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Over the past year, I have investigated whether machine learning can be used to improve the finite
element method. Specifically, I have tried to find out whether Deep Operator Networks can be used
to approximate optimal test functions that help stabilise the finite element method for advection
dominated problems. Throughout my research I found that the finite element method solution can
be very sensitive to the small approximation errors introduced by the networks. Although this
has made implementing the networks difficult, I feel the results look promising as I have found at
least one case where the DeepONets improved the finite element solution and were able to generate
optimal test functions while using problem specific parameters like the diffusion coefficient as input
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I faced and was always willing to explain even the most basic concepts. I have thoroughly enjoyed
working with him and would not have been able to produce this report without him.
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Abstract

The finite element method (FEM) is a numerical method that is used to approximate the solutions
to partial differential equations when solutions in the classical sense do not exist or are very hard
to find. The method is used to solve problems that are relevant for industries like the automotive
industry, the petroleum industry, and the aviation industry. The finite element method uses a
discretisation of the problem domain into sub domains and uses a variational form involving trial
and test functions to arrive at a system of equations. For problems that are advection dominated (for
problems with a large Péclet number), the FEM solutions start to oscillate and produce inaccurate
results near boundary layers. In the past finite element schemes have been developed that use so
called optimal test functions to reduce the oscillations of the solution and increase the accuracy of
the method.
In this thesis an attempt was made to use Deep Operator Networks (DeepONets) to generate
optimal test functions for the steady state advection-diffusion equation in 1D and 2D to improve
the stability/accuracy of the finite element method. An advantage of using neural networks is that
once trained they can take in problem specific parameters like the diffusion coefficient and produce
optimal test functions for a wide range of problems almost instantaneously. It was found that
the applicability of the DeepONets in this context varies and depends on the weak formulation for
which the DeepONet generated optimal test functions are implemented, as the finite element method
solution can be very sensitive to small perturbations in the optimal test functions. The approach
does look promising as a DeepONet was able to improve the finite element method significantly
in a 2D setting by generating optimal test functions, while using the problem specific diffusion
coefficient as a variable.
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1 Introduction

Partial di�erential equations (PDEs) are equations that describe the relationship between a mul-
tivariable function and its partial derivatives. These equations are used extensively in scienti�c
�elds and help describe a lot of the natural processes in our world. One of these PDEs is called
the advection-di�usion equation, which describes the transport of physical quantities through a
system, due to two di�erent types of transport called advection (or convection) and di�usion . The
advection di�usion equation looks like this

@u
@t

= r � (D r u) � r � (vu) (1)

Here, u is some variable of interest,D is the di�usion coe�cient, and v is the velocity �eld of u.
The �rst part of this equation, r � (D r u), captures the transport that occurs due to di�usion.
This is the e�ect of particles moving from high concentration to low concentration. The e�ect of
convection is captured by the second term,�r � (vu). Convection describes what happens when
larger packages of the quantity of interest move due to ow.
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Natural phenomena are often described by equations like the advection-di�usion equation in (1)
together with boundary conditions, resulting in what is called a boundary value problem

8
>><

>>:

@u
@t

= r � (D r u) � r � (vu)

u(t; 0) = g
u(t; 1) = h

(2)

Typically, one is interested in using numerical methods to approximate the solution of (2), espe-
cially when the problem does not have a solution in the classical sense. Industries to which solving
these types of problems is very relevant include the automotive industry, the petroleum industry,
and the aviation industry.
One of the most common numerical methods used to approximateu in problems like (2) is called
the �nite element method. This method discretises the domain of the original problem and uses a
variational formulation that consists of so-called trial and test functions, to arrive at a system of
matrix equations. By solving this system an approximate solution to the original problem can be
found. Numerical methods like the �nite element method do not only say something about how
to �nd an approximate solution to the linear advection-di�usion equation in (2), but can also help
tackle solutions to non-linear advection-di�usion equations like the Navier-Stokes equations, which
are much more widely applicable.

The structure of this thesis is as follows. First, one of the challenges of using �nite element meth-
ods for advection dominated equations will be examined, namely the instability of the numerical
solution. Then, a brief overview of how others have used optimal test functions to deal with this
problem will be included. Once the concept of optimal test functions has been introduced, a sum-
mary of data-driven methods used to solve PDEs will be presented. After examining these di�erent
methods and naming their advantages and disadvantages, research questions will be formulated.
Then, the research questions will be tested by using data-driven methods to generate and imple-
ment the optimal test functions into the �nite element method for the steady state version of the
advection-di�usion equation in 1D and 2D. The last section of this thesis includes the conclusions
and a discussion of potential next steps.

