equations in x- and y-direction, setting the density
constant and neglecting the atmospheric pressure gradient, these terms reduce to the barotropic
terms

−g
∂ζ

∂x
and − g

∂ζ

∂y
,

respectively. For the horizontal eddy viscosity terms Fx and Fy we will use the simplified equa-
tions in (20).

For convenience we repeat the above mentioned equations, taking the remarks into account,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

ω

H

∂u

∂σ
= −g

∂ζ

∂x
+ fv + νH

t

(
∂2u

∂x2
+

∂2u

∂y2

)
+

1
H2

∂

∂σ

(
νV

t

∂u

∂σ

)
, (26a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

ω

H

∂v

∂σ
= −g

∂ζ

∂y
− fu + νH

t

(
∂2v

∂x2
+

∂2v

∂y2

)
+

1
H2

∂

∂σ

(
νV

t

∂v

∂σ

)
, (26b)

∂ζ

∂t
+

∂HU

∂x
+

∂HV

∂y
= 0, (26c)

∂ζ

∂t
+

∂Hu

∂x
+

∂Hv

∂y
+

∂ω

∂σ
= 0. (26d)

3.2 Alternating Direction Implicit schemes in general

When working on a two-dimensional problem using implicit schemes, usually a large banded
matrix equation has to be solved. An implicit numerical scheme for the two-dimensional heat
equation,

∂u

∂t
= α

(
∂2u

∂x2
+

∂2u

∂y2

)
, (27)

for example, would look like

up+1
m,n − up

m,n

4t
= α(δ2

xup+1
m,n + δ2

yu
p+1
m,n)

with

δ2
xup+1

m,n = (up+1
m−1,n − 2up+1

m,n + up+1
m+1,n)/4x2 and

δ2
yu

p+1
m,n = (up+1

m,n−1 − 2up+1
m,n + up+1

m,n+1)/4y2.

Solving this equation by Gaussian elimination would be too expensive due to fill-in. The al-
ternating direction implicit (ADI) schemes are a good alternative, because only tridiagonal
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matrix equations have to be solved. The idea is to use implicit numerical approximations in one
direction and explicit ones in the other direction.

We will discuss one of the most common ADI schemes, the Peaceman-Rachford scheme, for
the two-dimensional heat equation. This ADI scheme uses a time step of 4t/2 and the direction
in which implicit numerical approximations are used alternates. The scheme reads

u
p+ 1

2
m,n − up

m,n

4t/2
= αδ2

xu
p+ 1

2
m,n + αδ2

yu
p
m,n (28a)

up+1
m,n − u

p+ 1
2

m,n

4t/2
= αδ2

xu
p+ 1

2
m,n + αδ2

yu
p+1
m,n. (28b)

In equation (28a) the derivative with respect to x is evaluated implicitly and the derivative with
respect to y explicitly and vice versa in equation (28b). Note that both matrix equations are
tridiagonal. From now on we will refer to (28) as one iteration, divided in two stages.

Stability
For stability analysis we use a Von Neumann stability method. Let

up
m,n = Gpeiθxmeiθyn,

where i is the imaginary unit, θx, θy ∈ [0, 2π] and G ∈ R, and substitute this expression in the
first stage, equation (28a). After cancelling several factors this results in

Gp+ 1
2 = Gp +

1
2
rxGp+ 1

2 [e−iθx4x − 2 + eiθx4x] +
1
2
ryG

p[e−iθy4y − 2 + eiθy4y]

with rx = α4t/4x2 and ry = α4t/4y2. Further manipulation leads to the following relation
for the amplification factor G:

√
G =

1 + ry[cos βy − 1]
1− rx[cos βx − 1]

=
1− 2ry sin2 1

2βy

1 + 2rx sin2 1
2βx

with βx = θx4x and βy = θy4y. For the second stage the relation for the amplification factor
reads

√
G =

1 + rx[cos βx − 1]
1− ry[cos βy − 1]

=
1− 2rx sin2 1

2βx

1 + 2ry sin2 1
2βy

.

Thus the amplification factor for the whole time step 4t is

G =
(1− 2rx sin2 1

2βx)(1− 2ry sin2 1
2βy)

(1 + 2rx sin2 1
2βx)(1 + 2ry sin2 1

2βy)
.

Since rx and ry are both positive and the sine terms are at most equal to one, the amplification
factor is always smaller than one. Hence this ADI scheme is unconditionally stable. Note that
each stage separately is conditionally stable with the conditions ry ≤ 1 and rx ≤ 1, respectively.

Consistency
Next we will discuss the consistency (accuracy) of the scheme. Therefore we rewrite the equations
(28a) and (28b) as

(1− 1
24t α δ2

x)u
p+ 1

2
m,n = (1 + 1

24t α δ2
y)u

p
m,n (29a)

(1− 1
24t α δ2

y)u
p+1
m,n = (1 + 1

24t α δ2
x)u

p+ 1
2

m,n . (29b)

After multiplication of (29a) with (1 + 1
24t α δ2

x) the operators on the left-hand side are com-
mutable. Having done so we substitute (29b) in it, resulting in
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(1− 1
24t α δ2

x)(1− 1
24t α δ2

y)u
p+1
m,n = (1 + 1

24t α δ2
x)(1 + 1

24t α δ2
y)u

p
m,n (30)

Expanding the terms in equation (30) the ADI scheme is equivalent to

up+1
m,n − up

m,n

4t
=

α

2
δ2
x

4x2
(up+1

m,n + up
m,n) +

α

2
δ2
y

4y2
(up+1

m,n + up
m,n)

− α4t

4
δ2
x

4x2

δ2
y

4y2
(up+1

m,n − up
m,n)

(31)

Using Taylor series expansion on equation (31), we see that[
∂u

∂t

]p

m,n

+
1
2
4t

[
∂2u

∂t2

]p

m,n

+O(4t2) =

α

[
∂2u

∂x2

]p

m,n

+ 1
2α4t

[
∂3u

∂x2∂t

]p

m,n

+O(4x2) +O(4t4x2)

+ α

[
∂2v

∂x2

]p

m,n

+ 1
2α4t

[
∂3v

∂y2∂t

]p

m,n

+O(4y2) +O(4t4y2)

− 1
4α4t2

[
∂u

∂x2∂y2∂t

]p

m,n

+O(4t24x2) +O(4t24y2) +O(4t3)

(32)

Using equation (27) on (32) (twice!) shows that the Peaceman-Rachford scheme is second order
accurate in 4t, 4x and 4y. For more details on ADI schemes and the Peaceman-Rachford
scheme in particular we refer to Mitchell and Griffiths (1980).

