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Summary

The quality of magnetic resonance images produced by conventional MRI scanners is guaranteed
by the strength and homogeneity of the magnetic field. However, the superconducting magnets
required to produce such a field make MRI scanners large and expensive and hence inaccessible to
a large number of people in developing countries. Our partners are developing low-cost, portable
MRI scanners that do not depend on superconducting magnets. In these scanners, the signal-
to-noise ratio will be significantly lower due to the lower magnetic field strength. Additionally,
inhomogeneities will be present, which means that the traditional way of obtaining the image,
by inverse Fourier Transform, is no longer feasible. In this research, image reconstruction is done
using an ill-posed system of equations of the form Ax = y, where A is the reconstruction matrix
and x and y are vectors containing the image pixel values and the measured signals, respectively.
Three different regularization techniques are considered, with total variation yielding the best
results. Two methods for solving the regularized least-squares problem are considered: CGLS
and CGNE. For the types of problems we are dealing with, CGNE is outperformed by CGLS:
CGLS requires a lower number of iterations to converge and the computational cost per iteration
is lower. The main focus of this research is on super-resolution: reconstructing a high resolution
image from one or several low resolution images. Due to the low signal-to-noise ratios that are
expected in the low-field MRI prototypes, it might be better to reconstruct images of a low
resolution, and using these, create high resolution images, instead of opting for a direct high
resolution reconstruction. In order to test this, the signal generation in a Halbach array based
MRI scanner is simulated. Our simulations show that for very low (< 1.5 − 2) signal-to-noise
ratios, super-resolution can yield better results than direct high resolution reconstruction. Data
obtained in a 7 T MRI scanner is used to validate our reconstruction model. Due to the type of
gradient used and the low number of measurements in this experiment, the amount of available
information is very limited. This makes it challenging to produce an image of good quality.
However, in our final image, out of the four water bottles in the phantom, the three largest ones
are clearly visible.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a powerful technique that reveals the internal structure and
function of the human body in a non-invasive way. In clinical MRI scanners, superconducting
magnets are used to generate very high magnetic fields. The size and strict infrastructure
demands of these magnets make it impossible to use them in many environments. Additionally,
these MRI scanners are costly to purchase, site and maintain [1]. Due to these limitations, many
people in developing countries do not have access to MRI technology.

Teams at the Leiden University Medical Center (LUMC) and at Pennsylvania State Univer-
sity (PSU) are working on developing low-cost, portable MRI scanners with a magnetic field
in the milliTesla range, aiming to diagnose children in developing countries with hydrocephalus
(’water on the brain’), a debilitating disease that is usually left untreated in the third world.
The PSU prototype is shown in Figure 1.1.

Figure 1.1: The PSU low-field MRI scanner prototype.

Some images produced using this prototype are shown in Figure 1.2. The main features of
the imaged objects can be discerned, but in order to use this device in a clinical setting, clearer
and more detailed images are required. The focus of this research is to improve the quality of
images generated by low-field MRI scanners using super-resolution reconstruction (SRR). SRR
enables us to use several low resolution images in order to produce one image with a higher
resolution. The first super-resolution algorithms were introduced by Gerchberg [2] in 1974 and
De Santis and Gori [3] in 1975. The application of super-resolution reconstruction to MRI was
first mentioned in [4] in 1997. Since then, a large number of articles adapting the super-resolution
concept from video-processing to MRI data have been reported and encouraging results have
been demonstrated [5]. The approach taken in this research leads to a system of equations of

1



2 CHAPTER 1. INTRODUCTION

the form Ax = y, where x is the unknown quantity. Due to the ill-posedness of this problem,
regularization is needed. Another issue is that the higher the desired resolution of the target
image, the more pixels, and the larger the matrix. Therefore, for high resolution problems,
matrix inversion is computationally infeasible. Iterative methods have to be employed to get to
the solution. The methods of choice are conjugate gradient methods.

(a) Water bottles. (b) MR image of the water bottles.

(c) Bell pepper. (d) MR image of the bell pepper.

Figure 1.2: The prototype was used to create MR images of an array of water bottles and a
bell pepper.

1.1 Research goal

The main goal of this project is to research whether super-resolution reconstruction can be used
to improve the quality of the images produced using low-field MRI to such an extent that this
method can be used to detect hydrocephalus.

The following research questions were formulated in order to structure this research:

1. Can super-resolution reconstruction yield high resolution MR images when applied to
simulated data?

2. Can super-resolution reconstruction yield high resolution MR images when applied to real
data?

3. How should we formulate the matrix A in Equation (4.5), describing the transition from
a high resolution object to low resolution images?

4. Which method(s) should be used to solve the minimization problem arising during the
image reconstruction process?
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5. Which type of regularization yields the best results?

1.2 Thesis structure

The structure of this report is as follows. Chapter 2 describes conventional MRI: the hardware
components, how signals are generated and how they are used to generate an image. In chapter
3, the MRI scanners at LUMC and PSU are discussed and a more general model describing
the signal is introduced. Chapter 4 describes the super-resolution reconstruction technique that
will be used in this research. In chapter 5, the super-resolution reconstruction and the direct
reconstruction models will be cast in the form of a minimization problem with different types
of regularization. Chapter 6 contains a description of the conjugate gradient methods that will
be used to solve the least-squares problem resulting from the super-resolution reconstruction
model. A comparison of the performance of two different conjugate gradient methods (CGLS
and CGNE) is given in chapter 7. Chapter 8 contains the results that were obtained when
the super-resolution framework was applied to simulated data. In chapter 9, an MR image
is formed out of measurements carried out in an inhomogeneous magnetic field. Chapter 10
contains conclusions and suggestions for future research.
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Chapter 2

Conventional MRI

This chapter is based on [6]. All images were taken from [6] as well.

2.1 Hardware components

There are three main components in an MR scanner: a main magnet, a magnetic field gradient
system and an RF system.

2.1.1 The main magnet

The purpose of the main magnet is to generate a strong and uniform static magnetic field, which
is referred to as the B0 field. In clinical MR scanners, superconducting magnets are used to
produce magnetic field strengths between 1.5 and 3 T. However, this research focuses on low-field
MRI, in which magnetic fields of less than 0.15 T are generated by a resistive magnet. Resistive
magnets can be used at room-temperature, as opposed to superconducting magnets that have
to be cooled with liquid helium. This makes low-field MRI less costly. However, one of the main
issues with low-field MRI is the lower signal-to-noise ratio.

2.1.2 The magnetic field gradient system

Three orthogonal gradient coils make up the magnetic field gradient system. A schematic rep-
resentation of two orthogonal gradient coils is shown in Figure 2.1. Gradient coils are used
to generate time-varying magnetic fields which vary linearly in each of the spatial dimensions.
One of the main specifications of the gradient system is the gradient strength. The higher the
gradient strength, the better. Another important feature is the rate at which the maximum
gradient strength can be obtained, known as the rise time. Better gradient systems tend to have
shorter rise times. In most clinical imaging systems, the maximum gradient strength that can
be attained is 10 mT/m and rise times of approximately 1 ms from 0 to 10 mT/m are considered
good.

2.1.3 The RF system

The radio frequency (RF) system consists of two components: a transmitter coil and a receiver
coil. The transmitter coil generates a rotating magnetic field, called the B1 field, which excites
the electron spins in the object that is to be imaged. The precessing magnetization is converted
into an electrical signal by the receiver coil. Both coils are called RF coils because they resonate
at radio frequency. The RF system is required to generate a uniform B1 field and to have a high
detection sensitivity.

5



6 CHAPTER 2. CONVENTIONAL MRI

Figure 2.1: Schematic representation of the y-coil and the z-coil that are used to generate the
y- and z-gradient.

2.2 Signal generation and detection

2.2.1 Spin

Any physical object consists of atoms, which in turn consist of nuclei and the electrons orbiting
around them. Nuclei with odd atomic weights, such as the hydrogen atom, have an angular
momentum ~J called spin. Spin can be visualized as a physical rotation, similar to the rotation
of a top around its own axis. Because nuclei are electrically charged, each nuclear spin generates
its own microscopic magnetic field. This can be represented by the magnetic moment ~µ. ~J and
~µ are related to each other in the following way:

~µ = γ ~J, (2.1)

where γ is the gyromagnetic ratio, the value of which depends on the nucleus in question. For
hydrogen atoms, γ = 2.675 · 108 rad(sT)−1. In the absence of an external magnetic field, the
direction of µ is random, as can be seen in Figure 2.2a. To generate a net magnetic field from
the object to be imaged, the spin vectors have to be aligned. This can be done by applying a
strong external magnetic field. This field is assumed to be applied in the z-direction:

~B = B0
~k, (2.2)

where ~k is the unit vector in the z-direction. For a spin-1
2 system, the spin will align either

parallel (spin-up) or antiparallel (spin-down) to the magnetic field, as shown in Figure 2.2b.
The angular frequency of nuclear precession is described by the Larmor equation

ω0 = γB0. (2.3)

ω0 is known as the Larmor frequency.

2.2.2 Bulk magnetization

According to quantum theory, spin-up states have an energy of E↑ = −1
2γ~B0 while spin-

down states have an energy of E↓ = 1
2γ~B0, where ~ = 1.055 · 10−34 m2kg/s is the reduced
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Planck constant. So a parallel alignment constitutes a lower energy state than an antiparallel
alignment. Therefore, spins will be more likely to assume the parallel alignment, yielding an
observable macroscopic magnetization ~M , which is pointed in the same direction as ~B0 and
whose magnitude is directly proportional to B0.

(a) When no external magnetic field is present, the
nuclear magnetic moments point in random

directions.

(b) In the presence of an external
magnetic field, the nuclear magnetic
moments align themselves parallel or

antiparallel to ~B0.

Figure 2.2: Nuclear magnetic moments in the absence and presence of an external magnetic
field.

2.2.3 RF excitations

Planck’s law dictates that the energy carried by electromagnetic radiation with frequency ωrf is

Erf = ~ωrf . (2.4)

In order to make the spins transition from one energy state to another, Erf must be equal to
the energy difference between the spin states. Therefore, the following must hold:

~ωrf = E↓ − E↑ = γ~B0 = ~ω0, (2.5)

which leads to

ωrf = ω0. (2.6)

Equation (2.6) is the resonance condition.

B1 field The B1 field, also known as RF pulse, is a short-lived magnetic field that oscillates in
the radio-frequency range. The B1-field is much weaker than the B0-field. The B1-field typically
has the following form:

~B1(t) = 2Be
1(t) cos (ωrf t+ φ)~i, (2.7)

where Be
1(t) is a the pulse envelope function, ωrf is the excitation carrier frequency and φ is

the initial phase angle. Two popular envelope functions are the rectangular pulse and the sinc
pulse. The B1-field is linearly polarized because the oscillations occur linearly along the x-axis.
Equation (2.7) can be rewritten as

~B1(t) = Be
1(t)[cos (ωrf t+ φ)~i− sin (ωrf t+ φ)~j]+

Be
1(t)[cos (ωrf t+ φ)~i+ sin (ωrf t+ φ)~j]. (2.8)
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In (2.8), the first bracketed term rotates clockwise, while the second rotates counterclockwise.
The spins rotate clockwise, which means that if the B1-field has a frequency near the Larmor
frequency, the effect of the counterclockwise component is negligible. So the effective B1-field is
described by

~B1(t) = Be
1(t)[cos (ωrf t+ φ)~i− sin (ωrf t+ φ)~j] (2.9)

with an x-component

B1,x = Be
1(t) cos (ωrf t+ φ) (2.10)

and a y-component

B1,y = −Be
1(t) sin (ωrf t+ φ). (2.11)

For brevity, B1(t) can be described using complex notation:

B1(t) = B1,x + iB1,y = Be
1(t)e−i(ωrf t+φ). (2.12)

The initial phase φ will be assumed to be 0 from now on.

The Bloch equation The behavior of the net magnetization ~M is governed by the Bloch
equation, which, in the context of MRI, has the following form:

d ~M

dt
= γ ~M × ~B − Mx

~i+My
~j

T2
− (Mz −M eq

z )~k

T1
, (2.13)

where M eq
z is the thermal equilibrium value for ~M in the presence of ~B0 only. T1 and T2 are time

constants that characterize the relaxation process of a spin system after it has been excited. In
order to describe the excitation effect of an RF pulse, a reference frame that rotates with an
angular frequency ω is introduced. In this case, ω = ω0, the Larmor frequency. The axes are
denoted by x′, y′ and z′ and the unit vectors are ~i′, ~j′ and ~k′. The following transformation
relates the rotating frame to the stationary frame:

~i′ = cos (ωt)~i− sinωt~j

~j′ = sin (ωt)~i− cosωt~j
~k′ = ~k

(2.14)

It can be shown that in this rotating frame, the Bloch equation is given by

d ~Mrot

dt
= γ ~Mrot × ~Beff −

Mx′
~i′ +My′

~j′

T2
− (Mz −M eq

z )~k′

T1
, (2.15)

where ~Beff , the effective magnetic field that the ~M experiences, is given by

~Beff = ~Brot +
~ω

γ
. (2.16)
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2.2.4 Relaxation

From the Bloch equation it can be shown that the bulk magnetization vector ~M precesses about
the x′-axis with angular velocity

~ω1 = −γ ~B1, (2.17)

as shown in Figure 2.3a.

(a) Rotating frame. (b) Stationary frame.

Figure 2.3: Motion of ~M in the presence of a B1-field.

The precession of ~M about the B1-field is called forced precession, as opposed to the pre-
cession of ~M about B0, which is known as free precession. Forced precession causes the bulk
magnetization to tip away from the z′-axis, yielding a measurable transverse component ~Mx′y′ .

After the RF pulse has been applied, ~M will return to precessing around the z′-axis. During
this return, two relaxation processes occur: longitudinal relaxation and transverse relaxation.
Longitudinal relaxation is the recovery of Mz, while transverse relaxation is the destruction of
the transverse magnetization Mxy. After the RF pulse, ~Beff = 0. Therefore, the solution to the
Bloch equation looks as follows:{

Mx′y′(t) = Mx′y′(0+)e−t/T2

Mz′(t) = M eq
z

(
1− e−t/T1

)
+Mz′(0+)e−t/T1

(2.18)

where Mx′y′(0
+) and Mz′(0

+) are the magnetizations in the transverse plane and along the z′-
axis, respectively, immediately after the RF pulse. If all magnetization has been tipped into the
transverse plane, Mz′(0

+) = 0. Figure 2.4 shows plots of Mx′y′ and Mz′ . Mx′y′(t) is characterized
by T2, while Mz′ is characterized by T1.

Transforming Equations (2.18) back to the laboratory system yields{
Mxy(t) = Mxy(0+)e−t/T2e−iω0t

Mz(t) = M eq
z

(
1− e−t/T1

)
+Mz(0+)e−t/T1

(2.19)

where Mxy(0+) = Mx′y′(0+)e−iω0τp , with τp the duration of the RF pulse. The trajectory of ~M

can be seen in Figure 2.5. It should be noted that while ~M approaches the z-axis, its magnitude
is not preserved, due to the relaxation process. This is different from the behavior of ~M as it
moves away from the z-axis during the excitation period.
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(a) Mx′y′ after an RF pulse as a function of time.

