Image Reconstruction in Low-Field MRI A Super-Resolution Approach **Delft University of Technology**

Merel de Leeuw den Bouter June 14, 2017

MRI scanners

r,

ŤUDelft			
		(∂) (≧) (≧) (≧) (≅)	• ৩৫৫
rel de Leeuw den Bouter (TU Delft)	Image Reconstruction in Low-Field MRI	June 14, 2017	

MRI scanners

- Big
- Very expensive
- Problematic in developing countries

Hydrocephalus in the developing world

Hydrocephalus

- 400.000 newborns per year
- 79% in developing countries
- Limited or no access to required healthcare

Hydrocephalus in the developing world

Hydrocephalus

- 400.000 newborns per year
- 79% in developing countries
- Limited or no access to required healthcare
- Goal: develop low-cost, portable MRI scanner

< • > < </p>

Partners

- LUMC
- Pennsylvania State University
- Mbarara University of Science and Technology
- CURE Children's Hospital of Uganda

Outline

1 MRI

- 2 Prototypes
- 3 Super-resolution
- **4** Minimization problem
- **5** Conjugate gradient method
- 6 Simulations

7 Dataset

How does MRI work?

- Human body: $\sim 62\%$ hydrogen atoms
- H-density \Rightarrow intensity

TUDelft

Merel de Leeuw den Bouter (TU Delft)

Image Reconstruction in Low-Field MRI

June 14, 2017 6 / 3

How does MRI work?

- Spin
- Random directions
- $B_0 \Rightarrow$ net magnetic moment
- Radiofrequency pulse
- Induces signal

≣⇒

Conventional vs low-field MRI

Conventional MRI

- Superconducting magnets
- Strong, homogeneous magnetic field
- High signal-to-noise ratio
- Fourier Transform

$$S(t) = \iint_{\text{object}} I(x, y) e^{-i(\gamma G_x t x + \gamma G_y T_{pe} y)} dx dy$$

Conventional vs low-field MRI

Conventional MRI

- Superconducting magnets
- Strong, homogeneous magnetic field
- High signal-to-noise ratio
- Fourier Transform

Low-field MRI

- Permanent magnets
- Weaker magnetic field with inhomogeneities
- Low signal-to-noise ratio

$$S(t) = \iint_{\text{object}} I(x, y) \omega(x, y) e^{-t/T_2^*(x, y)} e^{-i\gamma \Delta B(x, y)} dx dy$$

fuDelft

$$S(t) = \iint_{\text{object}} I(x, y) \omega(x, y) e^{-t/T_2^*(x, y)} e^{-i\gamma \Delta B(x, y)} dx dy$$

$$S(t) = \iint_{\text{object}} I(x, y) \omega(x, y) e^{-t/T_2^*(x, y)} e^{-i\gamma \Delta B(x, y)} dx dy$$

discretize	
	۲

$$S(t) = \iint_{\text{object}} I(x, y) \omega(x, y) e^{-t/T_2^*(x, y)} e^{-i\gamma \Delta B(x, y)} dx dy$$

$$s = W x$$

$$S(t) = \iint_{\text{object}} I(x, y) \omega(x, y) e^{-t/T_2^*(x, y)} e^{-i\gamma \Delta B(x, y)} dx dy$$

$$\xrightarrow{\text{discretize}} \mathbf{s} = W\mathbf{x} + \mathbf{e}$$

Prototype

LUMC

- Configuration of permanent magnets
- Inhomogeneities \Rightarrow spatial encoding

PSU

- Same components
- Inverse Fourier Transform

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

″uDelft

PSU prototype

TUDelft

Image Reconstruction in Low-Field MR

lune 14 2017 12

≣⇒

2/30

Super-resolution

- Several low-resolution images
 - Shifted
 - Rotated
- ⇒ Obtain high-resolution image

Figure: Using LR images to obtain an HR image. Source: Van Reeth et al. (2012).

Ť UDelft			
	 < □ > < //> < //> 	▲콜▶ ★콜▶ _ 콜.	୬୯୯
Merel de Leeuw den Bouter (TU Delft)	Image Reconstruction in Low-Field MRI	June 14, 2017	13 / 36

- x: HR image
- $\{\mathbf{y}_k\}_{k=1}^N$: set of LR image observations

n Bouter (TU Delft) Image Reconstruction in Low-Field MRI

June 14, 2017 14 /

- x: HR image
- $\{\mathbf{y}_k\}_{k=1}^N$: set of LR image observations

Figure: The general acquisition model. Source: Van Reeth et al. (2012).