3.3 Grid and numerical scheme

This section is largely taken from Stelling (1984). More information on discretisations on stag-
gered grids can be found in Wesseling (2000).

The horizontal grid is the so-called Arakawa C grid, a staggered grid. This means that the
variables are arranged on the grid in a special way. The different variables are not calculated
at the same physical points in the horizontal plane. Figure 2 shows an example of a staggered
grid.

d d d d d
d d d d d
d d d d d
d d d d d

- - - - -

- - - - -

- - - - -

- - - - -

- - - - -

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

0 1 2 3 4 5
0

1

2

3

4

n

6

m -

Legend

Computational boundary
Open boundary
Closed boundary
Water level grid pointd Depth grid point

- u-velocity grid point
6 v-velocity grid point

Figure 2. The horizontal staggered grid.
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In general we will refer to the horizontal grid indices with m and n for the x- and y-direction,
respectively; and with M and N for their maximums.

The open and closed boundaries in Figure 2 form the model boundary. Only points within
this boundary are calculated. For the open boundaries either the normal velocity component at
the boundary (e.g. at grid coordinates (1

2 , 2)) or the water level just outside the boundary (e.g.
at (0, 2)) should be prescribed.

In the vertical direction we define a number of layers, so-called σ-layers. The number of
layers is K. We will use index k to refer to the kth layer with k = 1 for the surface layer and
k = K for the bottom layer. The discretisation in σ-direction is not necessarily equidistant, so
the various layers may differ with respect to their thickness, ∆σk. Also in the vertical direction
a staggered grid is used. Figure 3 shows a single vertical grid cell for an arbitrary value of n.

- -

6

6

m− 1
2

m m+ 1
2

k+ 1
2

k

k− 1
2

?

6

∆σk

Legend

Computational cell boundary
- u-velocity grid point
6 ω-velocity grid point

Figure 3. A cell from the vertical staggered grid.

The numerical approximations will be given for both stages and if necessary due to the staggered
grid averaged quantities are introduced. At the inner points of the grid each term of the equations
(26a-d) is approximated as follows:

1. Discretisation of
∂u

∂t
at (m+ 1

2 , n, k)

stage 1: (up+ 1
2 − up)/1

2τ

stage 2: (up+1 − up+ 1
2 )/1

2τ

2. Discretisation of
∂v

∂t
at (m, n+ 1

2 , k) is equivalent to the discretisation of
∂u

∂t
.

3. Discretisation of
∂ζ

∂t
at (m,n) is equivalent to the discretisation of

∂u

∂t
.

4. Horizontal advection term u
∂u

∂x
at (m+ 1

2 , n, k)

stage 1: u
p+ 1

2

m+ 1
2
,n

(up

m+1 1
2
,n
− up

m− 1
2
,n

)/24x

stage 2:


u

p+ 1
2

m+ 1
2
,n

(3up+1

m+ 1
2
,n
− 4up+1

m− 1
2
,n

+ up+1

m−1 1
2
,n

)/24x, if u
p+ 1

2

m+ 1
2
,n

> 0

u
p+ 1

2

m+ 1
2
,n

(−3up+1

m+ 1
2
,n

+ 4up+1

m+1 1
2
,n
− up+1

m+2 1
2
,n

)/24x, if u
p+ 1

2

m+ 1
2
,n
≤ 0

In the first stage the derivative is treated in an explicit way and approximated with a central
difference scheme; in the second stage it is approximated with an implicit upwind scheme.
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5. Horizontal advection term v
∂v

∂y
at (m,n+ 1

2 , k)

stage 1:


vp

m,n+ 1
2

(3v
p+ 1

2

m,n+ 1
2

− 4v
p+ 1

2

m,n− 1
2

+ v
p+ 1

2

m,n−1 1
2

)/24y, if vp

m,n+ 1
2

> 0

vp

m,n+ 1
2

(−3v
p+ 1

2

m,n+ 1
2

+ 4v
p+ 1

2

m,n+1 1
2

− v
p+ 1

2

m,n+2 1
2

)/24y, if vp

m,n+ 1
2

≤ 0

stage 2: vp+1

m,n+ 1
2

(v
p+ 1

2

m,n+1 1
2

− v
p+ 1

2

m,n− 1
2

)/24y

In the first stage the derivative is approximated with an implicit upwind scheme; in the
second stage it is treated in an explicit way and approximated with a central difference
scheme.

6. Horizontal advection term v
∂u

∂y
at (m+ 1

2 , n, k)

stage 1: v̄
p+ 1

2

m+ 1
2
,n

(up

m+ 1
2
,n+1

− up

m+ 1
2
,n−1

)/24y

stage 2:


v̄

p+ 1
2

m+ 1
2
,n

(3up+1

m+ 1
2
,n
− 4up+1

m+ 1
2
,n−1

+ up+1

m+ 1
2
,n−2

)/24y, if v̄
p+ 1

2

m+ 1
2
,n

> 0

v̄
p+ 1

2

m+ 1
2
,n

(−3up+1

m+ 1
2
,n

+ 4up+1

m+ 1
2
,n+1

− up+1

m+ 1
2
,n+2

)/24y, if v̄
p+ 1

2

m+ 1
2
,n
≤ 0

where v̄
p+ 1

2

m+ 1
2
,n

= 1
4(v

p+ 1
2

m,n+ 1
2

+ v
p+ 1

2

m+1,n+ 1
2

+ v
p+ 1

2

m,n− 1
2

+ v
p+ 1

2

m+1,n− 1
2

), the averaged value for vp+ 1
2 at

(m+ 1
2 , n, k).