(b) M ′z after an RF pulse as a function of time.

Figure 2.4: Relaxation curves.

Figure 2.5: The trajectory of ~M in the laboratory frame during the relaxation period.

2.2.5 Signal detection

By Faraday’s law of induction, the voltage induced in the receiver coil is described by

V (t) = − ∂

∂t

∫
object

~Br(r) · ~M(r, t) dr, (2.20)

where ~Br(r) is referred to as the receive field, since it can be interpreted as the magnetic flux
density generated by the receive coil carrying a unit current. Note that ~Br(r) is a weighting
vector. After some manipulations, Equation (2.20) can be written as

V (t) =

∫
object

ω(r)| ~Br,xy(r)||Mxy(r, 0)|e−t/T2(r) cos
[
−ω(r)t+ φe(r)− φr(r) +

π

2

]
dr, (2.21)

where φe(r) is the initial phase shift induced by RF excitation and φr(r) is the phase of the
reception field. Because the Larmor frequency is high, the voltage V (t) is a high-frequency signal,
which can cause unnecessary problems in later processing stages. Therefore, in practice, V (t)
is moved to a low-frequency band using a phase-sensitive detection method: V (t) is multiplied
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by the reference sinusoidal signal 2 cos (ω0t) and then filtered using a low-pass-filter, effectively
removing the high-frequency component. The result will be called SR(t). SR(t) can be shown
to be described by the following expression:

SR(t) =

∫
object

ω(r)| ~Br,xy(r)||Mxy(r, 0)|e−t/T2(r) cos
[
−∆ω(r)t+ φe(r)− φr(r) +

π

2

]
dr, (2.22)

where ∆ω(r) = ω(r)− ω0 is the spatially dependent resonance frequency in the rotating frame.
However, now it is not clear whether the precession is clockwise or counterclockwise. Therefore,
V (t) is multiplied by 2 sin (ω0t) and passed through a low-pass-filter again, yielding SI(t):

SI(t) =

∫
object

ω(r)| ~Br,xy(r)||Mxy(r, 0)|e−t/T2(r) sin
[
−∆ω(r)t+ φe(r)− φr(r) +

π

2

]
dr. (2.23)

In this way, the rotating magnetization is detected with two orthogonal detectors. This proce-
dure is known as quadrature detection and is shown schematically in Figure 2.6.

(a) Phase-sensitive detection

(b) Quadrature detection.

Figure 2.6: Schematic representation of quadrature detection.

The two outputs of the system, SR(t) and SI(t) are often put in complex form:

S(t) = SR(t) + iSI(t). (2.24)

Then

S(t) =

∫
object

ω(r)| ~Br,xy(r)||Mxy(r, 0)|e−t/T2(r)e−i(∆ω(r)t−φe(r)+φr(r)−π
2 ) dr. (2.25)

Using {
|Br,xy(r)|e−iφr(r) = B∗r,xy(r)

|Mxy(r, 0)|e−iφe(r) = Mxy(r, 0)
(2.26)
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and omitting the scaling constant eiπ/2, Equation (2.25) can be rewritten as

S(t) =

∫
object

ω(r) ~B∗r,xy(r)Mxy(r, 0)e−t/T2(r)e−i∆ω(r)t dr. (2.27)

Now we assume that ∆ω(r) << ω0 and that the reception field Br,xy is homogeneous. Then,
using ∆ω(r) = γ∆B(r) and leaving out the constant terms, Equation (2.27) can be simplified
to

S(t) =

∫
object

Mxy(r, 0)e−t/T2(r)e−iγ∆B(r)t dr. (2.28)

2.3 Signal characteristics

2.3.1 Free induction decays

A single RF pulse applied to a nuclear spin system leads to free induction decay (FID) in the
spin system. When the magnetic field the sample is exposed to is perfectly homogeneous, the
FID signal is characterized by a T2 decay. However, when the magnetic field is inhomogeneous,
differences in precessional frequency arise, causing the FID signal to decay at a much faster rate.
A group of nuclear spins with the same precessional frequency is called an isochromat. The time
constant T ∗2 is used to characterize the signal decay in the presence of field inhomogeneity. The
following relationship between T2 and T ∗2 is widely used in MRI literature:

1

T ∗2
=

1

T2
+ γ∆B0. (2.29)

Figure 2.7: Refocusing the bulk magnetic moment of 2 isochromats in a spin-echo experiment.

2.3.2 RF echoes

An echo signal consists of a dephasing period and a refocusing phase. After the RF pulse is
applied along the x′-direction (called the 90◦ pulse), inhomogeneities in the magnetic field will
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lead to different isochromats. The isochromats will progressively lose phase coherence as the free
precession continues. In order to regain phase coherence, after a time τ , a pulse is applied along
the y′-direction that flips the different magnetic moments over to the other side of the transverse
plane (the 180◦ pulse). This will cause the bulk magnetic moment of isochromats with higher
precessional speed to lag behind the ones with lower precessional speed. A time τ after the
y′-pulse, the vectors will all have the same phase again. This process is illustrated in Figure 2.7
for two isochromats with precessional frequencies ωs and ωf . The strength of the signal during
this pulsing sequence is shown in Figure 2.8. The decay of the signal is characterized by T ∗2 ,
while the decay in maximum amplitude is characterized by T2.

Figure 2.8: Formation of a spin echo signal.

Instead of just one spin echo, a sequence of spin echoes can be generated by repeatedly
applying 180◦ pulses at times τ , 3τ , 5τ ,...

2.4 Image contrast

Protons in different materials have different longitudinal and transverse relaxation times, T1

and T2. The differences between these parameters can be used to produce contrast in MR
images [7]. This is done by tuning the repetition time TR (the time between two successive B1-
pulses) and the echo time TE := 2τ correctly. If TR is long, all the transverse magnetization will
have turned into longitudinal magnetization again. However, if TR is shorter, a new B1-pulse
is applied before the longitudinal magnetization is restored in all materials, meaning that the
transverse magnetization in materials with a long T1 will be smaller after this pulse than in
materials with a short T1, leading to strong signals from materials with a short T1 and weak
signals from materials with a long T1: T1-weighting.

If TE is short, no significant decay in transverse relaxation will have taken place. However, a
long TE causes materials with a short T2 to lose their transverse magnetization, while materials
with a long T2 will maintain it. This causes T2-weighting: materials with a long T2 yield stronger
signals than those with a short T2.
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If TR is long and TE is short, only the spin-density will determine the contrast in the image.
An overview of how the different kinds of weighting can be achieved is given in Table 2.1.

Table 2.1: Image contrast for different choices of TE and TR.

Contrast TE TR
T1-weighting Short Appropriate
T2-weighting Appropriate Long

Spin density-weighting Short Long

2.5 Signal localization

2.5.1 Slice selection

In order to make a 2D image of a 3D object, a slice has to be selected. Then, only the spins in
that slice of the object will be excited. To selectively excite spins, a gradient field and a shaped
RF pulse are necessary. An RF pulse can only be frequency-selective, which means that the spin
resonance frequency has to be made position-dependent. This is achieved by augmenting the
B0-field with a linear gradient field during the excitation period. This gradient field is called a
slice-selection gradient. The images are made in the xy-plane, which means that the gradient
will be applied in the z-direction, yielding the total magnetic field strength B(z) = B0 + Gzz.
Now, to select a slice of thickness ∆z centered around z0, the following spatial selection function
is required:

ps(z) =

{
1, |z − z0| < ∆z

2

0, otherwise.
(2.30)

It can be shown that the corresponding pulse envelope function has to satisfy

Be
1(t) ∝ sinc

[
π
γ

2π
Gz∆z

(
t− τp

2

)]
, (2.31)

where τp is the duration of the pulse.

2.5.2 Spatial information encoding

After the RF pulse, the free precession period allows for spatial information to be encoded into
the signal. There are two ways to encode spatial information: frequency encoding and phase
encoding.

Frequency encoding When the precession frequency of an activated MR signal is made to
be linearly dependent on its spatial origin, frequency encoding is used. This can be achieved by
applying a linear gradient field to the magnetic field after the RF pulse. For instance, a gradient
Gx in the x-direction leads to a magnetic field

~B = (B0 +Gxx)~k, (2.32)

which leads to the Larmor frequency being a linear function of x:

ω(x) = ω0 + γGxx. (2.33)
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Assuming an object with spin distribution ρ(x, y) and omitting the transverse relaxation effect,
the FID signal generated locally from spins in an infinitesimal interval dx at point x is

dS(x, y, t) ∝ ρ(x, y) dx dy e−iγ(B0+Gxx)t. (2.34)

Then, the signal generated by the entire object, neglecting the proportionality constant, is

S(t) =

∫ ∫
object

dS(x, y, t) =

∫ ∫
object

ρ(x, y)e−iγ(B0+Gxx)t dx dy (2.35)

=

[∫ ∫
object

ρ(x, y)e−iγGxxt dx dy

]
e−iω0t. (2.36)

Removal of the carrier signal e−iω0t (demodulation) yields

S(t) =

∫ ∫
object

ρ(x, y)e−iγGxxt dx dy. (2.37)

Phase encoding After an RF pulse, a gradient Gy is turned on in the y-direction for a short
time Tpe, and then it is turned off. Then the local signal dS(x, y, t) is described by

dS(x, y, t) =

{
ρ(x, y) dx dy e−iγ(B0+Gyy)t, 0 ≤ t ≤ Tpe
ρ(x, y) dx dy e−iγGyyTpee−iγB0t, Tpe ≤ t.

(2.38)

During the interval 0 ≤ t ≤ Tpe, the preparatory period, the signal is frequency-encoded.
Therefore, signals from different y-positions will have different phase angles after a time Tpe. At
time Tpe, the signal will have an initial phase angle

φ(y) = −γGyyTpe. (2.39)

φ(y) is linearly dependent on the position y, so the signal is phase-encoded. Now,

S(t) =

∫ ∫
object

dS(x, y, t) =

[∫ ∫
object

ρ(x, y)e−iγGyyTpe dx dy

]
e−iω0t. (2.40)

Again, the carrier signal e−iω0t will be removed after demodulation.

k-space representation Combining a frequency-encoding gradient Gx in the x-direction and
a phase-encoding gradient Gy in the y-direction yields (after demodulation)

S(t) =

∫ ∫
object

ρ(x, y)e−i(γGxxt+γGyyTpe) dx dy. (2.41)

Using the following substitutions: {
kx = γGxt

ky = γGyTpe,
(2.42)

the signal is described by

S(kx, ky) =

∫ ∫
object

ρ(x, y)e−i(kxx+kyy) dx dy. (2.43)

So the substitutions given by Equation (2.42) allow us to use k-space for signal representation. A
conventional strategy to produce sufficient data to cover k-space is to generate a set of ”identical”
signals {Sn(t)} and then encode each one properly so that k-space is covered by multiple lines.
This can be done by changing the phase-encoding gradient, because a change in gradient strength
leads to a different line in k-space.
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2.6 Image reconstruction

In practice, the spin density ρ depends not only on x and y, but also on z: ρ(x, y, z), which
means that Equation (2.43) should be replaced by

S(kx, ky) =

∫ ∫
object

∫
slice

ρ(x, y, z)e−i(kxx+kyy) dz dx dy. (2.44)

The desired image function will be denoted by I(x, y). I(x, y) is related to the spin density
ρ(x, y, z) in the following way:

I(x, y) =

∫ ∆z
2

−∆z
2

ρ(x, y, z) dz. (2.45)

Therefore, ρ(x, y) is replaced by I(x, y) in Equation (2.43):

S(kx, ky) =

∫ ∫
object

I(x, y)e−i2π(kxx+kyy) dx dy. (2.46)

Now kx and ky are described by

kx =
γ

2π
Gxt (2.47)

ky =
γ

2π
GyTpe, (2.48)

in order to cast Equation (2.46) as a Fourier transform. The aim is to obtain I(x, y) given
S(kx, ky). Now, assuming that k-space is sampled uniformly, the set of k-space points at which
measured data is collected is given by

D = {(kn,x, km,y) : kn,x = n∆kx, km,y = m∆ky, n,m ∈ Z}. (2.49)

The field of view (FOV) is defined as the region |x| < Wx
2 , |y| < Wy

2 where Wx and Wy are finite
numbers such that

I(x, y) = 0, |x| > Wx

2
, |y| > Wy

2
. (2.50)

Then, if the following inequalities hold:

∆kx <
1

Wx
, ∆ky <

1

Wy
, (2.51)

I(x, y) can be shown to be related to S(x, y) in the following way:

I(x, y) = ∆kx∆ky

∞∑
n=−∞

∞∑
m=−∞

S(n∆kx,m∆ky)e
i2π(n∆kxx+m∆kyy), (2.52)

|x| < 1

∆kx
, |y| < 1

∆ky
.

In practice, k-space is sampled a finite number of times. So there are N,M ∈ N such that D is
described by

D =

{
(kn,x, km,y) : kn,x = n∆kx, km,y = m∆ky, −

N

2
≤ n < N

2
,−M

2
≤ m <

M

2

}
. (2.53)
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Then, the Fourier reconstruction formula is

I(x, y) = ∆kx∆ky

N/2−1∑
n=−N/2

M/2−1∑
m=−M/2

S(n∆kx,m∆ky)e
i2π(n∆kxx+m∆kyy), (2.54)

|x| < 1

∆kx
, |y| < 1

∆ky
.

I(x, y) can be obtained efficiently using a Fast Fourier transform algorithm. Due to the trunca-
tion of the Fourier series, the Fourier reconstruction is not identical to the true image function.
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Chapter 3

Low-field MRI

As opposed to conventional MRI, this research focuses on low-field MRI, in which magnetic
fields in the order of milliTeslas are generated by a resistive magnet. Resistive magnets can
be used at room-temperature, as opposed to superconducting magnets that have to be cooled
with liquid helium. This makes low-field MRI less costly. However, one of the main issues with
low-field MRI is the lower signal-to-noise ratio [6]. This is due to the linear dependence of the
SNR on B0 [8].

3.1 The PSU prototype

3.1.1 Magnetic field

Instead of a static and large ~B0, the prototype MRI scanner uses a pulsed magnetic field ~Bp
combined with a very small static field ~B0. One reason for this choice is that generating a larger
static B0 field generates more heat in the coils, so the higher B0, the more cooling is necessary,
and the more expensive the MRI scanner. The Bp-pulses are called prepolarizing pulses. During
a Bp-pulse, the nuclear magnetization will tend towards an enhanced equilibrium value, aligned

with the higher effective magnetic field ~Beff = ~B0 + ~Bp. Then, the pulse is ramped down slowly,

such that the enhanced magnetization will realign with ~B0 without precessing. This enhanced
magnetization will decay to the B0 equilibrium value according to the T1mvalue of the sample. If
a pulsing sequence is conducted before the magnetization has completely died down, the signal
will be enhanced. Therefore, prepolarizing leads to a higher signal-to-noise ratio. The pulse
sequence that is employed in the low-field MR scanner is shown in Figure 3.1.

Figure 3.1: The pulse sequence that is used in the low-field MR scanner. Source: PSU.