1.1 The Instability of Numerical Solutions

As was mentioned earlier, the �nite element method approximates the solution by using the vari-
ational (weak) form, essentially a discretisation of the original problem. One of the most common
ways of doing this is called the Galerkin method, which is typi�ed by the fact that the trial func-
tions and test functions used in the weak form come from the same class of functions. The Galerkin
method has been very successful as in many applications it can be shown that it leads to the opti-
mal approximation error with respect to a particular norm. One of the problems with the Galerkin
�nite element method is that the approximate solution becomes unstable for advection dominated
PDEs, see [38]. To understand why, an example from [39] will be used. Consider the following 1D
steady-state version of the advection-di�usion equation from (2)

8
>><

>>:

� �
d2u
dx2 + v

du
dx

= 0 for x 2 (0; 1)

u(0) = 0
u(1) = 1

(3)
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The exact solution to this problem is given by

u(x) =
1 � exv=�

1 � ev=�
(4)

To approximate this solution, consider the �nite central di�erence method, which discretises the
domain into N equidistant points and approximates the �rst and second order derivatives at the
point x i in the following way

u0(x i ) =
� u(x i � 1) + u(x i +1 )

2h

u00(x i ) =
u(x i � 1) � 2u(x i ) + u(x i +1 )

h2

(5)

where h is the distance between grid points. These approximations are substituted into theN
equations resulting from the discretisation of (3), to get to

� �
ui � 1 � 2ui + ui +1

h2 + v
� ui � 1 + ui +1

2h
= 0 (6)

If the solution is of the form ui = r k = r k � 1r such that ui � 1 = r k � 1 and uk+1 = r k � 1r 2, then it
follows from (6) that

r =
1 + vh

2�

1 � vh
2�

(7)

The ratio between the transport through advection and through di�usion is called the P�eclet number
and is denoted byPe, i.e., Pe = v=�. Looking at (7) it becomes clear that if the grid P�eclet number,
vh=2� , is larger than one,r < 0 and the solution will oscillate. In [38] the point is made that Galerkin
�nite element methods used to discretise (3) result in the central-di�erence approximations in (5),
and therefore su�er from the same problem.
To see this problem in an example, consider (3) with� = 0 :01 and v = 1. After running a
Galerkin �nite element scheme using 10 elements and �rst order B-spline �nite element functions,
the approximate solution is plotted and is compared to the exact solution in Figure 1.

Figure 1: Galerkin FEM approximate solution vs. exact solution of (3), given � = 0 :01 and v = 1.
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This plot shows that the approximate solution is unstable and exhibits wild oscillations that do not
occur in the exact solution. These oscillations get progressively worse as the P�eclet number gets
larger, and render the approximate solution useless.

2 Building Stable Numerical Schemes

To deal with the instability arising from the central-di�erences in the Galerkin method, several
approaches have been used, of which a brief summary can be found in the introduction of [38].
First, increasing the number of grid points used in the discretisation can help reduce the element to
element wiggles. To see why, note that in (7) a problem arises only when the grid P�eclet number is
larger than 1, i.e., whenvh=2� > 1. This grid P�eclet number gets smaller wheneverh, the distance
between grid points, get smaller. If the grid is re�ned enough, convection no longer dominates on
an element level.
Secondly, "upwind" techniques have been used to stabilize the solution. In the case of �nite di�er-
ence techniques this means that the advective term will be approximated using solutions at upwind
and central points only. While upwind techniques do stabilize the solution, they su�er from a loss in
accuracy (upwind di�erence techniques are �rst-order accurate while central di�erence techniques
are second-order accurate). The loss in accuracy leads the approximate solutions to become overly
di�usive. This added arti�cial di�usion is one of the biggest aws of the upwind method. As it
turns out, using a combination of upwind and central di�erence techniques is better than using just
upwind or central di�erences. In the �nite element method the idea of using upwind convective
terms was �rst achieved with the Petrov-Galerkin framework in which di�erent trial and test func-
tions are used. Here, the test functions were chosen to put more weight on the upstream element
of a node than to the downwind element. These early methods performed better than the regular
Galerkin method when applied to simple convection dominated problems, but unfortunately per-
formed much worse for more complicated cases.
Finally, the streamline upwind/Petrov-Galerkin method was introduced in [38]. This method did
not su�er from the arti�cial di�usion criticism, and is based on the idea of adding di�usion or
viscosity in the direction of the ow only. This method was able to deal with advection dominated
equations, and achieved good results on complicated problems.
The approaches in the papers that will be covered in the remainder of this section are based on
the Petrov-Galerkin method. The novelty of these approaches comes from the fact that they use
discontinuous test spaces, which make it easy to compute so called optimal test functions on a local
basis.