• \Rightarrow

Х

TUDelft

Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI

June 14, 2017 15

- x: HR image
- $\{\mathbf{y}_k\}_{k=1}^N$: set of LR image observations

Figure: The general acquisition model. Source: Van Reeth et al. (2012).

• \Rightarrow

 $G_k \mathbf{x}$

- x: HR image
- $\{\mathbf{y}_k\}_{k=1}^N$: set of LR image observations

Figure: The general acquisition model. Source: Van Reeth et al. (2012).

• \Rightarrow

 $G_k \mathbf{x}$

- x: HR image
- $\{\mathbf{y}_k\}_{k=1}^N$: set of LR image observations

Figure: The general acquisition model. Source: Van Reeth et al. (2012).

•
$$\Rightarrow$$
 $B_k G_k \mathbf{x}$

- x: HR image
- $\{\mathbf{y}_k\}_{k=1}^N$: set of LR image observations

Figure: The general acquisition model. Source: Van Reeth et al. (2012).

•
$$\Rightarrow$$
 $D_k B_k G_k \mathbf{x}$

- x: HR image
- $\{\mathbf{y}_k\}_{k=1}^N$: set of LR image observations

Figure: The general acquisition model. Source: Van Reeth et al. (2012).

• \Rightarrow $D_k B_k G_k \mathbf{x} + \mathbf{v}_k$

- x: HR image
- $\{\mathbf{y}_k\}_{k=1}^N$: set of LR image observations

Figure: The general acquisition model. Source: Van Reeth et al. (2012).

•
$$\Rightarrow$$
 $\mathbf{y}_k = D_k B_k G_k \mathbf{x} + \mathbf{v}_k$

•
$$\mathbf{y}_k = D_k B_k G_k \mathbf{x} + \mathbf{v}_k$$

•
$$\mathbf{y}_k = D_k B_k G_k \mathbf{x} + \mathbf{v}_k$$

•
$$\mathbf{y}_k = A_k \mathbf{x} + \mathbf{v}_k$$

•
$$\mathbf{y}_{k} = D_{k}B_{k}G_{k}\mathbf{x} + \mathbf{v}_{k}$$

• $\mathbf{y}_{k} = A_{k}\mathbf{x} + \mathbf{v}_{k}$
• $\mathbf{y} = \begin{pmatrix} \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \vdots \\ \mathbf{y}_{N} \end{pmatrix}, A = \begin{pmatrix} A_{1} \\ A_{2} \\ \vdots \\ A_{N} \end{pmatrix}, \mathbf{v} = \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \vdots \\ \mathbf{v}_{N} \end{pmatrix}$

•
$$\mathbf{y}_{k} = D_{k}B_{k}G_{k}\mathbf{x} + \mathbf{v}_{k}$$

• $\mathbf{y}_{k} = A_{k}\mathbf{x} + \mathbf{v}_{k}$
• $\mathbf{y} = \begin{pmatrix} \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \vdots \\ \mathbf{y}_{N} \end{pmatrix}, A = \begin{pmatrix} A_{1} \\ A_{2} \\ \vdots \\ A_{N} \end{pmatrix}, \mathbf{v} = \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \vdots \\ \mathbf{v}_{N} \end{pmatrix}$
• $\mathbf{y} = A\mathbf{x} + \mathbf{v}$

TUDelft

ivierel de Leeuw den Bouter (TO Deitt) Image Reconstruction in Low-Field IVIRI	Mer	el de Leeuw den Bouter	(TU Delft)	Image Reconstruction in Low-Field MRI	
--	-----	------------------------	------------	---------------------------------------	--

June 14, 2017 16 /

Research question

Can super-resolution reconstruction yield images of better quality than direct high resolution reconstruction?

• v unknown

- $\mathbf{y} = A\mathbf{x} + \mathbf{v}$
- v unknown
- Ill-posed problem

≣⇒

- $\mathbf{y} = A\mathbf{x} + \mathbf{v}$
- v unknown
- Ill-posed problem
- $\min_{\mathbf{x}} ||\mathbf{y} A\mathbf{x}||^2$

≣⇒

•
$$\mathbf{y} = A\mathbf{x} + \mathbf{v}$$

- v unknown
- Ill-posed problem
- min $||\mathbf{y} A\mathbf{x}||^2 + \lambda ||F\mathbf{x}||^2$

- **v** unknown
- Ill-posed problem
- $\min_{\mathbf{x}} \frac{1}{2} ||\mathbf{y} A\mathbf{x}||^2 + \frac{1}{2}\lambda ||F\mathbf{x}||^2$