19
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3.1.2 Field inhomogeneities

In conventional MRI, a Fourier Transform is used to obtain the image given the signal. However,
this approach is only possible because of the homogeneity of the B0-field. In low-field MRI,
there is much more inhomogeneity in the magnetic field. Figure 3.2 shows a plot of very coarse
measurements of B0 in the prototype as a function of x and z, where y = 0. x and z are defined
as in Figure 3.3.

Mean magnetic field: 4.0008 mT
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Figure 3.2: Measurements of the B0-field in the xz-plane, at y = 0. The units on the axes are
centimeters.

From Figure 3.2, it is clear that the maximum deviation from the mean field is about 0.3%.
This does not seem like much, but in conventional MRI the maximum deviation is about a
thousand times as small. The PSU team does use the Fourier Transform to obtain the final
image.

x

y

z

Figure 3.3: x, y and z-direction in the MR scanner.

3.2 The LUMC prototype

A picture of the magnet created by the team at LUMC is shown in Figure 3.4.



3.2. THE LUMC PROTOTYPE 21

Figure 3.4: The magnet constructed by the team at LUMC. The direction of the
magnetization in each magnet is shown using arrows. Source: [9].

They use a configuration of twelve permanent magnets, arranged in a circle, such that the
resulting magnetic field (the B0-field) is oriented mainly in the z-direction. Here, too, the z-axis
is oriented along the axis of the cylinder. In [9], the B0-field was measured at y = 0. The result
is shown in Figure 3.5.

(a) Direction of the B0-field. (b) Magnitude of the B0-field.

Figure 3.5: B0-field measurements.

Additionally, the magnetic field was simulated using COMSOL. The result is shown in Figure
3.6.
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Figure 3.6: Simulated field based on the Halbach array in Figure 3.4

In this prototype, the inhomogeneities in the B0-field are used to allow for spatial encoding,
instead of gradient coils. To obtain a sufficient amount of data, the idea is to rotate either the
object or the device and measure the signal after each rotation. To excite the spins, an RF pulse
has to be sent out. COMSOL simulations and measurements of the magnetic field inside the
magnet show that variations in the field strength are in the order of 10 − 100 mT. In order to
excite all the spins in the phantom, a bandwidth of more than 1 MHz is required. However, a
bandwidth of more than 20 kHz is infeasible, forcing us to use a sequence of pulses of different
frequencies. Each pulse excites the spins within a frequence band of 20 kHz, until all frequencies
have been covered at least once.

3.3 General measurement model

Taking away the assumption of homogeneity, the signal is described by (2.27), but T2 has to be
replaced by T ∗2 . Then the following expression is obtained:

S(t) =

∫
object

ω(r)| ~Br,xy(r)|Mxy(r, 0)e−t/T
∗
2 (r)e−iφr(r)e−iγ∆B(r)t dr. (3.1)

Now, denoting the signal sensitivity response pattern of the coil by c(r), the general forward
model for the signal is:

S(t) =

∫
object

ω(r)c(r)| ~Br,xy(r)|Mxy(r, 0)e−t/T
∗
2 (r)e−iφr(r)e−iφ(r,t) dr, (3.2)

where

φ(r, t) = γ∆B(r)t. (3.3)

Here, Mxy(r, 0) is the desired image. For ease of notation, we define

x(r) := Mxy(r, 0). (3.4)

The measurements recorded in an MRI scan consist of noisy samples of the MRI signal described
by Equation (3.2):

si = S(ti) + ei, i = 1, ..., L, (3.5)
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where si denotes the ith sample of the signal, measured at time ti. ei is the measurement error in
the ith sample. The ei are modeled as additive, zero-mean, white gaussian noise. Using Equation
(3.2) to describe the measurement model, the image reconstruction problem is to estimate x(r)
from a measurement vector s. x(r) is a continuous function. In order to estimate it using a
finite set of measurements, x(r) is approximated using a finite series expansion:

x(r) =

M∑
j=1

xjb(r− rj), (3.6)

where b(·) denotes the object basis function and rj is the center of the jth basis function. Usually,
rectangular basis functions are used. In that case, M is the number of pixels. Substituting
Equation (3.7) into Equation (3.2) yields

S(ti) =
M∑
j=1

wijxj , (3.7)

where

wij =

∫
object

b(r− rj)c(r)ω(r)| ~Br,xy(r)|e−ti/T ∗2 (r)e−ιφr(r)e−ι∆φ(r,t) dr. (3.8)

Usually, the basis functions are highly localized, allowing ’center of pixel’ approximations to be
used:

wij = c(rj)ω(rj)| ~Br,xy(rj)|e−ti/T
∗
2 (rj)eιζ(rj)e−ι∆φ(rj ,ti), ∆φ(rj , ti) = γ∆B(rj)ti. (3.9)

Combining Equations (3.5), (3.7) and (3.9) allows us to represent the system of equations in
matrix-vector form:

s = Wx + e, (3.10)

where the elements of W are described by Equation (3.9).

3.4 Signal-to-noise ratio

3.4.1 Signal

The principle of reciprocity, introduced by Hoult and Richards in 1976 [10], states that at any
spatial location, the size of the voltage induced in the coil by a rotating magnet corresponds to
the size of the field (Br,xy) that would be produced at that location if a unit current were to
flow in the coil [11]. Using this, it can be shown that the amplitude of the free induction decay
from a volume ∆V of sample with an equilibrium magnetization M0 precessing in the xy-plane
at the Larmor frequency ω0, is

Svoxel = ω0Br,xyM0∆V. (3.11)

For protons at human body temperature, the equilibrium magnetization can be calculated using
the following equation [11]:

M0 ≈ ρ0
γ2~2

4kBT
B0, (3.12)
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where kB = 1.38 · 10−23 m2 kg s−2 K−1 is the Boltzmann constant and T is the temperature. In
tissue water, the spin density is ρ0 = 6.69 ·1028 m−3, leading to an equilibrium magnetization of

M0 ≈ 0.0031B0. (3.13)

If we take a solenoidal coil that fits inside the Halbach magnet, the magnitude of the receiver
field Br,xy is given by [10]

Br,xy =
µ0n√

4a2 + h2
, (3.14)

where µ0 = 4π · 10−7 N/A2 is the permeability of free space, n is the number of turns, a is the
radius and h is the length of the coil. Assuming a five-turn coil with length 0.02 m and radius
0.05 m yields a receptor field of 60 mT/A. Assuming the image has 32 × 32 voxels, the slice
thickness is 5 mm and the FoV is 10 cm yields a signal of 2.3 · 10−8 V.

3.4.2 Noise

The electrons in the receiving coil are subject to random Brownian motion, which causes a small
randomly varying voltage to be measured, in addition to the voltage induced by the object being
imaged [11]. The root mean square of the random voltage is given by the Nyquist equation [11]:

Nrms =
√

4kBTR∆f, (3.15)

where R is the resistance of the receiver coil and ∆f is the bandwidth. This thermal or John-
son noise is approximately white noise, which means that its mean is zero and its variance is
finite. Because the mean is zero, the standard deviation of the noise is equal to the root mean
square value given by Equation (3.15). As mentioned before, the noise will be assumed to be
Gaussian. Assuming a coil resistance of 1 Ω and temperature of 293 K (room temperature), the

standard deviation is approximately 0.14 nV Hz−
1
2 . The LUMC prototype will have a maximum

bandwidth of 20 kHz, leading to a standard deviation of 20 nV.

3.4.3 SNR

Combining Equations (3.11) and (3.15) yields the following expression for the SNR per voxel:

SNR =
Svoxel
Nrms

=
ω0Br,xyM0∆V√

4kBTR∆f
. (3.16)

Using the values found for Svoxel and Nrms, the SNR per voxel is about 1.6, which shows that
the noise has a significant influence on the measurements. Equation (3.16) shows that increasing
the voxel size (by decreasing the number of voxels) increases the SNR per voxel. This makes
it interesting to investigate whether super-resolution reconstruction can generate better results
than direct high-resolution reconstruction.
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Super-resolution reconstruction

SRR uses multiple low resolution (LR) images of the same object to form a high resolution (HR)
image. Typically, the different LR images represent different ”looks” at the same object. That
is, LR images are down-sampled and shifted versions of the HR image. The shift has to be a
subpixel shift, because integer shifts yield no new information, as shown in Figure 4.1. Another
way of acquiring different LR images would be to rotate the object.

Figure 4.1: Integer shifts do not provide any new information. Subpixel shifts are needed to
make SRR possible. Source: [12].

4.1 Data acquisition model

Let X be the desired HR image with dimensions m× n. Then X is an m× n matrix consisting
of the grayscale values of each pixel. In order to apply super-resolution reconstruction, X must
be put in vector form:

x = vec(X) =

x1
...

xn

 , (4.1)

where xi is the ith column of X. This notation will be used throughout the whole report,
so images in matrix form will be denoted by capital letters and images in vector form will be
denoted by the same letter, but in bold lowercase.

25
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Let {Yk}Mk=1 be a sequence of LR images. The data acquisition model used in SRR is as
follows [12], [5]. First, the HR image X undergoes a geometric deformation, such as a subpixel
shift or a rotation. This geometric deformation is described by an operator Dk. Then, during
the imaging process, each of the geometrically deformed images is subject to a blurring operator
Bk and a down-sampling operator denoted by Dk. Also, noise is added to the system: Vk. The
noise is usually assumed to be independent, identically distributed Gaussian noise. A pictorial
overview of the acquisition model is shown in Figure 4.2.

Figure 4.2: The general data acquisition model used in super-resolution reconstruction.
Source: [5].

Gk, Bk and Dk can be cast in matrix-form when x, yk and vk are used instead of X, Yk and
Vk, yielding the following system of equations:

yk = DkBkGkx + vk, k = 1, ...,M. (4.2)

Clearly, the term DkBkGk can be replaced by a single matrix Ak:

yk = Akx + vk, k = 1, ...,M. (4.3)

By vertically concatenating the vectors yk, the matrices Ak and the vectors vk as follows:

y =

 y1
...

yM

 , A =

A1
...

AM

 , v =

 v1
...

vM

 , (4.4)

a single system of equations is obtained:

y = Ax + v. (4.5)

4.1.1 Geometric deformation

Geometric deformation, represented by Gk, is of fundamental importance in SRR, because it
yields different views of the same object, providing additional information. As mentioned before,
the deformation has to be of subpixel nature, which requires a very accurate estimation of the
deformation. It can be difficult to attain such a high precision, which makes registration a
bottleneck in reconstruction process. By introducing predetermined motion, this difficulty can
be eliminated. When imaging a static object, the deformation is artificially created by shifting
or rotating the field of view by a known value [5].
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4.1.2 Blurring

The operator Bk represents the blurring caused by the imaging process. Commonly, blurring is
assumed to be spatially-invariant, so Bk simplifies to B. The point-spread function (PSF) P is
a function that describes the blurring of one pixel over its surrounding pixels. Usually, blurring
is a local phenomenon, so one pixel influences only a very limited amount of other pixels around
it. Outside a certain radius, its influence is essentially zero. Therefore, P is a very small matrix
compared to the image matrices. Let Z be an image and let Zb be the blurred version of Z.
If the PSF is assumed to be spatially invariant, the blurring of Z can be represented by a
two-dimensional convolution:

Zb = P ∗∗ Z. (4.6)

Most articles concerning SRR in MRI suggest that the PSF is well approximated by a Gaussian
function. In the 2D case, the (unscaled) elements of the PSF are described by

pij = exp

(
−1

2

[
i− k
j − l

]T [
s2

1 ρ2

ρ2 s2
2

] [
i− k
j − l

])
, (4.7)

where s1 and s2 determine the width of the PSF and ρ determines its orientation. (k, l) is the
central element of P . All elements of a PSF have to sum to 1, so P has to be scaled accordingly.
The Gaussian function decays exponentially away from the center and it is reasonable to truncate
the values of the PSF when they have decayed by a sufficiently large factor (104 − 108) [13]. If
ρ = 0, the PSF is symmetrical along the horizontal and vertical axes and the PSF takes the
simpler form

pij = exp

(
−1

2

(
i− k
s1

)2

− 1

2

(
j − l
s2

)2
)
. (4.8)

The blurring matrix Bk can be obtained from P . The blurred image is equal to the convolution
of P and Z, so pixel (i, j) of Zb can be computed by rotating P by 180 degrees and matching
it with pixels in the image Z by placing the center of P over pixel (i, j) of Z. Corresponding
components are multiplied and the results are summed to compute element (i, j) of Zb. This
can be carried out for all elements in Zb, leading to the blurring matrix B.
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Chapter 5

Minimization problem

5.1 Least-squares solution

When reconstructing the image from the obtained signal, Equation (3.10) describes the depen-
dence of the signal on the image x. SRR aims to solve Equation (4.5) for x. So both of these
frameworks lead to a system of equations of the form y = Ax + v (but in the direct recon-
struction case, A is replaced by W , y by s and v by e). However, this problem is ill-posed. In
order to obtain an x that describes the data well, ||y − Ax||22 has to be small. || · ||2 denotes
the `2-norm. If A∗A is nonsingular, the least-squares solution, so the solution that minimizes
||y −Ax||22, is

xls = (A∗A)−1A∗y. (5.1)

xls is equal to

xls = (A∗A)−1A∗y = x + (A∗A)−1A∗v. (5.2)

The last term is called the inverted noise. We can rewrite A∗A using its singular value decom-
position:

A∗A = UΣG∗, (5.3)

where U and G are orthogonal matrices and Σ = diag(σi) is a diagonal matrix whose elements
σi are nonnegative and appear in nonincreasing order. The σi are the singular values of A∗A.
If A∗A is nonsingular, its inverse can be written as

(A∗A)−1 = GΣ−1U∗. (5.4)

So the inverted noise is equal to

(A∗A)−1A∗v = GΣ−1U∗A∗y =
∑
i

u∗iA
∗v

σi
gi, (5.5)

where ui and gi are the ith column vectors of U and G respectively. If A∗A is almost singular,
its smallest singular values will be very close to 0, causing the inverted noise to become large,
contaminating the reconstructed image.
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5.2 Tikhonov regularization

In order to obtain a solution that is not corrupted by noise, a Tikhonov regularization term can
be added to the problem, which leads to the following minimization problem:

min
x

1

2
||y −Ax||22 +

1

2
λ||Fx||22, (5.6)

where λ is the regularization parameter and F is an operator. The term ||Fx||22 allows us to
enforce prior information that is available about x. For instance, F can be chosen to be a
first-order difference matrix, because in MR images it is very likely that neighboring pixels have
the same value. The value of λ determines to what extent this regularization term is taken into
account. A small λ will cause more emphasis to be placed on obtaining a solution that fits the
data well, i.e. make sure that the term 1

2 ||y−Ax||22 is small, while a large λ will ensure that the
prior information is enforced, so 1

2 ||Fx||22 will be small.

It is not immediately clear which value of λ leads to the best solution. One way of choosing
λ is by employing the L-curve criterion [14]. The L-curve is a log-log plot of ||y − Ax||2 versus
||Fx||2 for a number of values of λ. This plot often has an L-shape and the best regularization
parameter is supposed to lie in the corner of the L, balancing out the two terms.