2.1 A Class of Discontinuous Petrov-Galerkin Methods. Part II: Opti-
mal Test Functions

2.1.1 Introduction

In [2] a method is laid out for building discontinuous Petrov-Galerkin (DPG) methods that can
guarantee stability for a particular boundary value problem. Speci�cally, given the weak form of
a boundary value problem and a space consisting of numerical solutions (trial functions), a space
of test functions that can be used to guarantee the stability of a numerical scheme is constructed.
This new approach di�ers from the way Galerkin methods have traditionally been constructed,
where �nite element methods are built by setting test and trial spaces for each mesh element
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simultaneously.
As the name would suggest, an important piece of the DPG method proposed in [2] is that is uses
discontinuous approximation spaces. This allows for the test function spaces to be calculated locally
(on each element separately). In contrast to standard discontinuous Galerkin methods however,
the DPG method proposed in [2] uses the Petrov-Galerkin version, meaning that di�erent functions
for the trial functions spaces and the test function spaces are chosen. In [30], the advantage of this
design choice is explained: although the trial spaces need to have good approximation properties,
the test spaces can be chosen to obtain a stable scheme. In this literature review, the two most
important parts of [2] are covered: the introduction of optimal test functions and the derivation of
practical schemes.

2.1.2 Optimal Test Functions

In [2], L. Demkowicz and J. Gopalakrishnan de�ne the concept of optimal test functions using a
variational boundary value problem

Find u 2 U : b(u; v) = l(v) 8v 2 V (8)

where U and V are real Hilbert spaces, with normsk�kU and k�kV . Furthermore the right hand
side l of (8) is a continuous linear form de�ned on the test spaceV , and b denotes a bilinear form
that is de�ned on U � V that is continuous

jb(u; v)j � M kukU kvkV (9)

and that satis�es the inf-sup condition

inf
kukU =1

sup
kvkV =1

b(u; v) �  (10)

with  > 0. Additionally, L. Demkowicz and J. Gopalakrishnan assume that

f v 2 V : b(u; v) = 0 8u 2 Ug = f 0g (11)

The authors mention that given these conditions, [31] showed that problem (8) has a unique solution
for all l 2 V 0, where the prime refers the dual space. Furthermore, if (8) is approximated by the
following Galerkin method (

Find un 2 Un satisfying
b(un ; vn ) = l(vn ) 8v 2 Vn

(12)

with Un � U, Vn � V , dim Un = dim Vn , and equation (10) holds for the subspacesUn and Vn as
well, then the following theorem from [31] holds

Theorem 1 Under the above assumptions, the exact and the discrete problems(8) and (12) are
uniquely solvable. Furthermore,

ku � un kU �
M
 n

inf
wn 2 Un

ku � wn kU (13)

To explain the idea "optimal test functions", a new norm called the energy norm is de�ned next

kukE
def= sup

kvkV =1
b(u; v) (14)
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Using (14) the following proposition can be derived

Proposition 1.1. The energy norm k�kE is an equivalent norm onU, speci�cally,

 kukU � k ukE � M kukU ; 8u 2 U; (15)

if and only if (9) and (10) hold.

Next, the authors de�ne the map from trial space to test space T. For every u 2 U, de�ne
Tu in V as the unique solution of

(Tu; v)V = b(u; v); 8v 2 V; (16)

Here, the notation (�; �)V refers to the inner product on V . Furthermore, the authors note that
by the Riesz representation theorem,T is a well de�ned map. Then, what follows is evident from
Hilbert space theory

Proposition 1.2. For any u in U, the supremum in (14) is attained by v = Tu 2 V . The
norm kukE is generated by the inner product

(u; u)E
def= ( Tu; Tu)V (17)

L. Demkowicz and J. Gopalakrishnan then consider a Petrov-Galerkin method of the form (12),
with the following �nite dimensional trial subspace

Un = spanf ej : j = 1 ; : : : ; ng (18)

for a set of linearly independent set of functionsej in U. The following de�nition can now be
formulated

De�nition 2.1. Every trial subspace Un , as in (18), has its correspondingoptimal test space ,
de�ned by