7. Horizontal advection term u
∂v

∂x
at (m,n+ 1

2 , k)

stage 1:


ūp

m,n+ 1
2

(3v
p+ 1

2

m,n+ 1
2

− 4v
p+ 1

2

m−1,n+ 1
2

+ v
p+ 1

2

m−2,n+ 1
2

)/24x, if ūp

m,n+ 1
2

> 0

ūp

m,n+ 1
2

(−3v
p+ 1

2

m,n+ 1
2

+ 4v
p+ 1

2

m+1,n+ 1
2

− v
p+ 1

2

m+2,n+ 1
2

)/24x, if ūp

m,n+ 1
2

≤ 0

stage 2: ūp+1

m,n+ 1
2

(v
p+ 1

2

m+1,n+ 1
2

− v
p+ 1

2

m−1,n+ 1
2

)/24x

where ūp

m,n+ 1
2

= 1
4(up

m+ 1
2
,n

+ up

m+ 1
2
,n+1

+ up

m− 1
2
,n

+ up

m− 1
2
,n+1

), the averaged value for up at

(m,n+ 1
2 , k).

8. Vertical advection term
ω

H

∂u

∂σ
at (m+ 1

2 , n, k)

stage 1: ω̄p
k

1
2hp

k−1+hp
k+

1
2hp

k+1

[
hp

k+hp
k+1

hp
k−1+hp

k

(
u

p+ 1
2

k−1 − u
p+ 1

2
k

)
+

hp
k−1+hp

k

hp
k+hp

k+1

(
u

p+ 1
2

k − u
p+ 1

2
k+1

)]

stage 2: ω̄
p+1

2
k

1
2h

p+1
2

k−1 +h
p+1

2
k +

1
2h

p+1
2

k+1

[
h

p+1
2

k +h
p+1

2
k+1

h
p+1

2
k−1 +h

p+1
2

k

(
up+1

k−1 − up+1
k

)
+

h
p+1

2
k−1 +h

p+1
2

k

h
p+1

2
k +h

p+1
2

k+1

(
up+1

k − up+1
k+1

)]
where

ω̄p
k = ω̄p

m+ 1
2
,n,k

= 1
4(ωp

m,n,k− 1
2

+ ωp

m,n,k+ 1
2

+ ωp

m+1,n,k− 1
2

+ ωp

m+1,n,k+ 1
2

),

the averaged value of ωp at (m+ 1
2 , n, k), and hp

m+ 1
2
,n,k

is defined as ∆σkH̄
p

m+ 1
2
,n

with

H̄p

m+ 1
2
,n

= 1
2(ζp

m,n + ζp
m+1,n + dm+ 1

2
,n− 1

2
+ dm+ 1

2
,n+ 1

2
),

the averaged value of Hp at (m+ 1
2 , n).
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9. Vertical advection term
ω

H

∂v

∂σ
at (m,n+ 1

2 , k)

stage 1: ω̄p
k

1
2hp

k−1+hp
k+

1
2hp

k+1

[
hp

k+hp
k+1

hp
k−1+hp

k

(
v

p+ 1
2

k−1 − v
p+ 1

2
k

)
+

hp
k−1+hp

k

hp
k+hp

k+1

(
v

p+ 1
2

k − v
p+ 1

2
k+1

)]
stage 2: ω̄

p+1
2

k

1
2h

p+1
2

k−1 +h
p+1

2
k +

1
2h

p+1
2

k+1

[
h

p+1
2

k +h
p+1

2
k+1

h
p+1

2
k−1 +h

p+1
2

k

(
vp+1
k−1 − vp+1

k

)
+

h
p+1

2
k−1 +h

p+1
2

k

h
p+1

2
k +h

p+1
2

k+1

(
vp+1
k − vp+1

k+1

)]

10. Barotropic term −g
∂ζ

∂x
at (m+ 1

2 , n, k)

stage 1: −g

(
ζ

p+ 1
2

m+1,n − ζ
p+ 1

2
m,n

)
/4x

stage 2: the same expression as in the first stage.

Note that in the first stage the expression is implicit and it is explicit in the second stage.

11. Barotropic term −g
∂ζ

∂y
at (m,n+ 1

2 , k)

stage 1: −g
(
ζp
m,n+1 − ζp

m,n

)
/4y

stage 2: −g
(
ζp+1
m,n+1 − ζp+1

m,n

)
/4y

Note that in the first stage the expression is explicit and it is implicit in the second stage.

12. Horizontal viscosity term νH
t

(
∂2u

∂x2
+

∂2u

∂y2

)
at (m+ 1

2 , n, k)

stage 1: 0

stage 2: 2νH
t

[
Sxx(up+1

m+ 1
2
,n

) + Syy(u
p+1

m+ 1
2
,n

)
]

with

Sxx(up+1

m+ 1
2
,n

) = (up+1

m− 1
2
,n
− 2up+1

m+ 1
2
,n

+ up+1

m+1 1
2
,n

)/4x2,

Syy(u
p+1

m+ 1
2
,n

) = (up+1

m+ 1
2
,n−1

− 2up+1

m+ 1
2
,n

+ up+1

m+ 1
2
,n+1

)/4y2.

In the first stage this term is neglected, while in the second stage it is computed for the whole
time step (thus twice as large).

13. Horizontal viscosity term νH
t

(
∂2v

∂x2
+

∂2v

∂y2

)
at (m,n+ 1

2 , k)

stage 1: 2νH
t

[
Sxx(v

p+ 1
2

m,n+ 1
2

) + Syy(v
p+ 1

2

m,n+ 1
2

)
]

stage 2: 0

14. Vertical viscosity term
1

H2

∂

∂σ

(
νV

t

∂u

∂σ

)
at (m+ 1

2 , n, k)

stage 1:
1
hp

k

[
νV

k− 1
2

u
p+1

2
k−1 −u

p+1
2

k
1
2(hp

k−1+hp
k)
− νV

k+ 1
2

u
p+1

2
k −u

p+1
2

k+1
1
2(hp

k+hp
k+1)

]

stage 2:
1

h
p+ 1

2
k

νV
k− 1

2

up+1
k−1−up+1

k

1
2

(
h

p+1
2

k−1 +h
p+1

2
k

) − νV
k+ 1

2

up+1
k −up+1

k+1

1
2

(
h

p+1
2

k +h
p+1

2
k+1

)

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The vertical eddy viscosity νV
t is calculated or determined through one of the turbulence clo-

sure models. This is done in an explicit way. In both stages only the flow velocity component
is taken implicitly.