Equation (5.6) is a convex problem, which means that taking the gradient and setting it
equal to 0 yields a condition for the global optimal solution:

(A∗A+ λF ∗F )x = A∗y, (5.7)

leading to

x = (A∗A+ λF ∗F )−1A∗y. (5.8)

5.3 Total variation regularization

Tikhonov regularization is not the only possible way of regularizing the problem. Another
popular choice is the `1 term where F is a first-order difference matrix, defined such that

||Fx||1 =

n∑
k=1

m∑
l=2

|Xl,k −Xl−1,k|+
m∑
l=1

n∑
k=2

|Xl,k −Xl,k−1|. (5.9)

So the minimization problem becomes

min
x

1

2
||y −Ax||22 +

1

2
λ||Fx||1. (5.10)

The ||Fx||1 term penalizes jumps between neighboring pixels. However, jumps are not penalized
as severely as in the Tikhonov case, because the `2 norm makes the regularization term grow
quadratically with the difference in value between neighboring pixels, while using the `1 norm
ensures that the penalization grows only linearly. Penalizing large jumps very harshly is unde-
sirable, because MR images tend to contain large jumps between different tissues. The form
of regularization used in Equation (5.10) (with F as defined in Equation (5.9)) is called total
variation regularization.
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5.4 Edge-preserving regularization

When Tikhonov regularization is used, the penalty term grows quadratically with the difference
between pixels. The good thing about this is that neighboring pixels are very likely to have
the same value, which is desirable in MR images. However, jumps between pixels of different
tissues will be severely penalized, leading to overly smooth images. In that case, total variation
minimization yields a better result. Edge-preserving regularization combines the advantages of
both types of regularization, such that up to a certain value, discontinuities are penalized in a
quadratic way, while larger jumps are penalized in a linear way. The rest of this chapter is based
on [15].

5.4.1 MAP estimation

Maximum a posteriori (MAP) estimation is another technique commonly used to estimate the
original image X given a degraded image Y (or in our case, several degraded images). A MAP
technique maximizes the conditional probability of x when y is given:

x̂ = arg max
x

[logP (x|y)]. (5.11)

Using Bayes’ formula and eliminating constant terms, this can be rewritten as

x̂ = arg min
x

[− logP (y|x)− logP (x)]. (5.12)

Because the noise is assumed to be independent, identically distributed Gaussian, the probability
density of y given x is

P (y|x) =
1

(2πσ2)mn/2
exp

(
−||y −Ax||2

2σ2

)
(5.13)

where σ is the standard deviation of the noise.

5.4.2 Huber-Markov random field model

We suppose that our image X can be modeled as a Markov random field, meaning that the
conditional distribution of a pixel value, given all the other pixel values, is only dependent on
its neighbors. So, defining the set of neighbors of pixel s by ∂s, we have [16]

P (xs|xr 6=s) = P (xs|x∂s). (5.14)

Next, we assume that P (x) is a Gibbs distribution:

P (x) =
1

Z
exp

(
− 1

µ

∑
c∈C

ρ(h∗cx)

)
, (5.15)

where Z is a normalizing constant, µ is the temperature parameter and hc is the coefficient
vector for the group of pixels c. ρ(·) is a function that has to satisfy the following properties:
convexity, symmetry and ρ(t) << t2 for large |t|. The Huber function, defined as

ρT (t) =

{
t2, |t| ≤ T
T 2 + 2T (|t| − T ), |t| > T

(5.16)

satisfies these properties. In Figure 5.1, the Huber function is plotted as a function of t:
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Figure 5.1: The Huber function.

In [15], second-order approximations are used to measure image roughness. However, because
we aim to discourage jumps between neighboring pixels as in total variation regularization, first-
order approximations will be used in this research:

h∗k,l,0x = −1

2
Xk,l−1 +

1

2
Xk,l (5.17)

h∗k,l,1x = −1

2
Xk−1,l +

1

2
Xk,l, (5.18)

leading to the following expression for − logP (x):

− logP (x) = − logZ +
1

µ

∑
k

∑
l

1∑
m=0

ρT (h∗k,l,mx). (5.19)

Now, the functional to be minimized is given by

MT (x) = ||y −Ax||2 +
2σ2

µ

∑
k

∑
l

1∑
m=0

ρT (h∗k,l,mx). (5.20)

5.4.3 Majorization

Majorization is an iterative technique that minimizes a function by minimizing its majorizing
function. A function g(θ) is said to majorize f(θ) at θi if

f(θi) = g(θi) (5.21)

f(θ) ≤ g(θ) for all θ. (5.22)

In order to minimize Equation (5.20), a series of functionals N i
T (x) is defined such that

MT (xi) = N i+1
T (xi) (5.23)

MT (x) ≤ N i+1
T (x) for all x, (5.24)

where xi is the value at which N i
T (x) attains its minimum. This algorithm can be shown to

converge. To majorize the Huber function in Equation (5.16), we define

Ñ i+1
T (t) =

{
t2, |t| ≤ T
T
|ti| t

2 + T |ti| − T 2, |t| > T.
(5.25)
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Here, ti is the minimizing point of Ñ i
T (t). Note that Ñ i

T (t) is a quadratic function. Now let
Hm denote the operator corresponding to

∑
k

∑
l

h∗k,l,mx. The constant term T |ti| − T 2 can be

ignored, leaving the modified function

N̂ i+1
T (x) =

1∑
m=0

(Hmx)∗ΓmHmx, (5.26)

where Γm are diagonal matrices whose elements are equal to either 1 (if |h∗k,l,mx| ≤ T ) or T
|h∗k,l,mxi|

(if |h∗k,l,mx| > T ). Then, the functional N i+1
T (x) is defined as

N i+1
T (x) = ||y −Ax||2 + λ

1∑
m=0

(Hmx)∗ΓmHmx, (5.27)

where λ = 2σ2

µ can be seen as a regularizing constant. Taking the gradient of Equation (5.27)

yields an optimality criterion for xi+1:(
A∗A+ λ

1∑
m=0

H∗mΓmHm

)
xi+1 = A∗y. (5.28)

Of course, we do not know the values contained in Γm beforehand. In order to obtain the correct
matrix, fixed-point iteration is used.
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Chapter 6

Conjugate gradient methods

As seen in the previous chapter,

(A∗A+ λF ∗F )x = A∗y, (6.1)

provides us with an optimality criterion for minimization problem (5.6). The solution to (6.1)
is

x = (A∗A+ λF ∗F )−1A∗y. (6.2)

When X is an image with n×m pixels, A∗A+λF ∗F is an n2m2×n2m2 matrix. That means that
when X is a high resolution image, A∗A+λF ∗F becomes very large, making it computationally
infeasible to execute a matrix inversion. We will rely on iterative solvers to obtain the solution
to Equation (6.1). The methods of choice will be conjugate gradient methods. Sections 6.1, 6.2,
6.3 and 6.4 are based on [17] and [18].

6.1 General problem statement

6.1.1 Tikhonov regularization

The minimization problem (5.6) is a special form of

min
x

1

2
||y −Ax||2C−1 +

1

2
λ||x||2R, (6.3)

where R = F ∗F and C is the covariance matrix of the noise. Now, the optimality criterion is
represented by the normal equations:

(A∗C−1A+ λR)x = A∗C−1y. (6.4)

Note that minimization problem (6.3) can be formulated as the following constrained minimiza-
tion problem:

min
r,x

1

2
||r||2C +

1

2
λ||x||2R (6.5)

subject to r = C−1(y −Ax).

Using the technique of Lagrange multipliers, we find that

r = C−1(y −Ax), λRx = A∗r. (6.6)
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If λR is invertible, x can be eliminated, yielding(
1

λ
AR−1A∗ + C

)
r = y (6.7)

and x can be obtained from r:

x =
1

λ
R−1A∗r. (6.8)

In order to be able to work with λ = 0, we can define z := 1
λr, yielding the system

(AR−1A∗ + λC)z = y, x = R−1A∗z. (6.9)

Since minimization problems (6.3) and (6.5) are equivalent, Equations (6.4) and (6.9) are equiv-
alent too.

6.2 Standard conjugate gradient

The conjugate gradient method was developed by Hestenes and Stiefel [19] in 1952. It is a Krylov
subspace method for solving systems of the form Ku = f , where K is a square Hermitian positive
definite matrix. Starting with an initial estimate u0 of the solution u, new estimates u1, u2, ...
of u are determined, with uk+1 being closer to u than uk. The search directions are denoted by
pk. At each step, the residual sk is computed:

sk = f −Kuk. (6.10)

In each iteration, the conjugate gradient method computes uk such that

||u− uk||K = min
v∈u0+

span{p0,,pk−1}

||u− v||K . (6.11)

Given an iterate uk, the gradient descent method would use sk as a search vector. The conjugate
gradient method uses search vectors that are conjugate with respect to K (so pkKpl = 0 for
k 6= l). If we have n vectors satisfying this condition, P := {p0, ...,pn−1} forms a basis for Cn,
which means that u can be written as a weighted sum of the pk:

u =
n−1∑
i=0

αipi. (6.12)

Reasoning from Equation (6.12), uk+1 is calculated as follows:

uk+1 = uk + αkpk. (6.13)

Then the residual sk+1 is

sk+1 = f −Kuk+1 = f −K(uk + αkpk) = sk − αkKpk. (6.14)

Given {p0, ...,pk}, pk+1 can be calculated using a Gram-Schmidt process:

pk+1 = sk+1 −
∑
i≤k

p∗iKsk
p∗iKpi

pi. (6.15)
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However, this would involve the storage of all previous search directions. In [20], it is shown
that sk+1 is orthogonal to pi for all i ≤ k, which enables us to store only sk, pk and uk and still
calculate sk+1, pk+1 and uk+1. pk+1 is calculated as follows:

pk+1 = sk+1 + βkpk (6.16)

where βk is chosen such that pk+1 is conjugate to pk. Multiplying Equation (6.12) on the left
by p∗kK yields

αk =
p∗kf

p∗kKpk
. (6.17)

Substituting Equations (6.10) and (6.16) into Equation (6.17) leads to an expression for αk:

αk =
p∗kf

p∗kKpk
=

p∗k(sk +Kuk)

p∗kKpk
=

p∗ksk
p∗kKpk

=
s∗ksk

p∗kKpk
. (6.18)

In order to calculate βk, Equation (6.16) is multiplied on the right by Kpk, yielding

βk = −
s∗k+1Kpk

p∗kKpk
. (6.19)

From Equation (6.14), we see that Kpk = 1
αk

(sk − sk+1), so

βk = −
s∗k+1Kpk

p∗kKpk
= −

s∗k+1
1
αk

(sk − sk+1)

p∗k
1
αk

(sk − sk+1)
=

s∗k+1sk+1

s∗ksk
. (6.20)

Algorithm 1 is the complete conjugate gradient algorithm.

Algorithm 1 Standard CG

Require: K ∈ CN×N ,u0, f ∈ CN ;
Ensure: Approximate solution uk such that ‖f −Kuk‖ 6 TOL.
1: s0 = f −Ku0; p0 = s0; γ0 = s∗0s0;
2: while

√
γk > TOL and k < kmax do

3: ξk = p∗kKpk
4: αk = γk

ξk
5: uk+1 = uk + αkpk
6: sk+1 = sk − αkKpk
7: γk+1 = s∗k+1sk+1

8: βk =
γk+1

γk
9: pk+1 = sk+1 + βkpk

10: k = k + 1
11: end while

From Equations (6.14) and (6.16), it follows that span{p0,p1, ...,pk−1} is equal to the Krylov
subspace Kk(K,p0) := span{p0,Kp0, ...,K

k−1p0}. So the conjugate gradient method minimizes
||u− uk||K over u0 +Kk(K,p0).

For the convergence behavior of the conjugate gradient method, the following holds:

||u− uk||A ≤ 2

(√
κ2(K)− 1√
κ2(K) + 1

)k
||u− u0||A, (6.21)

where κ(K) is the condition number of the matrix K. So the smaller the condition number, the
faster the convergence.
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6.3 CGLS

The conjugate gradient method for least squares (CGLS) is obtained by applying the standard
conjugate gradient method to the normal equations A∗Ax = A∗y. Additionally, some mod-
ifications are made to enhance stability. This method minimizes the residual in every step,
because

||x− xk||A∗A = (x− xk)
∗A∗A(x− xk) = (y −Axk)

∗(y −Axk). (6.22)

Something similar can be done using the normal Equations (6.4). By replacing K by A∗C−1A+
λR, u by x and f by A∗C−1y, the standard conjugate gradient method in Algorithm 1 can be
applied to this problem. By defining

rk := C−1(y −Axk), (6.23)

a recursion for the residual is introduced:

sk+1 = A∗C−1y − (A∗C−1A+ λR)xk+1 = A∗C−1(y −Axk+1)− λRxk+1

= A∗rk+1 − λRxk+1. (6.24)

Defining qk = Apk, ξk is calculated as

ξk = q∗kC
−1qk + λp∗kRpk. (6.25)

Algorithm 2 shows CGLS tailored specifically to Equation (6.4).

Algorithm 2 CGLS

Require: A ∈ CM×N , C ∈ CM×M , R ∈ CN×N ,x0 ∈ CN ,y ∈ CM , λ ∈ R ≥ 0;
Ensure: Approximate solution xk such that ‖A∗rk − λRxk‖ 6 TOL.
1: r0 = C−1(y −Ax0); s0 = A∗r0 − λRx0; p0 = s0; q0 = Ap0; γ0 = s∗0s0; k = 0;
2: while

√
γk > TOL and k < kmax do

3: ξk = q∗kC
−1qk + λp∗kRpk

4: αk = γk
ξk

5: xk+1 = xk + αkpk; Rxk+1 = Rxk + αkRpk
6: rk+1 = rk − αkC−1qk
7: sk+1 = A∗rk+1 − λRxk+1

8: γk+1 = s∗k+1sk+1

9: βk =
γk+1

γk
10: pk+1 = sk+1 + βkpk
11: qk+1 = Apk+1

12: k = k + 1
13: end while

In each iteration, ek := x − xk is minimized over the Krylov subspace x0 + Kk(A∗C−1A +
λR,p0) in the (A∗C−1A+ λR)-norm. So

||ek||2A∗C−1A+λR = (x− xk)
∗(A∗C−1A+ λR)(x− xk) (6.26)

= (r− rk)
∗C(r− rk) + λe∗kRek = ||r− rk||2C + λ||ek||2R (6.27)

is minimized in every iteration. Note the correspondence with the original constrained mini-
mization problem (6.5).
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6.4 CGNE

CGNE is obtained by setting x = A∗z and applying standard CG to the normal equations

AA∗z = y. (6.28)

For underdetermined problems, solving this equation is more natural than solving A∗Ax = K∗y,
because in that case AA∗ is of lower dimension than A∗A. Another important advantage is that
CGNE minimizes the error in the 2-norm:

||x− xk||2AA∗ = (A(z− zk))
∗(A(z− zk)) = (x− xk)

∗(x− xk). (6.29)

Unfortunately, this method only works for consistent problems, rendering it useless for most
problems in practice due to the presence of noise. However, this issue is solved by regularizing,
because regularization leads to a well-posed problem. The standard CG method can be applied to
Equation (6.9) by replacing K by AR−1A∗+λC, u by z and f by y. Next, we set xk = R−1A∗zk
and rk = λzk and we define qk := A∗pk, yielding the CGNE algorithm, given as Algorithm 3.
In every iteration, the CGNE method minimizes

(z− zk)
∗(AR−1A∗ + λC)(z− zk) = (x− xk)

∗R(x− xk) +
1

λ
(r− rk)

∗C(r− rk)

= ||ek||2R +
1

λ
||r− rk||2C (6.30)

over the Krylov subspace z0 +Kk(AR−1A∗+λC,p0). So CGNE minimizes the same expression
as CGLS, but the Krylov subspace is different. As far as we know, the CGNE method has not
been applied to minimization problem (6.3) before in this way.