Vn = spanf Tej : j = 1 ; : : : ; ng (19)

L. Demkowicz and J. Gopalakrishnan explain that test spaces de�ned as above are "optimal" in
that they result in the optimal ratio of continuity constant to stability constant when U is endowed
with the energy norm. More speci�cally, the following theorem is presented and proven

Theorem 1.2. Let Vn be the optimal test space corresponding to a �nite dimensional trial space
Un . Then the error in the Petrov-Galerkin scheme(12) using Un � Vn equals the best approximation
error in the energy norm, i.e.

ku � un kE = inf
wn 2 Un

ku � wn kE (20)

Since the energy norm is an equivalent norm onU, this means that using optimal test functions leads
to the best approximation error in the norm that is endowed on U. Using optimal test functions
in a Petrov-Galerkin scheme therefore means that a method can be built in which the oscillations
that arise due to a high peclet number are minimized.

9



2.1.3 Derivation of Practical Schemes

To construct a scheme using the optimal test functions, the operatorT in (17) needs to be approx-
imated. L. Demkowicz and J. Gopalakrishnan proceed to lay out the following method.

1. Given a boundary value problem, develop mesh dependent variational formulationsb(�; �) with
an underlying spaceV that allows inter-element discontinuities (this choice is the reason that
theses schemes are called "discontinuous" Petrov-Galerkin methods).

2. Choose a trial subspaceUn that has good approximation properties. Theorem 1.2 shows
that the error in the energy norm will be equal to the smallest possible error based on the
trial functions available, therefore choosing a trial space that can approximate the solution
well is key. This means that they are most often standard piecewise polynomial spaces, where
the degree of the polymomials depends on the local order of accuracy that is needed.

3. Next, the optimal test functions need to be approximated. Because of the inter-element
discontinuities in V in step 1, T can be approximated on an element-wise basis, i.e.,Tn :
Un ! ~Vn such that

(Tn un ; ~vn )V = b(un ; ~vn ); 8~vn 2 ~Vn (21a)

and

Tn is injective on Un (21b)

where ~Vn � V is a space of discontinuous functions, that can be used to represent the ap-
proximate optimal test space. If ej forms a basis forUn as in (18), then the trial space is set
to Vn = spanf t j g where t j = Tn ej . It follows that t j forms a basis forVn due to (21b).

4. The last step involves solving asymmetric positive de�nite matrix system. Regardless of the
assymetry of the bilinear form, the result is always a symmetric linear system, because the
(i; j )th entry of the matrix of (12) is

b(ej ; t i ) = ( Tn ej ; t i )V by (21a)

= ( Tn ej ; Tn ei )V as t i = Tn ei

= ( Tn ej ; Tn ei )V

= b(ei ; t j )

thus coinciding with the ( j; i )th entry. The positive de�niteness follows from (21b).

After describing this method to construct an approximation scheme L. Demkowicz and J. Gopalakr-
ishnan mention that they do not have a universal prescription for selecting the space~Vn , but that its
dimension must be at least of dim(Un ) to satisfy (21b). Their motivation is that as ~Vn gets richer,
the discrete energy normkTn un kV may be expected to converge tokTun kV , so that the discrete
approximation should (more and more) inherit the stability properties of the original problem.

10



2.1.4 Example: Pure Convection

In [2] the use of the DPG method is presented for the transport equation, to illustrate how one
can go through steps 1.-4. from the previous subsection. Consider the following pure convection
problem (

� � r u = f in 

u = u0 on � in

(22)

where 
 � Rn ; n = 1 ; 2; and � in is the inow boundary that looks like this

� in = f x 2 @
 : � � n (x ) < 0g (23)

Here � is either a scalar or a vector, depending on the dimension of 
, andn is the outward normal
unit vector to the boundary. Suppose that 
 is partitioned into a set of �nite elements. To get
to the corresponding weak formulation of (22) the convection equation is multiplied with a test
function that is supported on element K , and then the results is integrated by parts on elementK
to get to

�
Z

K
u@� v +

Z

@K
� n uv =

Z

K
fv (24)

where @� v = � � r v denotes the directional derivative in the direction of � , and � n = � � n . Next,
the authors introduce the ux as an auxiliary variable

q = j� n j u (25)

Using this new variable together with (24) gives the following variational formulation
(

Find u 2 L 2(
) ; q 2 L 2(� h ): such that
b((u; q); v) = l(v); 8v 2 H � (K ); 8K

(26)

with

b((u; q); v) =
X

K

Z

K
� u@� v +

Z

@Kn� in

sgn(� n )qv; (27a)

l(v) =
X

K

Z

K
fv +

Z

@K\ � in

� n u0v; (27b)

H � (K ) = f v 2 L 2(K ) : @� v 2 L 2(K )g (27c)

With the formulation of (26) the �rst step of the DPG scheme is completed. In this example, the
trial and test spaces are de�ned as follows

U = L 2(
) � L 2(� h ); (28a)

V = f v : v 2 H � (K ); 8elementsK g (28b)

so that both are inter-element discontinuous.

