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1
Introduction

Magnetic resonance imaging (MRI) is a powerful technique that reveals the internal structure and function
of the human body in a non-invasive way. In clinical MRI scanners, superconducting magnets are used to
generate very high magnetic fields. The size and strict infrastructure demands of these magnets make it
impossible to use them in many environments. Additionally, these MRI scanners are costly to purchase, site
and maintain [1].

Teams at the Leiden University Medical Center (LUMC) and at Pennsylvania State University (PSU) are
working on developing low-cost, portable MRI scanners with a magnetic field in the milliTesla range with the
goal of diagnosing children in developing countries with hydrocephalus (’water on the brain’), a debilitating
disease that is usually left untreated in the third world. The PSU prototype is shown in Figure 1.1.

Figure 1.1: The PSU low-field MRI scanner prototype.

Some images produced using this prototype are shown in Figure 1.2. The main features of the imaged
objects can be discerned, but in order to use this device in a clinical setting, more detailed images are re-
quired. The focus of this research is to improve the quality of images generated by low-field MRI scanners
using super-resolution reconstruction (SRR). SRR enables us to use several low-resolution images in order to
produce one image with a higher resolution. The first super-resolution algorithms were introduced by Ger-
chberg [2] in 1974 and De Santis and Gori [3] in 1975. The application of super-resolution reconstruction was
first mentioned in [4] in 1997. Since then, a large number of articles adapting the super-resolution concept
from video-processing to MRI data have been reported and encouraging results have been demonstrated [5].
The approach taken in this research leads to a system of equations of the form Ax = y , where x is the un-
known quantity. Due to the ill-posedness of this problem, regularization is needed. Another issue is that the
higher the desired resolution of the target image, the more pixels, and the larger the matrix. Therefore, for
high-resolution problems, matrix inversion is computationally infeasible. Therefore, iterative methods have
to be employed to get to the solution. The methods of choice are conjugate gradient methods.
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2 1. Introduction

(a) Water bottles. (b) MR image of the water bottles.

(c) Bell pepper. (d) MR image of the bell pepper.

Figure 1.2: The prototype was used to create MR images of an array of water bottles and a bell pepper.

The structure of this report is as follows. Chapter 2 describes conventional MRI: the hardware compo-
nents, how signals are generated and how they are used to generate an image. In chapter 3, the MRI scanners
at LUMC and PSU are discussed and a more general model describing the signal is introduced. Chapter 4
details the super-resolution reconstruction technique that will be used in this research. Chapter 5 contains
a description of the conjugate gradient methods that will be used to solve the least-squares problem result-
ing from the super-resolution reconstruction model. In chapter 6, some preliminary results are shown. In
chapter 7, the research goals of this project are formulated.



2
Conventional MRI

This chapter is based on [6]. All images were taken from [6] as well.

2.1. Hardware components

There are three main components in an MR scanner: a main magnet, a magnetic field gradient system and
an RF system.

2.1.1. The main magnet

The purpose of the main magnet is to generate a strong and uniform static magnetic field, which is referred
to as the B0-field. In clinical MR scanners, superconducting magnets are used to produce magnetic field
strengths between 1.5 and 3 T. However, this research focuses on low-field MRI, in which magnetic fields of
less than 0.15 T are generated by a resistive magnet. Resistive magnets can be used at room-temperature, as
opposed to superconducting magnets that have to be cooled with liquid helium. This makes low-field MRI
less costly. However, one of the main issues with low-field MRI is the lower signal-to-noise ratio.

2.1.2. The magnetic field gradient system

Three orthogonal gradient coils make up the magnetic field gradient system. A schematic representation of
two orthogonal gradient coils is shown in Figure 2.1. Gradient coils are used to generate time-varying mag-
netic fields which vary linearly in each of the spatial dimensions. One of the main specifications of the gradi-
ent system is the gradient strength. The higher the gradient strength, the better. Another important feature
is the rate at which the maximum gradient strength can be obtained, known as the rise time. Better gradient
systems tend to have shorter rise times. In most clinical imaging systems, the maximum gradient strength
that can be attained is 10 mT/m and rise times of approximately 1 ms from 0 to 10 mT/m are considered
good.

2.1.3. The RF system

The radio frequency (RF) system consists of two components: a transmitter coil and a receiver coil. The
transmitter coil generates a rotating magnetic field, called the B1-field, which excites the electron spins in the
object that is to be imaged. The precessing magnetization is converted into an electrical signal by the receiver
coil. Both coils are called RF coils because they resonate at radio frequency. The RF system is required to
generate a uniform B1-field and to have a high detection sensitivity.

3



4 2. Conventional MRI

Figure 2.1: Schematic representation of the y-coil and the z-coil that are used to generate the y- and z-gradient.

2.2. Signal generation and detection

2.2.1. Spin
Any physical object consists of atoms, which in turn consist of nuclei and the electrons orbiting around them.
Nuclei with odd atomic weights, such as the hydrogen atom, have an angular momentum~J called spin. Spin
can be visualized as a physical rotation, similar to the rotation of a top around its own axis. Because nuclei are
electrically charged, each nuclear spin generates its own microscopic magnetic field. This can be represented
by the magnetic moment~µ. ~J and~µ are related to each other in the following way:

~µ= γ~J , (2.1)

where γ is the gyromagnetic ratio, the value of which depends on the nucleus in question. For hydrogen
atoms, γ = 2.675 ·108 rad(sT)−1. In the absence of an external magnetic field, the direction of µ is random,
as can be seen in Figure 2.2a. To generate a net magnetic field from the object to be imaged, the spin vectors
have to be aligned. This can be done by applying a strong external magnetic field. This field is assumed to be
applied in the z-direction:

~B = B0~k, (2.2)

where~k is the unit vector in the z-direction. For a spin- 1
2 system, the spin will align either parallel (spin-up)

or antiparallel (spin-down) to the magnetic field, as shown in Figure 2.2b. The angular frequency of nuclear
precession is described by the Larmor equation

ω0 = γB0. (2.3)

ω0 is known as the Larmor frequency.

2.2.2. Bulk magnetization

According to quantum theory, spin-up states have an energy of E↑ =− 1
2γħB0 while spin-down states have an

energy of E↓ = 1
2γħB0, whereħ= 1.055·10−34 m2kg/s is the reduced Planck constant. So a parallel alignment is

a lower energy state than an antiparallel alignment. Therefore, spins will be more likely to assume the parallel
alignment, yielding an observable macroscopic magnetization ~M , which is pointed in the same direction as
~B0 and whose magnitude is directly proportional to B0.
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(a) When no external magnetic field is present, the nuclear
magnetic moments point in random directions.

(b) In the presence of an external magnetic field,
the nuclear magnetic moments align themselves
parallel or antiparallel to ~B0.

Figure 2.2: Nuclear magnetic moments in the absence and presence of an external magnetic field.

2.2.3. RF excitations
Planck’s law dictates that the energy carried by electromagnetic radiation with frequency ωr f is

Er f =ħωr f . (2.4)

In order to make the spins transition from one energy state to another, Er f must be equal to the energy
difference between the spin states. Therefore, the following must hold:

ħωr f = E↓−E↑ = γħB0 =ħω0, (2.5)

which leads to

ωr f =ω0. (2.6)

Equation (2.6) is the resonance condition.