Algorithm 3 CGNE

Require: A ∈ CM×N , C ∈ CM×M , R ∈ CN×N ,x0 ∈ CN ,y ∈ CM , λ ∈ R > 0;
Ensure: Approximate solution xk such that ‖y −Axk − Crk‖ 6 TOL.
1: if λ > 0 then
2: x0 = 1

λR
−1A∗r0

3: else
4: x0 = 0, r0 = 0
5: end if
6: s0 = y −Ax0 − Cr0, p0 = s0; q0 = A∗p0, γ0 = s∗0s0, k = 0
7: while

√
γk > TOL and k < kmax do

8: ξk = q∗kR
−1qk + λp∗kCpk

9: αk = γk
ξk

10: rk+1 = rk + λαkpk;
11: xk+1 = xk + αkR

−1qk;
12: sk+1 = sk − αk(AR−1qk + λCpk)
13: γk+1 = s∗k+1sk+1

14: βk =
γk+1

γk
15: pk+1 = sk+1 + βkpk
16: qk+1 = A∗pk+1

17: k = k + 1
18: end while
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6.5 Alternating Directions Method of Multipliers

When total variation regularization is used, the CG methods described above cannot be used
directly, due to the use of an `1-penalty. We will resort to the Alternating Directions Method
of Multipliers (ADMM) to solve minimization problems of the form

min
x

1

2
||y −Ax||22 +

λ

2
||Fx||1. (6.31)

This section is based on [16]. By defining

h(x) :=
1

2
||y −Ax||22, g(Fx) :=

λ

2
||Fx||1, (6.32)

minimization problem (6.31) can be written as

min
x
h(x) + g(Fx), (6.33)

which is in turn equivalent to

min
x,v

h(x) + g(v), (6.34)

subject to Fx = v. (6.35)

The reason for splitting the objective function into two separate functions is that the two re-
sulting functions are straightforward to minimize on their own, as opposed to when they are
combined. In order to enforce the constraint Fx = v, a penalty term is added to the objective
function:

min
x,v

h(x) + g(v) +
a

2
||Fx− v||2, (6.36)

where a is a constant that determines the gain of the penalty term. When a is very large, the
constraint is strictly enforced. However, no matter how large a is, it is very unlikely that Fx
and v are exactly equal, so the minimizer of (6.36) will not be exactly equal to the minimizer
of the objective function. In order to fix this, an additional variable u is introduced:

min
x,v

h(x) + g(v) +
a

2
||Fx− v + u||2. (6.37)

So u must be chosen such that the constraint Fx = v is met. Equation (6.37) is known as the
augmented Lagrangian for our constrained optimization problem. The correct value of u can be
determined using the following simple augmented Lagrangian algorithm:

Algorithm 4 Split-Variable Augmented Lagrangian Algorithm

1: u = 0
2: v̂ = 0
3: while convergence has not been reached do
4: (x̂, v̂) = arg min

x,v
h(x) + g(v) + a

2 ||Fx− v + u||22
5: u = u + (F x̂− v̂)
6: end while

Instead of performing the optimization over x and v at the same time, it will be carried out
in two steps, as shown in Algorithm 5.
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Algorithm 5 Split-Variable ADMM

1: u = 0
2: v̂ = 0
3: while convergence has not been reached do
4: x̂ = arg min

x
h(x) + a

2 ||Fx− v̂ + u||22
5: v̂ = arg min

v
g(v) + a

2 ||F x̂− v + u||22
6: u = u + (F x̂− v̂)
7: end while

In Algorithm 5, the second minimization problem is:

min
v

λ

2
||v||1 +

a

2
||F x̂− v + u||2. (6.38)

The shrinkage function is defined as

Sτ (z) = sign(z) max{|z| − τ, 0}. (6.39)

It can be shown [16] that Equation (6.38) is minimized by

v̂ = Sλ
a
(F x̂ + u). (6.40)

The first minimization problem is

min
x

1

2
||y −Ax||22 +

a

2
||Fx− v̂ + u||22. (6.41)

Taking the derivative with respect to x yields a sufficient condition for optimality:

(A∗A+ aF ∗F )x = A∗y + aF ∗(v − u), (6.42)

which can be solved using a conjugate gradient method. The CGLS algorithm described in
section 6.3 can be altered a bit to accommodate this kind of problem, as shown in Appendix A.
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Chapter 7

CGLS vs CGNE: a performance
comparison

In order to compare the performances of CGLS and CGNE, both methods were applied to several
problems. Due to its simplicity, Tikhonov regularization was used. The Shepp-Logan phantom
was chosen as the object to be imaged. This phantom was created by Shepp and Logan in 1974
[21] as a tool for image reconstruction simulations of the head and brain for 2D computerized
tomography image reconstruction. Ten ellipses of varying size and signal intensity are used
to mimic the geometric and x-ray attenuation properties of the head. In [22], the phantom
was adapted to MR physics. They created T1-weighted, T2-weighted and spin density-weighted
phantoms. The approach outlined in their paper was used to generate our phantom (which is
spin density-weighted). For the overdetermined system, a 64× 64 phantom was used, as shown
in Figure 8.7. Equation (3.10) was used to generate the signal we would expect to obtain from
the phantom. These simulations were carried out using the simulated magnetic field shown in
Figure 3.6.
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Figure 7.1: The HR image.

The Field of View was set to 10 cm. Due to the large inhomogeneities in the field, we

43
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assumed that T ∗2 does not depend on T2 and is inversely proportional to the field inhomogeneity
in each voxel:

1

T ∗2
= γ∆B0. (7.1)

The noise was generated using Equation (3.15). The resistance was set to 1Ω, the tempera-
ture to room temperature (293 K) and the bandwidth to 20 kHz, leading to a standard deviation
of 20 nV.

7.1 Noiseless scenario

The first scenario that was evaluated was a noiseless one, which means that the system Wx = s
is consistent. 130 pulses were necessary to excite all spins and 36 angles were examined. For
each pulse, only one measurement was done. The number of pixels was set to 64 × 64, leading
to a system of 4680 equations and 4096 unknowns.

7.1.1 Without regularization

For CGLS, x0 = 0 was chosen as the initial guess. For CGNE, r0 was also set to 0. The iterates
are shown in Figures 7.2 and 7.3. We see that in this case, the CGLS and CGNE iterates
look very much alike. In CGLS, the Krylov subspace employed is K(W ∗W,W ∗s). In CGNE
it is K(WW ∗, s). Multiplying on the left by W ∗ shows that this is the same subspace as in
the CGLS case. Because CGNE is an error-minimizing method, whereas CGLS minimizes the
residual, and they operate in the same subspace, all CGNE iterates are closer to the solution
than the corresponding CGLS iterates. This is consistent with the plot of the errors shown in
Figure 7.4: we see that CGNE yields slightly smaller errors in each iteration than CGLS. For
both methods, the average time per iteration was 0.3 ms.
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Figure 7.2: CGLS iterates in a noiseless scenario.
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Figure 7.3: CGNE iterates in a noiseless scenario.
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Figure 7.4: Errors of the CGLS and CGNE iterates as a function of the iteration number.

7.1.2 R = I

First, we will use R = I as our regularization matrix. We also have C = I. This allows for a fair
comparison between the two methods, because CGLS uses R and C−1, while CGNE uses R−1

and C. When regularization (a small value was chosen: λ = 1 ·10−15) is applied in this case, the
behavior of the two methods is similar to what we have seen before. CGNE yields the iterates
with the smallest error, as can be seen in Figure 7.4. This is consistent with the fact that both
methods are operating in the same Krylov subspace. Again, the average time per iteration was
0.3 ms for both methods.
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Figure 7.5: CGLS iterates in a noiseless scenario, with regularization (R = C = I,
λ = 1 · 10−15).
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Figure 7.6: CGNE iterates in a noiseless scenario, with regularization (R = C = I,
λ = 1 · 10−15).
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Figure 7.7: Errors of the CGLS and CGNE iterates in the case of a consistent system that is
regularized with R = C = I and λ = 1 · 10−15.
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7.1.3 R = F ∗F

Next, the regularization matrix was set to R = F ∗F , where F is a first-order difference matrix
that calculates the difference between all neighboring pixels. In chapters 8 and 9, when our
sole purpose is to produce images of the best possible quality, we will only consider this matrix.
Figures 7.8 and 7.9 show the iterates in this case. The errors are plotted in Figure 7.10. In this
case, CGLS clearly performs better than CGNE because it converges much more rapidly than
CGNE. For CGLS, no clear visible differences can be seen between iterates 8 and 60, while CGNE
needs more than 200 iterations to obtain an acceptable solution. This can be explained by the
condition numbers of their respective matrices. CGLS operates on the matrix A∗C−1A + λR,
which has a condition number of 2.6 · 103, while the matrix used by CGNE, AR−1A∗ + λC, has
a condition number of 2.8 ·106. A CGLS iteration took 0.6 ms on average, a CGNE iteration 4.4
ms. The difference can be explained by the fact that in CGNE, the calculations involve R−1.
Due to the sparsity structure of R, using a Cholesky decomposition for calculations with R−1

did not speed up the algorithm.
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Figure 7.8: CGLS iterates in a noiseless scenario, with regularization (R = F ∗F , C = I,
λ = 1 · 10−15).
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Figure 7.9: CGNE iterates in a noiseless scenario, with regularization (R = F ∗F , C = I,
λ = 1 · 10−15).



48 CHAPTER 7. CGLS VS CGNE: A PERFORMANCE COMPARISON

0 100 200 300 400 500

Number of ITERATIONS

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

lo
g

10
 |x

 -
 x

k|

CGLS
CGNE

Figure 7.10: Errors of the CGLS and CGNE iterates in case R = F ∗F . λ was set to 1 · 10−15.

7.2 Overdetermined system with noise

The recording time was taken to be 1 ms, with a sampling rate of 20 kHz. Again, 130 pulses
were necessary to excite all spins and 36 angles were examined. The number of pixels was set
to 64× 64, leading to a system of 93600 equations and 4096 unknowns.

7.2.1 R = I

First, the regularization matrix was set to R = I. Figures 7.11 and 7.12 show the CGLS and
CGNE iterates for different values of the iteration number k, respectively. The regularization
parameter was set to 7 ·10−14. For a smaller value of the regularization parameter, λ = 1 ·10−15,
the iterates are shown in Figures 7.13 and 7.14.
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Figure 7.11: CGLS iterates for λ = 7 · 10−14 in the case of an overdetermined system with
R = I.
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Figure 7.12: CGNE iterates for λ = 7 · 10−14 in the case of an overdetermined system with
R = I.
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Figure 7.13: CGLS iterates for λ = 1 · 10−15 in the case of an overdetermined system with
R = I.
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Figure 7.14: CGNE iterates for λ = 1 · 10−15 in the case of an overdetermined system with
R = I.

As expected, CGLS and CGNE yield the same final image. In the case of a strong regularizing
term, it is clear that both methods converge very rapidly, only a few iterations are needed. It is
interesting to note that the iterate with the smallest error is obtained by CGNE. For λ = 1·10−15,
at first sight it seems that CGLS converges faster than CGNE. However, when we look closely at
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the iterates in Figure 7.13, the background in the image formed by iterate 20 is different from the
background in iterate 40. So both methods need about the same number of iterations to reach
convergence. This is consistent with the fact that A∗A+λI (used by CGLS) and AA∗+λI (used
by CGNE) have the same condition number. It is interesting to see that when λ is relatively
large, the two methods obtain iterates that are very similar, but this is not the case when λ is
small. In that case, the CGLS iterates begin to resemble the final solution very quickly, and after
that, the noise starts to contribute more and more to the image, until convergence is reached.
For CGNE that is not true, the first iterates are severely impacted by the noise, but they look
progressively better as the iteration number increases. These observations are consistent with
what we see in Figure 7.15: the CGLS solution is better after 10 iterations than after 50, while
this does not hold for the CGNE case. CGLS and CGNE needed 0.013 and 0.014 seconds per
iteration respectively.
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Figure 7.15: Plots of the errors of the CGLS and CGNE iterates for two different values of the
regularization parameter. Here, R = I.

7.2.2 R = F ∗F

The regularization matrix was set to R = F ∗F , where F is a first-order difference matrix that
calculates the difference between all neighboring pixels. Two different regularization parameters
were considered, λ = 7 · 10−14 and λ = 1 · 10−15. The former has a strong regularizing effect,
the latter does not.
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Figure 7.16: CGLS iterates for λ = 7 · 10−14 in the case of an overdetermined system with
R = F ∗F .
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Figures 7.16 and 7.17 show the iterates xk for different values of the iteration number k for
λ = 7 · 10−14 in the CGLS and the CGNE algorithm, respectively. It is clear that the CGLS
algorithm converges much more rapidly than CGNE. For CGLS, no clear visible differences can
be seen from iterate 8 on, while CGNE needs more than 20 iterations to obtain an acceptable
solution. For the smaller regularization parameter λ = 1·10−15, the iterates are shown in Figures
7.18 and 7.19. It looks like CGLS needs only a few iterations to converge to an acceptable
solution.
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Figure 7.17: CGNE iterates for λ = 7 · 10−14 in the case of an overdetermined system with
R = F ∗F .
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Figure 7.18: CGLS iterates for λ = 1 · 10−15 in the case of an overdetermined system with
R = F ∗F .
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Figure 7.19: CGNE iterates for λ = 1 · 10−15 in the case of an overdetermined system with
R = F ∗F .
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Figure 7.20: Plots of the errors of the CGLS and CGNE iterates for two different values of the
regularization parameter. Here, R = FF ∗.

We have seen that CGNE and CGLS yield the same final image, but it takes much longer for
CGNE to converge to the optimal solution, especially when the regularization parameter is small.
On average, a CGLS iteration took 0.013 seconds, while a CGNE iteration took 0.018 seconds.
Figure 7.20 shows the value of the error for each iteration. We see that for λ = 7 · 10−14, CGNE
needs about 30 iterations to reach the same error as CGLS, while for λ = 1 · 10−15, about 300
iterations are needed. For CGLS, only a few iterations are needed to converge when λ = 7·10−14.
For the smaller regularization parameter, the solution has converged after approximately 30
iterations. However, after the first initial iterations, the difference between iterates are very
small, so the solution already looks acceptable after a small number of iterations. This is not
the case for CGNE. There, the iterates start looking acceptable only when the solution is nearly
converged.

