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Chapter 1

Introduction

A serious complication that patients face after a heart atteck is the formation of scar tissue at
the damaged part of the heart. This scar leads to sti ening of the damaging region, and thereby
it requires more perfomance of the heart muscle, which lead® fatigue and hence to failure and
thereby causing immediate death of the patient. To circumvent scar tissue formation, stem cells
are injected which trigger the angiogenetic response, leaalg to fewer invading broblast which
produce scar tissue in the form of an excess on extra cellulanatrix.

The goal of this research is to learn more about the number oftem cells that has to be injected
into the wound of the heart after a heart attack, aiming to avoid the formation of scar tissue.
Therefore, the main question of this research reads as

\How many stem cells should be injected when aiming at avoidig the formation of scar
tissue?"

To better understand this question, we need to know more abouthe underlying biology and
mathematics. Therefore, we give an introduction into the biological background and some
mathematical approaches.

1.1 Biological background

1.1.1 Myocardial infarction

A myocardial infarction, or commonly called a “heart attack’, is often the result of a blockage in
the coronary artery after the artery has been narrowed. In ths chapter we treat events before
and after the myocardial infarction and we start with the narrowing of the arteries.

The condition in which an artery wall thickens as a result of the accumulation of fatty acids
and cholesterol is called atherosclerosis (the layer of ttse fatty acids and cholesterol is named
plaque). Bad lifestyle habits like

smoking,
alcohol,

obesity,

lack of exercise,

stress,
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and genetic de ciencies like
cardiovascular disease,
diabetes,
high blood pressure,

are risk factors for atherosclerosis. When atherosclerasioccurs, the passage of blood through
the arteries will be smaller and the blood owing to the heart muscle decreases. Even a small
blood clot can become a blockage of the (coronary) artery andherefore cause a myocardial
infarction. Such a blood clot can be formed near and due to a t&r in the wall of a artery which

is caused by the atherosclerosis. In Figure 1.1 atherosclasis and clotting blood are shown.

(a) Two arteries without atherosclerosis, where the  (b) Both arteries with atherosclerosis, where
lowest artery has a tear in the artery wall. a clot of blood is formed near the tear.

Figure 1.1: Atherosclerosis in the arteries'.

At the moment of such a blockage, the blood supply to the hearis poor and therefore the supply
of oxygen and nutrients is insu cient. Due to the insu cient supply, a myocardial infarction
occurs where the infarction represents the decease of myadsal tissue (death of heart cells in
the heart muscle).

The dead cells in the a ected heart region, cause broblasts b excessively secrete collagen,
which results into scar tissue with sti mechanical properties. These mechanical properties will
result in a higher resistence of the pump function to be carred by the heart muscle. This higher
resistence, which frustrates the pump function, will resut in growth of the present myocyte cells
as a natural reaction of all muscle cells to hard labor. As a rsult, the muscle cells will decease
more rapidly than in circumstances without a heart attack, which eventually will result in heart
failure, and hence in death of the patient.

1.1.2 Angiogenesis

In this section we give an introduction to angiogenesis [2]In short, angiogenesis is the formation
of new blood vessels from existing blood vessels. For exaneplangiogenesis is important in the
process of wound healing and in the present application, ariggenesis is stimulated to reduce
the amount of brosis at locations su ering from a myocardial infarction and hence to reduce
the risk of heart failure after a myocardial infarction.

Lwww.hartaanval.nl
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The formation of new blood vessels happens due to angiogenfiactors, like hormones, which are
secreted by neighboring cells. The angiogenic factors stintate the growth, division and mobility
of neighboring endothelial cells (EC), which constitute the walls of the blood vessels. By doing
this, the endothelial cells will split at the tops of the capillaries such that the capillaries grow
and branch o .

Figure 1.2: Capillaries branching o .

Cell-division is a complicated biological process. At the nament the angiogenic factors are
stimulating the endothelial cells, these endothelial ceb secrete enzymes which degrade their
basal membrane/lamina (a thin acellular layer around a capilary which separates di erent types
of tissue) and the extracellular matrix (ECM, acellular part that provides mechanical support to
cells). After breaking down' the basale membrane and the dxacellular matrix the endothelial
cells have the possibility to branch o . After branching o, th e endothelial cells will form a new
basale membrane around themselves.

After forming new vessels and new capillary tips they do not mcessarily branch o again. It is
also possible that neighboring vessels fuse together andrfo a new loop. This process is called
anastomosis. It is also possible that a tip of a capillary fuss together with another vessel.

(a) Tips fusing together. (b) Tip of capillary and vessel fusing together.

Figure 1.3: Two modes of anastomosis.
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1.1.3 New treatment

In Chapter 1.1.1, we described the consequences and the et@rthat occur after a myocardial
infarction. In order to prevent the formation of scar tissue, and therewith to lower the possibility

of heart failure, a new treatment is currently being investigated. With this treatment, stem
cells are injected onto damaged regions of the heart (the soatted wound). These stem cells
will secrete, among many others, the growth factor TG , which enhances angiogenesis (see
Chapter 1.1.2) in the sense that

endothelial cells are provoked to move towards the 'wound' ¢hemotaxis);

endothelial cells are provoked to divide, by which new arteies are formed and extended
as a result of proliferation of endothelial cells.

After the enhanced angiogenesis, vessels have been formedthe damaged part of the heart
aiming at avoiding the formation of scar tissue.

1.2 Mathematical approaches

The damaged part of the heart, which occurs after a myocardibinfarction, can mathematically
be seen as a wound. In literature di erent mathematical appraaches are described in order to
perform numerical simulations for the healing of di erent ty pes of wounds.

Wound healing depends on many di erent biological processelike, among others, random walk,
tensotaxis, chemotaxis, cell pro leration and death, secetion and signhaling of growth factors
which will all be taken into account in the mathematical models. For these processes, the
following mathematical approaches are used in literature see references in [13]:

Cellular automata models (involving a minimization of a vir tual energy with a Monte-Carlo
like scheme);

Cell based models;

Phenomenological models where the wound healing is modeless a moving boundary
problem where the boundary moves as a result of a growth factoand local curvature;

Continuum-based partial di erential equations involving t ransport (random walk, chemo-
taxis,...).

The last approach is used during this project. The partial di erential equations that we use will
be introduced in Chapter 2.

1.3 Numerical techniques

In order to nd approximations to solutions of partial di ere ntial equations many numerical
methods can be used. During this project we used three di erehnumerical methods:

nite di erence method;
nite element method;

discontinuous Galerkin method.
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In the literature study [4] done in the rst few months of this project, we looked at numerical
methods for the one dimensional problem. First the nite di e rence method was dealt with,
followed by the nite element method. Both methods were usedin combination with Euler
Backward time integration.

A disadvantage of the nite di erence method is that it cannot easily handle complicated ge-
ometries. Since the damaged part of the wound can have all kits of geometries this method is
not suitable. Therefore, we looked at the nite element method which we extended to the two

dimensional model in this report. Despite that it can handle complicated geometries, it turns

out that it cannot handle models with a relatively large in u ence of the convection term, which
is biologically induced by chemotaxis. So if it appears thatthe in uence of chemotaxis is too

large, then the method fails. Moreover, the method cannot hadle any discontinuities hence
possible jumps in the approximation will be smeared out or imuce spurious oscillations as a
consequence of this method.

Therefore, we looked at the discontinuous Galerkin method.This method can handle compli-
cated geometries, discontinuities and hopefully cases wita high in uence of the convection
terms.

1.4 Organisation of this thesis

First we introduce the mathematical model that we will use throughout this report. This is
done in Chapter 2.

Subsequently, we determine some analytical solutions in Clpter 3 in order to give some clarity
of how the biology of this model works, to have a benchmark forvalidation of the numerical
solutions, and to draw some rst conclusions.

Then the implementation of some numerical methods is desdned. We rst implement the

nite element method for the two dimensional model, followed by the implementation of the
discontinuous Galerkin method for the one and for the two dinensional model. For the two
dimensional model, we consider circular and rectangular wands. For the circular wounds, we
use an approximation based on polar coordinates. Furthermi, for the rectangular wounds we
use discontunous Galerkin similar to how we used it for the om dimensional model but now in
two directions, the x and they direction. All the numerical simulations are done in Chapter
4.

Some points of discussion and recommendation are treated i@hapter 6. The thesis is nalized
by the conclusions-section.
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Chapter 2

Mathematical Model

In this chapter we introduce two di erent mathematical model s to describe angiogenesis. The
rst model we describe is based on a model for tumor angiogersés from Byrne et al [2] and the
second formalism is based on a model from Maggelakis [10] [11

In order to work with these models we consider the damaged parof the heart, , as well as
the tissue around the wound to be symmetric and circulair. Sowe obtain

x2[ L1 y2[ L1 st: x2+y? 1
wix2[ 5 Ly2[ ; Lstx+y? %

Figure 2.1: The wound (gray) and some tissue around it.

2.1 Tip-vessel model: based on the model from Byrne et al.

The model for tumor angiogenesis based on the model from Bymet al. [2] takes into account
an attractant, the change in capillary tip density and the change in the vessel density. Further,
we have a partial di erential equation for the stem cell densty since the injected stem cells
excrete the attractant TG
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2.1.1 Stem cell density

To stimulate angiogenesis around the speci ¢ area of the haaan number of stem cells is injected
once. These stem cells secrete the attractant TG . Due to reactions the number of stem cells
will decrease exponentially in time. Therefore the equatio for the number of stem cells is given

by
@m
- ! (2.1)
with coe cient 1 and where we have the initial injected number of stem cells
m(xy;0)= o X 2w (2.2)
Y:U= 9 x2 n W '

The dimension of the coecient ;iss 1.

2.1.2 Concentration TG

As an addition to Eq. (2.1) for the concentration attractant in [2], we now have an injected
source that secretes the attractant. The equation for the cacentration TG becomes
@c
— 1r ro+c=m(xy;t); 2.3
ot P9 (1) (2.3)

random
walk

with di usion coe cient D1, coe cient for the decrease of attractant due to reactions with
other substances [4] and coe cient for the increase of attractant due to the injected stem cells
The initial condition of the concentration TG is given by

c(x;y;0) =0; (2.4)
while the Neumann boundary condition equals

@c

=0: 2.5
@ (2.5)
The dimensions %f the_coe cients are
[
dim(D;) = mm2 .

S

am( )= s b

dim( )= 1:

2.1.3 Capillary tip density

Since the source of TG , a number of stem cells, has already been taken into accounhithe
partial di erential equation for the concentration TG , the number of stem cells plays only
an indirect role in the density of the capillary tips. Therefore the partial di erential equation
from [2] is also applicable to our model. Hence the partial derential equation for the capillary
tip density is given by

@n _ :
@ 11 g PN g pg G O gy @O

chemotaxis random bifur- bifurcation anasto-
walk cation of tips mosis

at
vessels
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where ; is the chemotaxis coe cient which models the in uence of attractant TG on the
mobility of the capillary tips towards the gradient of TG , and D, the di usion coe cient.
Further, we have o as a coe cient for the rst type of angiogenesis, which is an increase of
capillary tips because they branch of from blood vessels as action to the attractant TG

The coe cient of the second type of angiogenesis is ; where exceeding a threshold of attractant,
¢, causes capillary tips to branch o. Finally we have » as the coe cient for the decrease of
capillary tips because of the joining of tips-sprouts. Thisprocess is called anastomosis [4]. Note
that H(c ¢€) is the Heaviside term de ned by

_ 1 c ¢
H(c €)= 0 c< 6 (2.7
Initially there are no capillary tips, so
n(x;y;0) =0; (2.8)
and we have a no- ux condition on the boundary
@c @n
n— D,— =0: 2.9
"a 2@ (2.9)
The dimensions of these coe cients are
h i
. 2 3
dim( 1) = %5= Tor
h i
dim(Dz) = - ;
h i
dim( o)= T §
h i
dm( )= o §
h i

. 3
dim( ;)= ™

2.1.4 Vessel density

Since the vessel density, modeled by the partial di erential equation proposed in [2] tends to

zero as the time goes to in nity, we need to change the partialdi erential equation for the vessel

density a bit since we want to end with an equilibrium value, unequal to zero, for the vessel
density. The new equation becomes

@ X
— r r )+ = rn nr — 2.10
at |_{§_2 (e (| N2 Q oK (2.10)
racv(;lc:(m snail trail
wherex = § such that the snalil trail moves towards the center of the wourd [6], which is

located at (0; 0) in this study. In Eg. (2.10) we have the di usion coe cient and as coe cient

for branching and forming loops. Further, we also have coe dent ; which represents the
in uence of a change in the capillary tip density and coe cient , which describes the in uence
of the number of tips due to a change in the concentration TG

Initially there are no viable vessels present in the damagedart of the heart and there is an
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equilibrium vessel density around the wound. Far away from he wound the vessel density should
have its equilibrium value, so we obtain

om0 X2y,
J = eq (2.12)

Where the dimensions of the coe cients are
[

dim( )= @2

dim( )= 1 ;

dim( 1) = 5% ;

. h 3 I
dim( )= M- =0

2.2 Endothelial cells model: based on the model from Magge-
lakis
The model just described is not the only available model we oberve. We have a second, more

compact, model. This model, based on a model of MaggelakisQ111], consists of the following
three equations:

@m_ ,

@t = im; (2.13)

%tc Dir (FrQ+ ¢ = m (Xy:t): (2.14)
n

%t+ ir (nrco)= ¢ n)n; (2.15)

where the initial and boundary conditions are given by

m(x;y; 0) = mo; (2.16)
c(x;y;0)=0; (2.17)
ncy;0)= O X2w (2.18)

Negg X2 Ny,

%C = 0: (2.19)
%” = 0: (2.20)

The equation, and therefore also the dimensions of the coe @nts, for the stem cell density,
see Eg. (2.13), is equal to the equation for the stem cell deitg in our rst model, given by

Eq. (2.1). This also applies to the equation for the concentation TG , see Eq. (2.14), which
is equal to Eq. (2.3). And Eg. (2.15) denotes the density of tle endothelial cells and the

dimensions of thﬁ coe cients are therefore
[

dim( 1) = mpt ommd o
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h i

: — 1 mm3 mm3
dim( 2) = s mol  mol

dim(1) = ol

mm

Biologically, the compact model di ers from the rst model in the sense that no in uence is
included between the capillary tip density and the vessel dasity, since we look at the density
for the endothelial cells in this model. This equation does ot contain the snail trail term which
is included in the equation for the vessel density in the othe model. One may wonder whether
this equation represents reality. An other signi cant di er ence is that there is no di usion,
random walk, for the tips included in this model.

Mathematically, the di erence is that this method misses somne relatively complicated terms,
like the snail trail, which are included in the other model. This means that the challenge, when
doing numerical computations, lies in the rst model.

Combining the biological and mathematical di erences we ch@se the rst model based on Byrne
et al. [2] since we believe that this model is biologically btter and mathematically the bigger
challenge.
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CHAPTER 2. MATHEMATICAL MODEL



Chapter 3

Analytical solutions

In this chapter we determine some analytical solutions for he one dimensional and for the two
dimensional model. In order to do so, we will neglect terms vth insigni cant contributions.
With help of the analytical solution for the capillary tip de nsity, we nd an equation which
describes the location of the front of the capillary tips at dl times. With this equation we
can determine with which number of stem cells the front entes the wound, so when vessels are
growing into the damaged part of the heart. However, rst we determine the analytical solutions
to the partial di erential equations.