≣⇒

- $\mathbf{y} = A\mathbf{x} + \mathbf{v}$
- v unknown
- Ill-posed problem
- $\min_{\mathbf{x}} \frac{1}{2} ||\mathbf{y} A\mathbf{x}||^2 + \frac{1}{2}\lambda ||F\mathbf{x}||^2$
- λ : regularization parameter
- F: prior knowledge about **x**

< 🗆 🕨 < 🗇

Different kinds of regularization

• Tikhonov:

$$\min_{x} \frac{1}{2} ||\mathbf{y} - A\mathbf{x}||_{2}^{2} + \frac{1}{2}\lambda ||F\mathbf{x}||_{2}^{2}$$

• F first-order difference matrix

Different kinds of regularization

• Tikhonov:

$$\min_{x} \frac{1}{2} ||\mathbf{y} - A\mathbf{x}||_{2}^{2} + \frac{1}{2}\lambda ||F\mathbf{x}||_{2}^{2}$$

Total variation:

$$\min_{\mathbf{x}} \frac{1}{2} ||\mathbf{y} - A\mathbf{x}||_2^2 + \frac{1}{2}\lambda ||F\mathbf{x}||_1$$

Different kinds of regularization

• Tikhonov:

$$\min_{x} \frac{1}{2} ||\mathbf{y} - A\mathbf{x}||_{2}^{2} + \frac{1}{2}\lambda ||F\mathbf{x}||_{2}^{2}$$

Total variation:

$$\min_{\mathbf{x}} \frac{1}{2} ||\mathbf{y} - A\mathbf{x}||_2^2 + \frac{1}{2}\lambda ||F\mathbf{x}||_1$$

- Edge-preserving
- F first-order difference matrix

General problem statement

• Minimization problem of the form

$$\min_{\mathbf{x}} \frac{1}{2} ||\mathbf{y} - A\mathbf{x}||^2 + \frac{1}{2}\lambda ||\mathbf{x}||_R^2$$

Convex problem

General problem statement

• Minimization problem of the form

$$\min_{\mathbf{x}} \frac{1}{2} ||\mathbf{y} - A\mathbf{x}||^2 + \frac{1}{2}\lambda ||\mathbf{x}||_R^2$$

- Convex problem
- Sufficient condition for optimality:

$$(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A} + \lambda \boldsymbol{R})\mathbf{x} = \boldsymbol{A}^{\mathsf{T}}\mathbf{y}$$

General problem statement

• Minimization problem of the form

$$\min_{\mathbf{x}} \frac{1}{2} ||\mathbf{y} - A\mathbf{x}||^2 + \frac{1}{2}\lambda ||\mathbf{x}||_R^2$$

- Convex problem
- Sufficient condition for optimality:

$$(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A} + \lambda \boldsymbol{R})\mathbf{x} = \boldsymbol{A}^{\mathsf{T}}\mathbf{y}$$

• Conjugate gradient method

Conjugate gradient method

- Iterative method
- System of equations $K\mathbf{u} = \mathbf{f}$

Conjugate gradient method

- Iterative method
- System of equations $K\mathbf{u} = \mathbf{f}$
- Search directions \mathbf{p}_k conjugate wrt K ($\mathbf{p}_k K \mathbf{p}_l = 0, k \neq l$)

•
$$\mathbf{u}_{k+1} = \mathbf{u}_k + \alpha_k \mathbf{p}_k$$

•
$$||\mathbf{u} - \mathbf{u}_k||_{\mathcal{K}} = \min_{\substack{\mathbf{v} \in \mathbf{u}_0 + \\ \operatorname{span}\{\mathbf{p}_0, \dots, \mathbf{p}_{k-1}\}}} ||\mathbf{u} - \mathbf{v}||_{\mathcal{K}}$$

Phantom (128 x 128 pixels)

TUDelft

Merel de Leeuw den Bouter (TU Delft)

Image Reconstruction in Low-Field MRI

lune 14 2017 22

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Shifted

tuDelft

Merel de Leeuw den Bouter (TU Delft)

Image Reconstruction in Low-Field MRI

lune 14 2017 22

Blurred

TUDelft

Merel de Leeuw den Bouter (TU Delft)

Image Reconstruction in Low-Field MRI

lune 14 2017 22

Down-sampled

Noise added

TUDelft

Merel de Leeuw den Bouter (TU Delft)