11



2.1.4.1 1D Spectral Discretisation To showcase the next three steps of the scheme that was
previously outlined, the authors use a 1D, single element discretisation. Set� = 1. Now, consider
the discretisation of the domain 
 = ( x1; x2) using a single element 
0 = ( x1; x2). The space
H � , which coincides with H 1(
 0), is endowed with a Hilbert structure through the following inner
product

(v; w)V =
Z x 2

x 1

v0w0+ qv(x2) (29)

With this inner product de�ned on V and the L 2(
 0) de�ned on U the bilinear form

b((u; q); v) =
Z x 2

x 1

uv0+ qv(x2) (30)

satis�es (9). The next steps involves setting the trial subspaceUh . In this example it is de�ned as

Up = Pp(
 0) � R (31)

which means that a function (up; q) in Up is a combination of someu 2 P p(
 0) and a one point
value q that represents the ux. In this example the optimal test functions can be calculated ex-
actly. Two optimal test functions are found: one corresponding to the solution on the interior trial
function u 2 P p(
 0) and one corresponding to the ux q.

The optimal test function vu to the interior trial function u 2 P p(
 0) is the function in H 1(
 0)
such that the following equation holds

Z x 2

x 1

v0
u � 0

u + vu (x2)� (x2) = �
Z x 2

x 1

u� 0
v ; 8� v 2 H 1(
 0) (32)

The solution to the above equation is given by

vu (x) =
Z x 2

x
u(s)ds (33)

Similarly, the optimal test function corresponding to the ux q is the function vq that satis�es
Z x 2

x 1

v0
q� 0

v + vq(x2)� v (x2) = � v (x2); 8� v 2 H 1(
 0) (34)

which means that
vq = 1 (35)

Using the span of these two types of functions, the optimal test space can be de�ned

Vp = spanf vu ; vq : u 2 P p(
 0); q 2 Rg (36)

The authors conclude this example by pointing out that a di�erent inner product would have let
to a di�erent optimal test space. For example, choosing

(v; � v )V =
Z x 2

x 1

(v0� 0
v + v� v ) (37)

instead of (29) would have led to non-polynomial optimal test functions.
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2.1.4.2 A multi-element 1D discretisation The authors in [2] also provide a derivation of
the multi-element version of section 2.1.4.1. Instead of using a single element, consider the multi-
element discretisation of 
 = ( x0; xn ) into elements (x i ; x i +1 ). The same inner product from the
single element case is used

(u; w)V =
nX

i =1

Z x i

x i � 1

v0w0+ � i vup (x i )wup (x i ) (38)

Here, � i are scaling factors andvup (x i ) is used to denote the limit of v(x) as x approachesx i from
the left. Similarly vdn (x i ) is used to denote the limit of v(x) as x approachesx i from the right.
The authors use the following trial space

Uh = f (wh ; q1; : : : ; qn ) : whj (x i ;x i +1 ) 2 P p(x i ; x i +1 )g (39)

Here, like was done in section 2.1.4.1,wh is used to approximate u and q1; : : : ; qn are used to
approximate the rightward uxes of each element. The bilinear form looks like this

b((u; q); v) =
nX

i =1

Z x i

x i � 1

� uv0+ qi vup (x i ) � qi � 1vdn (x i � 1) (40)

Here, q0 = 0 because this part is moved to the right hand side and is included in the linear form as
in (27b). Again, the optimal test function can be calculated exactly. For a trial function w de�ned
on element (x i ; x i +1 ) the optimal test function vw (x) is given by

vw (x) =
Z x i +1

x
w(s)ds (41)

For the uxes qi , the optimal test functions vqi are di�erent compared to the section 2.1.4.1 case,
in that they are non-zero on two elements instead of one element. The optimal test functionsvqi

can be found by solving the following two equations
Z x i

x i � 1

v0
i �

0
v + � i v

up
i (x i )� up

v (x i ) = � up
v (x i ); 8� v 2 H 1(x i � 1; x i )

and Z x i +1

x i

v0
i �

0
v + � i +1 vup

i (x i +1 )� up
v (x i +1 ) = � � dn

v (x i ); 8� v 2 H 1(x i ; x i +1 )