3.1 Tip-vessel model: based on the model from Byrne et al.

3.1.1 Number of stem cells
The exact solution to Eq. (2.1) is given by

mee Y X2 Wi

meGy;t) = 0; X2 N .

(3.1)
The number of stem cells at di erent times t is now shown in Figure 3.1. This has been done
for our one dimensional model so our domain equals = [Q1], where O is the center of the
damaged part of the wound.

In Figure 3.1 we see the exact solution of the stem cell densitin time. The gure illustrates
how the density of stem cells is equal everywhere in the woundf the heart at a time t. Further
we see that initially the density equals 2 million cells/mm3 - which is probably not a realistic
value, we use this for our mathematical purposes - and that itdecreases exponentially in time,
so aftert = 2 the density is around the 0:75 million cells/ mm3. After there are no stem cells
left the “production’ of TG ends and the angiogenesis trigger due to this attractant TGbeta
comes to an end. This does not mean that the angiogenesis itédas come to an end.

3.1.2 Concentration TG

Eq. (2.3) re ects the evolution of the concentration TG . For this analytical solution we use
the one dimensional domain = [0 ;1] where the damaged part of the heartis , =[0; ]. Hence
is the boundary of the damaged part of the wound.

Since the diusion of TG is a relatively fast process, we substitute@@t: 0 into Eq. (2.3).
Using the solution (3.1), our problem reduces to

D1%+ c=moe @ H((x ) (3.2)

13
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Figure 3.1: The exact solution for the density of stem cells inside and oside the damaged part
of the wound.

with initial condition (2.4), boundary conditions (2.5) an d where H (x ) is the Heaviside
function

It can be proved that the solution to Eg. (2.3) can be approximated by the solution to Eq.
(3.2). This has been done in Appendix A.

As we can see in Eq. (3.2) there is still a term depending on tira t, while we substituted
@t— 0. This is possible because we assume that we have a semi stigastate which means that
we assume that at every timet a new equilibrium value for the concentration TG  sets in.

First we determine the homogeneous solution of Eq. (3.2) by wbstituting ¢, = €* into Eq.
(3.2) and we determine the particular solution to our nonhomogeneous problem. Combining the
homogeneous and the particular solution, we obtain the soltion

8 my P - P
% ——e ! +Ajcosh X% +Azsinh X% : 82][0; );
|—{z—} | {z— }
C(X; t) - particular soluuop o homogeni)us solution (33)
Bicosh X + Bjsinh X 8x 2 [; 1]
I {z }

homogeneous solution

with ~ = R and where we only need to determine the coe cients. Using theboundary con-
ditions (2 5) and since we require continuity on the bounday, x = , for both ¢(x;t) and the
derivative @C the coe cients from our analytical solution are
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sinh a1 )
Ar= MO ut —; Az =0; (3.4)
sinh -
sinh  ~ p —
By= 1l ft— p Bo= % tsinh - (3.5)
tanh -

Where, after a very long time, when there are no stem cells Iein the wound, the concentration
TG inside the wound goes to

t11) e 1 0) cxt)! O (3.6)
and outside the wound the concentration goes directly to

t1l) cx;t)! O (3.7)

3.1.3 Number of TG

In the previous chapter, we determined the concentration of TG analytically. It is also
possible to determine the total number of moles of T&  since the number of moles is the
concentration integrated over the domain, i.e. c(t) = c(x;y;t) d. This has been done in
Appendix B.

The number of moles TG- is

ce '+ Mo(e it e H)ELM i 8
ce '+ moe ' 5 it = g

c(t) = (3.8)

Initially we assume that there is no TG  present, socy = 0. The number of TG will be
di erent for the one and the two dimensional problem, since

A . .
( w) = -=; for the one dimensional problem, (3.9
A() 1
ACw) _ 2_ 5 - : .
AQ T for the two dimensional problem (3.10)
With = 0:2 this means that the total amount of TG will be ve times smaller in the two

dimensional problem than in the one dimensional problem. Tlis can also be seen in Figure 3.2.

In Figure 3.2(a) the number of moles of TG is shown fort > 0O for the one dimensional
problem. Initially there are no TG- molecules present and we know that the stem cells produce
TG- . In Figure 3.1 the number of stem cells is shown. In that gure we see that TG s
still being produced at t = 10, while we see in Figure 3.2 that the number of moles of TG is
decreasing at this time. This means that from a certain momeh TG reduces faster than it
is being produced.
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Figure 3.2: Number of moles of TG

3.1.4 Characteristics of the capillary tip density

The analytical solution for the density of the capillary tip s, given by Eq. (2.6) is dicult to
nd. First we simplify the problem to

%I:_i. 1@@)( n%:: = pC+ 1H (C C)nC 2N ; (311)

where we neglect the diusion part since in reality the problem is dominated by convection.
Application of the Product Rule for di erentiation into (3.1 1), gives

dn

a= 1n@+ oc+ 1H(c &nc n = F(n;c); (3.12)

@%

over a characteristic that travels at speed

d
d—’t( = 1%}? (3.13)

where

dn _ @n,_ @rix.
d @t @xdt’
For now we focus on the equation for the location of the front d the capillary tips, Eq. (3.13). We
dene t = as the time that the characteristic is on the boundary of the wound, i.e. x( ) =

First we determine the location of the front as xg < and thereforet > . In order to do this,
we use (3.3) and (3.4). We obtain

p_  sinh ~@1 ) p_
dx_ Mo - p— sinh X
sinh -
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The solution as obtained in Appendix C.3 is

mn p _ !
2 X
X(t) = p—=arctanh tanh 0
— !
m o sinh  ~(1 ) #
exp 1 p— (e * e ) ; (3.14)
1 sinh =
for xp< ,t>
We do the same forxgp and thereforet when using (3.3) and (3.5) and obtain
2 o p— 3
p— P — p— sin X
dx_ mo 1 “sinh  ~ e t4cosh x —p=75;
dt tanh =
where the solution as obtained in Appendix C.3 equals
r_ !
1 A+B 1+ o(t) |
x(t) = p—= In A B 1 L0 (3.15)
for xg , t , Where
2 0pP— ¢ 3
RE, PP —
o) =exp4n@p——g——A  ~ AZ B2 ()5; (3.16)
e Xo+ A+B
A B
o P—- P —
(t)y=—— 1 ~“sinh  ~ e tt 1 : (3.17)

1

Note that if xg < , the front has already passed the boundary of the wound and wanmediately
have =0. If Xo , can be determined from Eq. (C.7) with substituting x( ) =

In Figure 3.3(a) the movement of the characteristics of the apillary tip density is shown for the

situation that the characteristics already start in the wound of the heart. In this gure we see
that the speed of the characteristics decreases as the chataristics move towards the center of
the wound. Note that this is the conclusion in this situation with a certain choice for all the

biological parameters, Table D.1.

In Figure 3.3(b) and in Figure 3.3(c) the movement is shown fo the characteristics of the
capillary tips when they are initially outside the wound. Wh en the characteristics reach , here

= 0:2, the boundary of the wound, the characteristics follow Eq.(3.14) instead of Eqg. (3.15).
For the chosen values of our parameters we see that the charngeistics do reach the boundary
of the heart when starting at x = 0:4 but they do not reach it when they start at x = 0:8.
The characteristics move through‘é—f = 1%; where 1 is a biological constant parameter. This
means that %ﬁgoes to zero before the front, starting atx = 0:4, can reach the boundary of the
wound. The only parameter that is not xed by biology, is the number of injected stem cells.
So from Figure 3.3(c) we conclude that not enough stem cellsra injected in order to get the
capillary tips, initially outside the wound, inside the wou nd.
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Location
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Time

(a) Characteristics start inside the wound at  (b) Characteristics start outside the wound
x=0:19 atx=0:4
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Time

(c) Characteristics start outside the wound at
x=0:8

Figure 3.3: The movement of the characteristics of the capillary tip densy.

More important are the characteristics that originate at th e boundary of the damaged part of
the heart. We want to know whether these characterstics redt the center of the wound to form
a network of vessels inside the wound since then we have a suient number of capillaries all
over the initially damaged part of the heart. Therefore we have taken di erent numbers of stem
cells and in Figure 3.4 the movement of the characteristicsdr the di erent situations are shown.

In Figure 3.4 we see that when we inject a relatively small nurber of stem cells the characteristcs
do not reach the center of the wound and when we inject a relatiely large number of stem cells
converge to it asymptotically.

The wound will have su cient blood supply if there is a time t, given a number of stem cells,
such that the characteristics are close enough to the centeof the wound. If they get close
enough we also want to know that value oft. We describe this as

t=argmin ft 2 (0;T]: jx(t)j < g; if tCexists, (3.18)
t2(0;T]

where we take =10 6.

It appears that when we considert 2 (0; 10] and mg = 4 no su ciently dense capillary network
will be established despite that it is suggested by Figure 3l.

In Figure 3.5 the time is shown that the characteristics needto come from the boundary to the
center of the wound.
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Distance to the center of the wound

Figure 3.4: The movement of the characteristics of the capillary tip denigy, starting at the
boundary of the wound, where di erent numbers of stem cellsra injected.
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Figure 3.5: Time that the characteristics need to come from the boundarya the center of the
wound.

Taking Figure 3.4 in mind we can conclude that enough stem cé&d should be injected in order
to have an improvement of the density of capillary tips inside the heart. Combining this with
the results that we observe in Figure 3.5 the importance of adst recovery and the value of stem
cells must be weighed in order to determine how many stem calwill be injected.

3.2 Endothelial cells model: based on the model from Magge-
lakis

The equations for the stem cell density and the concentratia TG are the same as in the
tips-vessel model. Therefore, the exact solutions are giveby Eq. (3.1) and Eq. (3.3). The
amount of TG- at each timet is also the same and is given by Eq. (3.8).
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Rewriting Eq. (2.15) for the endothelial cells density equds
n_  @c
d =~ '@z

where F (n; c) represents the characteristics and
dn _ @n @rdx

n+ »c(1 n)n F(n;c); (3.19)

i @t+ @xa; such that
dx _ @c
i 1@)& (3.20)

which represents the speed of the characteristics.

In order to nd the solution for x(t), the characteristics of the capillary tips, we need to spl
the function into two: One if the characteristics are initially in the damaged part of the wound
(Xxo < ) and one if the characteristics are initially outside the waund (Xg ). We assume that
at time t = the front of the capillary tips enters the wound, sox( ) =

The solutions to x(t) are now the same as in our previous model since(x;t) has the same
solution for both models and therefore%—jhas the same solution for both models. Therefore the
solutions are given by Eqg. (3.14) and Eq. (3.15).

3.3 Analytical solutions using Bessel functions

In a later chapter we want to validate results we obtain from writing Eq. (3.2) into polar
coordinates and where we approximate the solution using theliscontinuous Galerkin method.
In order to do the validation, we apply discontinuous Galerkin to a simpli ed version of Eq.
(3.2) (a test problem) and compare it to the analytical solution that we determine here.

We consider the following test problem

%fz %+ %%f+ c;t>0 0<r< 1, (3.21)
c(r; 0) = %; 1= 2:4048 (3.22)
c(1;t)=0: (3.23)

where
XDk x %
o ®@7 2 &2

is the Bessel Function of the rst kind of zeroth order, and 1 represents the rst eigenvalue to
the associated Sturm-Liouville problem. The eigenvalues, satisfy

n2R: Jo( n)=0;
where 1 =2:4048. The exact solution to the problem (3.21)-(3.23) is gien by
p_
2Jo( ar).

Ji( 1)
Jo( 1) =0; hence ; =2:4048

To evaluate Jg(X) in Matlab, we type

Jo(x) =

orit)= e @ Dt

BesselJ(0,x).

For cartesian coordinates, similar analytic solutions canbe constructed. We will not treat this
issue.



Chapter 4

Numerical methods

4.1 Finite element method for the two dimensional problem

To determine the solution for our model we approximate all egations, except the one for the
stem cell density, using numerical methods. For the stem ckbensity we use the results obtained
in Chapter 3.1.1.

In this chapter we use the nite element method to the two dimensional model. The one
dimensional results can be found in [5]. Since the nite elerant method, as described in [9], can
handle complicated geometries as well as conserving uxeshis method can probably give us a
good approximation to the solution of the two dimensional problem. Therefore we now observe
the results using the nite element method for our one dimengonal problem.

In order to do so we patrtition the scaled domain as shown in Figre 2.1 into triangular elements,
see Figure 4.1. As our basisfunctions we use piecewise limdanctions given by

(X3;Y3)

(X2;¥2)
y
L (X1;¥1)
X

Figure 4.1: Triangular elements.

' § g € g . .
cx)= 7+ Ix+ y; (4.2)
on elemente where
i) = s
with j; the Kronecker delta and with i 2 [I; m] and we usek for the current time step.

The rst step in the nite element method is to determine the w eak formulation. This is done
by multiplying the equation by a test function ' 2 where

g 1y— £ 2y @ @ 2 .
=H ()= f' 2L%) @)Z@yZL()g’ (4.2

21
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and integrating this over the whole domain .

After nding the weak formulation we need to use Galerkin's method in order to nd a ap-
proximation for the unknown, for example the concentration TG-beta. Therefore we need to
approximate the solution by a linear combination of basisfunctions, ' |(x) 2 ,

X
c(x) c(t) 1(x); (4.3)
=1

and replace the test function' by each of the basic functions separately. The Galerkin methd
gives a formula for entries of the mass matrix, the sti ness marix and of the right handside
vector for internal elements.

Note that for an element g only the basisfunctions that have their in uence are the norzero
ones.

The last step is to also nd the element matrix and the element vector for boundary elements
(the mass matrix is the same for internal and boundary elemets). After nding these quantities
for all elements, we need to combine everything into a nal mas matrix, sti ness matrix source
vector.

Concentration TG

In this section we follow the described steps for the nite eement method on Eq. (2.3) in order
to nd a numerical approximation for our two dimensional pro blem.

Multiplying Eqg. (2.3) with a testfunction ' and integrating over the domain gives us

2010- T1- 120 ) -
CZZL([O,T],H()).