B1-field The B1 field, also known as RF pulse, is a short-lived magnetic field that oscillates in the radio-
frequency range. The B1-field is much weaker than the B0-field. The B1-field typically has the following form:

~B1(t ) = 2B e
1 (t )cos(ωr f t +φ)~i , (2.7)

where B e
1 (t ) is a the pulse envelope function, ωr f is the excitation carrier frequency and φ is the initial phase

angle. Two popular envelope functions are the rectangular pulse and the sinc pulse. The B1-field is linearly
polarized because the oscillations occur linearly along the x-axis. Equation (2.7) can be rewritten as

~B1(t ) = B e
1 (t )[cos(ωr f t +φ)~i − sin(ωr f t +φ)~j ]+
B e

1 (t )[cos(ωr f t +φ)~i + sin(ωr f t +φ)~j ]. (2.8)

In (2.8),the first bracketed term rotates clockwise, while the second rotates counterclockwise. The spins ro-
tate clockwise, which means that if the B1-field has a frequency near the Larmor frequency, the effect of the
counterclockwise component is negligible. So the effective B1-field is described by

~B1(t ) = B e
1 (t )[cos(ωr f t +φ)~i − sin(ωr f t +φ)~j ] (2.9)

with an x-component

B1,x = B e
1 (t )cos(ωr f t +φ) (2.10)

and a y-component

B1,y =−B e
1 (t )sin(ωr f t +φ). (2.11)

For brevity, B1(t ) can be described using complex notation:

B1(t ) = B1,x + i B1,y = B e
1 (t )e−i (ωr f t+φ). (2.12)

If the initial phase φ is a constant, it has no significant effect. Therefore, it will be assumed to be 0 from now
on.
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The Bloch equation The behavior of the net magnetization ~M is governed by the Bloch equation, which, in
the context of MRI, has the following form:

d ~M

d t
= γ~M ×~B − Mx~i +My~j

T2
− (Mz −M eq

z )~k

T1
, (2.13)

where M eq
z is the thermal equilibrium value for ~M in the presence of ~B0 only. T1 and T2 are time constants

that characterize the relaxation process of a spin system after it has been excited. In order to describe the
excitation effect of an RF pulse, a reference frame that rotates with an angular frequency ω is introduced. In
this case, ω = ω0, the Larmor frequency. The axes are denoted by x ′, y ′ and z ′ and the unit vectors are~i ′, ~j ′
and~k ′. The following transformation relates the rotating frame to the stationary frame:

~i ′ = cos(ωt )~i − sinωt~j
~j ′ = sin(ωt )~i −cosωt~j
~k ′ =~k

(2.14)

It can be shown that in this rotating frame, the Bloch equation is given by

d ~Mr ot

d t
= γ~Mr ot ×~Be f f −

Mx′~i ′+My ′~j ′

T2
− (Mz −M eq

z )~k ′

T1
, (2.15)

where ~Be f f , the effective magnetic field that the ~M experiences, is given by

~Be f f = ~Br ot +
~ω

γ
. (2.16)

2.2.4. Relaxation
From the Bloch equation it can be shown that the bulk magnetization vector ~M precesses about the x ′-axis
with angular velocity

~ω1 =−γ~B1, (2.17)

as shown in Figure 2.3a.

(a) Rotating frame. (b) Stationary frame.

Figure 2.3: Motion of ~M in the presence of a B1-field.

The precession of ~M about the B1-field is called forced precession, as opposed to the precession of ~M
about B0, which is known as free precession. Forced precession causes the bulk magnetization to tip away
from the z ′-axis, yielding a measurable transverse component ~Mx′y ′ . After the RF pulse has been applied, ~M
will return to precessing around the z ′-axis. During this return, two relaxation processes occur: longitudinal
relaxation and transverse relaxation. Longitudinal relaxation is the recovery of Mz , while transverse relaxation
is the destruction of the transverse magnetization Mx y . After the RF pulse, ~Be f f = 0. Therefore, the solution
to the Bloch equation looks as follows:{

Mx′y ′ (t ) = Mx′y ′ (0+)e−t/T2

Mz ′ (t ) = M eq
z

(
1−e−t/T1

)+Mz ′ (0+)e−t/T1
(2.18)
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where Mx′y ′ (0+) and Mz ′ (0+) are the magnetizations in the transverse plane and along the z ′-axis, respec-
tively, immediately after the RF pulse. If all magnetization has been tipped into the transverse plane, Mz ′ (0+) =
0. Figure 2.4 shows plots of Mx ′y ′ and Mz ′ . Mx′y ′ (t ) is characterized by T2, while Mz ′ is characterized by T1.

(a) Mx′y ′ after an RF pulse as a function of time.

(b) M ′
z after an RF pulse as a function of time.

Figure 2.4: Relaxation curves.

Transforming Equations (2.18) back to the laboratory system yields

{
Mx y (t ) = Mx y (0+)e−t/T2 e−iω0t

Mz (t ) = M eq
z

(
1−e−t/T1

)+Mz (0+)e−t/T1
(2.19)

where Mx y (0+) = Mx′y ′ (0+)e−iω0τp , with τp the duration of the RF pulse. The trajectory of ~M can be seen

in Figure 2.5. It should be noted that while ~M approaches the z-axis, its magnitude is not preserved, due to
the relaxation process. This is different from the behavior of ~M as it moves away from the z-axis during the
excitation period.

Figure 2.5: The trajectory of ~M in the laboratory frame during the relaxation period.
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2.2.5. Signal detection
By Faraday’s law of induction, the voltage induced in the receiver coil is described by

V (t ) =− ∂

∂t

∫
object

~Br (r) · ~M(r, t ) dr, (2.20)

where ~Br (r)is referred to as the receive field, since it can be interpreted as the magnetic flux density generated
by the receive coil carrying a unit current. Note that ~Br (r) is a weighting vector. After some manipulations,
Equation (2.20) can be written as

V (t ) =
∫

object
ω(r)|~Br,x y (r)||Mx y (r,0)|e−t/T2(r) cos

[
−ω(r)t +φe (r)−φr (r)+ π

2

]
dr, (2.21)

where φe (r) is the initial phase shift induced by RF excitation and φr (r) is the phase of the reception field.
Because the Larmor frequency is high, the voltage V (t ) is a high-frequency signal, which can cause unneces-
sary problems in later processing stages. Therefore, in practice, V (t ) is moved to a low-frequency band using
a phase-sensitive detection method: V (t ) is multiplied by the reference sinusoidal signal 2cos(ω0t ) and then
filtered using a low-pass-filter, effectively removing the high-frequency component. The result will be called
SR (t ). SR (t ) can be shown to be described by the following expression:

SR (t ) =
∫

object
ω(r)|~Br,x y (r)||Mx y (r,0)|e−t/T2(r) cos

[
−∆ω(r)t +φe (r)−φr (r)+ π

2

]
dr, (2.22)

where ∆ω(r) = ω(r) −ω0 is the spatially dependent resonance frequency in the rotating frame. However,
now it is not clear whether the precession is clockwise or counterclockwise. Therefore, V (t ) is multiplied
by 2sin(ω0t ) and passed through a low-pass-filter again, yielding S I (t ):

S I (t ) =
∫

object
ω(r)|~Br,x y (r)||Mx y (r,0)|e−t/T2(r) sin

[
−∆ω(r)t +φe (r)−φr (r)+ π

2

]
dr. (2.23)

In this way, the rotating magnetization is detected with two orthogonal detectors. This procedure is known
as quadrature detection and is shown schematically in Figure 2.6.

(a) Phase-sensitive detection

(b) Quadrature detection.

Figure 2.6: Schematic representation of quadrature detection.
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The two outputs of the system, SR (t ) and S I (t ) are often put in complex form:

S(t ) = SR (t )+ i S I (t ). (2.24)

Then

S(t ) =
∫

object
ω(r)|~Br,x y (r)||Mx y (r,0)|e−t/T2(r)e−i

(
∆ω(r)t−φe (r)+φr (r)− π

2

)
dr. (2.25)

Using {
|Br,x y (r)|e−iφr (r) = B∗

r,x y (r)

|Mx y (r,0)|e−iφe (r) = Mx y (r,0)
(2.26)

and omitting the scaling constant e iπ/2, Equation (2.25) can be rewritten as

S(t ) =
∫

object
ω(r)~B∗

r,x y (r)Mx y (r,0)e−t/T2(r)e−i∆ω(r)t dr. (2.27)

Now we assume that ∆ω(r) <<ω0 and assuming that the reception field Br,x y is homogeneous. Then, using
∆ω(r) = γ∆B(r) and leaving out the constant terms, Equation (2.27) can be simplified to

S(t ) =
∫

object
Mx y (r,0)e−t/T2(r)e−iγ∆B(r)t dr. (2.28)

2.3. Signal characteristics
2.3.1. Free induction decays
A single RF pulse applied to a nuclear spin system leads to free induction decay (FID) in the spin system.
When the magnetic field the sample is exposed to is perfectly homogeneous, the FID signal is characterized
by a T2 decay. However, when the magnetic field is inhomogeneous, differences in precessional frequency
arise, causing the FID signal to decay at a much faster rate. A group of nuclear spins with the same preces-
sional frequency is called an isochromat. The time constant T ∗

2 is used to characterize the signal decay in the
presence of field inhomogeneity.