The function vqi that satis�es both these equations is given by

vqi (x) =

8
>>><

>>>:

1
� i

if x 2 (x i � 1; x i )

x �
1 + � i +1 x i +1

� i +1
if x 2 (x i ; x i +1 )

0 elsewhere

(42)

Therefore, the optimal test spaceVh corresponding to the trial space is given by

Vh = spanf vw : 8w 2 P p(K ); and vqi : 8i = 1 ; : : : ; ng (43)
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2.2 Automatic Variationally Stable Analysis for FE Computations: An
Introduction

In [35] an automatic variationally stable analysis for �nite element computations of convection
di�usion equations for non-constant and highly oscillatory coe�cients is introduced, called the
AVS-FE method. The idea of least squares �nite element methods is used, introduced in [36],
where second order PDEs are transformed into 1D systems by introducing the uxes as auxiliary
variables. In the derivation of the weak formulation a Petrov-Galerkin method is used, where
the trial functions are global C0 functions and the test functions come from discontinuous Hilbert
spaces. By choosing element discontinuous test spaces, the element-wise computation of optimal
test functions becomes possible. This is essentially the DPG method from [2] that was summarised
previously. Setting up the test functions in this way guarantees the unconditional stability of the
equations governing the FE approximation.
The authors motivate their choice for C0 trial functions by stating this enables them to enforce the
continuity of all variables strongly and in a simple manner.

2.2.1 Derivation of Integral Statement and FE Discretisation

To describe their method, the authors introduce a convection-di�usion equation with homogeneous
Dirichlet boundary conditions and non-homogeneous Neumann boundary conditions

Find u such that

�r � (D r u) + b � u = f in 


u = 0 ; on � D

D r u � n = g; on � N

(44)

Here, 
 � R2 is an open bounded domain. The corresponding Lipschitz boundary@
, consists of
two parts: � D and � N , with � D \ � N = ; and @
 = � D [ � N . Furthermore, D denotes the second
order di�usion tensor that has symmetric, bounded and positive de�nite coe�cients D i;j 2 L 1 (
).
The convection coe�cient is denoted by b 2 [L 2(
)] 2, the source function by f 2 L 2(
) and the
Neumann boundary conditions by g 2 H � 1=2(� N ). Lastly, n denotes the outward unit normal
vector to the boundary.
As was done in [36], a new auxiliary variable is introduced for the ux: q = f qx ; qy gT = D r u.
Using the new variable, the problem (44) can be rewritten as a �rst-order system of PDEs

Find ( u; q) 2 H 1(
) � H (div ; 
) such that:

q � D r u = 0 ; in 


�r � q + b � r u = f; in 
 ;

u = 0 ; on � D ;

q � n = g; on � N

(45)

Next, the DPG version of (45) is constructed. First, a partition of subdomains of 
 is created,
denoted by Ph . This partition consists of elementsK m with diameter hm such that


 = int
� [

K m 2 Ph

K m

�
(46)
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Then, the authors enforce the PDE weakly on each element in the partition and combine the �rst
two equations of (45) multiplied with test functions wm and vm to get to

Z

K m

�
[qm � D r um ] � wm + [ �r � qm + b � r um ] vm

�
dx =

Z

K m

fv m dx

8(vm ; wm ) 2 L 2(K m ) � [L 2(K m )]2

(47)

Here, um and qm are restrictions of u and q respectively. Adding the equations of the form (47)
for the all the elements in the partition results in

X

K m 2 Ph

Z

K m

�
[qm � D r um ] � wm + [ �r � qm + b � r um ] vm

�
dx

=
X

K m 2 Ph

Z

K m

fv m dx; 8(v; w) 2 L 2(
) �
�
L 2(
)

� 2
(48)

To simplify (48) Green's theorem is applied to the (r � qm )vm part. Using Green's theorem does
require that each vm 2 H 1 for the corresponding elementK m . The result looks like this

Find ( u; q) 2 H 1(
) � H (div ; 
):
X

K M 2 Ph

��
(qm � D r um ) � wm + qm � r vm + ( b � r um )vm

�
dx

�
I

@Km

 m
n (qm ) m

0 (vm )ds
�

=
X

K m 2 Ph

Z

K m

fv m dx;