@ Z
@f Dir (ro +cd = m (x;y;t)'d ;8 2L3%):
Using Integration by Parts and substituting the boundary condition (2.5),
z @
Dir (ro'd = D; =%d +D; rcr'd ;

e @

we obtain the weak formulation
c2 L%([0;T]; ) : — " +Dircr' +c¢cd = md ;8 2 : (4.4)

Now we insert the approximation with piecewise linear basifunctions

X
c(x;t) a(t)" 1(x);
I=1

into the weak formulation (4.4). The weak formulation becomes
W dg Z W Z Z
m "I'md + g Dir'yr'pm+ " "md md : (4.5)
1=1 | —{z—} =1 | {z P {z }

M mi Sl fm

I
3




4.1. FINITE ELEMENT METHOD FOR THE TWO DIMENSIONAL PROBLEM 23

With Eq. (4.5), we can determine the mass matrix, the sti ness matrix and the source vector,
since

Nel o Nel o Nel o
Mm = Mg; Sm = Sy fm= fm: (4.6)
j=1 j=1 =1
Using Newton Co6tes numerical integration, the element matices and vector are
z -
6 _ . ne j J¥
Mo = " m d 3 1(Xp; Yp)" m(Xp;Yp)
€ p=1
I
= — ml: (4.7)
76
Sﬁjﬂ = Dlr ' | r ' m + ! |' m d
€
NC
J7JD1( mi1t m I)+ J?J ‘ I(Xp;yD)‘ m(Xp;yp):
p=1
:’27‘Dl<m|+ m+ (4.8)
_ , NC R :
o= m nd % M(Xp; ¥Yp)" m(Xp; Yp)
€ p=1
= Jij(xm;ym): (4.9)

Using the implicit Backward Euler time integration, the sol ution to Eqg. (2.3) can be approxi-
mated by
Mc k+1 _ |\/|Ck + t Sck+1 + fk+1

Capillary tip density

The same as what we did in the previous chapter can be done fordg (2.6). Multiplying by a
testfunction and integrating over its domain gives us

2010- T1- 14 2( ) -
nZZL ([O; TLH=()) :

Z
%rt] + 1r (nrc) Do (rn)d = oc + 1H(c €)nc on'd
8 2L%() :
Using the bo%ndary condition (2.9) we have
ir (nrc) Dar (rn)yd
Z Z
= 1H%C Dz%n'd + inrcr' +Dornr'd ;
|2 {z }
=0
which results in our weak formulation
n2 L[0;T];):
¥l T ,
@t inrcr'" +Doarnr'd = oc + 1H(c ¢&nc on'd

8 2 (4.10)
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Substituting our approximations by a linear combination of piecewise linear polynomials,

X
n(x;t) n(t)" 1(x);
I=1

the weak formulation (4.10) becomes

X dnlz -
"1+ m
R
Mml
W Z
+ n rcr'm+Doartyr'm H(C OC ' m+ 2''m d
=1 {z }
z S
= 0C md : (4.11)
I f{Z }

From Eqg. (4.11) we can determine the mass matrix, sti ness matix and the source vector. As
we can see in Eq. (4.6) these are determined by the element ntéde and vector. The element
mass matrix is equal to the relation given in (4.7). For the si ness matrix and the source vector,
the element contributions are

Z
S idircr' ' m+Dor’yr' g tH(c Oc''"m+ 2'1'm d
€
NC
1% p:ll 1(Xp: Yp) gzxp;Yp) m ¥t %gxp;Yp) m T DZJTJ( m i+ m)
R . .
16 H(c(Xp:Yp)  ©)c(Xp:Yp)' 1(Xp:Yp)' m(Xp;Yp)
p=1
j i . .
+ 2? (Xps¥Yp)" 1(Xps ¥p)' m(Xp: Yp); (4.12)
z p=1
&
ne X N
p=1
where
@c_X @p X
— = C(Xp; Ypi ) —— = Cc(Xp; Ypi t) ps (4.14)
@x g @x xp
@c @
. C(Xp; Ypi ) —_- = C(Xp; Yp; t) p: (4.15)
@y o @y o

The approximation to Eqg. (2.6) can now be determined by

Mn k+1 _ Mnk+ t Snk+l+f(Ck+l; k :
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where we use the IMEX method, a combination of Backward Eulerand Forward Euler time
integration.

Vessel density

And as last we determine the approximation for Eq. (2.10). Mudtiplying the equation by a
testfunction ' 2 ¢ where

=) =0g= 2120 | & @ o2 =0 @1
@x @y
and integrating over its domain, we obtain
2 L%([0; T]; H?()) :
, @([ I H2() , )
_l 1 1 - _l - ! 2 .
ot ro(r ) + ( eq)' d (arn znrc)jxjd, 2L4() :
Using Integration by Parts and the boundary condition (2.12) we get
Z Z @ Z
r (r )d = —'d + rr'd ;

—_e@
=0

since' 2 o, (4.2), due to the Dirichlet boundary condition. Using this we nd our weak
formulation

2(10- T1-
ZZ L<([0;T]; )

@ z X
@t+r r'+ ¢ e d = (1rn 2nrc)jx—jd;82: (4.17)
Substituting the approximation using piecewise linear poynomials,
Xin X
(x;t) (1) 1(x) + eq 1(X);
I=1 1= Nin +1

where we separated the internal elements and boundary elemts due to our Dirichlet boundary
condition (2.12), the weak formulation (4.17) becomes

Nin d IZ Nin Z
"I"'md + | rvr'm+ " "md
I—{ — {z }
mI SmI
W Z
+ eq r'Ar'm+ ' |'"md
I=Nin +1 | {z }
Z Sml
= ( 1rn oNnr C) X mt eqmd : (4.18)
| {Z }

In the same way as before we determine our element matrices dnvector using Newton Coétes
numerical integration. Again the mass matrix is equal to the formulatioon given in Eq. (4.7).



26 CHAPTER 4. NUMERICAL METHODS

Sii=  r'ir'm+ ' 'md
g
ne i i
2 6
Z
€ X >(\I
f =  ( 1rn onr c) .X—.'md eqSm
X I=Nj, +1

(mi1+ m)+ ' I()(p;yp)I m(Xp;Yp); (4.19)

Ne § % Sxeiveit) Xpt SXXpivpit) Ve,

1—F% S
6 i X2+ 3
% B YR Xet GRXeYeit) Ve,
275" N(Xp; Yp; t) =
p:]_ J Xp + pr
R X q
6 © m(Xp;Yp) eqSm| (4.20)
p=1 I=Nj, +1

m (Xp; ¥p)

m (Xp; Yp)

+

with the relations given in Eq. (4.14) and Eqg. (4.15) and

X3 ' X3

n(xp;yp;t)@ = N(Xp;Yp;t) p; (4.22)
p:]_ @X p:]_
X3 ' x3

(1Y) ZE = N(K5i¥5i) (4.22)
p=1 V' pm

@n_
@x
@n_
@y

Using the obtained element matrix and element vector, the aproximation for Eq. (2.10) using
Backward Euler time integration, is given by

Mk+l:Mk+ tSk+l+fk

4.1.1 Numerical simulations

As mentioned in the beginning of the chapter, we partitioned the scaled domain as shown in
Figure 2.1 into triangular elements. The accuracy of the nite element method increases with
decreasing element size. This is partly due to the fact that v approximate a circle using a
polygon built by linear triangular elements.

For the following simulations, which are after t = 8, we used the parameter values from Table
D.2 and a triangular grid with 9408 elements. In this grid there are relatively more triangles
around the boundary of the damaged part of the heart with resgect to the outer part. A similar
grid is shown in Figure 4.2 using only 576 elements, illustring the spatial variations in the grid
resolution.

As mentioned earlier, the stem cells injected in the damagedbart of the heart secrete the

attractant TG- . This is still visible in Figure 4.3 where the attractant is r elatively well spread
with the highest concentration inside the wound.

The simulations are aftert = 8 which is a relatively long period after the injection of th e stem
cells. The concentration TG- in Figure 4.3 is already relative low. This also applies to the
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y-direction

x-direction

Figure 4.2: A coarse triangular grid using 576 triangles.
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Figure 4.3: Concentration TG- after t = 8 with time step t=0:1.

capillary tip density shown in Figure 4.4 and the vessel dengy in Figure 4.5. The dierent
concentration and densities are therefore going to their hits which is already visible in these
gures.

Outside the wound the capillary tip density is almost back to zero, which is the initial and
equilibrium value. This also applies to the outer part of the wound. Inside the wound a
relatively large amount of TG- s still present so tips are still branching and looping.

This can also be seen in Figure 4.5 where we see that the vessare now present both outside
and inside the wound. Together with the vessel density outsle the wound, the vessel density
inside the wound converges to the equilibrium value if enouly stem cells were injected at the
beginning.
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Figure 4.4: Capillary tip density after t =8 with time step t=0:1.
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Figure 4.5: Vessel density aftert =8 with time step t=0:1.

4.1.2 Convergence

In the previous section we have seen some simulations usingyad partitioned into 9408 elements.
These simulations of course represent approximations to th exact solution and contain errors.
First, a grid partitioned into triangles has a polygon shapeand not a round shape as our domain
has. With these triangles we already lose some data at the edgof our domain. And secondly,
the nite element method with piecewise linear basis functons makes us lose accuracy by the
size of the elements. These errors give us an accuracy ©{h?) when using linear elements. The
more triangles we use in our partition, the smaller the triangles are and the more accurate our
approximation will be.

What we would like to know is if the approximation converges  the exact solution by reducing
the size of the elements and thereby increasing the number aflements. On page 405 (Eq.
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(10.4.4)) and on page 407 (Eq. (10.4.10) of Corollary 10.4)4in [1] it is proved that the nite
element method does converge:

2i00i .

with linear elements for a poisson problem, wherguj,. is a semi-norm.

Hence the more triangles that are used for the partitioning he more accurate the approximation
is.
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4.2 Motivation for a di erent numerical method

In the previous section we have seen some simulations for amg others the capillary tip density.
This has been done using the parameter values as described Table D.2.

If it turns out that the chemotaxis term has more in uence the n is included in the parameter
values from Table D.2, the hyperbolicity of the problem will increase, and the nite element
method will no longer be attractive. This is illustrated in F igure 4.6. As an alternative we use
the discontinuous Galerkin method.
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Figure 4.6: Simulations for the capillary tip density using the parameeér values from Table D.2
with the changes and additions from Table D.3.

Despite that this method will be introduced in the next chapter we already show some simula-
tions in Figure 4.6 in order to compare both methods both for he one dimensional problem. We
used the same values for the various model parameters in botimulations, where the convection
term has been made larger by assigning a higher value for thehemotaxis constant 1. From
this gure we see that the nite element method is not suitable anymore while the discontinuous
Galerkin method is.
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4.3 Discontinuous Galerkin method for the one dimensional p ro-
blem

The discontinuous Galerkin method has many similarities wth the nite element method as
dividing the domain into elements and introducing the testfunction and basis functions. The
main di erence and also advantage of the discontinuous Galéin method is that the method
determines a local solution for each element which resultsni a discontinuous global solution
while the nite element method determines a continuous glotal solution where no jumps can
occur.

Before we will apply the discontinuous Galerkin method [7] © our model as de ned in Chapter
2 but then in the one dimensional case, we apply the method totie advection equation in order
to practice the method.

For the discontinuous Galerkin method for one dimensional poblems, we need to divide our
domain into N elements. Each element is denoted ag; = [X; 1=;Xj+1=2] With1 j N and
element size j. The maximum element size is given by x =max; ;| N j.

In order to derive the weak formulation we need to use test futions' from the nite dimen-

sional space n o

= '2L1(0;1):‘jej2PK(ej);1 i N (4.23)

where is the space of all piecewise polynomials of degree {anost) K on elemente; .

As our basisfunctions we choose the Legendre polynomialsnsie their L2 orthogonality comes
in a convenient manner for the treatment of our mass matrix. The nth Legendre polynomial is
of order n and is given by

1 d 2
2nn1 dxn

The rst ve Legendre polynomials are plotted in Figure 4.7.

n .

Pn(x) = 1 (4.24)

n-th Legendre polynomial
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Figure 4.7: The rst ve Legendre polynomials.
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In order to use these Legendre polynomials, we rede ne our vek formulation to a weak formu-
lation on the scaled interval [ 1;1] instead on our element intervale; = [X; 1=p;X;+1 =], this is
often done by substituting r = 2X i),

With the discontinuous Galerkin method we get two (possibly) di erent solutions on the boun-
daries of all elements. One solution by the element left fronthe inter-element boundary and
one solution by the element right from the inter-element bowndary. Therefore we need to de ne
a link between these two results. This can be done in di erent vays, for example we can use the
central or the upwind ux.

4.3.1 Advection equation

We introduced the space of our test functions and the basis foctions we use for each element
g . Now we can approximate the solution to the advection equatbon. The advection equation
with periodic boundary conditions is given by

@Qu_@u_ 11 T

@t+ X 0; 8x 2 [0;1];8t 2 [0;T]; (4.25)
u(x; 0) = g(x); 8x 2 [0;1]; (4.26)
uO;t) = u(1;t)=0; 8t 2 [O;TT: (4.27)

The solution in element g is approximated by

X
un(x;t) = ui(t)' | (x); (4.28)
=0

where' '(x) = P, LXXJ) is the Legendre polynomial ofith order and u} (t) is the corresponding
time-dependent coe cient.

Initial coe cients

First we need to determine the initial coe cients such that i nitial condition (4.26) applies.
Therefore we multiply the initial condition by the test func tion ' jm(x) 2 and integrate it over
the elementg . By inserting Eq. (4.28), we obtain

Z ZX(

2 - 2 - 2 -
(6 Oy 2 X ge= T e 2N g 2K XD g
e e X
i 1 1=0
m2f0;:::;Kg;
where we subsitute Eq. (4.28) andr = LXXJ) to obtain
X Z, X X | Z,
— Uy —-r+X;;0 Pp(r)dr=— u; (0) P (r)Pm(r) dr
2 2 2 1
1=0
—_ X 2 m - m O2fFN - - .
=5 2m+1uj 0); m2f0;:::;Kg:
Therefore the initial coe cients are given by
A
2m+1 1
u"(0) = m2 Uo 7Xr +Xj Pm(r)drn, m2f0;:::;Kg: (4.29)
1
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The initial coe cients given by Eqg. (4.31) can be determined numerically using the Gauss-
Legendre quadrature which read as

z X
' f (x) dx wif (%i): (4.30)
1 i=1

Here p denotes the number of points (and therefore also the numberfoweights) in which we
need to evaluate the integrand. Ap point Gauss-Legendre quadrature is used to nd the exact
result to a polynomial of order 2p 1 or less by a suitable choice of points and their weights.
We choose to approximate the integral using six points as ths will be enough when we use
polynomials up to order three. The points and weights we use i@ listed in Table 4.1.

Points Weights

0.23861918| 0.46791393
0.66120939| 0.36076157
0.93246951| 0.17132449

Table 4.1: Six points and their weights for the Gauss-Legendre quadrnate!

By substituting the points and their weights from Table 4.1 into Equation (4.29), we obtain

Z
2m+1 1 X
u"(0) = 3 Uo —r +Xj;0 Pm(r) dr
1
2m+1 X X
> Ug 7I’i + X Pm(ri)wi: (4.31)

i=1

Lhttp://pathfinder.scar.utoronto.ca/ ~dyer/csca57/book_P/node44.html
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Weak formulation

Once the initial coe cients are known, we determine the weak formulation for Eq. (4.25). This

is done by multiplying it by the testfunction '; 2 and integrating it over element g. We
obtain
Qu . @u
— j+ = jdx=0;
g @t'  @x’
which becomes after Integration by Parts
Z
@U d'j Xi4] =
T dx + u' ;j%i*t=2 = Q-
o @1 Tax T ik
Subsequently, we substitute Eq. (4.28) into the above equabn, and we set' ; = Jm to obtain
X du £ x Z g m
] vl | | J el X1 =2 — .
e " dx uj i dx+ u™ X 12 =0: (4.32)
0T ey 0 | )
M mi S

In order to determine the uxes we can choose from di erent sclemes. We consider two choices:

Upwind ux: u’(Xj+1=) = u(Xj 1)

Central ux: U’(Xj+1=) = 3 U(X[ 41 ) + U(X]'y1 o)

Mass matrix, element matrix and ux

Before we determine the mass matrixM ., the element matrix S,;, and the values on the
boundaries we choose the number of Legendre polynomials wset In this section we determine
the matrices using two Legendre polynomials, si = 1.