7.3 Underdetermined system with noise

In order to obtain an underdetermined system, the recording time was set to 5 · 10−5 s and the
number of pixels to 256 × 256. All other parameters remained the same, leading to a system
of 4680 equations and 65536 unknowns. Again, two different regularization parameters were
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considered: λ = 5 · 10−14 and λ = 1 · 10−15. The iterates and other results can be found in
Appendix B. The results are very similar to the overdetermined case: for R = F ∗F , CGLS
converges to the optimal solution in just a few iterations and the number of iterations is not
influenced by λ much, while CGNE converges more slowly and needs a lot more iterations when
the regularization parameter is smaller. A CGLS iteration and a CGNE iteration took 0.008
and 0.11 seconds, respectively. The results for R = I are also consistent with the findings in
the overdetermined case. A CGLS iteration took 0.008 seconds, while a CGNE iteration took
slightly less: 0.007 seconds.

7.4 Analysis of the results

7.4.1 R = F ∗F

When R = F ∗F , CGLS requires a smaller number of iterations to reach convergence. For both
CGLS and CGNE, a smaller regularization parameter implies a larger number of iterations.
However, this effect is much stronger in CGNE than in CGLS. These findings, combined with
the fact that working with R−1 and C is much more cumbersome than C−1 and R, make CGLS
the method of choice in this scenario. Because R = F ∗F is the regularization matrix that will
be used to reconstruct the images in the next chapters, we will use CGLS for the remainder of
this research.

7.4.2 R = I

For R = I, the number of iterations needed for convergence is approximately the same. In
this case, CGLS is working with the matrix W ∗W + λI, while CGNE is using the matrix
WW ∗ + λI. These two matrices have the same condition number. Hence, the two methods
should have the same convergence speed, which is consistent with what we have seen. For a
consistent system, CGLS is outperformed by CGNE, due to the latter being an error-minimizing
method, whereas CGLS minimizes the residual. In the case of an inconsistent system Wx = s,
where s includes noise, CGNE and CGLS demonstrated comparable performances in the case
of a strong regularizing term, with CGNE obtaining iterates with smaller errors after the first
few iterations. For a small regularization parameter, CGNE was outperformed by CGLS. In
that case, the CGLS iterates start approximating the final solution after only a few iterations,
while this does not hold for CGNE. The difference in behavior can be explained by different
relationships between xk and rk. In CGLS, xk is obtained and, using this value, rk is calculated
as rk = C−1(s−Wxk). In CGNE, rk is obtained first and then xk = 1

λR
−1W ∗rk is calculated.

(Once convergence is reached, both relationships hold.)

7.4.3 CGNE as a viable alternative to CGLS

For consistent problems Wx = s, CGNE performs slightly better than CGLS when there is
no regularization and when R = I. For inconsistent problems, CGNE and CGLS behave sim-
ilarly when R = I and the regularization parameter is sufficiently large. When R = F ∗F , the
convergence of CGNE is slow compared to CGLS. However, in cases where the computational
cost of doing calculations with C−1 is much higher than with R−1, CGNE is a very promising
method. Even if CGNE were to need more iterations, the lower computational cost per iteration
could potentially compensate for this. This is especially promising for overdetermined systems,
because in that case, R is smaller than C, which means that having to execute calculations with
C and R−1 instead of C−1 and R could prove more efficient. And of course, when C is singular
or nearly singular, CGLS cannot be used, making CGNE the method of choice.
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Chapter 8

Super-resolution: simulation results

Simulations were carried out in order to test the super-resolution reconstruction method de-
scribed in chapter 4. Two different forms of geometric deformation were examined: translation
and rotation. In the translation case, the image was shifted, blurred and then down-sampled.
This was done for four different shifts. Then the combined information in these four low resolu-
tion images was used to generate one high resolution image. The rotation case is more interesting
to us, because we incorporated MRI physics into the model to generate the electrical signals
we would expect from the object. Appropriate noise levels were incorporated, in order to test
whether super-resolution can yield better results than direct high resolution reconstruction in
low-field MRI. Again, the Shepp-Logan phantom was chosen as the object to be imaged. The
values of the regularization parameters used in this chapter were chosen such that the error was
minimized in the `1 norm. In this case, that is possible, because we are working with simulated
data so the model solution is known. However, this is clearly not an option when the data is not
simulated. Employing the L-curve criterion did not yield an optimal regularization parameter,
because no L-shape could be detected. All results were obtained using CGLS with a maximum
of 10 iterations. When ADMM was used to obtain a total variation regularized solution, a
maximum of 10 outer iterations was used.
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Figure 8.1: Desired HR image (128 × 128 pixels) of the MATLAB Shepp-Logan phantom.
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8.1 Translation

The high resolution image and the low resolution images were chosen to be 128 × 128 pixels
and 32 × 32 pixels respectively. The desired HR image is shown in Figure 8.1. Following the
data acquisition model described in chapter 4, the LR images are obtained by first shifting the
HR image by a subpixel amount, subjecting it to blurring, downsampling it and finally, adding
noise. The steps in this process are shown in Figure 8.2.

Shift Blur

Downsample

Noise

Figure 8.2: From HR to LR.

The grayscale values of the HR image were stored in a matrix X. The first LR image was
created without shifting the object. The other 3 LR images were created using three different
subpixel shifts: (0.25, 0.25), (0.5, 0.3) and (0.8, 0.6). When ā > 0, b̄ > 0, a shift of (ā, b̄) means
that the LR grid is shifted to the right by ā times the size of the LR pixel in the x-direction and
towards the bottom by b̄ times the size of the LR pixel in the y-direction. So the object itself is
shifted to the left and towards the top. Denoting the down-sampling factor in the x-direction by
L1 and in the y-direction by L2, the image is shifted by (āL1, b̄L2) HR pixels. The translation
of the grid is shown in Figure 8.3. For clarity, the phantom is shown in black and white. It is
clear that some pixels are (partially) shifted beyond the borders of the image. Therefore, the
original image has to be padded with zeros. In MR images, the areas close to the edges usually
have a pixel intensity of zero, so this does not influence the final result. Defining a := āL1 and
b := b̄L2, we can decompose a and b into an integer part and a remainder part:

a = bac+ arem, b = bbc+ brem. (8.1)
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(a) Original grid. (b) Translated grid.

a

b

a

b

(c) The translated grid superimposed on the
original grid.

(d) One pixel in the translated grid partially
overlaps multiple pixels in the original grid.

Figure 8.3: Translation of the pixel grid.

Figures 8.3c and 8.3d show that the pixel value of the shifted image is a weighted average
of the value of 4 pixels in the original image. The weights are determined by the area of the
overlap between the shifted pixel and the original pixel. Figure 8.3d shows that the value of
pixel (i, j) in the shifted image is equal to

(1− arem)(1− brem)Xi−bac,j−bbc (8.2)

+ arem(1− brem)Xi−bac−1,j−bbc

+ (1− arem)bremXi−bac,j−bbc−1

+ arembremXi−bac−1,j−bbc−1.

For each of the shifts, this information was stored in matrix Gk such that Gkx yielded the desired
shifted version of the HR image. A Gaussian function with s1 = s2 = 1 and ρ = 0 was used
as the point spread function, leading to the blurring matrix B. The down-sampling operator
Dk simply takes the average over L1L2 = 16 pixels. The noise was independent, with standard
deviation σ = 0.05. The LR images are shown in Figure 8.4.
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Figure 8.4: Four low resolution images (32 × 32 pixels).

Using these four yk, minimization problem (5.6) was solved for the three different types of
regularization. The matrix A had dimensions 4096 × 16384. Figure 8.5 shows the phantom
image and the three images resulting from the three different kinds of regularization. They all
look better than the LR images. However, total variation regularization yields a better result
than the other two, it looks less noisy. The image obtained when edge-preserving regularization
is used looks better than the Tikhonov image. Obviously, the choice of regularization parameter
(as well as a and T ) influences the outcome.

The pixels must have values between 0 and 1, but all the resulting minimizers had values
outside of this range. The final images were obtained by projecting onto [0, 1]. The `1-norm and
the `2-norm of the error of each of the three solutions are shown in Table 8.1. As the images
suggest, total variation yields the smallest errors and Tikhonov the largest.

Table 8.1: `1 and `2 norm of the errors of the three obtained solutions.

Regularization Error in `1 norm Error in `2 norm

Tikhonov 1148.9 16.4735
Total variation 964.4 15.8980
Edge-preserving 1074.2 16.1373
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(a) Original image.
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(b) Tikhonov regularization.
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(c) Total variation regularization.
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(d) Edge-preserving regularization.

Figure 8.5: The results obtained by using three different kinds of regularization.

8.2 Rotation

In order to obtain images of the same object, rotated over different angles, either the object
itself or the MRI scanner can be rotated. The Halbach array designed in Leiden lends itself well
to rotation, so we will assume that the object is fixed and the source of the rotation is the MRI
scanner, which would allow us to control the rotation angle accurately. This means that when
the scanner is rotated over an angle θ, the pixel grid is rotated over that same angle, as shown
in Figure 8.6. Figures 8.6c and 8.6d show that one pixel in the rotated grid partially covers
multiple pixels in the original grid. This means that the intensity of the pixel in the rotated
grid is a weighted average of the intensity of the pixels in the original grid it coincides with.
The weights are equal to the normalized area of the overlaps. These weights are stored in the
geometric deformation matrix Gk. In order to compare super-resolution reconstruction to direct
high resolution reconstruction, simulations were done using the simulated magnetic field shown
in Figure 3.6. A Shepp-Logan phantom of 64 × 64 pixels, as shown in Figure 8.7, was used as
the HR image. Because the LUMC prototype is very small, the Field of View was set to 2 cm.
Again, T ∗2 was calculated using Equation (7.1).
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(a) Original grid. (b) Rotated grid.

(c) The rotated grid superimposed on the
original grid.

(d) One pixel in the rotated grid partially
overlaps multiple pixels in the original grid.

Figure 8.6: Rotation of the pixel grid.
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Figure 8.7: The HR image.
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As in the previous chapter, the noise was generated using Equation (3.15). The same values
were used, leading to a standard deviation of 20 nV. The receiver field value was assumed to be
60 mT/A.

8.2.1 High resolution

The signal induced by the phantom was generated for 36 different rotations: θ = 0, 10, 20, ..., 350◦.
We used the simulated magnetic field shown in Figure 3.6. Pulses with a bandwidth of 20 kHz
were applied until all frequencies had been excited once, and the noise was assumed to be Gaus-
sian with a zero mean and a standard deviation of 20 nV. The total recording time per pulse
was set to 1 ms. The resulting matrix had a size of 93600× 4096. The SNR, calculated as the
`2 norm of the signal vector divided by the `2 norm of the noise vector, was very low: 0.45. For
the three types of regularization and for a range of values of the regularization parameter λ, the
error in the `1 and `2 norm was calculated. The results are shown in Figure 8.8.

10-16 10-15 10-14 10-13

101

102

||x
-x

m
od

|| 22

102

103

||x
-x

m
od

|| 1

Tikhonov

(a) Tikhonov

10-16 10-15 10-14 10-13

101

102

||x
-x

m
od

|| 22

102

103

||x
-x

m
od

|| 1

Total variation

(b) Total variation.

10-16 10-15 10-14 10-13

101

102

||x
-x

m
od

|| 22

102

103

||x
-x

m
od

|| 1

Edge-preserving

(c) Edge-preserving.

Figure 8.8: Errors in `1 and `2 norms for the three types of regularization. For total variation
regularization, a was set to a = 10λ. For edge-preserving regularization, T was chosen to be

T = 0.05.

λ = 2 · 10−15, λ = 2 · 10−16 and λ = 4 · 10−15 yield the images that are closest to the original
in the `1 and the `2 norm for Tikhonov, total variation and edge-preserving regularization
respectively. The corresponding results are shown in Figure 8.9. These images are of very poor
quality. While Tikhonov and edge-preserving regularization manage to retain some of the main
features of the original phantom, like the two large yellow ellipses in the center, total variation
regularization yields an image that does not even capture that. So visually speaking, edge-
preserving and Tikhonov regularization yield the best results. However, when we look at the
errors in the `1 and `2 norm, which are shown in Table 8.2, we see that when the `1 and `2
norm of the difference between two images is used as a measure of their similarity, the total
variation image is closer to the model solution than the Tikhonov image, while total variation
and edge-preserving regularization are comparable in terms of performance.
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(a) Model solution.
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(b) Tikhonov.
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(c) Total variation.
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(d) Edge-preserving.

Figure 8.9: The resulting HR images for the three different types of regularization. λ was
chosen such that the resulting image was as close to the model solution as possible.

Table 8.2: `1 and `2 norm of the errors of the three obtained HR solutions.

Regularization Error in `1 norm Error in `2 norm

Tikhonov 416.7599 10.0607
Total variation 386.6856 9.9747
Edge-preserving 387.1366 9.9129

8.2.2 Super-resolution

The phantom was down-sampled and an image was formed by using the signals generated
for θ = 0◦, 90◦, 180◦, 270◦. The next image was formed using the signals generated for θ =
10◦, 100◦, 190◦, 280◦. Continuing this, 9 different images were formed of the phantom, such that
all the same angles were covered as in the high resolution case. (So in the super-resolution
model, the second image depicts a down-sampled version of the phantom rotated over 10◦, the
third image represents a 20◦ rotation, etc.) The reason for choosing to create 9 LR images is that
rotations over 0◦, 10◦, ..., 80◦ all yield information about different weighted averages of pixels in
the original grid, while a rotation over 90◦ degrees will simply project a pixel of the new grid on
top of one other pixel in the original grid, rendering super-resolution useless. This is illustrated
in Figure 8.10.
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(a) Rotation over 30◦. (b) Rotation over 90◦.

Figure 8.10: A rotation over 30◦ provides a new weighted average of the original pixels, while a
rotation over 90◦ does not.
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Figure 8.11: The LR images.

Again, the applied bandwidth was 20 kHz, the total pulse length 1 ms and the noise had a
standard deviation of 14 nV. Different down-sampling factors L were investigated and the best
results were obtained for L = 8. So the resulting LR images are 8× 8 pixels. The dimensions of
the matrices used to calculate the LR results were 10400× 1024. Total variation regularization
with λ = 2 · 10−16 and a = 2 · 10−15 was used to obtain the LR images, which are shown in
Figure 8.11. The SR images obtained from these 9 LR images are shown in Figure 8.12. The
matrix used in these calculations was of size 9216 × 4096. The regularization parameter was
chosen such that the `1 norm was minimized. While their quality is still quite poor, these images
clearly capture the main features of the phantom much better. Total variation regularization
in particular results in an image where the green circle is clearly visible, whereas in the HR
case, total variation yields an image where neither the yellow ellipses nor the green circle can be
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discerned.
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(a) Model solution.
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(b) Tikhonov. (λ = 0.04)
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(c) Total variation. (λ = 0.004, a = 0.04)
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(d) Edge-preserving.
(λ = 0.07, T = 0.05)

Figure 8.12: The resulting SR images for the three different types of regularization.