8(v; w) 2 H 1(Ph ) � [L 2(
)] 2

(49)

here  0 : H 1(K m ) :! H 1=2(@Km ) and  m
n : H (div ; K m ) ! H � 1=2(@Km ) denote the trace and

normal trace operators onK m . Furthermore, H 1 is de�ned on the partition Ph as follows

H 1(Ph ) def=
�

v 2 L 2(
) : vm 2 H 1(K m ); 8K m 2 Ph

�
(50)

Equation (49) can be rewritten by splitting up @Km into @Km n� D [ � N , @Km \ � D , and @Km \ � N

as follows
Find ( u; q) 2 H 1(
) � H (div ; 
):

X

K m 2 Ph

� Z

K m

�
(qm � D r um ) � wm + qm � r vm + ( b � r um )vm

�
dx

�
Z

@Km n� D [ � N

 m
n (qm ) m

0 (vm )ds �
Z

@Km \ � D

 m
n (qm ) m

0 (vm )ds

�
Z

@Km \ � N

 m
n (qm ) m

0 (vm )ds
�

=
X

K m 2 Ph

Z

K m

fv m dx;

8(v; w) 2 H 1(Ph ) � [L 2(
)] 2

(51)
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To arrive at the �nal variational form, the authors enforce the Neumann boundary condition on
the trace q and restrict the traces of the test function vm on the Dirichlet boundary condition

Find ( u; q) 2U(
):
X

K m 2 Ph

� Z

K m

�
(qm � D r um ) � wm + qm � r vm + ( b � r um )vm

�
dx

�
Z

@Km n� D [ � N

 m
n (qm ) m

0 (vm )ds
�

=
X

K m 2 Ph

� Z

K m

fv m dx +
Z

@Km \ � N

g m
0 (vm )ds

�
;

8(v; w) 2 V (Ph )

(52)

Here, the trial and test spaces,U(
) and V(Ph ) look like this

U(
) def=
�

(u; q) 2 H 1(
) � H 1(div ; 
) :  m
0 (um ) j@Km \ � D = 0 ; 8K m 2 Ph

�
;

V (Ph ) def=
�

(v; w) 2 H 1(Ph ) � [L 2(
)] 2 :  m
0 (vm ) j@Km \ � D = 0 ; 8K m 2 Ph

� (53)

The norms k�kU (
) : U(
) ! [0; 1 ) and k�kV (Ph ) V(Ph ) ! [0; 1 ) are de�ned as follows:

k(u; q)kU (
)
def=

s Z




�
r u � r u + u2 + ( r � q)2 + q � q

�
dx

k(v; w)kV (Ph )
def=

vu
u
t

X

K m 2 Ph

Z

K m

�
h2

m r vm � r vm + v2
m + wm � wm

�
dx

(54)

The weak formulation in (52) can be written more compactly in the following way

Find ( u; q) 2 U(
) such that:

B ((u; q); (v; w)) = F (v; w); 8(v; w) 2 V (Ph )
(55)

where B ((u; q); (v; w)) and F (v; w) denote the left and right hand side of (52) respectively.
The problem statement in (55) is a DPG formulation. The big di�erence with the approach from [2]
however, is that the trial spaces are globally continuous, meaning that each trial function has
support on multiple elements. The fact that in [2] each trial function is supported on a single
element only introduces the requirement of using numerical traces and uxes as auxiliary variables.
The authors in [35] state that by introducing globally continuous trial functions they attempt to
keep the formulation as close as possible to a standard FE discretisation.

2.2.2 AVS-FE Discretisation

The next step is to �nd the numerical approximations ( uh ; qh ) of the solutions (u; q) of the weak
formulation in (55). To do so, a �nite element discretisation has to be derived. The authors proceed
by introducing a family of invertible maps, f Fm : K̂ � R2 ! 
 g, such that every K m 2 Ph is the
image of elementK̂ and one of the mappingsFm , as shown in Figure 2.
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Figure 2: Discretisation of 
, [35]

As was mentioned in the previous section, the authors of [35] use globally continuous trial functions
in the approximations (uh ; qh ). The resulting space of trial functions, Uh (
) � U(
), looks like
this

Uh (
) def=
�

(� h ; � h ) 2 C0(
) � [C0(
)] 2 : (� jK M ; � h
jK m

) = ( �̂; �̂ jK m ) � Fm ;

�̂ 2 P pm (K̂ ) ^ �̂ 2 [Ppm (K̂ )]2; 8K m 2 Ph

� (56)

