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Motivation

Two problems of numerical weather prediction and climate models:
@ Mathematically modelling atmospheric processes.

® Evaluating the models as accurate and efficient as possible.
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Motivation

Two problems of numerical weather prediction and climate models:

@ Mathematically modelling atmospheric processes
- e.g. parametrization of atmospheric processes using DALES.

® Evaluating the models as accurate and efficient as possible
- e.g. Improving the advection scheme.

Advection scheme is used for, e.g.:
e the continuity equation,

e important scalars like g; and 6,.

But why improve the advection scheme (of DALES)?
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Simple 1D Advection Equation

ot Ox
QO(X7O) = SOO(X) X € [37 b]v

where f(¢) = up with u constant.

{Q‘E.,.M:O x €[a,b],t>0,

Exact solution is given by:

‘P(Xv t) = QDO(X_ Ut)
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Exact Solution

Exact Solution
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Tested Finite Difference Methods of DALES

@ First order upwind,
® Second order central,
® Fifth order upwind,
©® WENO method.
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First Order Upwind at t = 10

Figure: First order upwind at t = 10 with Ax=0.1 and At =0.3%;.
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First Order Upwind at t = 50

Figure: First order upwind at t = 50 with Ax =0.1 and At =0.3%;.

5
TUDelft 8 /29



Second Order Central at t =10

Figure: Second order central at t = 10 with Ax=0.1 and At =0.34;.
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Second Order Central at t =50

Figure: Second order central at t = 50 with Ax =0.1 and At =0.34;.
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Fifth Order Upwind at t = 10

Figure: Fifth order upwind at t = 10 with Ax=0.1 and At =0.3%;.
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Fifth Order Upwind at t = 50

Figure: Fifth order upwind at t = 50 with Ax =0.1 and At =0.3%;.
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WENO method at t =10
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Figure: WENO at t =10 with Ax =0.1 and At =0.3%;.
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WENO method at t =50
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Figure: WENO at t =50 with Ax =0.1 and At =0.3%".
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Moment Limited DG at t = 10
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Figure: Moment limited DG at t = 10 with N =4, Ax=0.1 and
At = O.95CFL2§
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Moment Limited DG at t =50
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Figure: Moment limited DG at t = 50 with N =4, Ax=0.1 and
At = O.95CFL2§
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Differences between FDM, FVM and FEM

FDM - Finite Difference Method
FVM - Finite Volume Method
FEM - Finite Element Method

FDM  FVM FEM
solves direct integral weak
discontinuities X 4 X
values nodal cell average nodal
unstructured grids X v v
conservation of mass | X v X
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DG in comparison with FDM, FVM and FEM

FDM FVM FEM DG
solves direct integral weak  weak
discontinuities X v X v
values nodal cell average nodal nodal
unstructured grids X v v v
conservation of mass | X v X v

DG is a combination of FEM and FVM

Continuous (CG) Discontinuous (DG)

Finite Finite
Elements (p=1) Volumes (p=0)
Spectral Discontinuous
Elements Galerkin
Spectral Spectral
Transform Transform
P P
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Advantages of DG

e Unstructured grids, discontinuities and conservation of mass,
e Dynamic h-p refinements,

e Compact stencil,

e High scalability.
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Discontinuous Galerkin Method

@ Split domain into non-overlapping elements.

® Find weak form of the partial differential equations.
® Fill in the approximation in the weak form.

O Find element matrices.

O Solve M, a’, = Sia for each element.
k
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Steps 1 and 2

@ Split domain into non-overlapping elements.

F e e e = =

Find weak form of the partial differential equations:

Oop 0 ~
f, [EJfgf(so)]?? dx =0,

/:go(x,O)n dx:flkgoo(x)n dx.

5
TUDelft 21/ 29



Step 3 (1/2)

® Fill in the approximation in the weak form.

N
Ph(x, 1) = 3 an (O )L (x), Vx e g

Jj=0
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Figure: Lagrangian polynomials with LGL nodes.
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Steps 3 (2/2), 4 and 5

® Fill in the approximation in the weak form:

f/ k()ﬂ"(7t)£j(f(x))fi(£(x)) dx — ff( )‘% (§(X))
kJ 0
[f(gph)é-(é'(x))]xku/z -0,
[ S 0G0 o= [ o(ta(e0e) o

kJO

O Find element matrices.

Mka;( = Skak,
Myiak(0) = o

© Solve Myaj = Siay for each element.

5
TUDelft 23/29



DG with N=4at t =10
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Figure: DG with N =4 at t = 10.




DG with N =4 at t =50
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Figure: DG with N =4 at t = 50.
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Moment Limiter

Krivodonova: 4 ~ — -
Idea:

Compare éjl-‘ with numerical derivatives using forward and backward
differences.
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Moment Limited DG at t = 10
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Figure: Moment limited DG at t = 10 with N =4, Ax=0.1 and
At = O.95CFL2§
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Moment Limited DG at t =50
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Figure: Moment limited DG at t = 50 with N =4, Ax=0.1 and
At = O.95CFL2§
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Conclusion

DG is very promising method.

e No time lags,
e Unstructured grids,
e Dynamic h-p refinements,

Figure: Moment limited DG at t = 50.

5
TUDelft

-0.2

o Compact stencil,

e High scalability.
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Figure: WENO at t = 50.



	fd@rm@0: 