15. Vertical viscosity term
1

H2

∂

∂σ

(
νV

t

∂v

∂σ

)
at (m,n+ 1

2 , k) is discretised in a similar manner as

1
H2

∂

∂σ

(
νV

t

∂u

∂σ

)
.

16. Coriolis term fv at (m+ 1
2 , n, k)

stage 1: fv̄
p+ 1

2

m+ 1
2
,n

stage 2: the same expression as in the first stage.

Note that in the first stage the expression is implicit and it is explicit in the second stage.

17. Coriolis term −fu at (m, n+ 1
2 , k)

stage 1: −fūp

m,n+ 1
2

stage 2: −fūp+1

m,n+ 1
2

Note that in the first stage the expression is explicit and it is implicit in the second stage.

18.
∂HU

∂x
at (m,n)

stage 1:
∑

k ∆σk

(
H̄

p+ 1
2

m+ 1
2
,n,k

u
p+ 1

2

m+ 1
2
,n,k

− H̄
p+ 1

2

m− 1
2
,n,k

u
p+ 1

2

m− 1
2
,n,k

)
/4x

stage 2: the same expression as in the first stage.

Note that in the first stage the expression is implicit and it is explicit in the second stage.

19.
∂HV

∂y
at (m,n)

stage 1:
∑

k ∆σk

(
H̄p

m,n+ 1
2
,k

vp

m,n+ 1
2
,k
− H̄p

m,n− 1
2
,k

vp

m,n− 1
2
,k

)
/4y

stage 2:
∑

k ∆σk

(
H̄p+1

m,n+ 1
2
,k

vp+1

m,n+ 1
2
,k
− H̄p+1

m,n− 1
2
,k

vp+1

m,n− 1
2
,k

)
/4y

20.
∂Hu

∂x
at (m,n, k)

stage 1:
(

H̄
p+ 1

2

m+ 1
2
,n,k

u
p+ 1

2

m+ 1
2
,n,k

− H̄
p+ 1

2

m− 1
2
,n,k

u
p+ 1

2

m− 1
2
,n,k

)
/4x

stage 2: the same expression as in the first stage.

Note that in the first stage the expression is implicit and it is explicit in the second stage.

21.
∂Hv

∂y
at (m,n, k)

stage 1:
(

H̄p

m,n+ 1
2
,k

vp

m,n+ 1
2
,k
− H̄p

m,n− 1
2
,k

vp

m,n− 1
2
,k

)
/4y

stage 2:
(

H̄p+1

m,n+ 1
2
,k

vp+1

m,n+ 1
2
,k
− H̄p+1

m,n− 1
2
,k

vp+1

m,n− 1
2
,k

)
/4y
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22.
∂ω

∂σ
at (m,n, k)

stage 1:
(

ω
p+ 1

2

k− 1
2

− ω
p+ 1

2

k+ 1
2

)
/∆σk

stage 2:
(

ωp+1

k− 1
2

− ωp+1

k+ 1
2

)
/∆σk

For clarity we will give the equations (26a-d) in approximated discrete form using symbols to
represent derivatives. Then the first stage reads

up+ 1
2 − up

τ/2
+ up+ 1

2 Sx(up) + vp+ 1
2 Sy(up) + ωp Sσ(up+ 1

2 )

= −g Sx(ζp+ 1
2 ) + Sσσ(up+ 1

2 ) + fvp+ 1
2 ,

(33a)

vp+ 1
2 − vp

τ/2
+ up S1x(vp+ 1

2 ) + vp S1y(vp+ 1
2 ) + ωp Sσ(vp+ 1

2 )

= −g Sy(ζp) + 2νH
t [Sxx(vp+ 1

2 ) + Syy(vp+ 1
2 )] + Sσσ(vp+ 1

2 )− fup,

(33b)

ζp+ 1
2 − ζp

τ/2
+ Sx

(
Hp+ 1

2

∑
k

∆σku
p+ 1

2
k

)
+ Sy

(
Hp
∑

k

∆σkv
p
k

)
= 0, (33c)

ω
p+ 1

2

k− 1
2

− ω
p+ 1

2

k+ 1
2

∆σk
+

ζp+ 1
2 − ζp

τ/2
+ Sx(Hp+ 1

2 u
p+ 1

2
k ) + Sy(Hpvp

k) = 0. (33d)

The symbols Sx and Sy represent second order accurate central difference schemes of the first
derivatives with respect to respectively x and y. The second order accurate upwind schemes for
the first derivatives are represented by S1x and S1y. The symbols Sxx and Syy are defined at item
12. in the list of approximated terms. And the symbols Sσ and Sσσ represent the discretisations
in items 8. (and 9.) and 14. respectively.

The second stage reads

up+1 − up+ 1
2

τ/2
+ up+ 1

2 S1x(up+1) + vp+ 1
2 S1y(up+1) + ωp+ 1

2 Sσ(up+1)

= −g Sx(ζp+ 1
2 ) + 2νH

t [Sxx(up+1) + Syy(up+1)] + Sσσ(up+1) + fvp+ 1
2 ,

(34a)

vp+1 − vp+ 1
2

τ/2
+ up+1 Sx(vp+ 1

2 ) + vp+1 Sy(vp+ 1
2 ) + ωp+ 1

2 Sσ(vp+1)

= −g Sy(ζp+1) + Sσσ(vp+1)− fup+1,

(34b)

ζp+1 − ζp+ 1
2

τ/2
+ Sx

(
Hp+ 1

2

∑
k

∆σku
p+ 1

2
k

)
+ Sy

(
Hp+1

∑
k

∆σkv
p+1
k

)
= 0, (34c)

ωp+1

k− 1
2

− ωp+1

k+ 1
2

∆σk
+

ζp+1 − ζp+ 1
2

τ/2
+ Sx(Hp+ 1

2 u
p+ 1

2
k ) + Sy(Hp+1vp+1

k ) = 0. (34d)

Note that due to the staggered grid (33a) and (34a) are calculated at (m+ 1
2 , n, k), (33b) and

(34b) at (m,n+ 1
2 , k), (33c) and (34c) at (m, n) and (33d) and (34d) at (m,n, k).