Figure 2.7: Refocusing the bulk magnetic moment of 2 isochromats in a spin-echo experiment.
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2.3.2. RF echoes
An echo signal consists of a dephasing period and a refocusing phase. After the RF pulse is applied along the
x ′-direction (called the 90◦ pulse), inhomogeneities in the magnetic field will lead to different isochromats.
The isochromats will progressively lose phase coherence as the free precession continues. In order to re-
gain phase coherence, after a time τ a pulse is applied along the y ′-direction that flips the different magnetic
moments over to the other side of the transverse plane (the 180◦ pulse). This will cause the bulk magnetic mo-
ment of isochromats with higher precessional speed to lag behind the ones with lower precessional speed. A
time τ after the y ′-pulse, the vectors will all have the same phase again. This process is illustrated in Figure 2.7
for two isochromats with precessional frequencies ωs and ω f . The strength of the signal during this pulsing
sequence is shown in Figure 2.8. The decay of the signal is characterized by T ∗

2 , while the decay in maximum
amplitude is characterized by T2.

Figure 2.8: Formation of a spin echo signal.

Instead of just one spin echo, a sequence of spin echoes can be generated by repeatedly applying 180◦
pulses at times τ, 3τ, 5τ,...

2.4. Image contrast
Protons in different materials have different longitudinal and transverse relaxation times, T1 and T2. The dif-
ferences between these parameters can be used to produce contrast in MR images [7]. This is done by tuning
the repetition time TR (the time between two successive B1- pulses) and the echo time TE := 2τ correctly. If
TR is long, all the transverse magnetization will have turned into longitudinal magnetization again. However,
if TR is shorter, a new B1-pulse is applied before the longitudinal magnetization is restored in all materials,
meaning that the transverse magnetization in materials with a long T1 will be smaller after this pulse than
in materials with a short T1, leading to strong signals from materials with a short T1 and weak signals from
materials with a long T1: T1-weighting.

If TE is short, no significant decay in transverse relaxation will have taken place. However, a long TE causes
materials with a short T2 to lose their transverse magnetization, while materials with a long T2 will maintain



2.5. Signal localization 11

it. This causes T2-weighting: materials with a long T2 yield stronger signals than those with a short T2.
If TR is long and TE is short, only the spin-density will determine the contrast in the image. An overview

of how the different kinds of weighting can be achieved is given in Table 2.1.

Table 2.1: Image contrast for different choices of TE and TR .

Contrast TE TR

T1-weighting Short Appropriate
T2-weighting Appropriate Long

Spin density-weighting Short Long

2.5. Signal localization
2.5.1. Slice selection
In order to make a 2D image of a 3D object, a slice has to be selected. Then, only the spins in that slice of
the object will be excited. To selectively excite spins, a gradient field and a shaped RF pulse are necessary.
An RF pulse can only be frequency-selective, which means that the spin resonance frequency has to be made
position-dependent. This is achieved by augmenting the B0-field with a linear gradient field during the ex-
citation period. This gradient field is called a slice-selection gradient. The images are made in the x y-plane,
which means that the gradient will be applied in the z-direction, yielding the total magnetic field strength
B(z) = B0 +Gz z. Now, to select a slice of thickness ∆z centered around z0, the following spatial selection
function is required:

ps (z) =
{

1, |z − z0| < ∆z
2

0, otherwise.
(2.29)

It can be shown that the corresponding pulse envelope function has to satisfy

B e
1 (t ) ∝ sinc

[
π
γ

2π
Gz∆z

(
t − τp

2

)]
, (2.30)

where τp is the duration of the pulse.

2.5.2. Spatial information encoding
After the RF pulse, the free precession period allows for spatial information to be encoded into the signal.
There are two ways to encode spatial information: frequency encoding and phase encoding.

Frequency encoding When the precession frequency of an activated MR signal is made to be linearly de-
pendent on its spatial origin, frequency encoding is used. This can be achieved by applying a linear gradient
field to the magnetic field after the RF pulse. For instance, a gradient Gx in the x-direction leads to a magnetic
field

~B = (B0 +Gx x)~k, (2.31)

which leads to the Larmor frequency being a linear function of x:

ω(x) =ω0 +γGx x. (2.32)

Assuming an object with spin distribution ρ(x, y) and omitting the transverse relaxation effect, the FID signal
generated locally from spins in an infinitesimal interval d x at point x is

dS(x, y, t ) ∝ ρ(x, y) d x d y e−iγ(B0+Gx x)t . (2.33)

Then, the signal generated by the entire object, neglecting the proportionality constant, is

S(t ) =
∫ ∫

object
dS(x, y, t ) =

∫ ∫
object

ρ(x, y)e−iγ(B0+Gx x)t d x d y (2.34)

=
[∫ ∫

object
ρ(x, y)e−iγGx xt d x d y

]
e−iω0t . (2.35)

Removal of the carrier signal e−iω0t (demodulation) yields

S(t ) =
∫ ∫

object
ρ(x, y)e−iγGx xt d x d y. (2.36)
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Phase encoding After an RF pulse, a gradient Gy is turned on in the y-direction for a short time Tpe , and
then it is turned off. Then the local signal dS(x, y, t ) is described by

dS(x, y, t ) =
{
ρ(x, y) d x d y e−iγ(B0+Gy y)t , 0 ≤ t ≤ Tpe

ρ(x, y) d x d y e−iγGy yTpe e−iγB0t , Tpe ≤ t .
(2.37)

During the interval 0 ≤ t ≤ Tpe , the preparatory period, the signal is frequency-encoded. Therefore, signals
from different y-positions will have different phase angles after a time Tpe . At time Tpe , the signal will have
an initial phase angle

φ(y) =−γGy yTpe . (2.38)

φ(y) is linearly dependent on the position y , so the signal is phase-encoded. Now,

S(t ) =
∫ ∫

object
dS(x, y, t ) =

[∫ ∫
object

ρ(x, y)e−iγGy yTpe d x d y

]
e−iω0t . (2.39)

Again, the carrier signal e−iω0t will be removed after demodulation.

k-space representation Combining a frequency-encoding gradient Gx in the x-direction and a phase-encoding
gradient Gy in the y-direction yields (after demodulation)

S(t ) =
∫ ∫

ob j ect
ρ(x, y)e−i (γGx xt+γGy yTpe ) d x d y. (2.40)

Using the following substitutions: {
kx = γGx t

ky = γGy Tpe ,
(2.41)

the signal is described by

S(kx ,ky ) =
∫ ∫

ob j ect
ρ(x, y)e−i (kx x+ky y) d x d y. (2.42)

So the substitutions given by Equation (2.41) allow us to use k-space for signal representation. A conventional
strategy to produce sufficient data to cover k-space is to generate a set of "identical" signals {Sn(t )} and then
encode each one properly so that k-space is covered by multiple lines. This can be done by changing the
phase-encoding gradient, because a change in gradient strength leads to a different line in k-space.