From the weak formulation (4.32), we know that the mass matrix M ,, equals

z Z,
Mm = ") ["(x) dx= —=  P(r)Pm(r) dr
€ 2 1
— X 2 .
T 22m+1 ™
where ., is the Kronecker delta. Hence
M= Xx é (_1) (4.33)
3
The element matrix is given by
z z
d ! dP,
- 'l j - m :
Smi = . j(X)W(X) dx = 1P|(r)w(r) dr:
Hence
S= X 0 0 : (4.34)

N
o
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For the ux term we use an upwind scheme and we insert Eq. (4.28into relation (4.32).
Furthermore, we know that ' {"(Xj41=) = Pm(1) = 1 and ' "(X; 1) = Pm( 1) = ( 1),
m 2 f 0; 19. Therefore the boundary values are determined by

Un(Xj+1=0:1)" " (Xj41=2)  Un(Xj 1=2:1)" " (X} 1=0)

><L | v m ><l | v
= ut) j(Xa=2) (1) up 2(t)" (X 1=2); m2f0;1g:
1=0 1=0

For the ux of the current cell and the ux of the previous cell we have two matrices,A and B,
such that we have
Auj + Buj q;

with

=
=
=
c
o

11 1 i
= : = = : i = J :
A 11 B 1 and u; : (4.35)

=
=
=

With Eq. (4.33)-(4.35) we rewrite the weak formulation (4.32) into the following equation

du;

Mdt

Suj + Auj + Buj 1 =0:

Since we apply discontinuous Galerkin on the advection equan only as a practice, and therefore
we do not focus on the accuracy, we use the most simple and chmest method, Forward Euler.
Using the Forward Euler time integration we need to solve

Mu it =(M+ tS  tA)uf  tBuf g (4.36)

where k denotes the time index at time t.

In order to determine the coe cients for the rst element, e;, we created a ghost cell on the left
which is an exact copy of the most right element, elementey . This can be done since we have
periodic boundary conditions.

Numerical simulations

We have the following exact solution to the initial boundary value problem de ned in Eq. (4.25)-
(4.27) with g(x) =sin(2 x ):
u(x;t) =sin(2 (x t)): (4.37)

For comparison the exact solution is also shown in the guresvhere we show our approximations
using the discontiuous Galerkin method. This is done by detemining the exact solution for 10001
points with  x = 0:0001 between the points.

In Figures 4.8 and 4.9 we respectively show the approximatio using ve and ten elements.

Concentrating on Figure 4.8 it is clear that if we use three Lgendre polynomials per element
instead of two, the approximation gets more accurate. This an be explained since the third
Legendre polynomial, the polynomial of order 2, is the rst polynomial that is curved. So
the third polynomial gives a signi cant contribution to the approximation of the curved exact
solution given in Eq. (4.37).
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Figure 4.8: Results (two points per element) for the advection equatiorafter t = 2 with ve
elements ( x =0:2) and t=0:001
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Figure 4.9: Results (one point per element) for the advection equation feer t = 2 with ten
elements ( x =0:1) and t=0:001

If we consider more elements, with smaller size, the exact 8dion will more and more look like

a straight line on each element. Therefore, if we have a smaéinough element size, it is su cient

to just use two Legendre polynomials to get a good approximabn. Figure 4.9 demonstrates
this convergence since the solutions using two and three Legdre polynomials are very muck
alike.

We also consider the approximation for a discontinuous inital condition. So we have our initial
boundary value problem de ned in Eq. (4.25)-(4.27) with

_ 5 x 05
9(x) = 0 elsewhere (4.38)
The exact solution is given by
u(x;t)=5H ((0:5+1t) x): (4.39)

In Figure 4.10 the approximations are shown for di erent choices of number of elements and the
time step t. For these approximations we have always used only one Legdre polynomial,
so we have basisfunctions of order zero. In Figure 4.10(a) weee that the solution with one
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t=0:25 t=0:1

Figure 4.10: Results (two points per element) using one Legendre polyndal for the advection
equation with discontinuous initial condition.

Legendre polynomial is a good approximation to our exact saltion. Here we have used a time
step that is equal to the size of our elements. This means thathe new solution of a cellg is
exactly the old solution of the neighbouring cellg ;.

In Figure 4.10(b) we use a time step that is smaller than the sie of our elements such that it
satis es the CFL condition. This means that after one time step, only a part of the solution
of elementg ; is shifted into element g . Therefore the new solution of elemente; will be a
weighted average of the old solution ofg; ; and g. This also happens at the location of the
discontinuity. Hence with t< x numerical di usion will occur.

The last situation is that the time step is larger than the size of our elements. In our case, where
we have our speed equal to one, this means that the CFL conditn is not satis ed. After one
time step, the solution of elemente 1 is then multiple shifted to element g and wiggles will
occur. This is shown in Figure 4.10(c).

We can also approximate the solution with higher order Legedre polynomials. This is done in
Figure 4.11. Using a higher order approximation, in order toget stability, t= X should be
smaller than a certain value that depends on the order of the pproximation and the order of

the time integration method that is used. We used the Forward Euler time integration method

(order one) and Legendre polynomials of order four. This meas that t= x should be smaller
than zero, hence the approximation will never be stable.

In Figure 4.11(a) we have t= x =0:01 and some wiggles occur in the approximation. We can
use a limiter to improve the approximation. In Figure 4.11(b) we have t= x =0:1 which gives



38 CHAPTER 4. NUMERICAL METHODS

0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
x

(@ with  x =0:1, t =0:001 after (b) With x =0:01, t = 0:001 after
t=0:25 t=0:25

Figure 4.11: Results (two points per element) using ve Legendre polynomals for the advection
equation with discontinuous initial condition.

larger wiggles such that the approximation is clearly unstdle. So we should choose the x and
t carefully.

Limiting

When using Legendre polynomials of higher order, limiting @n be needed. In this chapter we
apply limiting to the advection equation with discontinuou s initial condition.

Minmod limiter

The minmod limiter is a limiter that is applied to the whole do main and it can be used for
a polynomial basis Py or Pg; P1, a basis of order 0 or 1. When we use a polynomial basis
of a higher order we can still use the minmod limiter, but only where limiting is needed. In
those elements the approximation will be reduced to order 1while in the other elements the
approximation is still of the higher order. To determine in which elements limiting is needed we
should use some kind of detection. For now, we focus on a polgmial basis of order 1 so we
can use the minmod limiter on the whole domain.

For the minmod limiter we need the minmod function which is given by
m(a:b:g = sgn@) minfj aj;jk;jcjg if sgn(a) = sgn(b) = sgn(c); (4.40)
0 elsewhere
For example, the minmod function is used in the monotonized entral-di erence limiter (van
Leer [8]). We will use this limiter to improve the approximation to the advection equation.
With this limiter the approximation up(x;tX) of the solution to elemente,j =1:::N, at t€ is
given by

un(;t) = U+ Kx o xg); (4.41)

where u}‘ denotes the averaged approximation over elemeng; . For u}‘ we obtain
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ZX
Kk 1 j+% K
up =— Up(x;t*) dx;
X X, 1
Iz
Z
1 X.+1)(( 2
== 7 PP (x x) dx
X X
X 3 1=0
Iz
Z
1 Xy X!
= u: J— P
L UM o PO
1=0
=u(t);
since
Zl Zl
_ _ 2 1=0;
POd = POPO = 5 g0
The slope j" for the Van Leer limiter is determined by
|
k k kK k k'
ko S+ Woaol Woaota 4
J 2 X X X

PROBLEM 39

(4.42)

(4.43)

For the advection equation (4.25) with discontinuous initial condition (4.26) de ned in (4.38)

we use a polynomial basis of order 1. Hence our solution aftdimiting is given by

k xt (OFA
it =" u (P
1=0

_0, @ 2

0
=u®+ Kx x):

Therefore, when we use limiting, the renewed value equals

kK X,

(1) r3ky —
U () = R

The algorithm that we applied for limiting the advection equ ation is as following:

(4.44)



40 CHAPTER 4. NUMERICAL METHODS

Algorithm 1 Determine limited u**1 with u
uoI initial coe cients
w0 = uf ()
| |
Uy (19 = ug(t%;
for k=1:Nt 1do
for j =1:N do
: | |
in1=(u () u ()=
in2=2 () ul (t4)=
in3=2 () uty= x
= minmod (jin 1j; jin 2j; jin 3j);
uj(l) (tk) = x=2;  %Limited coe cient
er?d for |
(%) = ug ();
| |
U (89) = ug(t4);
Determine u() (t“*1) with Euler Forward
| |
U( )]_(tk"'l) - U(N)(tk+l);
| |
U(N)+l (tk+1) - ug)(tk+l);
Determine solution up(x; t) with limited coe cients
end for

x

);

%

Numerical simulations

In Figure 4.12 the results are shown for the advection equatin with discontinuous initial con-
dition using only ten elements and a polynomial basis of ordel. The same is shown in Figure
4.13 with 100 elements. Both with a di erent time step in order to satisfy the CFL condition.
In both gures the results without limiting are bad. Wiggles start to occur, especially when we
have 100 elements. When using the limiter described beforéhe wiggles seem to be gone and
the approximations are more accurate. Especially when we @s100 elements.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

(a) Without limiting (b) With limiting

Figure 4.12: Results (two points per element) using two Legendre polynaads (up to order K =
1) for the advection equation with discontinuous initial cordition, using x =0:1, t =0:01
andt =0:25
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(a) Without limiting (b) With limiting

Figure 4.13: Results (two points per element) using two Legendre polynaias (up to order K =
1) for the advection equation with discontinuous initial cordition, using x =0:01, t=0:001
andt=0:25

4.3.2 Tip-vessel model

In this section we use the discontinuous Galerking method tathe full model as described in
Chapter 2 but then for the one dimensional case. In order to dal with the di usion terms in
all equations we split each equation into a system of two equ#ons, [7, 3].

Concentration TG

First we work with the one dimensional form of Eq. (2.3) which describes the concentration
TG . Splitting this equation we obtain

@C: D @q
@t '@x
_ @c
where the one dimensional initial and Neumann boundary coniions are given by

c+ m

@ @
c(x; 0) = 0; —zo;t = —zl;t =0:
(x; 0) @ ) @ )
The solution will be approximated as in Eq. (4.28) whereg" are coe cients.
With this initial condition we know by Eq. (4.31) that

g"(0)=0; 8m;
which means that initially all the coe cients are zero.

In order to determine the weak formulation we multiply the system of two equations by the
testfunction ' j 2 , see Eq. (), and integrate it over element g . After applying Integration by
Parts we obtain

d

@¢
—idx= D g—— dx c' j dx+ m
& @tJ 7 ' g dx g J g

1

Z Z 4

jdx+ qu'jjej : (4.45)
Z

q'j dx = Cddxj dx+ ¢, (4.46)

& &
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Subsequently, we substitute (4.28) and we set = J’“ to obtain
X @k’ x 2 g m x4
@L" im gy = d or!Slax T d M ax
@t ., |} I Tdx o
1=0 & 470 € 1=0 &
+ . m M dx+ Diq” " (4.47)
i
% |Z v lem >(( Z ' |dI Jm 21 m
1=0 & 1=0 & :
where we use the)%entral ux such that | |
o X o X X 1 X o
q = 97 =3 G'jt  Garljer > G 1 1t g ;i (449
1=0 1=0 1=0 1=0 1=0
(( )
C? = [l
G j
1=0
For our basis functions and our testfunction we choose to usthe Legenre polynomials as de ned
in Eq. 4.24. We substituter = LXX‘) and' }(xj + *r) = Py(r) and we use four Legendre
polynomials, so polynomials up to order 3, to obtain:
0 1
7 1 000
Mo = X PPadrs — X ) M= x%0%00§ (4.50)
ml—2 1Im—Zm_*_lmI’ = 00%0 .
0001
where , is the Kronecker delta, and
0 1
7 0 00O
1
~ dPm _ %2 00 0§,
Sm| - L P|Wdr, ) S— 0 2 O 0 y (451)
2 020
X Z1 X X Z1
fim = — m(xj + —nt)Pndr = — m (xj;t) Pmdr;
' 2 2 2 1
0 1
2
X 0
) fj=7m(xj;t)%0§; (4.52)
0

where we use the fact thatm(x;t) has a constant value inside an element and denotes the
element number.

Finally, in order to determine the approximation using discontinuous Galerkin, we need to write
out the central ux term. So for example

((X( I-|)).m . | -
g5 1 F5 9Nt Gu ja(az) (G a=)
=0 ej 1=0

1X |
2 g1 1=2)*+ G 1 1 1=2) K 1=): (4.53)
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Eq. (4.53) can be written as
((

X
g'; " =Acj Bcj 1+ Ceju; (4.54)
1=0 €j
where, after substituting r = 2% X1,
0 1 0 1
111 1 1 1 1 1
_ 1%1 11 1§ 1B 1 1 1 1
A701 111K 320 1 1 1 1K 59
1111 1 1 1 1
| o b {z }
A A
0 1 1 2'O 1
1 1 1 1 1 11 1
1B 1 1 1 1§. _ 1%1 11 1§.
B=3 1 1 1 1K ¢Tz@1 11 1K (4.56)
1 1 1 1 1 11 1

With Eq. (4.50)-(4.52) and Eqg. (4.55)-(4.56), the approximation for the coe cients for Eq.
(4.47) and Eq. (4.48) using discontinuous Galerkin can now b written as

@;
M =L
@t
Mg; =(A S)g; Bcj 1+ Ccj+1; (4.58)

= Dl(A S)qj DquJ 1+ DquJ+l MCJ + fJ, (457)

where we integrate in time by the third order version of a total variation diminishing (TVD)
Runge-Kutta method [14]. For a semidiscrete schema, writta as
@u
— = L(u);
ot LW
this scheme is given by

u®

u"+  tL(u");

3 1 1
@ = 20"+ Zu® + =t (u®):
u 4u 4u i (u);
1 2 2
M= Zut+ Zu@ + 2ot (u@): 4.59
u 3u 3u 3 (u*”) ( )

Discretizing in space using discontinuous Galerkin has thedvantage that it can handle com-
plicated geometries and arbitrary triangulations. Using a TVD scheme like RK3-TVD has the
advantage that it can compute approximations, which are either smooth or have weak shocks and
other discontinuities, without further modi cation. Henc e discontinuities may become smeared
in future time steps but cannot become oscillatory. If howeer, the discontinuities are to strong,
oscillations and even nonlinear instability can occur. To &oid these both, a slope limiter, like
the minmod-limiter described in Eq. (4.44), can be used.

Capillary tip density

Now we determine the approximation to the one dimensional fom of Eq. (2.6) which describes
the capillary tip density. Splitting this equation we obtai n

%T: 1@@)((nq)+ DZ%\)’(V+ oc+ 1H(c ¢&nc 2N ;
@n
w = ;

@x
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where the one dimensional initial and Neumann boundary conifions are given by
@ @
n(x;0)=0; —Eo;t = —gl;t =0:
(x;0) @ ) @ )
With this inital condition we know by Eq. (4.31) that
u"(0)=0; 8m;

which means that initially all the coe cients are zero.