3.4 Boundary conditions

Careful treatment of the boundary conditions is essential in order to avoid unwanted numerical
phenomena, such as artificial boundary layers, unstable discretisations and numerical diffusion,
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and to approximate the physical flow as well as possible. In this section we will start with the
closed boundary conditions, followed by those for the open boundaries and finally we will deal
with the boundary conditions at the bottom and the free surface. As an example the grid in
Figure 2 is used. So, the closed boundaries are parallel to the x-axis and the open boundaries
are parallel to the y-axis.

Closed Boundary conditions

For calculations on large scale problems, i.e. wide rivers and shallow seas, the impermeability of
quays, dykes and dunes at the closed boundaries and the slip condition along these boundaries
are supposed to have little effect on the velocities at the inner points. For several terms in the
discretised equations the boundary conditions at the closed boundaries are not explicitly used,
but the numerical approximations at points close to the boundaries are changed in accordance
with them. A more detailed description of these changes is given below. In Figure 4 the horizontal
grid along a closed boundary is given.

d
d
d

d
d
d

- -

- -

6

6

6

6

6

6

⇑ ⇑ ⇑

m-1 m m+1

1

2

n

6

Figure 4. Horizontal grid along a closed boundary.

The horizontal advection term v ∂v
∂y is in practical sense not a large term near a closed boundary.

However, when using the numerical discretisation for the derivative (as given in the previous
section, item 5. in the list) it is possible that the numerical derivative is much larger. This is due
to the fact that the numerical derivative is computed over two grid cells, of which the length,
24y, is larger than the scale on which the boundary condition v = 0 actually has effect. This
insight supports the choice to adjust the numerical approximations near the boundaries rather
than explicitly use the boundary conditions at closed boundaries. Stelling (1984) proposed the
following approximation for both stages:

v
∂v

∂y

∣∣∣∣
m,1 1

2

≈

{
0, if vm,1 1

2
> 0,

vm,1 1
2
(vm,2 1

2
− vm,1 1

2
)/4y, if vm,1 1

2
≤ 0.

Note that in the first case the approximation is zeroth order and in the second case it is first
order accurate. The horizontal advection term v ∂v

∂y at (m, 21
2) is also treated in special way in

the first stage, when vm,2 1
2

> 0. The numerical approximation is

v
∂v

∂y

∣∣∣∣
m,2 1

2

≈

{
vm,2 1

2
(vm,2 1

2
− vm,1 1

2
)/4y, if vm,2 1

2
> 0,

vm,2 1
2
(−3vm,2 1

2
+ 4vm,3 1

2
− vm,4 1

2
)/24y, if vm,2 1

2
≤ 0.

In large scale problems the use of the free slip condition is allowed. For the horizontal advection
term v ∂u

∂y the free slip condition, ∂u
∂y = 0, and the impermeability condition, v = 0, support the
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following approximations for the first stage:

v
∂u

∂y
≈ 0

and for the second stage:

v
∂u

∂y

∣∣∣∣
m+ 1

2
,1

≈

{
0, if v̄m+ 1

2
,1 > 0,

v̄m+ 1
2
,1(−3um+ 1

2
,1 + 4um+ 1

2
,2 − um+ 1

2
,3)/24y, if v̄m+ 1

2
,1 ≤ 0.

Note that the overbar on v indicates an averaged value as defined in Section 3.3. In the second
stage the numerical approximation at (m + 1

2 , 2) is replaced with:

v
∂u

∂y

∣∣∣∣
m+ 1

2
,2

≈

{
v̄m+ 1

2
,2(um+ 1

2
,2 − um+ 1

2
,1)/4y, if v̄m+ 1

2
,2 > 0,

v̄m+ 1
2
,2(−3um+ 1

2
,2 + 4um+ 1

2
,3 − um+ 1

2
,4)/24y, if v̄m+ 1

2
,2 ≤ 0.

The second order derivatives, νH ∂2u
∂y2 and νH ∂2v

∂y2 , in the horizontal viscosity terms are approxi-
mated as follows near the closed the boundary:

νH ∂2u

∂y2

∣∣∣∣
m+ 1

2
,1

≈

{
0 in the first stage,
νH

m+ 1
2
,1
(um+ 1

2
,2 − um+ 1

2
,1)/4y2 in the second stage,

νH ∂2v

∂y2

∣∣∣∣
m,1 1

2

≈

{
νH

m,1 1
2

(vm, 1
2
− 2vm,1 1

2
+ vm,2 1

2
)/4y2 in the first stage,

0 in the second stage.

Note that in the second formula the velocity component at the closed boundary (vm, 1
2
) is explic-

itly taken into account, while this is avoided in the first formula. The second order derivatives
with respect to x, νH ∂2u

∂x2 and νH ∂2v
∂x2 , are approximated with second order accurate central

difference schemes.
Boundary conditions on ζ at closed boundaries are only given if necessary. The derivative

of ζ with respect to x in equations (33a) and (34a) does not imply the need for a boundary
condition on ζ, because the closed boundaries are parallel to the x-axis. The derivative of ζ with
respect to y, however, in the horizontal momentum equation in y-direction requires a boundary
condition on ζ, but only in the second stage. It is obvious that the equations (34b) and (34c) are
coupled. To solve these equations (34b) is substituted in (34c) leading to a tridiagonal system
for ζ (see Section 3.5). Points near the closed boundary require data of points just beyond the
boundary. The boundary condition ∂ζ

∂y = 0 satisfies this need.

Open boundary conditions

We recognise two types of open boundaries, namely inflow and outflow boundaries. At outflow
boundaries non-reflective boundary conditions are preferred. For now, however, we will only use
velocity and water level boundary conditions at inflow as well as outflow boundaries. At open
boundaries only one type of boundary condition should be given. In Figure 5 the horizontal grid
along an open boundary is given for both types of boundary conditions.
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Figure 5. The horizontal grid along an open boundary for a velocity boundary
condition (a) and for a water level boundary condition (b).

First we will discuss the velocity boundary condition. A velocity boundary condition can be a
complete two-dimensional velocity profile or it can consist of a condition on the depth-integrated
velocity along the border in combination with a vertical velocity profile. This vertical velocity
profile is usually a logarithmic or uniform profile.