2.6. Image reconstruction
In practice, the spin density ρ depends not only on x and y , but also on z: ρ(x, y, z). The desired image
function will be denoted by I (x, y). I (x, y) is related to the spin density ρ(x, y, z) in the following way:

I (x, y) =
∫ ∆z

2

− ∆z
2

ρ(x, y, z) d z. (2.43)

Therefore, ρ(x, y) is replaced by I (x, y) in Equation (2.42):

S(kx ,ky ) =
∫ ∫

ob j ect
I (x, y)e−i 2π(kx x+ky y) d x d y. (2.44)

Now kx and ky are described by

kx = γ

2π
Gx t (2.45)

ky = γ

2π
Gy Tpe , (2.46)
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in order to cast Equation (2.44) as a Fourier transform. The aim is to obtain I (x, y) given S(kx ,ky ). Now,
assuming that k-space is sampled uniformly, the set of k-space points at which measured data is collected is
given by

D = {(kn,x ,km,y ) : kn,x = n∆kx ,km,y = m∆ky , n,m ∈Z}. (2.47)

The field of view (FOV) is defined as the region |x| < Wx
2 , |y | < Wy

2 where Wx and Wy are finite numbers such
that

I (x, y) = 0, |x| > Wx

2
, |y | > Wy

2
. (2.48)

Then, if the following inequalities hold:

∆kx < 1

Wx
, ∆ky < 1

Wy
, (2.49)

I (x, y) can be shown to be related to S(x, y) in the following way:

I (x, y) = ∆kx∆ky

∞∑
n=−∞

∞∑
m=−∞

S(n∆kx ,m∆ky )e i 2π(n∆kx x+m∆ky y), (2.50)

|x| < 1

∆kx
, |y | < 1

∆ky
.

In practice, k-space is sampled a finite number of times. So there are N , M ∈N such that D is described by

D =
{

(kn,x ,km,y ) : kn,x = n∆kx ,km,y = m∆ky , −N

2
≤ n < N

2
,−M

2
≤ m < M

2

}
. (2.51)

Then, the Fourier reconstruction formula is

I (x, y) = ∆kx∆ky

N /2−1∑
n=−N /2

M/2−1∑
m=−M/2

S(n∆kx ,m∆ky )e i 2π(n∆kx x+m∆ky y), (2.52)

|x| < 1

∆kx
, |y | < 1

∆ky
.

I (x, y) can be obtained easily using a Fast Fourier transform algorithm. Due to the truncation of the Fourier
series, the Fourier reconstruction is not identical to the true image function.





3
Low-field MRI

As opposed to conventional MRI, this research focuses on low-field MRI, in which magnetic fields in the
order of milliTeslas are generated by a resistive magnet. Resistive magnets can be used at room-temperature,
as opposed to superconducting magnets that have to be cooled with liquid helium. This makes low-field MRI
less costly. However, one of the main issues with low-field MRI is the lower signal-to-noise ratio [6]. This is
due to the increase in SNR with higher B0 [8].

3.1. The PSU prototype
3.1.1. Magnetic field
Instead of a static and large B0, the prototype MRI scanner uses a pulsed magnetic field Bp combined with
a very small static field B0. One reason for this choice is that generating a larger static B0-field generates
more heat in the coils, so the higher B0, the more cooling is necessary, and the more expensive the MRI
scanner. The Bp -pulses are called prepolarizing pulses. During a Bp -pulse, the nuclear magnetization will
tend towards an enhanced equilibrium value, aligned with the higher effective magnetic field Be f f = B0+Bp .
Then, the pulse is ramped down slowly, such that the enhanced magnetization will realign with B0 without
precessing. This enhanced magnetization will decay to the B0 equilibrium value according to the T1-value
of the sample. If a pulsing sequence is conducted before the magnetization has completely died down, the
signal will be enhanced. Therefore, prepolarizing leads to a higher signal-to-noise ratio. The pulse sequence
that is employed in the low-field MR scanner is shown in Figure 3.1.

Figure 3.1: The pulse sequence that is used in the low-field MR scanner. Source: PSU.

15
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3.1.2. Field inhomogeneities
In conventional MRI, a Fourier Transform is used to obtain the image given the signal. However, this approach
is only possible because of the homogeneity of the B0-field. In low-field MRI, there is much more inhomo-
geneity in the magnetic field. Figure 3.2 shows a plot of very coarse measurements of B0 in the prototype as a
function of x and z, where y = 0. x and z are defined as in Figure 3.3.

Mean magnetic field: -4.0008 mT
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Figure 3.2: Measurements of the B0-field in the xz-plane, at y = 0. The units on the axes are centimeters.

From Figure 3.2, it is clear that the maximum deviation from the mean field is about 0.3%. This does not
seem like much, but in conventional MRI the maximum deviation is about a thousand times as small. The
PSU team does use the Fourier Transform to obtain the final image.

x

y

z
Figure 3.3: x, y and z-direction in the MR scanner.
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3.2. The LUMC prototype
A picture of the magnet created by the team at LUMC is shown in Figure 3.4.

Figure 3.4: The magnet constructed by the team at LUMC. The direction of the magnetization in each magnet is shown using arrows.
Source: [9].

They use a configuration of twelve permanent magnets, arranged in a circle, such that the resulting mag-
netic field (the B0-field) is oriented mainly in the z-direction. Here, too, the z-axis is oriented along the axis
of the cylinder. In [9], the B0-field was measured at y = 0. The result is shown in Figure 3.5.

(a) Direction of the B0-field. (b) Magnitude of the B0-field.

Figure 3.5: B0-field measurements.

To excite the spins, an RF pulse has to be sent out. In this prototype, the inhomogeneities in the B0-field
are used to allow for spatial encoding, instead of gradient coils. To obtain a sufficient amount of data, the idea
is to rotate either the object or the device and measure the signal after each rotation.
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3.3. General measurement model
Taking away the assumption of homogeneity, the signal is described by (2.27). Defining ζ(r) = φe (r)−φr (r),
Equation (2.27) can be rewritten:

S(t ) =
∫

object
ω(r)|~Br,x y (r)||Mx y (r,0)|e−t/T2(r)e iζ(r)e−iγ∆B(r)t dr. (3.1)

Now, denoting the signal sensitivity response pattern of the coil by c(r), the general forward model for the
signal is:

S(t ) =
∫

object
ω(r)c(r)|~Br,x y (r)||Mx y (r,0)|e−t/T2(r)e iζ(r)e−iφ(r,t ) dr, (3.2)

where

φ(r, t ) = γ∆B(r)t . (3.3)

Here, Mx y (r,0) is the desired image. For ease of notation, we define

x(r) := Mx y (r,0). (3.4)

The measurements recorded in an MRI scan consist of noisy samples of the MRI signal described by Equation
(3.2):

yi = S(ti )+ vi , i = 1, ...,L, (3.5)

where yi denotes the i th sample of the signal, measured at time ti . vi is the measurement error in the i th
sample. vi are modeled by additive, zero-mean, white gaussian noise. Using Equation (3.2) to describe the
measurement model, the image reconstruction problem is to estimate x(r) from a measurement vector y.
x(r) is a continuous function. In order to estimate it using a finite set of measurements, x(r) is approximated
using a finite series expansion:

x(r) =
N∑

j=1
x j b(r− r j ), (3.6)

where b(·) denotes the object basis function and r j is the center of the j th basis function. Usually, rectangular
basis functions are used. In that case, N is the number of pixels. Substituting Equation (3.6) into Equation
(3.2) yields

S(ti ) =
N∑

j=1
ai j x j , (3.7)

where

ai j =
∫

object
b(r− r j )c(r)ω(r)|~Br,x y (r)|e−ti /T2(r)e ιζ(r)e−ι∆φ(r,t ) dr. (3.8)

Usually, the basis functions are highly localized, allowing ’center of pixel’ approximations to be used:

ai j = c(r j )ω(r j )|~Br,x y (r j )|e−ti /T2(r j )e ιζ(r)e−ι∆φ(r j ,ti ), φ(r j , ti ) = γ∆B(r j )ti . (3.9)

Combining Equations (3.5), (3.6) and (3.8) allows us to represent the system of equations in matrix-vector
form:

y = Ax+v. (3.10)



4
Super-resolution reconstruction

SRR uses multiple low-resolution (LR) images of the same object to form a high-resolution (HR) image. Typ-
ically, the different LR images represent different "looks" at the same object. That is, LR images are down-
sampled and shifted versions of the HR image. The shift has to be a subpixel shift, because integer shifts yield
no new information, as shown in Figure 4.1. Another way of acquiring different LR images would be to rotate
the object.