Just as before, we multiply the system of two equations by theestfunction ' ; 2 and integrate
it over element g . We use Integration by Parts to get our weak formulation

Z an y . z " Z
— i dx= ng—= dx Dow— dx + ¢ ;i dx
. @t' - 15y i L 0C
| fJ | ]
+ 1H(c ©)nc'; on' j dx 1ng' jjej + Dow' jjej ; (4.60)
z z°
d
W' odx = n—_ dx+ n'j. : 4.61
g J g dx JJej ( )
1 P K | ' | 1 1 .
As last, we substitute n(x;t) = |2 nj(t)' ;(x) and we set’ j = Jm to obtain
Xeht L, X X T
—=  tidx = n; 1G ' —— dx W; D, i —— dx
I i i i i
1=0 @t € 1=0 € dx 1=0 € dx
z m X IZ I+ [+m [+ m
*ooggtp A+ aH(G gt 2 dX
& =0 €
1(ng)” ", + Daw” " (4.62)
X | z | X | z g ?
wpotjthdx= N je—dx+n™ (4.63)
. . dx I g
1=0 & 1=0 €

where we use central uxes and for the ux of the convection tem the local Lax-Friedrich ux
[7] (central ux with an additional stabilisation term). We obtain

(( 5 ) (( 5 )
w? = w'l o n’= N’y (4.64)
=0 1=0
. (€« IR
(ng)* = n'; 4 E[[n]]’ (4.65)
1=0
with
N(X; 1=2) = Nj(X 1=2) Nj X 1=2);
N(Xj+1=2) = Nj(Xj41=2)  Nj+1(X) 1=2);
Z(xj 1=) = maxfiq(xj 1=2)" "(X) 1=2)50G 10X 1=2)" " (X} 1=2)i0; (4.66)

Z(Xj+1=2) = max fj g (Xj+122)" " (Xj+1=2)13iG +1 (Xj+122)" " (Xj +122)]0:
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2(x xj)

Substituting r = . using Legendre polynomials and with the use of Gauss-Legdre
gquadrature we de ne
X0 X dPm (r;
Vjimi 19 X+ —-ri Pi(ri) rg( I)Wi; (4.67)
i=1 r
X X X
Vo ——Py(ri)Pm (ri H T REREATS
2j;mli - 2 (r)Pm(ri) 1 C Xj 2 Fi C X > ri
X
2 Xt 7“ Wi, (4.68)
X x X X
V3jm L - 0 Xt i C Xj+ T Pm (ri)wi; (4.69)
Qe o ) - X
N’ ¢ i = (Cnjua+Ang)  qPI(1)
1=0 eJ 1=0
!
X |
(Aznj+Bnj 1) qP( 1) ; (4.70)

1=0
where we used the points and weights from Table 4.1.

The numerical approximation for the coe cients using discontinuous Galerkin for the one di-
mensional form of Eq. (2.6) can be obtained by using Eq. (4.59(4.51), Eq. (4.54)-(4.56) and
Eq. (4.67)-(4.70). These approximations are given by

M%:: D2(A S)wj+qj DzBWj 1+ chWj+1 +(V1j+V2j)nj+V3j;
!
X | X |
1 (Cnj+1 + A1ng) GPi(1) (Aznj+Bnj 1) gP( 1) ; (4.71)
=0 =0
Mw j = (A S)nj Bnj 1+ an+1i (4.72)

Here we also integrate in time by the third order version of the total variation diminishing
Runge-Kutta method described in (4.59).

Vessel density

The last equation we apply the discontinuous Galerkin methal to is the one dimensional form
of Eg. (2.10) for the vessel density. Writing this equation & a system of two equations gives us

%ﬁ %)l: (et W 2nq;
Q.
@x

where the one dimensional initial and boundary conditions ae given by

u=

0 x2
e X2 N y;

@ v -
QD=0 Y= o

(x;0) =
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with the one dimensional domains and ,. With this inital condition we know the initial
coe cients by applying Eqg. (4.31).

In order to determine the weak formulation we multiply the system of two equations by the
testfunction ' j 2 and integrate it over element g . After applying Integration by Parts, the
weak formulation is given by

Z o z . z
| 2 7 ]
+ W' odx 2nq' j dx; (4.73)
7 Zei €j
1 d' j 1 H .
U dx = . dX’ dx+ " jjg (4.74)
] ]

P
Substitute (x;t) =

5o (1) [(x)and set’j ="' M to obtain
| Z z ,
] ) j i j

1=0 @t € 1=0 € dx €j

x 2 z

jo T (et aw ong)t [ dx (4.75)
1=0 €j €
P WX= I i Tax | :

=0 @ =0 ©

where we use central uxes such that

(PR (IR
u? = uJI ! JI : ? = JI ! JI (477)
1=0 1=0
Substituting r = LXXJ) using Legendre polynomials and using Gauss-Legendre quadure, we
de ne
X Z1
2
X 0
I eq% 0 §; (4.78)
0
x6
X X
92j:m 1> WX+ 7ri P (ri)w;; (4.79)
i=1
X X X
93j:m 25" n x+ 7“ q Xxj+ 7“ Pm(ri)wi; (4.80)

i=1

where j denotes the element number and where we used four Legendre Ippomials, so up to
order three, and the points and weights from Table 4.1 such that

gj = 015 * 02; O3 (4.81)
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The numerical approximation for the coe cients using discontinuous Galerkin for the one di-
mensional form of Eq. (2.10) can be obtained by using Eq. (4®)-(4.51), Eq. (4.54)-(4.56) and
Eq. (4.78)-(4.80). These approximations are given by
@ _ _ _ . o
MUJ':(A S)j B j 1+Cj+11 (4.83)

And for this numerical approximation we also integrate in time by the third order version of the
total variation diminishing Runge-Kutta method described in Eq. (4.59).

Numerical simulations

Before we look at the approximations for the two dimensionalmodel with discontinuous Galerkin
we show some simulations for the one dimensional model usintpe discontinuous Galerkin
method. The values for the di erent coe cients that we use are given in Table D.2.
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Distance to core of the wound

Figure 4.14: Concentration TG with element size x =0:1 and time step t=10 4.

In Figure 4.14, the concentration TG is shown for dierent times t. Initially there is no
TG present. When the stem cells are injected, they ‘release' s® TG . Since the stem
cells are injected in the wound of the heart, ,, the “production' of TG takes place there.
From there the attractant TG will spread towards outside ,. Hence at the beginning the
most attractant is in ,. After a while the attractant is more spread around the wound. Since
the stem cells decrease exponentially, the production of TG will come to an end. This can
be seen in Figure 4.14 where the concentration attractant isalready decreasing in the core of
the wound at t = 1.

In Figure 4.15 we see the capillary tip density for di erent time t. Initially there are no tips.
The rst tips are formed at the boundary of the wound since that is the rst location in time
where the attractant meets the vessels. Vessels are consthnbranching of and forming new
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Figure 4.15: Capillary tip density with element size x =0:1 and time step t=10 *.

loops such that the tip density increases and decreases. Adt a while, when the attractant has
spread, vessels outside the heart wound also branch of and meotips are formed.

At the moment the number of stem cells has decreased enormolysand no more TG  is being
produced inside the wound, no more vessels will branch of neéhe wound and since vessels keep
forming new loops, the density of capillary tips will decreae in and near the wound. As long
as some TG s still present far away from the wound the tip density keepsincreasing there
for a while. So there is a time interval during which the densty of capillary tips is decreasing
inside and near the wound and at the same time, it is increasig further away from the wound.
This can be seen in Figure 4.15 at = 2.

Combined with the change in the capillary tip density, the vessel density changes since both
densities are in uenced by each other. Initially the vesseldensity has an equilibrium value,

eq = 0:001, outside the wound and was zero inside the wound. This castill be deduced from
Figure 4.16 att = 0:5. Due to the increasing concentration TG a few vessels are grown
into the wound of the heart after a short time. The growth of the vessel density is maximal
around the wound since the concentration TG  is much higher there than far away from the
wound. This is shown in Figure 4.16 att = 1. Further, since initially there were no vessels in
the wound, however there were vessels at the surface of the woad, we see at all times that the
vessel density is highest around the surface of the wound. Fther, as we can see in all gures,
there is always just a little bit of attractant present far aw ay from the wound such that there is
not much branching over there.

These results for the one dimensional problem using discoimuous Galerkin are in accordance
with the results obtained using the nite di erence method and the nite element method in

[5]-
4.3.3 Convergence

In order to determine the quality of the approximations of th e solutions to the partial di erential
equations in the model, we integrated in time using RK3-TVD as given in Eq. (4.59), which is
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Figure 4.16: Vessel density with element size x =0:1 and time step t=10 “.

a third order method. In this subsection we will determine the order of the convergence for this
method combined with the discontinuous Galerkin method. Wewill do this by considering the
advection equation. This is motivated in Chapter 6.

The advection equation is given by Eqg. (4.25) with initial condition (4.26) and boundary con-
dition (4.27), where g(x) = sin(2 x ).

We will determine the order of this method as follows: First we need to know the norm of an

approximation
S

Z
fiuex Uapplij 2y = (Uex Uapp)? dX;
(4.84)
where uapp corresponds to the approximation anduex to the exact solution given by
u(x;t) =sin(2 (x t):

Further we know
Z W Z
(Uex Uapp)2 dx = (Uex Uapp)2 dx;
j:l j

where ; denotes the element with indexj. Further,

>d< | | X( |
Uapp = 0j () i (x) = 0j Pi(r);
1=0 1=0

and

Z, X6
f(r)dr f(ri)wi;
1 i=1
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using the Gauss-Legendre quadrature with the points and wegihts from Table 4.1.

(4.85)
Inserting these equalities, we nd the norm
v
u M,
JJUex UappJJLZ() = 71':1 . Uex(Xj + 7“) B Oj Pi(ri) dr:

Then, after determining how to calculate the norm, we shoulddo this for several di erent element
sizes. Plotting the log of the norms with the log of the elemensizes gives us a graph which
slope corresponds to the order of the approximation.

In Figure 4.17 we plot the log of the norms corresponding to tle log of the element sizes. Here
we have used the element sizesx =0:2, x=0:1, x=0:05, x=0:025and x =0:0125.
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Figure 4.17: A log plot of the error of the discontinuous Galerkin method ér the advection
equation.

Calculating the slope of this graph gives us the ordep = 3:9096, hence we have an approximation
with almost order 4. This result is in line with theory [7], th at states that the expected order
equalsp = k +1, where k is the highest degree of the used polynomials, in our cade= 3.
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4.4 Discontinuous Galerkin method for the two dimensional p ro-
blem

4.4.1 Radial symmetric wound using polar coordinates

Our model as de ned in Chapter 2 has the property of radial symmetry (@@ = 0). This has the
advantage that we can write the two dimensional model into pdar coordinates which translates
to an one dimensional problem with the radius as our variable

The exact solution of the stem cell density in polar coodinags is

moe 1 r

mr = o r>

(4.86)

where denotes the boundary of the damaged part of the wound.

The rest of the model from Chapter 2 including the initial and boundary conditions rewritten
in polar coordinates becomes:

Concentration TG- :

r%i;@Dl@@'(rq) rc +rm (rt); (4.87)
_ @c
T @i (4.88)
o5 0)=0; (4.89)
@gl't) =0 (4.90)
Capillary tip density:
r%?;@ 1@@§mq)+ DZg.(rW)” oC+r jH(c ©nc r on; (4.91)
- on
Y (4.92)
n(r; 0) =0; (4.93)
Shin=o: (4.94)
@r’ ' :
Vessel density:
r%t: @@'(ru) r+r eqtr( 1w 2ne; (4.95)
_ @
G (4.96)
0; ;
(5 0= e > (4.97)
L= e (4.98)

Eqg. (4.87), Eq. (4.91) and Eq. (4.95) have all been multipliel by r in order to avoid dividing
by zero. Further we have already introduced the variablesg~-w and & as a preparation to the
implementation of the discontinuous Galerkin method.
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Applying the discontinuous Galerkin method

Determining the weak formulations using the discontinuousGalerkin method is analogous to
the derivations in Chapter 4.3. Therefore, we will not treat them.

The variables g; w and u are respectively determined as in Eq. (4.58), Eq. (4.72) ané&q. (4.83).

The solutions to the concentration TG- , the capillary tip density and the vessel density itself
are now given by

Q@ _

Mr— ot Di(Ar Sr)g; DiBrgj 1+ D1CrQgj+1 Mg + fr; (4.99)
@1
C@J = Da(Ar S)wj+qj DoBrwj 1+ DoCiwjir +(Vir + Vi2)nj + Vs,
[
)@ | )@ |
1 (Crnjar + Agnj)  gPI(1) (Aznj+Brnp 1) qgPR( 1) ; (4.100)
1=0 1=0
@ _ _ . . . :
Mr@t— (Ar Sr)UJ BrUJ 1+ CrUJ+1 Mr ] + gr. (4.101)

The matrices and vectors used now depend on. Therefore, the three solutions on elementg
using Gauss-Legendre quadrature with the points and weigttt from Table 4.1 are given by:

Z 1
Mim = —  Fi+ —s PPy ds
rj;mi 2 1 j 2 IFm
X r
> [+ —s Pi(si)Pm(si)wi; (4.102)
'2=1
1
o r dPm
Srj;ml - 7 L rj + 73 P| —d dS
X6
r r dPm (s
— r+ —si Pi(si) m( Dy (4.103)
2 2
i=1
1 r
Arlj;ml = > r + > ; (4.104)
1 " r
Arzjm = 5 D'C D™ 1 - (4.105)
_ | r
Brim = 5( o+ — (4.106)
—_ 1 m r
Crjm = 5C DT 10— (4.107)
whereA, = A1 + Ap. Further we use for the concentration TG-
Z 1
_r r dPn
frj = 7 . ry + 78 PI—dS ds
r S r
- m (rj;t) fj+ —si Pm (Si)Wi; (4.108)

i=1
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for the capillary tip density

x [ r P (s)
m\Si .

Vi jml ~ 1t S gt oS Pi(si) Wi (4.109)

X )@ r r r
Vi2jmi > . ry + 73i Pi(si)Pm(si) 1H c rj+ 7Si ¢ crj+ 73i

r

2 It 7Si Wi, (4.110)

r X r r r
Veim TS0 TS et s Pelsw: (4-111)

r xe r
O1jm - TS eqPm (Si)Wi; (4.112)
i=1
r XG r r .
912 jim Y2 M+ =S W rj+—si Pm(s)w; (4.113)
r xe r r r .
9r3jm 27i=l fpt =S N+ =S &fr+—-s P (Si)Wi (4.114)

wheregr = g1 + 02 Or3.

Numerical simulations

For our numerical simulations we use the parameters from Take D.2 with the changes from
Table D.4.
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Figure 4.18: Concentration TG with element size x =0:1 and time step t=10 4.
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In all simulations, the discontinuous Galerkin method is implemented using four basisfunctions
per element, which should give up to third order accuracy.

In Figure 4.18 the concentration TG- is shown at consecutive times for the two dimensional
problem. We can see more clearly than in Figure 4.14 that the @ncentration TG- arises from
the damaged part of the wound where the attractant is producel by the injected stem cells.
After a while, t = 8, only a few stem cells or none are left and the concentratin TG- drops
back to zero everywhere.

0.12

t=0.5

0.1

0.02

0 ——— ¥
0 0.2 0.4 0.6 0.8 1
Radius - distance to core of the wound

Figure 4.19: Capillary tip density with element size x =0:1 and time step t=10 “.