The total variation and the edge-preserving results for HR and SR are shown in one figure,
Figure 8.13. From this figure, it is clear that super-resolution yields better images than a direct
HR approach. The main feautures of the phantom are more clearly visible and the edges are
sharper. In Table 8.3, the errors of the three obtained SR solutions are shown. These errors
are smaller than the errors of the HR solutions, which is consistent with our observations when
we visually compare the HR and the SR images. It is clear that Tikhonov regularization is
outperformed by the other two types of regularization. Therefore, Tikhonov regularization will
not be used from now on.

Table 8.3: `1 and `2 norm of the errors of the three obtained SR solutions.

Regularization Error in `1 norm Error in `2 norm

Tikhonov 377.5713 9.6809
Total variation 336.1646 9.7383
Edge-preserving 355.7411 9.6682
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(a) HR: total variation.
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(b) HR: edge-preserving.
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(c) SR: total variation.
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(d) SR: edge-preserving

Figure 8.13: HR and SR results using two different types of regularization.

Down-sampling factors L = 2 and L = 4 yielded results that were less satisfying than L = 8.
The resulting images are shown in Figure 8.14, alongside the HR result and the SR result with
L = 8. Especially the images created using a downsampling factor of L = 2 are of very poor
quality. The L = 4 images look better, arguably even better than the HR images, but L = 8
clearly yields the best result. These results show that in the case of very noisy signals, super-
resolution can be employed to obtain a better final image, due to the improved SNR ratio per
pixel in LR images. When the FoV is increased, the signal strength increases too. Figure 8.15
shows the final images when the Field of View is set to 3 cm (all other parameters stay the
same). In this case, the SNR was 1.03. SR with L = 4 and L = 8 both yield clearer images than
HR reconstruction. When the FoV is set to 4 cm, the HR images look much better than before
(for 2 and 3 cm), as can be seen in Figure 8.16. In this case, the SNR is 1.83. The SR images
created using a down-sampling factor of 4 and the HR images are of comparable quality, but
the SR images manage to capture the shape of the two large yellow ellipses somewhat better,
while the edges of the phantom look sharper in the HR images. L = 2 yields very noisy images.
Total variation combined with L = 8 yields a very blocky image compared to the HR result,
while edge-preserving with L = 8 yields an image that looks like a blurrier version of the image
generated when L = 4 is used.

Figure 8.17 shows the results when the FoV is set to 10 cm, and the SNR is 11.42. In this
case, the HR images are of much better quality than all the LR images. This is especially clear
when looking at the edges of the phantom. When super-resolution is used, it is difficult to
capture the different colors close to these edges, whereas in the HR image, these different colors
are clearly visible. These findings are consistent with the high signal-to-noise ratio.
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(a) HR: total variation.
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(b) HR: edge-preserving.
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(c) SR with L = 2: total variation.
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(d) SR with L = 2: edge-preserving
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(e) SR with L = 4: total variation.
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(f) SR with L = 4: edge-preserving
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(g) SR with L = 8: total variation.
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(h) SR with L = 8: edge-preserving

Figure 8.14: HR and SR results for different down-sampling factors (FoV = 2 cm.).
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(a) HR: total variation.
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(b) HR: edge-preserving.
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(c) SR with L = 2: total variation.
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(d) SR with L = 2: edge-preserving
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(e) SR with L = 4: total variation.
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(f) SR with L = 4: edge-preserving
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(g) SR with L = 8: total variation.
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(h) SR with L = 8: edge-preserving

Figure 8.15: HR and SR results for different down-sampling factors (FoV = 3 cm).
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(a) HR: total variation.
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(b) HR: edge-preserving.
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(c) SR with L = 2: total variation.
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(d) SR with L = 2: edge-preserving
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(e) SR with L = 4: total variation.
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(f) SR with L = 4: edge-preserving
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(g) SR with L = 8: total variation.
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(h) SR with L = 8: edge-preserving

Figure 8.16: HR and SR results for different down-sampling factors (FoV = 4 cm).
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(a) HR: total variation.
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(b) HR: edge-preserving.
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(c) SR with L = 2: total variation.
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(d) SR with L = 2: edge-preserving
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(e) SR with L = 4: total variation.
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(f) SR with L = 4: edge-preserving

10 20 30 40 50 60

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g) SR with L = 8: total variation.
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(h) SR with L = 8: edge-preserving

Figure 8.17: HR and SR results for different down-sampling factors (FoV = 10 cm).
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Chapter 9

Application to real data

In order to test the measurement model described in section 3.3, the signal induced by a phantom
object in the presence of a nonhomogeneous B0 field was measured. This was done using a 7
T MRI scanner. However, first the phantom, which consisted of four small tubes of water, was
imaged using standard techniques, in order to obtain a model result for our experiment. The
resulting image is shown in Figure 9.1.
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Figure 9.1: The model solution, obtained using conventional MRI techniques. The slice
thickness was set to 15 cm. The four tubes of water are clearly visible.

In order to generate an inhomogeneous field, a linear gradient was applied in the xy-plane.
This type of gradient was chosen because it is one of the main options that is being considered
for a new Halbach array. There was no gradient in the z-plane, so no slice selection was carried
out. 16 different measurements were performed, with the gradient being rotated clockwise over
2π
16 after every measurement. The first gradient was applied in the negative y-direction. The
inhomogeneity in the magnetic field for the first 5 measurements is shown in Figure 9.2, where

71
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yellow indicates the strongest field and dark blue the weakest. However, the variations are very
small, considering that the gradient is 1 mT/m and the Field of View was set to 16 cm. It is
interesting to note that this experimental setup mimics the very first MRI experiment carried
out by Lauterbur as described in [24].

(a) First
measurement.

(b) Second
measurement.

(c) Third
measurement.

(d) Fourth
measurement.

(e) Fifth
measurement.

Figure 9.2: B0 field used in the first five measurements.

The first measurement yielded the signal shown in Figure 9.3. There were two channels
registering the voltage induced by the sample, with a phase difference of 90 degrees. The final
signal was obtained by adding these two in the following way:

S(t) = S1(t) + iS2(t), (9.1)

where S1(t) and S2(t) are the signals acquired in channel 1 and 2 respectively.
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Figure 9.3: Signal acquired during the first measurement.

Two different ways of obtaining an image from these measurements will be discussed: a direct
approach using Equation (3.10) and an approach based on 1D projections of the magnetization,
which was inspired by the way CT images are obtained.

9.1 Direct reconstruction

At first, the 16 signals and corresponding matrices given by Equation (3.10) were vertically
concatenated, and CGLS was used in an attempt to find a solution. However, the result was
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very poor. This is due to the difference in phases of the magnetization at time 0 in each of the
16 measurements. In order to resolve this issue, we set the phase of the first datapoint of the
measured signal to 0 for each of the 16 angles and changed the phase of the other datapoints
accordingly. This allowed us to assume that the magnetization at time 0 is strictly real for all
measurements, making it possible to use Equation (3.10). Applying the CGLS method without
any type of regularization yielded the 32× 32 image in Figure 9.4b.
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(a) Model solution.
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(b) Least-squares solution to Equation (9.2).

5 10 15 20 25 30

5

10

15

20

25

30

0

1

2

3

4

5

6

7

10-13

(c) Total variation solution to Equation (3.10),
with λ = 2 · 1020.
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(d) Deblurred version of Figure 9.4c. Total
variation regularization was used, λ = 5 · 1019.

Figure 9.4: A comparison of the model image and three images using the direct reconstruction
model for the 32× 32 case.

Figure 9.4c was obtained using total variation regularization with λ = 2 · 1020. In order to
make Figure 9.7d less blurry, we assumed a spatially invariant Gaussian point spread function.
Setting the parameters ρ = 0 and s1 = s2 = 2 yielded good results. We incorporated the
deblurring into the reconstruction process as follows: assuming that the solution to the mini-
mization problem is not the actual solution x but the blurred version xb = Bx, we simply have
to replace the reconstruction matrix W by WB in Equation (3.10). Then, when total variation
regularization (λ = 5 ·1019) is used, the image in Figure 9.7e is obtained. It still looks somewhat
blurry but less so than before.

The background contains some artifacts, but we were able to reconstruct the two large water
bottles. However, the lower bottle looks more stretched out than it is supposed to be. An
interesting thing to note is that the water bottles are not located exactly where we expect them
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to be. This can be partially explained by the fact that the gradients are not exactly linear but
we do model them as such. However, in the obtained solution the water bottles are farther apart
than in the model solution, which leads us to believe the gradient is actually smaller than the
claimed 1 mT/m.

For the 64 × 64 case, the resulting images are shown in Figure 9.5. Here, the PSF was
assumed to be Gaussian with s1 = s2 = 3.5 and ρ = 0. Like in the 32 × 32 case, only the two
largest bottles show up clearly in the final deblurred image. The shapes do not look the way
they are supposed to and, like in the 32×32 case, the background contains a number of artifacts.
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(a) Model solution.
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(b) Least-squares solution to Equation (9.2).
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(c) Total variation solution to Equation (9.2),
with λ = 3 · 1021.
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(d) Deblurred version of Figure 9.5c. Total
variation regularization was used, λ = 5 · 1020.

Figure 9.5: A comparison of the model image and three images obtained using the direct
reconstruction model for the 64× 64 case.

For reasons that will become clear in section 9.2, the frequencies had to be shifted in a few
of the 16 measurements. However, we had to make some educated guesses about the size of
the frequency shifts. In MRI, frequency corresponds to position. Due to the clusters of high
intensity pixels near the edges, the three obtained images lead us to believe that one or more of
the frequency shifts that we have been using may have been incorrect. However, some different
shifts were tested and the quality of the resulting images did not improve.
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9.2 Using 1D projections

The approach taken in the previous section fits into the framework we have been using through-
out this research. However, there is a different way of obtaining the final image, which was
inspired by the way images are generated in CT scanners. In computerized tomography, the
total absorption is measured along lines by transmitting X-rays and then measuring how much
of the radiation was absorbed along the way. This is done for a multitude of different angles.
Afterwards, the information stored in these measurements is combined to form an image where
the intensity of each pixel is a measure of how much radiation it absorbs. One way of doing
this is by using a filtered backprojection method [6]. Here, we will use the geometry of the
magnetic field to calculate 1D projections of the total magnetization. The information in these
1D projections will be combined to generate a 2D image.
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(a) i = 1
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(b) i = 2
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(c) i = 3
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(d) i = 4
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(e) i = 5
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(f) i = 6
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(g) i = 7
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(h) i = 8
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(i) i = 9
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(j) i = 10
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(k) i = 11
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(l) i = 12
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(m) i = 13

5

10

15

20

25

30

0

0.5

1

1.5

2

2.5

3

10-13

(n) i = 14
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(o) i = 15
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(p) i = 16

Figure 9.6: 1D projections of the magnetization for the angles θi = (i− 1)2π
16 , i = 1, ..., 16.

When using this kind of gradient, the problem is that the magnetic field has the same strength
along lines in the FoV. So in the first measurement, all pixels on a horizontal line will correspond
to the same magnetic field, making spatial encoding in the x-direction impossible. Therefore, for
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each of the measurements, a 1D-projection of the total magnetization along these lines can be
obtained, but not a 2D image. However, the combined information in the 16 1D projections can
be used to generate the 2D image. The 1D projections were calculated using Equation (3.10).
The elements of the matrix W were calculated using Equation (3.9), but the coil sensitivity and
the receive field were ignored, because these can be assumed to be constant in high-field MRI.
1/T ∗2 was calculated using Equation (7.1). (However, when the obtained 1D projections in this
case were compared to the simplified case with 1/T ∗2 set to 0, there was no significant difference
in the results, due to the high sampling rate of 4000 Hz.) The model solution is a 64×64 image,
but because there are only 16 1D projections, we decided to aim for a 32× 32 image first. The
16 obtained 1D projections are shown in Figure 9.6. Because the excitation bandwidth is 4000
Hz, only 18 rows of pixels were excited during the measurements, leading to the zeros at the top
and bottom of the 1D projections. We would expect the lowest magnetization values to occur
at the boundary of the excited region, and the highest to be located somewhere in the middle,
because we know that the phantom was placed in the center of the FoV and is relatively small.
However, measurements 3, 4, 6, 7, 10, 11 and 12 do not reflect this behavior, making it likely
that a frequency shift was carried out at some point during the imaging process. In order to
correct for this, results 4, 6, 7, 11 and 12 were shifted down by 4 rows while results 3 and 10
were shifted up by 4 rows. (For the 64 × 64 case, frequency shifts of 8 rows were carried out.)
It has to be noted that we are not completely certain about the size of the frequency shifts. In
MR imaging, frequencies correspond to locations, which means that a wrong shift can seriously
impact the resulting image.

The built-in MATLAB function iradon uses a filtered backprojection algorithm to construct
a 2D image based on 1D projections along different angles. When this function is applied to the
results in Figure 9.6, the final image as shown in Figure 9.9b is obtained. Clearly, this is a very
poor solution. The scale of our solution is of the order 10−14, while the scale of the model image
is of the order 106. This difference can be explained by the fact that we are ignoring constants
in our model.

Another way of reconstructing the solution is by simply defining matrices Vi whose elements
specify how much each pixel contributes to the values in the ith 1D projection. This is straight-
forward when the gradient is pointing in the x or y direction, so for i = 1, 5, 9, 13. In these
cases, the matrix consists solely of 1s and 0s. For the other measurements, deciding how much
each pixel contributes is not as simple, because the projections occur along lines that traverse
the 2D space in a way that is neither horizontal nor vertical, making it difficult to determine
how much each pixel contributes exactly. However, instead of assuming that the magnetic field
rotates, we can assume that the gradient points in the x or y direction and the phantom object
is rotated. Then, the matrix Vi can be obtained by multiplying the matrix corresponding to
that specific gradient and the geometric deformation matrix corresponding to the rotation of
the object, as described in chapter 7. For instance, we can assume that the 1D projection of the
second measurement depends on the model solution x in the following way: p2 = V1G2x, where
G2 is the matrix that rotates the pixel grid over 2π

16 . Then all matrices Vi and all projections pi
can be vertically concatenated to yield a linear system of equations:

p = V x. (9.2)
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(a) Model solution.
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(b) Solution obtained by filtered backprojection.
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(c) Least-squares solution to Equation (9.2).
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(d) Total variation solution to Equation (9.2),
λ = 4.
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(e) Deblurred version of Figure 9.7d. Total
variation regularization was used, λ = 0.7.

Figure 9.7: A comparison of the model image and four images obtained using different
methods.

When the CGLS method is used to obtain the least-squares solution of this system without
any kind of regularization, the image in Figure 9.7c is obtained. This image looks somewhat
better than the one obtained using filtered backprojection (Figure 9.9b). The amount of back-
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ground noise is reduced, and three out of the four circles of the phantom are visible to some
extent. However, the image quality is still quite poor. When total variation minimization with
λ = 4 is used, the image in Figure 9.7d is obtained. Now, the background noise is mostly gone
and the three circles are still visible, but the image is very blurry. When the blurring matrix was
included in the reconstruction problem as before, we obtained Figure 9.7e. We used the same
PSF as before (s1 = s2 = 2, ρ = 0). Again, total variation regularization was used, with λ = 0.7.
Here, three water bottles are clearly distinguishable and with a little imagination, the fourth
one (on the right) is visible as well. Figure 9.8 shows the final image and the model solution
side by side. Clearly, the quality of the final image leaves something to be desired, but in the
obtained solution, three water bottles are clearly visible, the fourth is visible to some extent,
the shape of the water bottles is approximately correct and there is not that much background
noise. Compared to the images in Figure 9.7, the quality is better, because we see three bottles
instead of two, the shape of the bottles is more consistent with the model solution and fewer
artifacts are visible in the background.
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(a) Model solution.
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(b) Obtained solution.