Figure 4.1: Integer shifts do not provide any new information. Subpixel shifts are needed to make SRR possible. Source: [10].

4.1. Data acquisition model
Let X be the desired HR image with dimensions m ×n. Then X is an m ×n matrix consisting of the grayscale
values of each pixel. In order to apply super-resolution reconstruction, X must be put in vector form:

x = vec(X ) =

x1
...

xn

 , (4.1)

where xi is the i th column of X . This notation will be used throughout the whole report, so images in matrix
form will be denoted by capital letters and images in vector form will be denoted by the same letter, but in
bold lowercase.

Let {Yk }N
k=1 be a sequence of LR images. The data acquisition model used in SRR is as follows [10], [5]. First,

the HR image X undergoes a geometric deformation, such as a subpixel shift or a rotation. This geometric
deformation is described by an operator Dk . Then, during the imaging process, each of the geometrically
deformed images is subject to a blurring operator Bk and a down-sampling operator denoted by Dk . Also,

19
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noise is added to the system: Vk . The noise is usually assumed to be independent, identically distributed
Gaussian noise. A pictorial overview of the acquisition model is shown in Figure 4.2.

Figure 4.2: The general data acquisition model used in super-resolution reconstruction. Source: [5].

Gk , Bk and Dk can be cast in matrix-form when x, yk and vk are used instead of X , Yk and Vk , yielding the
following system of equations:

yk = Dk BkGk x+vk , k = 1, ..., N . (4.2)

Clearly, the term Dk BkGk can be replaced by a single matrix Ak :

yk = Ak x+vk , k = 1, ..., N . (4.3)

By vertically concatenating the vectors yk , the matrices AK and the vectors vk as follows:

y =

 y1
...

yN

 , A =

 A1
...

AN

 , v =

 v1
...

vN

 , (4.4)

a single system of equations is obtained:

y = Ax+v. (4.5)

4.1.1. Geometric deformation
Geometric deformation, represented by Gk , is of fundamental importance in SRR, because it yields different
views of the same object, providing additional information. As mentioned before, the deformation has to
be of subpixel nature, which requires a very accurate estimation of the deformation. It can be difficult to
attain such a high precision, which makes registration a bottleneck in reconstruction process. By introducing
predetermined motion, this difficulty can be eliminated. When imaging a static object, the deformation is
artificially created by shifting or rotating the field of view by a known value [5].

4.1.2. Blurring
The operator Bk represents the blurring caused by the imaging process. Commonly, blurring is assumed to
be spatially-invariant, so Bk simplifies to B . The point-spread function (PSF) P is a function that describes
the blurring of one pixel over its surrounding pixels. Usually, blurring is a local phenomenon, so one pixel
influences only a very limited amount of other pixels around it. Outside a certain radius, its influence is
essentially zero. Therefore, P is a very small matrix compared to the image matrices. Let Z be an image and
let Zb be the blurred version of Z . If the PSF is assumed to be spatially invariant, the blurring of Z can be
represented by a two-dimensional convolution:

Zb = P ∗∗ Z . (4.6)

Most articles concerning SRR in MRI suggest that the PSF is well approximated by a Gaussian function. In the
2D case, the (unscaled) elements of the PSF are described by

pi j = exp

(
−1

2

[
i −k
j − l

]T [
s2

1 ρ2

ρ2 s2
2

][
i −k
j − l

])
, (4.7)
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where s1 and s2 determine the width of the PSF and ρ determines its orientation. (k, l ) is the central element
of P . All elements of a PSF have to sum to 1, so P has to be scaled accordingly. The Gaussian function decays
exponentially away from the center and it is reasonable to truncate the values of the PSF when they have
decayed by a sufficiently large factor (104−108) [11]. If ρ = 0, the PSF is symmetrical along the horizontal and
vertical axes and the PSF takes the simpler form

pi j = exp

(
−1

2

(
i −k

s1

)2

− 1

2

(
j −1

s2

)2)
. (4.8)

The blurring matrix Bk can be obtained from P . The blurred image is equal to the convolution of P and Z ,
so pixel (i , j ) of Zb can be computed by rotating P by 180 degrees and matching it with pixels in the image
Z by placing the center of P over pixel (i , j ) of Z . Corresponding components are multiplied and the results
are summed to compute element (i , j ) of Zb . This can be carried out for all elements in Zb , leading to the
blurring matrix B .

4.2. Minimization problem
4.2.1. Least-squares solution
SRR aims to solve Equation (4.5) for x. However, due to noise (and possibly an insufficient number of LR
images), the problem is ill-posed. In order to obtain an x that describes the data well, ||y− Ax||22 has to be
small. || · ||2 denotes the `2-norm. If A∗A is nonsingular, the least-squares solution, so the solution that
minimizes ||y− Ax||22, is

xls = (A∗A)−1 A∗y. (4.9)

xls is equal to

xls = (A∗A)−1 A∗y = x+ (A∗A)−1 A∗v. (4.10)

The last term is called the inverted noise. We can rewrite A∗A using its singular value decomposition:

A∗A =UΣG∗, (4.11)

where U and G are orthogonal matrices and Σ = diag(σi ) is a diagonal matrix whose elements σi are non-
negative and appear in nonincreasing order. The σi are the singular values of A∗A. If A∗A is nonsingular, its
inverse can be written as

(A∗A)−1 =GΣ−1U∗. (4.12)

So the inverted noise is equal to

(A∗A)−1 A∗v =GΣ−1U∗A∗y =∑
i

u∗
i A∗v

σi
gi , (4.13)

where ui and gi are the i th column vectors of U and G respectively. If A∗A is almost singular, its smallest
singular values will be very close to 0, causing the inverted noise to become large, contaminating the recon-
structed image.

4.2.2. Tikhonov regularization
In order to obtain a solution that is not corrupted by noise, a Tikhonov regularization term can be added to
the problem, which leads to the following minimization problem:

min
x

1

2
||y− Ax||22 +

1

2
λ||F x||22, (4.14)

where λ is the regularization parameter and F is an operator. The term ||F x||22 allows us to enforce prior
information that is available about x. For instance, F can be chosen to be a first-order difference matrix,
because in MR images it is very likely that neighboring pixels have the same value. The value of λ determines
to what extent this regularization term is taken into account. A small λwill cause more emphasis to be placed
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on obtaining a solution that fits the data well, i.e. make sure that the term 1
2 ||y− Ax||22 is small, while a large λ

will ensure that the prior information is enforced, so 1
2 ||F x||22 will be small.

It is not immediately clear which value of λ leads to the best solution. One way of choosing λ is by em-
ploying the L-curve criterion [12]. The L-curve is a log-log plot of ||y− Ax||2 versus ||F x||2 for a number of
values of λ. This plot often has an L-shape and the best regularization parameter is supposed to lie in the
corner of the L, balancing out the two terms.

Equation (4.14) is a convex problem, which means that taking the gradient and setting it equal to 0 yields
a condition for the global optimal solution:

(A∗A+λF∗F )x = A∗y, (4.15)

leading to

x = (A∗A+λF∗F )−1 A∗y. (4.16)

4.2.3. Total variation regularization
Tikhonov regularization is not the only possible way of regularizing the problem. Another popular choice is
the `1-term where F is a first-order difference matrix, defined such that

||F x||1 =
n∑

k=1

m∑
l=2

|Xl ,k −Xl−1,k |+
m∑

l=1

n∑
k=2

|Xl ,k −Xl ,k−1|. (4.17)

So the minimization problem becomes

min
x

1

2
||y− Ax||22 +

1

2
λ||F x||1. (4.18)

The ||F x||1 term penalizes jumps between neighboring pixels. However, jumps are not penalized as much
as in the Tikhonov case, because the `2-norm makes the regularization term grow quadratically with the
difference in value between neighboring pixels, while using the `1-norm ensures that the penalization grows
only linearly. Penalizing large jumps very harshly is undesirable, because MR images tend to contain large
jumps between different tissues. The form of regularization used in Equation (4.18) (with F as defined in
Equation (4.17)) is called total variation regularization.