In the simulation for the capillary tip density we set the in uence of the di usion signi cantly
larger than in the results in Figure 4.15 for the one dimensioal problem. Hence no direct
comparison can be made. However, Figure 4.19 does make clgaat the capillary tip density
increases mostly around the damaged part of the wound, sinciere is the highest concentration
of TG- at the times plotted. Further, by the relatively large in ue nce of the diusion, the
capillary tip density becomes, after a relative long time, gread throughout the tissue around
the wound. After a while, when the concentration TG- drops back to zero, the capillary tip
density also goes back to zero.

In Figure 4.20 we do not yet see a decrease in the vessel degsiiut we notice that the vessel
density increases mostly on the edge of the damaged part of éhwound. This rst phenomenon
is observed again, because the vessels and tips come into twt with the attractant TG-

As mentioned earlier these simulations were done for the twadimensional model written in polar
coordinates. This means that these simulations are only vadl in case of a circular wound within
circular tissue where everything is axially symmetric. Of ourse it is not realistic that a wound
of any kind is a perfect circle. Therefore, these simulatios will not be used in real-world cases.
However, they can give us good insight since this method delérs a very low relative error,
according to the next subsection.
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Figure 4.20: Vessel density with element size x =0:1 and time step t=10 “.

4.4.2 Relative error of a test problem

As mentioned briey in Section 3.3 we have a test case in ordeto validate results obtained
using the discontinuous Galerkin method. This test equatio is given in Eqg. (3.21) with initial
condition (3.22) and boundary condition (3.23). The relative errors using di erent time steps
are shown in Table 4.2.

- KCex Capp k
Time ook

t=0:25| 1:.0730 10 °
t =0:50 | 4:6088 10 °
t=0:75] 7:3597 10 °
t=1:00| 1:0294 10 4

Table 4.2: Relative errors of our test problem wherec,, is the exact solution using Bessel func-
tions and c,,, is the approximation using the disonctinuous Galerkin methd.

In Table 4.2 we see that the relative errors are always very sall. Contrary to the nite element
method, where we should take very small element size x for the approximation to converge
to the exact solution, we see that the discontinous Galerkinmethod already gives a very good
approximation to the exact solution with relative large elements.
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4.4.3 Rectangular wound using rectangular elements

It is desirable to do the simulations from Chapter 2 for many d erent wound geometries. In
the previous chapter we have done this for circular wounds am in this chapter we will describe
the simulation approach for wounds with a rectangular shape

In order to do so we have partitioned our domain into rectangdar elements,N in the x direction
and M inthe y direction. These elements are denoted bg; ,i =1:::N; j =1:::M. On each
element we de ne basis functions, the Legendre polynomiaJsup to order k. Since we need the
basisfunctions in both thex and they directions, using basis functions up to orderk means
that we use the basisfunctions from the setPX, where

' 2 PX = fPoPo; PoP1; P1Po; P1P1; PoPo; 5 PkPia: (4.115)

Applying the discontinuous Galerkin method

Applying the discontinuous Galerkin method for a two dimensonal problem is very similar to
what we have done in Chapter 4.3. Again, we split our equatios to deal with the di usion
terms.

Concentration TG-
Splitting Eg. (2.3) we obtain

%% Dir g ¢+ m(xy;t);
q=rc;

where we have initial condition (2.4) and boundary conditions (2.5). The solution in element
gj Wwill be approximated by

X Xk :
(X y;t) = g My M) (4.116)
=0 I, =0

where o,(j'x;'y) are coe cients.
With this initial condition we know by Eg. (4.31) that

¢*M(0)=0; 8ly;ly;
which means that initially the coe cients for all the elemen ts are zero.

The weak formulation is determined by multiplying the two equations by a testfunction ' and
integrating it over element g; . After applying Integration by parts we obtain

2z g, 77 z
@it Pdy= D1 gty dkdy+ Dy a it dy
STz %zz 77
+D1 Gy dx c' j dxdy+ m' i dxdy;
2z K 22 o K z K
G’ jj dxdy = C@”x dxdy+ ¢’ jjy = dy;
727" 77" @ z7
' dxdy = c—L dxdy+  c'jj¥ =2 dx;
€jj q2 ! y €jj @y y €ij ! JYi+l =2
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subsequently, we substitute

XXk
Ix;ly)e (Ix v (! .
c(x;y;t) ci(,- 9 x) ,-(y)(y),
1x=0 ly=0
'(mX)I

over elemente; and we set' jj = '

j(my) to obtain the weak formulations

PROBLEM 57

(4.117)

7
XX dg "7 mo ) g -
dt oot ! ]
Ix=0 ly=0 €ij
X w22 gt (Mo z it
D; o, ) j(ly)iéx Cm) gxdy + g (M M T gy
Ix=0 ly=0 €j €jj Xi 1=2
* X o zz g M) Z Vi
D; qgijx'ly) F b j(ly)' i(mX)ié dxdy + g (M (M) T gy
Ix=0 ly,=0 & y €j Vi 1=2
XK . 7 27
Q) B e ) gy meayiey ™0 ™) dxdy;
IX:0 |y:0 eij eij
(4.118)
8(my;my) 210;:::kg f O Kkg;
and
XK XK 7
(Ix;ily) v () (y)e (my). (my)
O, Y P j 7 dxdy
Ix=0 Iy =0 &i
X x4 g (™)
g v (b J(IY)Tllx © ™) dxdy; (4.119)
Ix=0 Iy=0 &i
K YK 7
(Ix:ly) v (k) (ly)e (mx). (my)
% P dxdy
Ix=0 Iy =0 &
K XK . 7 d (my)
) F () i(m”—é dxdy: (4.120)
Ix=0 ly=0 & y

where we use the central ux in both the x and they direction.

For our basis functions and testfunctions we choose to use thLegendre polynomials as de ned
in the set (4.115). We substituter = 2% Xi) g = 20 %) v by, 4 2r)= Py, (r) and" J!V(yj +

X y

TyS) = F’|y (S)

Using these straightforward linear coordinate transformdions, the mass matrix and sti ness
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matrices for the two dimensional problem are given by
212,

X X
Mm = > 5 - P, Pty Pmy Pm, drds = 2 L +1 Myl 5 Iy +1 my;ly s (4.121)
y 212 dP y Z1 dP
L1PY — ) L1PY .
SXmI - 7 1 1 F>|)< Ply d—rpmy drdS - 72 |y + 1 myyly L Plx dr dr, (4122)
| {z }
Z,2Z z, >
141 1
X dPn X dPm
S = — P.P. Py, —~ drds= ——— . P Y ds; 4.123
ymi 2 1 1 Ix Iy Mx dS ras 2 IX + 1 Myl 1 Iy dS S’ ( )
I {z }
Syy
where ml denotes the order of the polynomials, sany; my; Iy and |, and where
0 0 00O0O0OOOOD O 0l 0 0 00O0O0OOOOD O 0l
2 02 002000 0 00O0OO0OOOODO
0 00O0O0OOOOODO 220020000
2 02 002000 2 20020000
Sux = 0202000 2 0OF;Sy-= 0 0O0O0O0OOOOTU OO (4.124)
0O 00O 0O0OO0OOODG OO 002200200
020200020 2 20020000
2 02 00200 00220020
020200020 002200200
The source vector,fj , for our two dimensional problem becomes
2,72,
X X
fij;m = 77)/ L 1m Xj + 7r,yl + 7ys,t me Pmy dl‘dS;
0 1
4
0
_ XYy cy .
0

where ij denotes the element and where we use the fact tham(x;y;t) has a constant value
inside an element andm denotes the order of the polynomialsmy and my.

nally, we nged to write out the ux terms, hence for instance

Z

Xj+1 =2
¢ M M gy = ) i am) ™ ™) dy
eij Xj 1=2 eij
Z
1 XX (ily) o (Iy) (my)
=5 G Py dy
Ix=0 ly=0 €jj
x y
Z
IR Il v ()
+ E O|(+l;},) j(y) j(my) dy ( 1)|x
1x=0 ly=0 €
Z
1 XX Il L (y),
3 g ™y (b p™
1x=0 ly=0 &
Z
XX
= ci('xi';{) ' j('y)' j(”‘y) dy ( )™

1x=0 ly=0 | 2 {z

}

= y
21y +1
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which is represented in vector-form by

For the ux in the other direction we can do the exact same suchthat

Z .
C?' i(mx)' J(my) yJ +1 =2 dX
eij YJ 1=2
can be rewritten as
A1xCjj + BxCi+1j AoxCj CxGi gj: (4.127)

With Eq. (4.121)-(4.127), the approximation for the coe ci ents for (4.118)-(4.120), using dis-
continuous Galerkin, is written as

@..
M ﬁ = D1(Ax  Sx)d1j + D1BxQ1j41;;  DaCxdaj g
+ Di(Ay  Sy)dzj + DaBydzij+1 DaCydzi; 1 My + fj; (4.128)
Mg 1 =(Ax  Sx)Cj + BxCiv1j  CxCi 1j; (4.129)
Mg 2; =(Ay Sy)cj + ByCij+1  CyCij 1 (4.130)

where we integrate in time by the third order version of a total variation dimishing (TVD)
Runga-Kutta method as given in Eqg. (4.59).

Capillary tip density

Splitting Eq. (2.6) using w = r n, gives

= qr (ng)+ Dar w+ oc+ jH(c €&nc on;

where we have initial condition (2.8) and boundary conditions (2.9). The solution is approxi-
mated as in Eq. (4.116) whereni(jlx;'y) are coe cients.

With this initial condition we know by Eq. (4.31) that
n{*(0)=0; 8ly;ly;

which means that initially the coe cients for all elements are zero.

As before we determine the weak formulation. We have done tlsi many times before with the
derivation of the weak formulation for the concentration TG- in the two dimensional case
using rectangular elements in the previous subsection. Thefore, we will not show the weak
formulation for the capillary tip density and its derivatio n. The di erence is the ux term that
originates from the chemotaxis term. As in Eq. (4.65), we use central ux with an additional
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stabilisation term. Hence we obtain

4
(My), (my) Xi+1=2

n’g' . J
eiJ
z v (mx) v (my) Zx v (my)
= N(Xir1=2)h(Xiv1=2)" i (Xivr=2)" | 77(Y) _[[n(xi+1:2)]]j

€ij

dy

Xi 1=2

N0 = =) "X =) ™) ikl ™ d

n’ Q2' I(mx) J(my) Yj+1=2
eiJZ
V4
= a2 (700 M a2 Fne a2l ™

€ij

Yi 1=2

V4
N0y 1=2)%0; =) 00 Y 1) I ) ™ dx
where

Ze(%i 122) = Maxfi du (6 1=2)" (™06 1=)iidn 1y (0 1=2)" (M0G0 1)igs
Ze(Xiv1 2) = MaXfj Arj (i1 22)" (™) (X1 22)ii 011 3 (i1 22)" ™) (X1 22)igs
zy(yj 1=2) = maxfjazj (y; 1=2)' j(my)()’j 1=2)131d2i5 1Y) 1=2)' j(my)(yj 1=2)i0;
Zy(Yj+1=2) = maxfj dzjj (¥ +1=2)’ j(my)()’j +1=22)15 1925 +1 (Yj+1=2)" j(my)(yj +1=2)I0;

and the jumps are
[N(Xi =211 = nij (Xi 1=2)  Ni 1 (Xi 1=2);
[N(Xi+1=22)]] = Niv1;j Xi4122)  Nij (Xi+1=2);
[nCy;j =21 = nij (Xj 1=2)  Nij 1(X; 1=2);

[N(Yj+1=2)1] = Nij 41 (Xj+122)  Nij (Xj41=22):

These ux terms are respectively written as

4
Xj+1 =2
n’g (™) ™) dy = fAxijng + Bxjnivay  fCxijni 15 fDyxj;  (4131)
Zeij Xi 1=2
Yj+1=2
n?g (M) (M) y‘ k= fAyng By Cyynig 1 Dy (4132)
&j i

As we determined the mass and stiness matrices, (4.121)-(422), for the two dimensional
case, we also need to determine new matrices f&f 1; V> and V 3 which we used to determine
the discontinuous Galerkin approximation in the one dimensonal case. These matrices are
determined using Gauss Legendre quadrature with the pointsand weights from Table 4.1 in
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both the x as they direction and are given by

Lij;ml 1P (ru) Py (sv) (X y) dr Pm, (sv) >
u=1l v=1
+ g (Xy) me(ru)dPL;SV) ZX Wy Wy ; (4.133)
¥ X6y
V 2iimi 77PI (ru)Piy (Sv)Pm, (ru)Pm, (sv)[ 1H (c(x;y) €)c(x;y)
u=1l v=1
2 (X Y)] Wuwy; (4.134)
¥ %6y
Vigm — 5 0 (Y)e(Y) Pm, (ru)Pm, (sv)wy; (4.135)
u=iv=1

wherex = x; + *ry andy = y; + —¥s,, ij refers to the considered elemeng; and ml denotes
the order of the polynomials, somy;my;lx and Iy, ry and s, are the internal points for the
gquadrature and w, and w,, are the corresponding weights. Note that these weights areat the
vector w from our model.

Using the matrices from Eq. (4.121)-(4.123), the ux relations (4.126) and (4.127), as well as
(4.131) and (4.132), with the matrices (4.133)-(4.135) theapproximations to the solutions can
be found by

@@]P”t = Da(Ax  Sx)wij + D2Bxwijsrj  D2Cyxwi g
+ D2(Ay  Sy)wzj + D2ByWojj+1 D2Cywaij 1+ (Vaj + Vo )ng + Vsj
1 ANy + Byjnisey  fCxijNi 1 fDixij
Ay ni +By;nigaa fCynig 1 Dy (4.136)
Mw 15 = (Ax  Sx)nj + BxNi+zy  CxNi 1y (4.137)
Mw 2 =(Ay  Sy)nj + Bynije  Cynij 1 (4.138)

Here we also integrate in time using the third order version 6 the total variation dimishing
Runga-Kutta method given in Eq. (4.59).

Vessel density

Finally splitting Eq. (2.10), using u =r , gives
@._
@t

u=r ;

X
r-u ( e t( 1rn  onro K’

where we have initial condition (2.11) and boundary conditons (2.12). The solution will be
approximated as in Eq. (4.116) where ('X ) are coe cients.

With this initial condition we obtain the |n|tial coe cient s by applying Eq. (4.31) for the two
dimensional problem.
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Just as for the capillary tip density, we do not show the weak brmulation and its derivation.
They can be found the using the same derivation as for the comntration TG- . After we have
determined the mass matrix, the sti ness matrices and the matices for the ux terms we need
to determine the new vectorsgi, g» and gz instead of the ones we use in Eq. (4.78)-(4.80).
This is done using Gauss-Legendre quadrature, with the poils and weights from Table 4.1, in
both the x and they direction.