At inner points the horizontal advection term u∂u
∂x in the first stage is approximated with

a second order central difference scheme. Near the open velocity boundary as in Figure 5a this
approximation does not cause any problems, so it remains unchanged. In the second stage this
term is approximated as follows:

u
∂u

∂x

∣∣∣∣
1 1

2
,n

≈

{
u1 1

2
,n(u1 1

2
,n − u 1

2
,n)/4x, if u1 1

2
,n > 0,

u1 1
2
,n(−3u1 1

2
,n + 4u2 1

2
,n − u3 1

2
,n)/24x, if u1 1

2
,n ≤ 0.

At open boundaries the tangential velocity component is assumed to be zero. This corresponds
with v0,n = 0 ∀n for both types of boundary condition in Figure 5. The numerical approximation
of the horizontal advection term u ∂v

∂x near open velocity boundaries for the first stage is:

u
∂v

∂x

∣∣∣∣
1,n+ 1

2

≈

{
ū1,n+ 1

2
(v2,n+ 1

2
− v0,n+ 1

2
)/24x, if ū1,n+ 1

2
> 0,

0, if ū1,n+ 1
2
≤ 0

and for the second stage:

u
∂v

∂x

∣∣∣∣
1,n+ 1

2

≈

{
ū1,n+ 1

2
(v1,n+ 1

2
− v0,n+ 1

2
)/4x, if ū1,n+ 1

2
> 0

ū1,n+ 1
2
(−3v1,n+ 1

2
+ 4v2,n+ 1

2
− v3,n+ 1

2
)/24x, if ū1,n+ 1

2
≤ 0.

The numerical approximations of the horizontal viscosity terms do not need a special treatment
near open velocity boundaries and therefore they remain unchanged. For the same reasons as
near closed boundaries a boundary condition on ζ is only given when necessary. In the first
stage the boundary condition ∂ζ

∂x = 0 is used.

When a water level boundary condition is prescribed the numerical boundary is set along the
ζ grid points (see Figure 5b). The numerical approximations near the open boundary of the var-
ious terms are different than with a velocity boundary condition. The numerical approximation
of the horizontal advection term u∂u

∂x at (1
2 , n) is replaced with

u
∂u

∂x

∣∣∣∣
1
2
,n

≈

{
0, if u 1

2
,n > 0,

u 1
2
,n(u1 1

2
,n − u 1

2
,n)/4x, if u 1

2
,n ≤ 0
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for both stages. The horizontal advection term u ∂v
∂x is discretised near the open boundary

according to a second order central scheme in the first stage:

u
∂v

∂x

∣∣∣∣
1,n+ 1

2

≈ ū1,n+ 1
2
(v2,n+ 1

2
− v0,n+ 1

2
)/24x.

For the second stage either a zeroth order approximation or second order upwind scheme is
used, depending on the flow direction of u. The approximation reads

u
∂v

∂x

∣∣∣∣
1,n+ 1

2

≈

{
0, if ū1,n+ 1

2
> 0,

ū1,n+ 1
2
(−3v1,n+ 1

2
+ 4v2,n+ 1

2
− v3,n+ 1

2
)/24x, if ū1,n+ 1

2
≤ 0.

The horizontal viscosity operator for u, νH∆u, in the second stage is approximated as follows:

νH∆u
∣∣
1 1

2
,n
≈ νH

1 1
2
,n

(u1 1
2
,n−1 − 2u1 1

2
,n + u1 1

2
,n+1)/4y2.

The horizontal viscosity terms for v in the first stage are not treated in a special way. In both
directions the second order difference schemes are used.

Bottom and surface boundary conditions

At the bottom as well as at the free surface three boundary conditions should be given for each
of the velocity components. It is obvious that due to the impermeability of the bottom and
the free surface the relative vertical velocity component ω is zero at these boundaries. Bottom
friction and wind stresses at the free surface will provide the remaining boundary conditions.
In Figure 6 the vertical grid along the free surface is given.
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dary condition on the hori-
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Figure 6. Vertical grid along the free surface.

The Neumann boundary conditions for the wind stresses (see eqns. (23) and (24)) are only
applied to the vertical viscosity terms 1

H2
∂
∂σ (νV

t
∂u
∂σ ) and 1

H2
∂
∂σ (νV

t
∂v
∂σ ) and not to the vertical

advection terms ω
H

∂u
∂σ and ω

H
∂v
∂σ . For the vertical advection terms at the surface first order upwind

schemes are used as numerical approximations. For the velocity component in x-direction, u, at
(m + 1

2 , n) this reads
ω

H

∂u

∂σ

∣∣∣∣
k=1

≈ ω̄1
u1 − u2

1
2(h1 + h2)

.

In the numerical approximation of the vertical viscosity terms two first order derivatives are
subtracted (see list item 14 in section 3.3). Along the surface (when k = 1) one of these
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derivatives equals the expression for wind stress, which accordingly replaces that derivative.
The vertical viscosity term for u at the surface becomes

1
H2

∂

∂σ

(
∂u

∂σ

)∣∣∣∣
k=1

≈ 1
h1

[
|~τs| cos θ

ρ
− νV

1 1
2

u1 − u2
1
2(h1 + h2)

]
.

The boundary conditions at the bottom (eqns. (21) and (22)) are treated equivalently.

3.5 Solution procedure

In this section we will explain the procedure of solving the discrete three-dimensional shallow-
water equations. Only the first stage will be treated, since the procedure is equivalent for both
stages. In this section we will adjust the indices for u, v and ω and only use whole numbers,
so vm,n is vm,n+ 1

2
and ωk is ωk+ 1

2
for example. As a reminder we note that the number of grid

cells in x-, y- and σ-direction are M , N and K, respectively.

First equation (33b), the momentum equation in y-direction, will be solved. The horizontal
velocity v has been taken implicitly in all the terms of this equation. However, this results in
a large banded matrix equation for v. If the vector v is arranged in respectively the vertical
and the horizontal (first in y- then in x-direction) directions, then the matrix has the following
form:

T1 D
(1y)
12 D

(2y)
13 Ø . . . Ø D

(1x)
1,N+1 Ø . . . Ø D

(2x)
1,2N+1 Ø

D
(−1y)
21 T2 D

(1y)
23 D

(2y)
24 Ø . . . Ø D

(1x)
2,N+2 Ø . . . Ø D

(2x)
2,2N+2

. . .