4.2.4. Edge-preserving regularization
When Tikhonov regularization is used, the penalty term grows quadratically with the difference between pix-
els. The good thing about this is that neighboring pixels are very likely to have the same value, which is
desirable in MR images. However, jumps between pixels of different tissues will be severely penalized, lead-
ing to overly smooth images. In that case, total variation minimization yields a better result. Edge-preserving
regularization combines the advantages of both types of regularization, such that up to a certain value, dis-
continuities are penalized in a quadratic way, while larger jumps are penalized in a linear way. The rest of this
chapter is based on [13].

MAP estimation Maximum a posteriori (MAP) estimation is another technique commonly used to estimate
the original image X given a degraded image Y (or in our case, several degraded images). A MAP technique
maximizes the conditional probability of x when y is given:

x̂ = argmax
x

[logP (x|y)]. (4.19)

Using Bayes’ formula and eliminating constant terms, this can be rewritten as

x̂ = argmin
x

[− logP (y|x)− logP (x)]. (4.20)

Because the noise is assumed to be independent, identically distributed Gaussian, the probability density of
y given x is

P (y|x) = 1

(2πσ2)mn/2
exp

(−||y− Ax||2
2σ2

)
(4.21)

where σ is the standard deviation of the noise.
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Huber-Markov random field model We suppose that our image X can be modeled as a Markov random
field, meaning that the conditional distribution of a pixel value, given all the other pixel values, is only depen-
dent on its neighbors. So, defining the set of neighbors of pixel s by ∂s, we have [14]

P (xs |xr 6=s ) = P (xs |x∂s ). (4.22)

Next, we assume that P (x) is a Gibbs distribution:

P (x) = 1

Z
exp

(
− 1

µ

∑
c∈C

ρ(h∗
c x)

)
, (4.23)

where Z is a normalizing constant, µ is the temperature parameter and hc is the coefficient vector for the
group of pixels c. ρ(·) is a function that has to satisfy the following properties: convexity, symmetry and
ρ(t ) << t 2 for large |t |. The Huber function, defined as

ρT (t ) =
{

t 2, |t | ≤ T

T 2 +2T (|t |−T ), |t | > T
(4.24)

satisfies these properties. In Figure 4.3, the Huber function is plotted as a function of t :

Figure 4.3: The Huber function.

In [13], second-order approximations are used to measure image roughness:

h∗
k,l ,0x = Xk,l+1 −2Xk,l +Xk,l−1 (4.25)

h∗
k,l ,1x = 1

2
(Xk−1,l+1 −2Xk,l +Xk+1,l−1) (4.26)

h∗
k,l ,2x = Xk−1,l −2Xk,l +Xk+1,l (4.27)

h∗
k,l ,3x = 1

2
(Xk−1,l−1 −2Xk,l +Xk−1,l−1), (4.28)

leading to the following expression for − logP (x):

− logP (x) =− log Z + 1

µ

∑
k

∑
l

3∑
m=0

ρT (h∗
k,l ,m x). (4.29)

Now, the functional to be minimized is given by

MT (x) = ||y− Ax||2 + 2σ2

µ

∑
k

∑
l

3∑
m=0

ρT (h∗
k,l ,m x). (4.30)
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Majorization Majorization is an iterative technique that minimizes a function by minimizing its majorizing
function. A function g (θ) is said to majorize f (θ) at θi if

f (θi ) = g (θi ) (4.31)

f (θ) ≤ g (θ) for all θ. (4.32)

In order to minimize Equation (4.30), a series of functionals N i
T (x) is defined such that

MT (xi ) = N i+1
T (xi ) (4.33)

MT (x) ≤ N i+1
T (x) for all x, (4.34)

where xi is the value at which N i
T (x) attains its minimum. This algorithm can be shown to converge. To

majorize the Huber function in Equation (4.24), we define

Ñ i+1
T (t ) =

{
t 2, |t | ≤ T

T
|t i | t

2 +T |t i |−T 2, |t | > T.
(4.35)

Here, t i is the minimizing point of Ñ i
T (t ). Note that Ñ i

T (t ) is a quadratic function. Now let Hm denote the

operator corresponding to
∑
k

∑
l

h∗
k,l ,m x. The constant term T |t i | −T 2 can be ignored, leaving the modified

function

N̂ i+1
T (x) =

3∑
m=0

(Hm x)∗Γm Hm x, (4.36)

where Γm are diagonal matrices whose elements are equal to either 1 (if h∗
k,l ,m x ≤ T ) or T

|h∗
k,l ,m x| (if h∗

k,l ,m x > T ).

Then, the functional N i+1
T (x) is defined as

N i+1
T (x) = ||y− Ax||2 +λ

3∑
m=0

(Hm x)∗Γm Hm x, (4.37)

where λ = 2σ2

µ can be seen as a regularizing constant. Taking the gradient of Equation (4.37) yields an opti-

mality criterion for xi+1: (
AT A+λ

3∑
m=0

H∗
mΓm Hm

)
xi+1 = AT y. (4.38)

Of course, we do not know the values contained in Γm beforehand. In order to obtain the correct matrix,
fixed-point iteration is used.



5
Conjugate gradient methods

As seen in the previous chapter,

(A∗A+λF∗F )x = A∗y, (5.1)

provides us with an optimality criterion for the minimization problem (4.14). The solution to (5.1) is

x = (A∗A+λF∗F )−1 A∗y. (5.2)

When X is an image with n ×m pixels, A∗A +λF∗F is an n2m2 ×n2m2 matrix. That means that when X is
a high-resolution image, A∗A +λF∗F becomes very large, making it computationally infeasible to execute
a matrix inversion. Therefore, we will rely on iterative solvers to obtain the solution to Equation (5.1). The
methods of choice will be conjugate gradient methods. The remainder of this chapter is based on [15] and
[16].

5.1. General problem statement
5.1.1. Tikhonov regularization
The minimization problem (4.14) is a special form of

min
x

1

2
||y− Ax||2C−1 +

1

2
λ||x||2R , (5.3)

where R = F∗F and C is the covariance matrix of the noise. Now, the optimality criterion is represented by
the normal equations:

(A∗C−1 A+λR)x = A∗C−1y. (5.4)

Note that minimization problem (5.3) can be formulated as the following constrained minimization problem:

min
r,x

1

2
||r||2C + 1

2
λ||x||2R (5.5)

subject to r =C−1(y− Ax).

Using the technique of Lagrange multipliers, we find that

r =C−1(y− Ax), λRx = A∗r. (5.6)

If λR is invertible, x can be eliminated, yielding(
1

λ
AR−1 A∗+λC

)
r = y (5.7)

and x can be obtained from r:

x = 1

λ
R−1 A∗r. (5.8)

In order to be able to work with λ= 0, we can define z := 1
λr, yielding the system

(AR−1 A∗+λC )z = y, x = R−1 A∗z. (5.9)

Since minimization problems (5.3) and (5.6) are equivalent, Equations (5.4) and (5.9) are equivalent too.
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5.1.2. `p -norm regularization
Now, consider the form

min
x

1

2
||y− Ax||2C−1 +

1

2
λ||F x||pp , (5.10)

where || · ||p denotes the `p -norm. Equation (5.10) is not differentiable for all values of p. However, that does
not mean that it cannot be solved using the same methods as the `2-norm case. Additionally, a fixed-point
iteration scheme is necessary. Note that ||F x||pp can be rewritten as:

||F x||pp =∑
i
|(F x)i |p =∑

i
|(F x)i |p−2(F x)2

i = x∗F∗W F x, (5.11)

where W = diag(|(F x)i |p−2) and (F x)i denotes the i th element of the vector F x. So minimization problem
(5.10) can be cast in the form of (5.3) by setting R = F∗W F . Now, if an estimate xk is available, a better
estimate xk+1 can be found by solving (5.10) with R = F∗W F and W = diag(|(F xk )i |p−2).