X Z 1 Z 1
O1jpm = S eqPm, Pm, drds;
, 2 2 4 5 y X
X 0
Loy = 77)/ eq% : E; (4.139)
0
x y XX (wi(gy) X+ Wa(Xy) Y) Py (Fu)Prm, (Sv)WyWy
92iim 11— — P ; (4.140)
’ 2 2 u=1lv=1 X2 + y2
x yX® e
g3ij:m 2 NEGY) (A (XyY) X+ @ (Xy) Y)Pm,(ru)Pm, (Sv)Wuwy; (4.141)
u=1 v=1

wherex = x; + Txru, y=y+ TVS\,, ij refers to the considered elemeng; and m denotes the
order of the polynomials, somy and my, ry and s, are the internal points for the quadrature
and w, and w, are the corresponding weights. Further we de ne

Oij = Q15 * Q25 Osj:
(4.142)

Using the mass matrix and sti ness matrices in Eq. (4.121)-(4123), the ux parts in relations
(4.127) and (4.126) and the vectors as in identities (4.139§4.141) we obtain the following
approximation to the solution:

@..
é: (Ax  Sx)urj + ByxUzj+1j  CxUii 1
+ (Ay Sy)UZij + ByUZi;j +1 CyUZi;j 1 M i + Qi (4.143)
Mu g =(Ax  Sx) ij +Bx i+1j Cx i 1;; (4.144)
Mu2j; =(Ay Sy) j +By ij+1 Cy ij 1 (4.145)

Just as before, we integrate in time using the third order vesion of the total variation dimishing
Runga-Kutta method described in Eq. (4.59).

Numerical simulations

The simulations in this subsection are for the two dimensioml problem using the discontinuous
Galerkin method with square elements. The wound we used alsbas a square shape.

Because the discontinuous Galerkin method for a two dimensinal problem with many elements
(100 elements) is a very expensive method, and because the plementation is very recent, we
only show some results after a short period in time. Hence thaimulations are shown just after
the injection of the stem cells.
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(a) View 1 (b) View 2

Figure 4.21: Concentration TG- for a square shaped wound aftet = 0:5.

In Figure 4.21 the concentration of TG- is plotted. From Figure 4.21(b) it is clear that the

behaviour of the attractant is di erent for a rectangular sha ped wound than for a circular wound
as in Chapter 4.4.1.

(a) View 1 (b) View 2

Figure 4.22: Capillary tip density for a square shaped wound aftet = 0:5.

Figures 4.22 and 4.23 show at rst sight some strange minimaihaxima. These phenomena are
related with the fact that our wound has a rectangular shape ad that the length over which
transport from the external boundary takes place changes cer the wound edge.

First the capillary tip density in Figure 4.22. As we have se@ in simulations in for example
Chapter 4.3 the capillary tip density starts to increase on the boundary of the wound after a
short time. This happens axially symmetric since the wound vas circular. Now the wound is
rectangular and the points on the boundary where the distane to the center of the wound is
the smallest, are the rst points where the capillary tip density starts to increase. These are
the points of the boundary on the x andy axis. Therefore, after a short time the maxima
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(a) View 1 (b) View 2

Figure 4.23: Vessel density for a square shaped wound aftér= 0:5.

in the capillary tip density are from the center of the wound to the points of the boundary of
the wound on thex andy axis. The minima on the wound egde are located on thgg = x
rays/lines.

We see the same phenomenom for the vessel density in Figure28. From the simulations of

Chapter 4.3 we know that the vessel density starts to increas on the boundary of the wound since
that is the rst location where the attractant the vessels and the tips meets. For a rectangular
wound this means that the attractant meets vessels and tips &the corner points after meeting

of the attractant with the vessels and tips at the other points of the boundary. This occurs due
to the fact that the distance from the center to a corner is lorger than any other distance from

the center to a point on the boundary of the wound. This means hat the vessel density on
the corner points has increased less than at other points onhie boundary after the short time

t = 0:5. This gives the four minima for the vessel density that are bown in Figure 4.23.

Note that these simulations are done after a relative short ime t = 0:5 so the biological process
has just started. Further, we have only used approximationsup to order k = 2. Because this
a relative low order, we have some big discontinuities betwen the di erent solutions on the
boundaries of the elements. To get better approximations, w should use at least Legendre
polynomials up to order k = 3.

How expensive is this method? At each time we needed to deterime the nine coe cients per
element (there are 100 elements) corresponding to the nineombinations of polynomials. We
needed to do this for all six equations (the concentration TG , the capillary tip density, the
vessel density and the three equations caused by the splitig of the di usion terms). Because
we used RK3-TVD for the time integration we did this whole calculation three times per time
step. And with a time step of t = 0:0001 we did this for all 5000 times to come at = 0:5,
which is the time of the simulations plotted in the gures above. In Matlab, one iteration takes
approximately 83 seconds. Therefore all the 5000 time steptke together approximately 4.83
days. Since this is still just a very short time, we see that itis very expensive.



Chapter 5

In uence of the shape of the wound

In the previous chapters we have looked at numerical simulabns for wounds with a circular and
a rectangular shape. The simulations for the circular shapé wounds where done using the nite
element method and the discontinuous Galerkin method with mlar coordinates. Where the last
method was shown to be very accurate. The simulations for theectangular wound where done
using the discontinuous Galerkin method.

In this chapter we illustrate what the in uence of the shape of the wound is with respect to the

time before the equilibrium vessel density inside the origial wound has settled in. In order to

do this we consider a circular shaped wound and several elliig wounds, where the wounds have
the same initial area. The circular and elliptic wounds we cosider are graphically illustrated in

Figure 5.1 where the outer circle illustrates the total tissue we observe.

0.8
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Figure 5.1: Circular and elliptic wounds.

For each of these wounds we determine the "Shape Index' (Slyb

4 AQ) .
20

SI() = (5.1

(5.2)
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where A() represents the area of the wound and I() the circu mference. Note that SI() =1
corresponds to a circle.

As mentioned, the discontinuous Galerkin method using pola coordinates gives very accurate
approximations, but the method is very expensive. Therefoe, we use the nite element method
for these simualtions. For each di erent wound we monitor the vessel density in the center of
the wound in time. The time at which the vessel density drops elow ¢q+ , with a small , is
time

0.03

;
r(0,0,1)
r_+e
el

0.025

0.02

0.015F

Vessel density r

0.011

0.005

0 5 10 15 20 25 30
Time (t)

Figure 5.2: Vessel density in the center of an elliptic wound with ¢q=1 10 3 and epsilon =
6:5 10 °.

In Figure 5.2 the vessel density is shown in the center of an igbtic wound. This gure illustrates
that the vessel density in this center starts in zero, then gows above the equilibrium value and
nally converge towards the equilibrium value. The moment that the equilibrium value has
settled in ( eqt ), is marked with  in the gure.
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15f
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Figure 5.3: values for the wounds from Figure 5.1.
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Knowing the Sl and the computed value for all the di erent wound shapes from Figure 5.1,
Figure 5.3 is constructed. This gure shows us that with a lower Sl, the equilibrium vessel
density settles in faster. This means that a network of vesds settles in faster, in the wound.

Hence all of the observed wounds obtain a network of vessels the wound. But with the formula
given in Eq. (5.1), we conclude that the wound is healed eardir if its initial shape index is small,
or in other words a \long" wound heals faster than a circular ane. In particular, an initial shape
index of approximately 0:33 increases the healing rate by about a factor two with respa to a
wound with shape index 1.
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Chapter 6

Discussion and recommendations

After researching our angiogenesis model, using various ¢Bnigues, we came to many conclu-
sions. The conclusions concern both the main question and # preferred numerical method.

For all ndings, one should keep in mind that all the biological parameters are xed. The only
parameter of signi cance ismg which represents the number of stem cells that is injected.

The main question is:

\How many stem cells should be injected when aiming at avoidig the formation of scar
tissue?"

For this question, the most important nding was done in Chapter 3, where we illustrated with

Figure 3.4 that there is a minimal amount of stem cells necessy for the characteristics of the
capillary tip density to reach the center of the wound. This means that we need a minimal
number of stem cells in order to obtain a network of blood vessls in our “original' wound.

In Figure 3.5 we see that for di erent numbers of stem cells thetime needed before the network
of blood vessels has settled in. Keep in mind that the number fostem cells, m(x;t), with

x= = , is dimensionless. Hence, as mentioned in Chapter 6 this Wiprobably be in the
order of millions of cells. The dimension for timet is s ! in the model, but it is not certain that
it is the real dimension.

To determine the number of stem cells that should be injected the value of stem cell density
and time should be weighted. This means that a decision has tbe made: Do we have enough
time to allow a relatively low number of stem cells to be injeded, or should we implement a
relative high number of stem cells, which is probably more egensive.

With the parameters from Table D.2, we know from Figure 3.4 ard Figure 3.5 that injecting
eight (perhaps million) stem cells is su cient to obtain succesfull results. Injecting more stem
cells will only make the process faster such that we have theasired capillary network sooner.

To obtain the equation for the characteristics of the capillary tip density, some simpli cations
have been made. Hence in order to observe the ‘real' model weed numerical techniques.

6.1 The mathematical model

Initial conditions

For the di erent equations from our model introduced in Chapter 2 we have relatively simple
initial conditions. One may ask if these initial conditions re ect reality.

69
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For the concentration TG- we have the initial condition

c(x;0) =0;

for all x = § in our domain . This indicates that we assume that TG is not an
endogenous substance. If it is, this initial condition sholdd be reconsidered.

The initial condition for the capillary tip density and the v essel density are respectively given
by

n(x;0)=0;
e 0 X2 w
(x;0) = e X2 N

(6.1)

for all x in our domain . This can be interpreted as that there was init ially a closed network
of blood vessels without any loose tips and that the part of ths network at the position of the
wound was cut o during the heart attack.

First, is it fair to state that there is an equilibrium vessel density in a normal situation? This
means that at each time, an equal amount of vessels/capillaes branched o and formed (new)
loops. This can be possible, where vessels only branch o due a change in hormones.

Secondly, if there is an equilibrium vessel density, does ih mean that the capillary tip density
should be equal to zero? The capillary tip density can only bezero if no new tips are branched
0, which means that there is just a closed network of blood vesels where no vessels branch o
or form loops.

These are questions that must be asked to obtain initial conitons that are biologically more
practical. For example, if it is fair to state that there is an equilibrium vessel density, where at
each time an equal amount of vessels branched o and formed tps, capillary tips constantly
keep branching o and forming loops such that the initial condition for the capillary tip density
cannot be equal to zero.

Single injection of stem cells

An important simpli cation is about the number of stem cells that is injected. For our model
we assume that we have a single injection and that the stem clsl are immediately well spread
among the wound after the injection.

To improve the angiogenesis process one can think of injectyy stem cells on a more regular
base such that for a longer period more TG can be produced. In order to be sure that this
improves the angiogenesis process such that in the wound a merk of blood vessels is settled
in faster, numerical simulations for this should be perforned.

If simulations show that a injecting stem cells on a more reglar base does improve the process,
we still need to know if this is clinically possible.
Parameter values

In the model from Chapter 2 we mentioned a lot of di erent parameters, each representing a
biological process. For most simulations we used the paraner values from Table D.2. These
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parameters are based on parameter values from literature ajut the role of angiogenesis in tumor
growth [2].

Apart from the fact that these parameter values can be di erent for each patient, we need the
best possible estimate for these parameters in order to gethe most realistic simulations.

In collaboration with doctors the best possible estimate fo these parameters should be found.
Unfortunately, it was not feasible to do this in this project.

Parameter dimensions
In Chapter 2 we assigned dimensions to all parameters.

For the time t we state that it is in seconds. If we consider Figure 3.5, whit tells us how much
time we need to obtain a network of blood vessels in the “origal' wound for all di erent injected
numbers of stem cells, it appears that we only need seconds order to obtain a network of blood
vessels. Of course this is not realistic. So a better dimensn for time t needs to be found.

Our number of stem cells, given bym(x;t) is dimensionless at the moment. Considering Figure
3.5 again, makes it look like we only need, for example, eighttem cells in order to obtain a
network of blood vessles in our “original' wound. This is a namalized problem, so in reality this

will probably be in the order of millions of stem cells. In order to determine this, collaboration

with doctors is needed.

The snail trail

The equation for the vessel density, given in Eq. (2.10) corgins the snail trail which moves
towards the center of the wound, which is located at (Q0) in this study.

It is possible that there are several damaged parts in the haaé after a heart attack. Lets call
them w,; w.; i w,. Then we have to apply our model to this set of wounds, since tl healing
of wound  is in uenced by the presence of the other wounds. In that caseve cannot have the
simpli ed equation for the vessel density as in Eq. (2.10) gice we cannot de ne the origin as
the center of a wound. The snail trail term should be adapted.

Several possible adjustments should be considered. A pobsity is to introduce a distance
function = ( x;t), illustrated in Figure 6.1 for a randomly shaped wound.

Figure 6.1: Distance function for a randomly shaped wound.

Hence the distance function gives the distance between theagpillary tip and the boundary of
the wound. Thenr should be present in the snail trail and the vessels will move towards the
nearest wound. This distance function can also be used if wad healing is modeled as a moving
boundary problem.
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6.2 Numerical Methods

Choosing a method

To construct a numerical method which is applicable to the malel from Chapter 2, we have to
consider di erent aspects.

First, the method should be able to handle complicated geormnteies since wounds can have any
possible shape. Both the nite element method and the discotinous Galerkin method are
eligible. Since the discontinous Galerkin method is more gxensive, we rst applied the nite
element method. This method, treated in Section 4.1, gave soe good results.

Secondly, the method should be able to handle hyperbolic oranvection-dominated problems.
Because if it turns out that the chemotaxis term has more in uence than has been assumed,
the degree of hyperbolicity of the problem will increase. InSection 4.2 the convection term has
been made larger by assigning a higher value for the chemotaxconstant ;. Unfortunately, we
conclude from the results of Figure 4.6 that the nite elemert method is not suitable anymore
while the discontinous Galerkin method is.

Since the discontinuous Galerkin method meets both requinments we wanted to implement this
method for the two dimensional model. Before we could do thiswe needed to learn how to
implement this for the one dimensional model and build our krowledge from there. We already
started with this in the literary study.

During the literature study we applied this method to a relative simple advection equation in
one dimension with di erent kinds of boundary conditions. We have introduced a limiter to
prevent the appearance of wiggles.

In this report we rst described the discontinuous Galerkin method applied to the one dimen-
sional model. This is done in order to practice more with the nethod and to show some advan-
tages of this method in comparison to the nite element methal. This is also done in Section
4.2 where we showed that the discontinuous Galerin method $& es the second requirement.

Subsequently, we used it to construct the approximations tothe two dimensional model. The
discontinuous Galerkin method was found to be a very complexand expensive method. There-
fore, we only came so far that we can give approximation to sitations with a two dimensional

circular wound (using polar coordinates) and to situations with a rectangular shaped wound
using rectangular elements.

Why is the discontinuous Galerkin method so expensive?

This is due to several facts. First, the discontinuous Galekin method had many degrees of
freedom which makes the method very expensive. Think oN, the number of elements and
p + 1 the number of basis functions per element. The higher the aler of the Legendre Poly-
nomials, the more accurate the approximation is, however, Bo the more expensive the method
is. Secondly, we used the so called Local discontinous Gakén method, which is an extension
of the discontinuous Galerkin method with Runga-Kutta time integration for purely hyperbolic
or convection-di usion systems. This results into the high-order accuracy and easy handling of
complicated geometries. Basically, it means splitting thedi usion term such that we obtain a
second equation for each equation of our model. The more eqgtians to solve, the more expen-
sive the method becomes. Finally, we use the central ux whib uses a stencil of ve elements
instead of an upwind or downwind ux which uses a stencil of oy three elements. We do this
because the central ux is the only one that gives good resulf. The disadvantage is again that
it is more expensive.
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Is the discontinuous Galerkin method good to use for applica tion?

