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Motivation

Two problems of numerical weather prediction and climate models:

1 Mathematically modelling atmospheric processes.

2 Evaluating the models as accurate and efficient as possible.
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Motivation

Two problems of numerical weather prediction and climate models:

1 Mathematically modelling atmospheric processes
- e.g. parametrization of atmospheric processes using DALES.

2 Evaluating the models as accurate and efficient as possible
- e.g. Improving the advection scheme.

Advection scheme is used for, e.g.:

• the continuity equation,

• important scalars like qt and θl .

But why improve the advection scheme (of DALES)?
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Simple 1D Advection Equation

⎧⎪⎪⎨⎪⎪⎩

∂ϕ
∂t +

∂f (ϕ)
∂x = 0 x ∈ [a,b], t > 0,

ϕ(x ,0) = ϕ0(x) x ∈ [a,b],

where f (ϕ) = uϕ with u constant.

Exact solution is given by:

ϕ(x , t) = ϕ0(x − ut)
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Exact Solution
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Tested Finite Difference Methods of DALES

1 First order upwind,

2 Second order central,

3 Fifth order upwind,

4 WENO method.
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First Order Upwind at t = 10

Figure: First order upwind at t = 10 with ∆x = 0.1 and ∆t = 0.3 u
∆x

.
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First Order Upwind at t = 50

Figure: First order upwind at t = 50 with ∆x = 0.1 and ∆t = 0.3 u
∆x

.
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Second Order Central at t = 10

Figure: Second order central at t = 10 with ∆x = 0.1 and ∆t = 0.3 u
∆x

.
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Second Order Central at t = 50

Figure: Second order central at t = 50 with ∆x = 0.1 and ∆t = 0.3 u
∆x

.
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Fifth Order Upwind at t = 10

Figure: Fifth order upwind at t = 10 with ∆x = 0.1 and ∆t = 0.3 u
∆x

.
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Fifth Order Upwind at t = 50

Figure: Fifth order upwind at t = 50 with ∆x = 0.1 and ∆t = 0.3 u
∆x

.
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WENO method at t = 10

Figure: WENO at t = 10 with ∆x = 0.1 and ∆t = 0.3 u
∆x

.
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WENO method at t = 50

Figure: WENO at t = 50 with ∆x = 0.1 and ∆t = 0.3 u
∆x

.
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Moment Limited DG at t = 10

Figure: Moment limited DG at t = 10 with N = 4, ∆x = 0.1 and
∆t = 0.95CFL2

u
∆x
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Moment Limited DG at t = 50

Figure: Moment limited DG at t = 50 with N = 4, ∆x = 0.1 and
∆t = 0.95CFL2

u
∆x
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Differences between FDM, FVM and FEM

FDM - Finite Difference Method
FVM - Finite Volume Method
FEM - Finite Element Method

FDM FVM FEM

solves direct integral weak
discontinuities 7 3 7

values nodal cell average nodal
unstructured grids 7 3 3

conservation of mass 7 3 7
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DG in comparison with FDM, FVM and FEM
FDM FVM FEM DG

solves direct integral weak weak
discontinuities 7 3 7 3

values nodal cell average nodal nodal
unstructured grids 7 3 3 3

conservation of mass 7 3 7 3

DG is a combination of FEM and FVM
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Advantages of DG

• Unstructured grids, discontinuities and conservation of mass,

• Dynamic h-p refinements,

• Compact stencil,

• High scalability.
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Discontinuous Galerkin Method

1 Split domain into non-overlapping elements.

2 Find weak form of the partial differential equations.

3 Fill in the approximation in the weak form.

4 Find element matrices.

5 Solve Mka
′

k = Skak for each element.
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Steps 1 and 2

1 Split domain into non-overlapping elements.

Find weak form of the partial differential equations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ik
[∂ϕ
∂t

+ ∂

∂x
f (ϕ)]η dx = 0,

∫
Ik
ϕ(x ,0)η dx = ∫

Ik
ϕ0(x)η dx .
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Step 3 (1/2)
3 Fill in the approximation in the weak form.

ϕk
h(x , t) =

N

∑
j=0

akh(xkj , t)`kj (x), ∀x ∈ Ik

Figure: Lagrangian polynomials with LGL nodes.
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Steps 3 (2/2), 4 and 5

3 Fill in the approximation in the weak form:

∫
Ik

N

∑
j=0

∂

∂t
ak(xkj , t)`j(ξ(x))`i(ξ(x)) dx − ∫

Ik
f (ϕh)

∂`i(ξ(x))
∂x

dx

+ [f (ϕh)`i(ξ(x))]
xk+1/2
xk−1/2

= 0,

∫
Ik

N

∑
j=0

ak(xkj , t)`j(ξ(x))`i(ξ(x)) dx = ∫
Ik
ϕ0(x)`i(ξ(x)) dx .

4 Find element matrices.

Mka
′

k = Skak ,

Mkak(0) = ϕ̃0

5 Solve Mka
′

k = Skak for each element.
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DG with N = 4 at t = 10

Figure: DG with N = 4 at t = 10.
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DG with N = 4 at t = 50

Figure: DG with N = 4 at t = 50.
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Moment Limiter

Krivodonova: âkj ≈
∂jϕk

h

∂x j

Idea:
Compare âkj with numerical derivatives using forward and backward
differences.
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Moment Limited DG at t = 10

Figure: Moment limited DG at t = 10 with N = 4, ∆x = 0.1 and
∆t = 0.95CFL2

u
∆x
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Moment Limited DG at t = 50

Figure: Moment limited DG at t = 50 with N = 4, ∆x = 0.1 and
∆t = 0.95CFL2

u
∆x
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Conclusion

DG is very promising method.

• No time lags,

• Unstructured grids,

• Dynamic h-p refinements,

• Compact stencil,

• High scalability.

Figure: Moment limited DG at t = 50. Figure: WENO at t = 50.
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