5.2. Standard conjugate gradient
The conjugate gradient method was developed by Hestenes and Stiefel [17] in 1952. It is a Krylov subspace
method for solving systems of the form K u = f, where K is a square Hermitian positive definite matrix. Start-
ing with an initial estimate u0 of the solution u, new estimates u1, u2, ... of u are determined, with uk+1 being
closer to u than uk . The search directions are denoted by pk . At each step, the residual sk is computed:

sk = f−K uk . (5.12)

In each iteration, the conjugate gradient method computes uk such that

||u−uk ||K = min
v∈u0+

span{p0,. . . ,pk−1}

||u−v||K . (5.13)

Given an iterate uk , the gradient descent method would use sk as a search vector. The conjugate gradi-
ent method uses search vectors that are conjugate with respect to K (so pk K pl = 0 for k 6= l ). Then, P :=
{p0, ...,pn−1} forms a basis for Rn , which means that u can be written as a weighted sum of the pk :

u =
n−1∑
i=0

αi pi . (5.14)

Reasoning from Equation (5.14), uk+1 is calculated as follows:

uk+1 = uk +αk pk . (5.15)

Then the residual sk+1 is

sk+1 = f−K uk+1 = f−K (uk +αk pk ) = sk −αk K pk . (5.16)

Given {p0, ...,pk }, pk+1 can be calculated using a Gram-Schmidt process:

pk+1 = sk+1 −
∑
i≤k

p∗
i K sk

p∗
i K pi

pi . (5.17)

However, this would involve the storage of all previous search directions. It can be shown that sk+1 is orthog-
onal to pi for all i ≤ k, which enables us to store only sk , pk and uk and still calculate sk+1, pk+1 and uk+1.
pk+1 is calculated as follows:

pk+1 = sk+1 +βk pk (5.18)

where βk is chosen such that pk+1 is conjugate to pk . Multiplying Equation (5.14) on the left by p∗
k K yields

αk = p∗
k f

p∗
k K pk

. (5.19)
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Substituting Equations (5.12) and (5.18) into Equation (5.19) leads to an expression for αk :

αk = p∗
k f

p∗
k K pk

= p∗
k (sk +K uk )

p∗
k K pk

= p∗
k sk

p∗
k K pk

= s∗k sk

p∗
k K pk

. (5.20)

In order to calculate βk , Equation (5.18) is multiplied on the right by K pk , yielding

βk =−s∗k+1K pk

p∗
k K pk

. (5.21)

From Equation (5.16), we see that K pk = 1
αk

(sk −sk+1), so

βk =−s∗k+1K pk

p∗
k K pk

=−
s∗k+1

1
αk

(sk −sk+1)

p∗
k

1
αk

(sk −sk+1)
= s∗k+1sk+1

s∗k sk
. (5.22)

Algorithm ?? is the complete conjugate gradient algorithm.

Algorithm 1 STANDARD CG

Require: K ∈CN×N ,u0, f ∈CN ;
Ensure: Approximate solution uk such that ‖f−K uk‖ É T OL.

1: s0 = f−K u0; p0 = s0; γ0 = s∗0 s0;
2: while

p
γk > T OL and k < kmax do

3: ξk = p∗
k K pk

4: αk = γk
ξk

5: uk+1 = uk +αk pk

6: sk+1 = sk −αk K pk

7: γk+1 = s∗k+1sk+1

8: βk = γk+1
γk

9: pk+1 = sk+1 +βk pk

10: k = k +1
11: end while

Clearly, span{p0,p1, ...,pk−1} is equal to the Krylov subspace Kk (K ,p0) := span{p0,K p0, ...,K k−1p0}. So the
conjugate gradient method minimizes ||u−uk ||K over u0 +Kk (K ,p0).

5.3. CGLS
The conjugate gradient method for least squares (CGLS) is obtained by applying the standard conjugate gra-
dient method to the normal equations K ∗K u = K ∗f. Additionally, some modifications are made to enhance
stability. This method minimizes the residual in every step, because

||u−uk ||K ∗K = (u−uk )∗K ∗K (x−uk ) = (f−K uk )∗(f−K uk ) = s∗k sk . (5.23)

Something similar can be done using the normal Equations (5.4). By replacing K by A∗C−1 A +λR, u by x
and f by A∗C−1 y , the standard conjugate gradient method in Algorithm 1 can be applied to this problem. By
defining

rk :=C−1(y− Axk ), (5.24)

a recursion for the residual is introduced:

sk+1 = A∗C−1y− (A∗C−1 A+λR)xk+1 = A∗C−1(y− Axk+1)−λRxk+1

= A∗rk+1 −λRxk+1. (5.25)

Defining qk = Apk , ξk is calculated as

ξk = q∗
kC−1qk +λp∗

k Rpk . (5.26)
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Algorithm 2 shows CGLS tailored specifically to Equation (5.4).

Algorithm 2 CGLS

Require: A ∈CM×N ,C ∈CM×M ,R ∈CN×N ,x0,∈CN ,y ∈CM ,λ ∈R≥ 0;
Ensure: Approximate solution xk such that ‖(A∗rk −λR)xk‖ É T OL.

1: r0 =C−1(y− Ax0); s0 = A∗r0 −λRx0; p0 = s0; q0 = Ap0; γ0 = s∗0 s0; k = 0;
2: while

p
γk > T OL and k < kmax do

3: ξk = q∗
kC−1qk +λp∗

k Rpk

4: αk = γk
ξk

5: xk+1 = xk +αk pk ; Rxk+1 = Rxk +αk Rpk

6: rk+1 = rk −αkC−1qk

7: sk+1 = A∗rk+1 −λRxk+1

8: γk+1 = s∗k+1sk+1

9: βk = γk+1
γk

10: pk+1 = sk+1 +βk pk

11: qk+1 = Apk

12: k = k +1
13: end while

In each iteration, ek := x−xk is minimized over the Krylov subspace Kk (A∗C−1 A+λR,p0) in the (A∗C−1 A+
λR)-norm. So

||ek ||2A∗C−1 A+λR = (x−xk )∗(A∗C−1 A+λR)(x−xk ) (5.27)

= (r− rk )∗C (r− rk )+λe∗k Rek = ||r− rk ||2C +λ||ek ||2R (5.28)

is minimized in every iteration. Note the correspondence with the original constrained minimization prob-
lem (5.6).

5.4. CGNE
CGNE is obtained by setting x = A∗z and applying standard CG to the normal equations

A A∗z = y. (5.29)

For underdetermined problems, solving this equation is computationally less expensive than solving A∗Ax =
A∗y, because in that case A A∗ is of lower dimension than A∗A. Another important advantage is that CGNE
minimizes the error in the 2-norm:

||z−zk ||2A A∗ = (A(z−zk ))∗(A(z−zk )) = (x−xk )∗(x−xk ). (5.30)

Unfortunately, this method only works for consistent problems, rendering it useless for most problems in
practice due to the presence of noise. However, this issue is solved by regularizing, because regularization
leads to a well-posed problem. The standard CG method can be applied to Equation (5.9) by replacing K by
AR−1 A∗+λC , u by z and f by y. Next, we set xk = R−1 A∗zk and rk = λzk and we define qk := A∗pk , yielding
the CGNE algorithm, given as Algorithm 3. In every iteration, the CGNE method minimizes

(z−zk )∗(AR−1 A∗+λC )(z−zk ) = (x−xk )∗R−1(x−xk )+ 1

λ
(r− rk )∗C (r− rk )

= ||ek ||2R−1 +
1

λ
||r− rk ||2C . (5.31)

over the Krylov subspace Kk (AR−1 A∗+λC ,p0). As far as we know, the CGNE method has not been applied
to minimization problem (5.3) before in this way.
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Algorithm 3 CGNE

Require: A ∈CM×N ,C ∈CM×M ,R ∈CN×N ,x0,∈CN ,y ∈CM ,λ ∈R> 0;
Ensure: Approximate solution xk such that ‖y− Axk −C rk‖ É T OL.