D
(−2y)
31 D

(−1y)
32 T3 D

(1y)
34 D

(2y)
35 Ø . . . Ø D

(1x)
3,N+3 Ø . . . Ø

.. .

Ø D
(−2y)
42 D

(−1y)
43 T4 D

(1y)
45 D

(2y)
46 Ø . . . Ø D

(1x)
4,N+4 Ø . . .

. . .

Ø Ø
.. . . . . . . . . . . . . . . . .


where Ti is a tridiagonal matrix with the coefficients (if i = (m − 1)N + n) for vm,n,k ∀k.
D

(jy)
i,i+j is a diagonal matrix with the coefficients for vm,n+j,k ∀k with i = (m − 1)N + n and

j ∈ {−2,−1, 1, 2}. D
(jx)
i,i+j·N is a diagonal matrix with the coefficients for vm+j,n,k ∀k with

i = (m − 1)N + n and j ∈ {−2,−1, 1, 2}. Note that D(−2x), D(−2y), D(2y) and D(2x) can have
zeros on the diagonal due to the second order upwind schemes.

The band width of the matrix is too large to use a direct method. Therefore a Gauss-Jacobi
iterative scheme is used in horizontal direction to solve this equation. In the vertical direction the
implicit values are maintained, resulting in a tridiagonal matrix equation (only the coefficients
in Ti remain). A single iteration is computed according to a red/black update. The red/black
pattern is ’placed’ horizontally. If we divide the vector v into v1, v2,..., vM ·N , then the first (red)
of the two matrix equations to be solved reads

T1

T3

. . .
TM ·N−3

TM ·N−1




v1

v3
...

vM ·N−3

vM ·N−1

 = f
1
,

where f
1

is the appropriate right hand side including all the variables, which are taken explicitly.
The other (black) matrix equation is similar. The right hand side for this equation, however, is
constructed using the latest calculated values for v1, v3, ..., vM ·N−1.

25



Combining both matrix equations (red and black), while taking in account the last remark,
results in a matrix equation with a matrix of the form:

T1 Ø Ø . . . Ø Ø Ø . . .

D
(−1y)
21 T2 D

(1y)
23 Ø . . . Ø D

(1x)
2,N+2 Ø . . .

Ø Ø T3 Ø Ø . . . Ø Ø Ø . . .

Ø D
(−2y)
42 D

(−1y)
43 T4 D

(1y)
45 Ø . . . Ø D

(1x)
4,N+4 Ø . . .

Ø Ø
.. . . . . . . . . . . . . . . . .


If the red/black pattern would be placed differently or if the main flow would be different, then
this matrix would also be different. However, it is not expected that the result of the iteration
would differ that much.

The equations (33a) and (33c) are coupled. In order to solve these equations, (33a) will be
substituted in (33c). Therefore equation (33a) first has to be solved with respect to up+ 1

2 . In
general terms the discrete momentum equation in x-direction (33a) can be written as

Aup+ 1
2 + Bζp+ 1

2 = fp, (35)

where A ∈ RMNK×MNK is a tridiagonal matrix consisting of MN smaller tridiagonal matrices
Ai ∈ RK×K . The matrix Ai holds the coefficients for vm,n,k ∀k with i = (1 − m)N + n. The
matrix B ∈ RMNK×(M+1)N can be written as

B =
g

4x


C

C Ø

.. .

Ø C
C

 with C =


−1 1
−1 1 Ø
−1 1

Ø
. . .

. . .

−1 1

 ,

where 1 ∈ RK is the vector with only ones. The vector fp contains all the terms with only
explicit variables. Due to the staggered grid the matrix C (and hence also B) is not square.
Performing a Gaussian elimination process on (35) leads to

up+ 1
2 + B′ζp+ 1

2 = f ′
p
.

This procedure does not cause any fill-in in the matrix B, due to the fact that the matrix A
consist of smaller tridiagonal matrices Ai. The depth-averaged form of this expression is needed
in the continuity equation (33c) and can easily be calculated by multiplying every row with the
accompanying relative layer thickness ∆σk and adding subsequent rows. This result in

Up+ 1
2 + B′′ζp+ 1

2 = f ′′
p

with B′′ ∈ RMN×(M+1)N and U =
∑

k ∆σkuk, the depth-averaged velocity component in x-
direction.

Substituting this expression for Up+ 1
2 and the horizontal velocities in y-direction, V p, in (33c)

leads to a tridiagonal system for ζp+ 1
2 in x-direction. Substituting the result of this equation

into the expression for up+ 1
2 gives the horizontal velocities in x-direction.

The depth-integrated continuity equation (33c) describes the level of the water surface ζ in the
water column at coordinates (m,n) by calculating the net inflow in that column. It guarantees
conservation of mass. It is important for this calculation that the term HU is taken either
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completely implicit or completely explicit (the same restriction applies to HV ). When this is
not the case the numerical approximation is not mass conservative. For flow calculations this
phenomenon is not so severe. However, when using non-mass-conservative calculated flow data
in transport equations for a pollutant, for instance, some of the pollutant may disappear or
appear.

When taking HU implicit, as done in (33c), then the equation will be non-linear. A way
to deal with this problem is using an iterative scheme for ζp+ 1

2 (Kester and Stelling, 1992).