Image Reconstruction in Low-Field MRI

lune 14 2017 22

4 low resolution images $(32 \times 32 \text{ pixels})$

tuDelft

June 14, 2017 2

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 / 36

TUDelft

June 14, 2017 24

< 4 ≯ >

- $\mathbf{s} = W\mathbf{x} + \mathbf{e}$
- Angles $0^\circ, 10^\circ, ..., 350^\circ$
- Signal-to-noise ratios starting from 0.5

Model solution

Direct HR solution (SNR = 10)

TUDelft

Me

	(日) (個) (書) (書) 를	୬ବ୍ଦ
el de Leeuw den Bouter (TU Delft)	Image Reconstruction in Low-Field MRI June 14, 2017	26 / 36

Model solution

Direct HR solution (SNR = 0.5)

	↓ □ ▶	<∄≻ <≧≻ <≧≻ ≥	୬୯୯
de Leeuw den Bouter (TU Delft)	Image Reconstruction in Low-Field MRI	June 14, 2017	27 / 36

LR images (8 \times 8 pixels)

TUDelft

Merel de Leeuw den Bouter (TU Delft)

Image Reconstruction in Low-Field MRI

June 14, 2017 28

ĸ

HR solution

Ť UDelft			
	 < □ > < //> 	▲ 필 ▶ ★ 필 ▶ 필 .	୬୯୯
Merel de Leeuw den Bouter (TU Delft)	Image Reconstruction in Low-Field MRI	June 14, 2017	29 / 36

SR solution

HR solution

	∢ □ ≻	4 🗗 🕨	≥	∢ ≣ ⊁	臣	୬୯୯	
Merel de Leeuw den Bouter (TU Delft)	Image Reconstruction in Low-Field MRI		Ju	ne 14, 201	17	29 / 36	

- Goal
 - Application to real data
 - Validation of the model
- 7 T MRI scanner
- Gradient in one direction
- 16 angles

< 🗆 > < 🗇 >

″uDelft

Ť∪Delft			
	 + -> 	· 《콜》《콜》 · 콜	୬ଏ୯
Merel de Leeuw den Bouter (TU Delft)	Image Reconstruction in Low-Field MRI	June 14, 2017	31 / 36

Model solution

TUDelft

erel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI			
	erel de Leeuw den Bouter	(TU Delft)	Image Reconstruction in Low-Field MRI

une 14. 2017 31 /

< 🗆 > < 🗗 >

Model solution

First 1D projection

el de Leeuw den Bouter (TU Delft)	Image Reconstruction in Low-Field MRI	June 14, 2

16 1D projections

TUDelft

vierei de Leeuw den Douler (TO Deill)	Merel d	e Leeuw d	len Bouter (TU Delft)
---------------------------------------	---------	-----------	--------------	-----------

June 14, 2017 32

2 / 36

Model solution

	< □ ►	4 🗗 🕨	₹	₹	· 臣 ·	৩১৫	
erel de Leeuw den Bouter (TU Delft)	Image Reconstruction in Low-Field MRI		Ju	ine 14, 201	.7	33 / 36	

Model solution

Result

	4 □ > 4	(🗇 🕨	∢ ≣ ►	< ≣ > _	· 王	୬୯୯
Merel de Leeuw den Bouter (TU Delft)	Image Reconstruction in Low-Field MRI		Jur	ie 14, 201	7	33 / 36

Model solution

″uDelft

	▲□ > < @ >	▲ 몸 ▶ → 몸 ▶ - 몸 •	୬୯୯
Merel de Leeuw den Bouter (TU Delft)	Image Reconstruction in Low-Field MRI	June 14, 2017	33 / 36

× 10⁻¹⁴ 2.5 ×10⁶ 1.5 0.5

Model solution

Result

rúDelft

		▲문▶ ▲문▶ _ 문	৩১৫
Merel de Leeuw den Bouter (TU Delft)	Image Reconstruction in Low-Field MRI	June 14, 2017	33 / 36

Conclusions and further research

Conclusions

- Super-resolution can yield better results
- Total variation regularization
- Validation of the measurement model

Conclusions and further research

Conclusions

- Super-resolution can yield better results
- Total variation regularization
- Validation of the measurement model
- Further research
 - Apply super-resolution to PSU data
 - New LUMC prototype
 - Measurements at LUMC with more complicated field
 - Dictionary learning

Image Reconstruction in Low-Field MRI A Super-Resolution Approach Delft University of Technology

Merel de Leeuw den Bouter June 14, 2017

LUMC dataset: super-resolution

Merel de Leeuw den Bouter (TU Delft)

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

June 14, 2017 36