We found a method which can handle the complicated geometrg and the relative high hyper-
bolicity of the model. The only problem is that the method is very expensive, hence the question
whether the discontinuous Galerkin method is suitable to ug for application is quite legitimate.
The long computation times make the method unattractive at the moment. Hence maybe in
the (near) future, when the method has been improved and the amputers are way faster, that
discontinuous Galerkin can be used for quick application.

6.3 Improving the approximations using the numerical tech-
niques

Finite element method with SUPG

During the literature study [5] we tried to improve the nite element approximations for our
convection dominated problem, in only one dimension. At tha moment only some basic stream-
line upwind Petrov-Galerkin method, abbreviated by SUPG, was implemented and it seemed
like it did not improve the simulations. Because we only impkemented some basic SUPG we
cannot exclude SUPG as one of the options to improve the appsomations yet. So for further
research, the option to improve the approximations using tke nite element with SUPG should
be reconsidered.

Convergence of the discontinuous Galerkin method

In Section 4.3.3 we determined the order of the discontinuosi Galerkin method combined with
time integrating method RK3-TVD, by observing the advection equation.

Initially, we wanted to determine the order of the method using our model. Since we do not
have an exact solution to our complete model we needed a di erd method to nd the order
than used in Section 4.3.3. Therefore, we de ned the followig norm:

Q=" G+ eliZ+ i nilZ
This norm will be calculated using Richardson extrapolation. We have
Q= Qn+ Kh?
Q= Qan + K (2%
Q = Qun + K (4h)?%;
such that
4h 2h

where p denotes the order of the method.

Determining the order for our model with this method does not give any logical results. This
is probably due to two things: First, the vessel density has adiscontinuous initial condition
and the number of stem cells function is discontinuous. Thegfore, the model contains several
discontinuities as an input. And secondly, the di usion terms are splitted such that the order of
the equations is as low as possible. We have not proved that #se factors are the main reason
that we cannot nd the order, so this should be researched in oder to be sure.

Hence, because we did not nd a logical order for the method wh our model, we analyzed the
advection equation whose exact solution is known.
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Improving the two dimensional discontinuous Galerkin appr oximations

In Chapter 4.4.3 we did some simulations using the discontinous Galerkin method for our model
with a square shaped wound. This is a very expensive method gbe simulations that we have

done are only aftert = 0:5 where the biological proces had just started. In these simations

we already see some di erences with respect to the simulatianfor a circular wound. In order

to draw some more and better conclusions about the healing ai square wound the simulation
should run for a longer time. Also, we have only used Legendrpolynomials up to order 2. To

get a better approximation we need at least an approximationthat uses Legendre polynomials
up to order 3.

In order to tell more about the healing of a rectangularly shaped wound the simulation should
run for a rectangular wound since we have only done it for a sgare wound. The same Matlab
code can be used for this.

Discontinuous Galerkin method with limiting

While determining the approximations to the solution of the equations in the model, in one
and in two dimensions, using the discontinuous Galerkin metod, we did not use a limiter of
any kind. It was not necessary since no wiggles appeared. Hewer, it is worth investigating

whether there exist a limiter that improves the approximation. We do have to keep in mind,
that implementing a limiter makes this method even more expasive than it already is.

Various wound shapes for the discontinuous Galerkin method

In this study we determined approximations for our two dimensional model with the discon-
tinuous Galerkin method. This was only done for circular and rectangular wounds. In order
to determine the approximations for randomly shaped woundswve need to work with triangular
elements.

During the last few months we have implemented the discontinous Galerkin method using
triangular elements. Because it is relatively complicatedto implement, it is very sensitive to
making errors. Trying to nd the errors in our implementatio n we noticed that this method was
too expensive to track down the errors. Therefore, we changkto using rectangular elements
with the limitations that it is only applicable to rectangul ar wounds.

Hence, in order to apply the discontinuous Galerkin method b all kind of two dimensional
wound shapes, triangular elements should be implemented.



Chapter 7

Conclusions

We developed a model for angiogenesis under the injection etem cells onto the damaged part
of the heart after an infarction. The model is based on reactn-transport equations with a
certain degree of hyperbolicity due to chemotaxis as an impiant mechanism for cell migration.

Using the method of characteristics, we are able to quickly stimate the e ciency of treatment
with respect to biological parameters like the number of sten cells injected.

The method, which is based on a \snail trail" formalism, was aiginally set up in one dimension.
One of the challenges in this research was to construct a momimensional counterpart of the
equations.

Furthermore, we succesfully implemented nite element anddiscontinuous Galerkin techniques
to solve the system of partial di erential equations. It is concluded that the discontinuous
Galerkin method is very accurate, however the method, in paticular in more dimensions, su ers
from large computation times, which makes the method still wnattractive.
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Appendix A

Approximation to solution

The solution to Eg. (2.3) can be approximated by the solutionto Eg. (3.2). We prove this in

this appendix.
We consider the operatorL given by
Lu= Dirr (U+ u
and letf jg o be the eigenvalues ot with respective eigenfunctions' j (x;y).
Further, we consider two problems

u+Llu=mee ' ; (xy)2 ;t>0

P uxyi0=0:28=0; xy)2@:
Lae=mee ' ; (Xy)2 ;
(P2) & -o; xy)2@;
where

AL o(xy)2
() = 0 (xy)2 ;1:

Due to the orthogonality of f' jg o, the set is a basis for (). Then, since
8 > 0;, 9N > 0; fdjg n such that

Xv
k | dj'j(x;y)kLz() <; 8N >N:

j=0
In other words
' xo
n|!I]I:n k 1 . dj jkLz() =0:
j=1
Since
#2C*() \CY(); = [ @;
and

u2 L3([0; T];C3() \ CX()) ;
we can write

xXn
t(X;y;t) = & (1) j (XY);
j=1

u(xy;t) = G (1) j(%y);
j=1

e

1
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both for n!1

Then with using L is self-adjoint (positive de nite) we know f' ;g is orthogonal. Let us take
f' ;g orthonormal, i.e. 7

Nt d =
Using the orthonormality and
X X
Lu=L g'j= g jj;
i i
we obtain from problem (P5)
()= moe 'dj;
= Modj o t.
& (t) e T (A.1)

Further, we get from problem (P1)

¢+ jg=mee 'd; G(0)=0:
Then, we get

[ce %= mgel i )tdj :
g =e i'medj celi Jsds:
Hence ( i t t
el 1 e e |
G (t) = mod;e Jt% = mod) ——: (A.2)
i i

Furthermore, combining (A.1) and (A.2) we consider

t it ,
G _e t(—:A J - e 0y 1 _ 1 e i@ 5y 1 :
Q(U € j 1 — 1 —

J J

From this we know that

Hence

I.i[nou(x;y;t) =H(xy;t), (xy) 2



Appendix B

Number of moles TG-

The number of moles of TG- is equal to the concentraion TG- integrated over the domain.
Taking the integral of Eq. (2.3) and substituting (3.1) we obtain

q z z z
it cd Dy rr cd+ cd= moe MA( u): (B.1)
Since we have Z
@c
rr cds= —d =0
e @
due to our boundary conditions, Eq. (B.1) simpli es to
q Z Z
g d+ cd= moe MA( ) (B.2)

R
Substituting the mean c(t) = —Rcd—d Eg. (B.2) becomes

g—fA()+ cA()= moe MA( w): (B.3)

Multiplying (B.3) with e! and using

dc d
t + ete= t -
e e'c dt(e 0);

dt
we obtain
d t — ( 1)tA(I W).
a(e C)= m ge 20 (B.4)
which we integrate to nd for 6 ;:
m o Al w)
c(t)=coe '+ —2e (el Vo1 :
(t) = co e RO
Al w)
e '+ MO0 (g it gt 7 B.5
C - A0 (B.5)
and for = 1:
c(t)=cpe ' + m e v Al W): (B.6)

A()
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Appendix C

Calculations for the movement of the
characteristics

C.1 Integral of the hyperbolic sine

Integral 1

VA VA
1 dx =2 1 dx
sinh(x) ~ ~_ & e X
VA
=2 e dx
ezxz 1
) 21 du
7 u 1
A B
=2 + du: (C.1)

To determine A and B we get
A(u 1)+ B(u+1)=1;
(A+Bu+B A=1;
) A+B=0) A= B;

) B+B=1) B=1=2) A= 1=2 (C.2)
With A and Bzfrom (C.2), Equation (C.1) becomes
1 oy P2 122 1 1
sinh(x) ~ ~ u 1 wu+l u 1 u+1
u 1 e 1
=1 1) In(u+1) =1 =1
n(u 1) In(u+1)=1In 1 n <+ 1
=In tanh g (C.3)
Analogously, the solution for 7
1
sinh(x) 2%
is gi b
given by 5 5
;dx = E #d = l In tanh X
sinh(x) sinhty) Y 2
=1 tanh % : (C.4)
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Integral 2
VA
1 d —ZZ 1 d
Asinh(y) B coshy) " L A@ ev) B@+eV) y
=2 1 d
°, (A B)Y (A+B)e y
e/
=2 dy
(A, B)e¥ (A+B) .
_ 2 ey dyu:_ey 2 1 du'
ABZeZy% A B 2 2+E
=i _2 D— + p—du
" A B u+'z u "z
To determine and we get
(u 1)+ (u+1)=1,;
(+) =1;
) + =0) =
) o+ o=1) =) = g €5)
B 2"z 27 '
Substituting this solution, we obtain
VA
2 N + 5 —du = 2 ‘ 5&7‘ 22 du
A B u+'z u "z A B u "z u+'z

= L In u pE In u+pE

Redo the substitutions that were made, we obtain

V4 0 q A+B 1
1 1 e’ A B
i d = p— I @ fal A
Asinh(y) B coshfy) y "AZ B2 " o + T A+B
A B
Integral 3
Z
dv 1 z dv

sinh(v) +sinh(v w) sinh(v) + L sinh(v w);
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where we gonna substituteA = e W and B = 1¢" to obtain
Z Z
1 dv _ 2 dv
sinh(v)+ Lsinh(v w) (@ eV)+ L(evw e (vw)
_ 2 1 dv
~ (¢ e V)+ Ae¥ Be V
_ 2 1 dv
- e(A+1) e V(B +1)
A
2 e dv
- $MA+D) (B+Y
u=ge’ 2 1 du
- w(A+1) (B+1)
_ 2 1 1 du-
- B+l -~
A+l u? A:l
which equals, using (C.5),
VA Z 1 A+l 1q A+l
1 dv _ 2 1 2 B+l N 2 B+l y
s + g T A1 -
sinh (v) sinh(v  w) u+ 2:% u 2:%
11 ¢ A i i
T OOA+1 u+ B+1 u T Bl
A+i A+1
_ 1 1 1 d 4
I M N 9
(A+1)(B+1) u Xp y+ i
0 a 1
1 1 u R
=—p In @—¢ A
AB+A+B+1 u+ Bl
A+l
0 q 1
1 1 e R
=Zp In@—g——A: (C.6)
AB+A+B+1 o, B+l
A+1
C.2 Rewriting some terms
We know that
R _ - p— p-— P -
sinh (1 ) =sinh X cosh cosh X sinh ;
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such that

p
sinh (1 ) p—

sinh

sinh ~ cosh

p
cosh = sinh = sinh
= p = P

sinh tanh

C.3 Movement of the characteristics

First we determine the location of the front as xg < and thereforet > . In order to do this,
we use (3.3) and (3.4). We obtain

p_

p— sinh  ~(1 ) p _
dx _ —0 e p— sinh X
dt sinh  ~

Using Seperation of Variables this reduces to

z

X

p_sinh ~@ ) 4t
b dx= Mo = p— e i dt

xo Sinh X sinh

Using Appendix C.1 on the left hand side, the solution is give as

p_ 1l . P=
1 % mo P :smh @a )
p—In tanh —— = 1 p
~ 2 1 sinh

1t e 1 );

e

Xo

such that
m p !

2
X(t) = p—=arctanh tanh

for xg< ,t>

We do the same whenxy and thereforet when using (3.3) and (3.5) and obtain

2 p_—- 3
_ p— p — sinh X
—= —=, ~sinh ~ e t4cosh x — p—5:
dt tanh -
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Using Seperation of Variables this reduces to

Z, 1

o
X
1
o
N

X0 p
cosh

— sinh
X
tanh

Substituting A= —$p— and B =

tanh
solution is given as

1 and using Appendix C.1 on the left hand side, the

0 p_ 1,
- A+B
1 1 e X A B m p__ P -
p_:pwln%pj k A+E;g :—10 1 Tsinh Toe ML
e X+ 28 . {z }
0 1(t)
such that
p— 2 0 pP— (Q 1 3
T H S
P—"a—=exp4n@p——4 A ~ A2 B2 4()5;
ST S
| z }

r

A+B 1+ o)

) x(t) = pl—:ln A

for xg , b

(C.7)

B 1 o) °
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Appendix D

Parameter values for simulations

D.1 Parameters for the movement of the characteristics

Name | Value | Description
W 0.2 Distance to core of the "'wound' in the heart
Mo 2 Initial density of stem cells
1 0.5 Decay of stem cells
D; 1 Di usion coe cient for TG
3 Growth of TG
1 Decay of TG
1 0.4 Attraction of TG

Table D.1: Parameter values used for the movement of the characteriss of the capillary tip
density.
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APPENDIX D. PARAMETER VALUES FOR SIMULATIONS

Parameters for many simulations
Name | Value | Description
w 0.2 Distance to core of the "'wound' in the heart
Mo 2 Initial density of stem cells, in million stem cells
1 0.5 Decay of stem cells
D; 1 Di usion coe cient for TG-beta
3 Growth of TG-beta
1 Decay of TG-beta
1 0.4 Attraction of TG-beta
D, 0.001 | Di usion coe cient for the capillary tips
0 50 Growth of tip density due to primary angiogenesis
1 10 Growth of tip density due to secondary angiogenesis
¢ 0.2 Threshold of concentration TG-beta
2 50 Decay of tip density due to anastomoses
0.01 | Diusion coe cient for vessels
0.25 | Decay of blood vessels
eq 0.001 | Equilibrium value of vessel density
1 0.001 | Growth/decay of vessel density in uenced by growth/decay
in tip density
2 0.4 Growth/decay of vessel density in uenced by the number

of tips due to growth/decay in concentration TG-beta

Table D.2: Values of the coe cients in our model [2].




D.3. CHANGES AND ADDITIONS IN THE PARAMETERS FOR THE COMPARI  SON BETWEEN DISC

D.3 Changes and additions in the parameters for the compari-
son between discontinuous Galerkin and the nite element

method
1 dimensional 2 dimensional
nite element method | discontinuous galerkin | discontiunous galerkin
using polar coordinates
t 0.1 0.0001 0.0001
X(= y) 0.1 0.1 0.1
max order
basisfunctions - 3 3
1 4 4 4
D, 0.0001 0.0001 0.0001

Table D.3: Changes and additions in the parameters for the comparison heeen discontinuous
Galerking and the nite element method.

D.4 Changes in the paramters for the simulations of the two
dimensional model using discontinuous galerkin and polar
coordinates

Name | Value | Description
D, 0.1 Di usion coe cient for the capillary tips
¢ 0.1 Threshold of concentration TG-beta

Table D.4: Changes in the parameters from Table D.2 for the simulations fothe two dimension
model using discontinuous Galerkin and polar coordinates.
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