The barotropic term −g Sx(ζp+ 1
2 ) in equation (33a) is multiplied by Hp+ 1

2
,i/Hp+ 1

2
,i+1 (with

Hp+ 1
2
,0 := Hp). With this modification the equations (33a) and (33c) read respectively

up+ 1
2 − up

τ/2
+ up+ 1

2 Sx(up) + vp+ 1
2 Sy(up) + ωp Sσ(up+ 1

2 )

= −g Hp+1
2 ,i

Hp+1
2 ,i+1

Sx(ζp+ 1
2
,i+1) + Sσσ(up+ 1

2 ) + fvp+ 1
2 ,

(36a)

ζp+ 1
2
,i+1 − ζp

τ/2
+ Sx

(
Hp+ 1

2
,i+1

∑
k

∆σku
p+ 1

2
k

)
+ Sy

(
Hp
∑

k

∆σkv
p
k

)
= 0, (36b)

where i denotes the current iterate. After the substitution of (36a) in (36b) as described above,
a linear tridiagonal iterative system for ζp+ 1

2 arises, of which the result is substituted in (36a).
Finally, the continuity equation (33d) can be solved by substituting previous computed

results. This equation is only used to derive the relative vertical velocity components, ωm,n,k.
Note that there are at a horizontal coordinate (m,n) K continuity equations for K−1 unknown
vertical velocity components. Therefore one of the equations is used for verification of the
calculations.
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4 Description of problem

In the course of years Delft3D-FLOW has been adjusted more than once in order to cope with
unexpected results. However, some unwanted phenomena still remain. Sensitivity with respect to
input parameters, compilers (and compiler options) and problem size is one of present interest.
Computed problems demonstrate variable sensitivity. Different operating systems for instance
(and thus different compilers) always give different results, which in some cases are significant.
The size of the grid may cause another problem, namely the accumulative error due to large
matrices.

The consequences of these kinds of inaccuracies may be rather severe. If a computed water
level appears to be too low dykes may not be heightened while they should be. On the other
hand, if it appears to be too high, much effort and money for heightening dykes may be wasted.
The diffusion of a pollutant in rivers and seas are calculated using the results of Delft3D-FLOW.
This diffusion would not be calculated well if the computed currents are fairly inaccurate.

4.1 Test cases

Test cases which demonstrate several of these sensitivities, will be used to illustrate and motivate
our research. Below an overview of the test cases is given.

Test case 1: Reservoir with island and dams

In this test case (WL reference: ’01-bakje’) a square reservoir (8 by 8 km) with open boundaries
is simulated. A square island is situated in the centre of the reservoir from which eight thin dams
stretch out toward the boundaries, see Figure 7. At the open boundaries water level boundary
conditions are prescribed. On all boundaries the homogeneous condition ζ = 0 is imposed,
except for the ’lower’ boundary on which a tidal condition is defined.

In the lower corners high velocities occur in the current due to the small distance between
the imposed homogeneous boundary condition and the tidal boundary condition, see Figure 7.

Figure 7. Vector field of the depth integrated velocity.

This test case has been simulated on four different operating systems. The results on the Win-
dows and HP systems differ less than one percent. Comparison of the water levels computed on
the Windows machine and the Sun Sparc machine shows differences up to 50%!
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Test case 2: Reservoir with tidal condition

In this second test case (WL reference: ’07-chezy’) we simulate a rectangular reservoir (20 by
5 km) with closed boundaries along the long sides and open boundaries on the short sides. On
one of the open boundaries the homogeneous water level condition is imposed and on the other
open boundary a tidal condition is defined. The vertical grid is chosen counter-intuitively. The
relative layer thickness, ∆σk, is set to

0.01, 0.1, 0.09, 0.08, 0.06, 0.05, 0.04, 0.03, 0.02, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.09, 0.1, 0.01

for k = 1 to k = 20 respectively. This results in rather peculiar flow data at certain points in
time, see Figure 8. The vertical velocity component in this figure is scaled up by a factor of
approximately 1000.

Figure 8. Cross-section of the velocity profile at a certain time step.

The peculiarities as shown in Figure 8 apparently occur at random and always near the ’eastern’
boundary. A simulation where the relative layer thickness is equidistant shows no peculiarities
besides the transient effects. Initial guesses are that the combination of the chosen σ-layers
and the homogeneous, unnatural condition at that boundary are responsible for these curious
results.

After the turn of the tide the main current changes direction. At several of these turns
the velocity profile shows circular currents or relatively large vertical velocities. Again, when
working with an equidistant layer thickness these results do not occur.

Test case 3: Navigational Channel

The navigational channel in a river or estuary is usually the deepest part of the water flow with
the highest flow velocity. The water depth in the navigational channel may be up to 10 times
larger than in other parts of the river or estuary. In this test case we will simulate a rectangular
shaped reservoir with a straight and deep navigational channel. Does the bed topography has a
negative effect on the condition numbers or the symmetry of the matrices? In other words, will
instabilities occur?

In test case 5 we will simulate an existing geometry, namely the Westerschelde.
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Test case 4: Long narrow reservoir

This test case is added in order to demonstrate how Delft3D-FLOW manages large geometries
and thus large matrices. The reservoir is narrow but long (150 by 8 km). On the short open
boundaries either water level or velocity boundary conditions are imposed. The long boundaries
are ’closed’.

It is expected that due to the size of the problem rounding errors will accumulate during
one time step. Furthermore we can swap the boundary conditions on both the open boundaries
and compare those results with results computed before.

Test case 5: Westerschelde

The Westerschelde is an interesting test case, since the river bed is very uneven. At some points
the water depth measures 40 metres, while at other points it is only a few meters. The width
varies between three and six kilometres. This test case is in fact nothing more than a large,
existing example of test case 3.

Figure 9. Bed topography of the Westerschelde.

4.2 Method of research

In the Fortran code of Delft3D-FLOW small additions have to be made in order to write out
matrices and results. In Matlab this data can be used to compute residues and condition numbers
of the matrices used.

To locate errors first several residues will be calculated. There are a number of residues
which qualify for inspection.

The uncoupled momentum equations (33b) and (34a) are linear equations and solved with
a Gauss-Seidel iterative scheme. For this iterative scheme not the residue but the difference
between consecutive iterates is used in the stopping criterium. The residue is not necessarily
very small.
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The coupled momentum and continuity equations (33a) with (33c) and (34b) and (34c) are
non-linear with respect to the water level ζ. The continuity equation is solved iteratively using
a predetermined number of iterations. Thus also this residue may be considerably large.

Finally the residue of the discretised equations can be calculated by substituting the com-
puted results. These residues are a result of all rounding and iterative errors made during one
time step.

The numerical equations implemented in Delft3D-FLOW are supposed to be stable. So, erro-
neous results in one time step which are responsible for perturbed linear system in the next
time step, are not expected to grow. The condition of the matrix in this system gives an idea
how well the matrix equations are solved for a single time step

If the source of the irregularities is found, we will examine how they can be avoided.
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