1: s0 = y, p0 = s0; q0 = A∗p0, γ0 = s∗0 s0, k = 0
2: while

p
γk > T OL and k < kmax do

3: ξk = q∗
k R−1qk +λp∗

kC pk

4: αk = γk
ξk

5: rk+1 = rk +λαk pk ;
6: xk+1 = xk +αk R−1qk ;
7: sk+1 = sk −αk (AR−1qk +λC pk )
8: γk+1 = s∗k+1sk+1

9: βk = γk+1
γk

10: pk+1 = sk+1 +βk pk

11: qk+1 = A∗pk+1

12: k = k +1
13: end while





6
Preliminary results

Some simulations were carried out in order to test the super-resolution reconstruction method described in
chapter 4. The MATLAB Shlepp-Logan phantom was chosen as the object to be imaged. The high-resolution
image and the low-resolution images were chosen to be 128 × 128 pixels and 32 × 32 pixels respectively. The
desired HR image is shown in Figure 6.1.
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Figure 6.1: Desired HR image (128 × 128 pixels) of the MATLAB Shlepp-Logan phantom.

The grayscale values of the HR image were stored in a matrix X . The first LR image was created without
shifting the object. The other 3 LR images were created using three different subpixel shifts: (0.25,0.25),
(0.5,0.3) and (0.8,0.6). When ā > 0, b̄ > 0, a shift of (ā, b̄) means that the LR grid is shifted to the right by ā
times the size of the LR pixel in the x-direction and towards the bottom by b̄ times the size of the LR pixel in the
y-direction. So the object itself is shifted to the left and towards the top. Denoting the down-sampling factor
in the x-direction by L1 and in the y-direction by L2, the image is shifted by (āL1, b̄L2) HR pixels. Defining
a := āL1 and b := b̄L2, we can decompose a and b into an integer part and a remainder part:

a = bac+ar em , b = bbc+br em . (6.1)
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Therefore, the value of pixel (i , j ) in the shifted image is equal to

(1−ar em)(1−br em)Xi−bac, j−bbc (6.2)

+ar em(1−br em)Xi−bac−1, j−bbc (6.3)

+ (1−ar em)br em Xi−bac, j−bbc−1 (6.4)

+ar embr em Xi−bac−1, j−bbc−1. (6.5)

For each of the shifts, this information was stored in matrix Gk such that Gk x yielded the desired shifted
version of the HR image. A Gaussian function with s1 = s2 = 1 and ρ = 0 was used as the point spread function,
leading to the blurring matrix B . The down-sampling operator Dk simply takes the average over L1L2 = 16
pixels. The noise was independent, with standard deviation σ= 0.01. The LR images are shown in Figure 6.2.
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Figure 6.2: Four low-resolution images (32 × 32 pixels).

Using these four yk , minimization problem (4.14) (with Tikhonov regularization) was solved using the
CGLS method described in chapter 5. λ was chosen to be 0.005. The resulting HR image is shown in Figure
6.3.
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Tikhonov
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Figure 6.3: The high-resolution result obtained after solving minimization problem (4.14) (with Tikhonov regularization, λ= 0.005).

In Figure 6.4, the HR image and one of the LR images are plotted side by side, allowing for a better com-
parison between the quality of the images.
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(a) LR image.
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(b) HR image.

Figure 6.4: The HR image is plotted next to one of the four LR images used to reconstruct it.

Additionally, the minimization problem (4.18) (with total variation regularization) was solved using fixed-
point iteration and CGLS. The resulting HR image is plotted in Figure 6.5.
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Total variation
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Figure 6.5: The high-resolution result obtained after solving minimization problem (4.18) (with total variation regularization, λ= .3).

The image resulting from using edge-preserving regularization is shown in Figure 6.6.

Edge-preserving
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Figure 6.6: The high-resolution result obtained after solving minimization problem (4.30) (with edge-preserving regularization) using
T = 0.05 and λ= 0.003.

Figure 6.7 shows the phantom image and the three images resulting from the three different kinds of reg-
ularization. The three resulting images look very similar. The image obtained after using edge-preserving
regularization seems to be slightly better than the other two. However, the choice of regularization parameter
(as well as T ) obviously influences the outcome. It is unclear which value should be chosen for these param-
eters. Employing the L-curve criterion did not resolve this problem, because no L-shape could be detected.



35

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Original image.

Tikhonov
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(b) Tikhonov regularization.

Total variation

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Total variation regularization.
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(d) Edge-preserving regularization.

Figure 6.7: The results obtained by using three different kinds of regularization.

The pixels must have values between 0 and 1, but all the resulting minimizers had values outside of this
range (between -0.3 and 1.3). The final images were obtained by projection onto the interval [0,1]. The `1-
norm and the `2-norm of the error of each of the three solutions are shown in Table 6.1. The values are very
similar, but edge-preserving regularization yields the smallest errors, total variation the largest.

Table 6.1: `1 and `2 norm of the errors of the three obtained solutions.

Regularization Error in `1 norm Error in `2 norm
Tikhonov 671.1918 12.6632
Total variation 682.5282 12.8118
Edge-preserving 648.0891 12.0353





7
Research goals

7.1. Main goal
The main goal of this project is to research whether super-resolution reconstruction can be used to improve
the quality of the images produced using low-field MRI to such an extent that this method can be used to
detect hydrocephalus.

7.2. Research questions
The following research questions were formulated in order to structure this research:

1. Can super-resolution reconstruction yield high-resolution MR images when applied to simulated data?

2. Can super-resolution reconstruction yield high-resolution MR images when applied to real data?

3. What is a suitable matrix A in Equation (4.5), describing the transition from the high-resolution object
to the low-resolution images?

4. Which method(s) should be used to solve the minimization problem arising in super-resolution recon-
struction?

5. Which type of regularization yields the best results?

7.3. Methodology
1. To test the super-resolution reconstruction technique, it will be applied to data obtained from a simu-

lated Halbach array. Because the dataset is obtained using a simulation, we will be able to compare the
obtained high-resolution image to the actual phantom, enabling us to analyze the quality of the pro-
duced image. The low-resolution images will have 32 × 32 or 64 × 64 pixels, the high-resolution image
128 × 128 pixels.

2. When the team at Pennsylvania State University starts generating images with their low-field MRI pro-
totype, the super-resolution reconstruction technique will be employed to construct high-resolution
images building on a number of their low-resolution images. The low-resolution images will be created
using a predetermined shift, so that the operator governing the geometric deformation is known. Be-
cause the objects they will be imaging are simple objects containing a lot of water (water yields a strong
signal in MRI), we will know what the images are supposed to look like approximately, allowing us to
have a general idea of how good our results are.

3. By using predetermined shifts, we will be able to construct the geometric deformation precisely. The
downsampling operator simply takes averages over a number of pixels. So the only unknown is the
blurring operator. Literature shows that the point spread function can be modeled as a Gaussian func-
tion. Possibly, the parameters determining the shape of the Gaussian function can be determined using
maximum likelihood estimation.
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4. The CGLS method as described in chapter 5 is the conventional method of choice for solving problems
of the form (5.3). We will look into the CGNE method as well. The advantage of CGNE is that due to its
use of A A∗ (as opposed to A∗A in the CGLS method), under-determined problems can be solved faster.
This is especially useful in MRI applications, due to the long acquisition times currently necessary in
order to obtain a sufficient amount of information about the object being imaged. If we are able to
generate good solutions to the minimization problem in the under-determined case using the CGNE
method, this could mean that fewer measurements have to be taken, allowing for shorter acquisition
times. In order to test this, both methods will be applied to overdetermined, underdetermined and
critical systems.

5. Tikhonov and total variation regularization will be used to solve the problem. Their results will be
compared. Other kinds of regularization, such as the edge-preserving kind, will be looked into as well.
Instead of using regularization, another option would be to suppose that the HR image is a sparse
combination of vectors in a dictionary based on known images of hydrocephalic and healthy brains,
similar to the approach taken in [18].
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