Figure 9.8: Comparison of the model solution and the obtained solution.

The same methods were applied to obtain a 64× 64 image. The results are shown in Figure
9.9. The solutions in Figures 9.9b and 9.9c are very poor. In order to obtain a solution where
most of the background artifacts are filtered out, a high regularization parameter is needed. Total
variation regularization with λ = 20 was used to obtain Figure 9.9d, which is extremely blurry.
An attempt at deblurring it was made using the same PSF as before (s1 = s2 = 3.5, ρ = 0).
The result is shown in Figure 9.9e. These images show us that we simply do not have enough
information to obtain an image of 64×64 pixels of reasonable quality with only 16 1D projections,
which makes sense considering that we are dealing with a severely underdetermined system.
Even after deblurring, the image looks very blurry. We can see four different shapes in the
image where the bottles are supposed to be, but the shapes are not what we expect them to be.
Additionally, some shapes appear in the background that are not supposed to be there.
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(a) Model solution.
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(b) Solution obtained by filtered backprojection.
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(c) Least-squares solution to Equation (9.2).
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(d) Total variation solution to Equation (9.2),
with λ = 20.
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(e) Deblurred version of Figure 9.9d. Total
variation regularization was used, λ = 2.

Figure 9.9: A comparison of the model image and four images obtained using different
methods for the 64× 64 case.
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9.3 Super-resolution

Finally, super-resolution reconstruction was applied to this dataset. Because the images based
on the 1D projections proved to be better than the images that were reconstructed directly, we
used the former method to obtain four LR images of 16× 16 pixels. We used measurements 1,
5, 9 and 13 to reconstruct the first image, 2, 6, 10 and 14 for the second one, 3, 7, 11 and 15
for the third one and 4, 8, 12 and 16 for the last image. The resulting LR images are shown in
Figure 9.10. The second, third and fourth LR images can be seen as rotated versions of the first
one, the rotations being 22.5◦, 45◦ and 67.5◦. Due to the very low number of 1D projections
used to produce each LR image, they are of very poor quality.
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Figure 9.10: Four LR images.

The resulting HR image is shown in Figure 9.11a. It is extremely blurry. When the blurring
matrix was included in the model, as in Equation (4.2), Figure 9.11b is obtained. The PSF was
the same as before (ρ = 0, s1 = s2 = 2). The two large bottles show up clearly in the deblurred
image, and the third bottle is visible as well. However, it does not look as good as the HR
reconstruction in Figure 9.11b; it is blurrier and the background contains a higher number of
artifacts.
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(a) Super-resolution image.
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(b) Deblurred version of Figure 9.11a. Total
variation regularized was used, λ = 0.005.

Figure 9.11: Super-resolution results: before and after deblurring.

9.4 Analysis of the results
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(a) Model solution.
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(b) Direct reconstruction.
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(c) Reconstruction from 1D projections.
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(d) Super-resolution reconstruction.

Figure 9.12: Final images obtained using three different methods.
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Three different methods were used to obtain an image from the 16 measured signals: direct re-
construction, reconstruction based on the 16 1D projections and super-resolution reconstruction.
The three different results are shown in Figure 9.12.

Reconstruction using 1D projections yields the best final image: three bottles are clearly
visible and the background looks calm. Direct reconstruction yields an image where only two
bottles are visible but the background is calm, while super-reconstruction yields an image with
three visible bottles but a background containing a high number of artifacts. The SR image
looks so blurry because only four 1D projections were used for each LR image, which caused
smearing in the horizontal and vertical direction, as can be seen in Figure 9.10. This is reflected
in the smearing in all directions in the HR image. It is not immediately clear why the direct
reconstruction method and the method based on 1D projections yield such different results.

The main challenge in this experiment is the fact that we have very little information. This is
due to the gradient varying in only one direction combined with the limited number of angles and
the fact that the signal dies out very rapidly. This leads to a severely underdetermined system
when we try to obtain images directly from the measured signals, making it very difficult to
determine the contribution of each pixel to the induced voltage. The matrix that is used to
calculate the 1D projections is not underdetermined, leading to reliable estimations among lines
in the phantom image. Also, because we are basing our final image on the sum of pixel values,
noise will not have as strong an influence as in the direct reconstruction case. However, because
we only have 16 different 1D projections and we want to obtain images of size 32×32 or 64×64,
we are dealing with another underdetermined system. Super-resolution reconstruction (based
on 1D projections) does not yield a better result than a high resolution reconstruction. The LR
images that were used to create the HR image were very smeared due to the fact that only four
measured signals were available for each image.

In all cases, using total variation regularization leads to somewhat better, if very blurry,
images. Applying a deblurring operator increases the quality of the images slightly.



Chapter 10

Conclusions and further research

In this research, the goal was to investigate whether super-resolution reconstruction can be used
to improve the quality of the images produced using low-field MRI to such an extent that it
can be used to detect hydrocephalus. Because we do not yet have access to a prototype that
can be used in clinical trials for hydrocephalus patients, it is impossible to answer this question.
Instead, phantom images were used, in simulations and measurements.

The magnetic field produced by the LUMC Halbach array has been simulated in [9]. This
magnetic field was used to simulate the signals generated by the MATLAB Shepp-Logan phan-
tom, which had been altered to accommodate for MRI physics. The noise level was based on
realistic values of the system parameters. For high signal-to-noise ratios, super-resolution re-
construction is not a viable alternative for direct high resolution reconstruction. However, our
simulations show that in a very noisy setting (signal-to-noise ratios lower than 1.5-2), which
is what we expect in the low-field MRI prototypes, super-resolution reconstruction can in fact
yield better results than a direct high resolution reconstruction, due to the higher signal-to-noise
ratio per pixel.

In order to validate the measurement model, a phantom of four bottles of water was imaged
in a 7 T MRI scanner. A linear gradient was applied in one direction in the xy plane. This
was done 16 times, and the direction of the gradient was rotated by 2π

16 each time. We found
out that during some measurements had been shifted, but it was not clear by how much. We
tried to correct for this as well as we could, but some error might have been introduced in this
process. Because the gradient only varied in one direction, only 16 angles were considered and
the signal dies out rapidly for each measurement, the amount of useful information was low,
leading to an underdetermined system. A direct reconstruction was possible if we changed the
phase of the obtained signal to 0 at the beginning of the measurement. We were able to obtain
an image in which the 2 largest water bottles were visible. Because of the type of gradient that
was applied, spatial encoding was only possible in one direction per measurement, making it
very easy to obtain 1D projections of the magnetization for 16 different angles. This led us to
reconstruct the image based on these 16 1D projections, similar to the way images are formed
in CT scans. In this scenario, the phase of the signals did not have to be altered. The resulting
image was better than the one obtained using a direct reconstruction: three out of the four
water bottles were visible. Super resolution reconstruction did not prove to be a good approach
here. The four low resolution images were generated using only four measurements each, which
introduced a lot of smearing. This was reflected in the resulting high resolution image. For all
three methods, the resulting image was quite blurry. The blurring operator was modeled using
a spatially invariant Gaussian PSF. Deblurring improved the visibility of the individual water
bottles.

The minimization problems encountered in this research were solved using CGLS or CGNE.

83
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When R = I is chosen as the regularization matrix and the regularization parameter is suffi-
ciently large, CGNE and CGLS behave similarly. A small regularization parameter causes the
first CGNE iterates to blow up, meaning that the iterates start looking acceptable long after the
CGLS iterates do. When the regularization matrix is set to R = F ∗F , where F is a first-order
difference that calculates the jumps between neighboring pixels, CGLS converges much faster
than CGLS. Additionally, a smaller regularization increases the number of iterations needed for
convergence in CGNE more severely than in CGLS. In CGLS, calculations are performed using
matrices C−1 and R, while CGNE uses C and R−1. In this research, C is an identity matrix
and R is very sparse. This observation, combined with our other findings, make CGLS the
obvious choice. However, in cases where C is (nearly) singular or where calculations with C−1

are computationally more expensive than with R−1, CGNE is a promising method.

Three different types of regularization were used: Tikhonov, total variation and edge-
preserving. In all three cases, differences between neighboring pixels were penalized. Tikhonov
regularization adds a penalty term to the minimization problem that grows quadratically with
the difference between pixels, while the penalty is linear for total variation regularization. Edge-
preserving regularization can be seen as a combination of the two: for small differences, the
penalty is quadratic, while for differences larger than a certain threshold, it becomes linear.
Tikhonov regularization yields the minimization problem that is the easiest and fastest to solve.
Unfortunately, the quality of the images obtained using Tikhonov regularization was poorer
than that of the images resulting from total variation and edge-preserving. Our expectation was
that edge-preserving would yield better results than total variation regularization, because the
former combines the (relatively) large penalty for small jumps with a (relatively) small penalty
for large jumps. This is desirable in MRI images, because neighboring pictures are likely to
represent the same tissue and hence to have the same value, while we still want jumps between
different tissues to be possible. However, total variation outperformed edge-preserving regular-
ization. This is a very beneficial result, because it requires more work and time to solve the
minimization problem resulting from edge-preserving than total variation regularization.

10.1 Recommendations for future research

The team at Pennsylvania State University will be able to generate images using their prototype
soon. This will be a new interesting phase in the project, as it will be the first time we will
have access to signals measured by a low-field MRI scanner. We will be able to test whether
super-resolution presents a good alternative to direct high resolution reconstruction for their
design. In a later stage, the same will be done for the Leiden prototype.

In Chapter 9, images were reconstructed based on measurements done in an inhomogeneous
magnetic field. However, due to the type of gradient that was used, spatial encoding was
possible in only one direction, leading to a very limited amount of information per measurement.
Combined with the low number of measurements, this made it very difficult to obtain images
of good quality. In order to move past this, there are two options: improve the number of
measurements by using a higher number of angles or change the gradient design in such a way
that spatial encoding is possible in two directions.

For the most part of this research, blurring was not taken into account. When we used
simulated data, we did not have to estimate the properties of the blurring operator. In the
case of the measured data, we assumed a spatially invariant Gaussian point spread function and
estimated its parameter by simply assessing which value yielded the image of the best quality.
In future research, the parameter estimation could be done in a more sophisticated manner.
Additionally, moving forward in this project of developing a low-field MRI scanner, we expect
to be dealing with spatially variant point spread functions. Once a functioning prototype is
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available, this will present a new challenge. The first attempt at obtaining the blurring matrix
would be to generate an image based on a phantom consisting of a number of point sources,
estimate the point spread function for each of the sources and use interpolation to obtain a point
spread function for each pixel.

In [25], super-resolution reconstruction is carried out using a dictionary of high resolution
images. The solution is assumed to be a sparse combination of vectors based on this dictionary.
It would be very interesting to implement this in our setting. The dictionary would consist of a
high number of images of healthy and hydrocephalic brains. Another option would be to use a
wavelet basis for the image.
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Appendix A

CGLS algorithm for ADMM

Algorithm 6 CGLS for ADMM

Require: A ∈ CM×N , C ∈ CM×M , R ∈ CN×N , F ∈ CP×N ,x0 ∈ CN ,y ∈ CM ,u ∈ CP ,v ∈
CP , a ∈ R ≥ 0;

Ensure: Approximate solution xk such that ‖A∗rk − aRxk + aF ∗(v − u)‖ 6 TOL.
1: r0 = C−1(y −Ax0); s0 = A∗r0 − aRx0 + aF ∗(v − u); p0 = s0; q0 = Ap0; γ0 = s∗0s0; k = 0;
2: while

√
γk > TOL and k < kmax do

3: ξk = q∗kC
−1qk + ap∗kRpk

4: αk = γk
ξk

5: xk+1 = xk + αkpk; Rxk+1 = Rxk + αkRpk
6: rk+1 = y −Axk+1

7: sk+1 = A∗rk+1 − λRxk+1 + aF ∗(v − u)
8: γk+1 = s∗k+1sk+1

9: βk =
γk+1

γk
10: pk+1 = sk+1 + βkpk
11: qk+1 = Apk+1

12: k = k + 1
13: end while
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Appendix B

CGLS vs CGNE: additional results

B.1 Underdetermined system

B.1.1 R = F ∗F
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Figure B.1: CGLS iterates for λ = 5 · 10−14 in the case of an underdetermined system with
R = F ∗F .
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Figure B.2: CGNE iterates for λ = 5 · 10−14 in the case of an underdetermined system with
R = F ∗F .
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Figure B.3: CGLS iterates for λ = 1 · 10−15 in the case of an underdetermined system with
R = F ∗F .
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Figure B.4: CGNE iterates for λ = 1 · 10−15 in the case of an underdetermined system with
R = F ∗F .
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Figure B.5: Plots of the errors of the CGLS and CGNE iterates for two different values of the
regularization parameter. Here, R = F ∗F .
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B.1.2 R = I
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Figure B.6: CGLS iterates for λ = 4 · 10−15 in the case of an underdetermined system with
R = I.
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Figure B.7: CGNE iterates for λ = 4 · 10−15 in the case of an underdetermined system with
R = I.
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Figure B.8: CGLS iterates for λ = 1 · 10−16 in the case of an underdetermined system with
R = I.
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Figure B.9: CGNE iterates for λ = 1 · 10−16 in the case of an underdetermined system with
R = I.
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(a) λ = 4 · 10−15.
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(b) λ = 1 · 10−16.

Figure B.10: Plots of the errors of the CGLS and CGNE iterates for two different values of the
regularization parameter. Here, R = I.

B.2 Correlated noise

When using C−1 is more cumbersome than R−1, CGNE seems like the better option. In order to
test this, correlated noise was generated. The noise was taken to be from a circularly symmetric
complex normal distribution [26]. After every pulse, the signal consists of 20 measurements
(because we are using the same overdetermined system as before). We defined the covariance
for these 20 noise realizations matrix as follows: Ck,l = 0.9|k−l|. Noise in signal measurements
following two different pulses was considered to be independent. The results are shown in Figure
B.11. λ was set to 3 · 10−13.
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Figure B.11: Plot of the error versus the iteration number for R = F ∗F and C 6= I.
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Figure B.12: CGLS iterates for C 6= I and R = F ∗F .
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Figure B.13: CGNE iterates for C 6= I and R = F ∗F .

We see that the results look very much like what we have seen before. The CGLS and
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CGNE iterates are shown in Figure B.12. Again, CGLS needs only a few iterations to converge,
while CGNE needs more than 40. However, one CGNE iteration takes less time than one CGLS
iteration, due to C being less sparse than R. A Cholesky decomposition was used to perform
calculations with C−1, speeding up the calculations by a factor of ∼ 7. The average time per
iteration for CGNE was shorter than for CGLS: 0.021 versus 0.025.
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