Here pm is the degree of the polynomials used in the approximation on elementK m . The approxi-
mate solutions (uh ; qh ) are approximated using linear combinations of trial functions (ei (x); (E j

x (x); E k
y (x))) 2

Uh (
) with constants f uh
i 2 R; i = 1 ; 2; : : : ; N g; f qh;j

x 2 R; j = 1 ; 2; : : : ; N g and f qh;k
y 2 R; k =

1; 2; : : : ; N g, such that

uh (x) =
NX

i =1

uh
i ei (x); qh

x (x) =
NX

j =1

qh;j
x E j

x (x); qh
y (x) =

NX

k=1

qh;k
y E k

y (x) (57)

The test functions that will be used are allowed to be piecewise continuous and can be found using
the DPG method [2] that was described earlier. In [35] however, each trial function will be paired
with a vector valued test function (versus a scalar valued one in the original DPG method). More
speci�cally, ei (x) is paired with (~ei ; ~E i ) 2 V (Ph ), E j

x (x) with (~ej
x ; ~E j

x ) 2 V (Ph ) and ~E k
y (x) with

(~ek
y ; ~Ek

y ) 2 V (Ph ). Pairing the trial and test functions in this way results in the following variational
problems

�
(r; z); ( i ; ~E i )

�

V (Ph )
= B ((ei ; 0); (r; z)) ; 8(r; z) 2 V (Ph ); i = 1 ; : : : ; N;

�
(r; z); (~ej

x ; ~E j
x )

�

V (Ph )
= B ((0; (E j

x ; 0)); (r; z)) ; 8(r; z) 2 V (Ph ); j = 1 ; : : : ; N;

�
(r; z); (~ek

y ; ~Ek
y )

�

V (Ph )
= B ((0; (0; E k

y )) ; (r; z)) ; 8(r; z) 2 V (Ph ); k = 1 ; : : : ; N

(58)
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Here, (�; �)V (Ph ) : V (Ph ) � V (Ph ) ! R is the inner product that is de�ned as follows

(( r; z); (v; w))V (Ph )
def=

X

K m 2 Ph

Z

K m

�
h2

m r r m � r vm + r m vm + zm � wm

�
dx (59)

The optimal test functions can now be found by solving the variational problems in (58).
Lastly, the authors note that by restricting the functions ( r; z) 2 V (Ph ) so that they vanish outside
a given elementK m , the local restriction of the test functions on K m can be computed by solving
the following, restricted version of (58)

�
(r; z); ( i ; ~E i )

�

V (K m )
= B jK m ((ei ; 0); (r; z)) ; 8(r; z) 2 V (K m ); i = 1 ; : : : ; N;

�
(r; z); (~ej

x ; ~E j
x )

�

V (K m )
= B jK m ((0; (E j

x ; 0)); (r; z)) ; 8(r; z) 2 V (K m ); j = 1 ; : : : ; N;

�
(r; z); (~ek

y ; ~Ek
y )

�

V (K m )
= B jK m ((0; (0; E k

y )) ; (r; z)) ; 8(r; z) 2 V (K m ); k = 1 ; : : : ; N

(60)

Here, the authors useB jK m (�; �) as the restriction of B (�; �) to the element K m and de�ne

V(K m ) def=
�

(v; w ) 2 H 1(K m ) � [L 2(K m )]2 :  m
0 (vm ) j@Km \ � D = 0

�
;

(�; �)V (K m ) : V (K m ) � V (K m ) ! R;

(( r; z); (v; w ))V (K m )
def=

Z

K m

�
h2

m r r � r v + rv + z � w
�
dx

(61)

Consider the restriction of B (�; �) for K m on the functions (�; � ) with the same regularity as the
globally continuous trial functions and test functions (r; z) 2 V (Ph ) that are non-zero only on K m .
From the left hand side of (52) it follows that

B jK m (( �; � ); (r; z)) =
Z

K m

�
(� m � D r � m ) � zm + � m � r r m + ( b � r � m )r m

�
dx

�
Z

@Km n� D [ � N

 m
n (� m ) m

0 (r m )ds
(62)

The authors point out a very convenient result that stems from (62). Because the restricted bilinear
form in (60) only has e�ect on the element K m , a test function is non-zero only if the corresponding
trial function is non-zero. This means that the support of each test function is identical to the
support of the equivalent trial function.
Finally, the authors give the FE discretisation of (52), that governs the AVS-FE approximation
(uh ; qh ) 2 Uh (
) of ( u; q)

Find ( uh ; qh )2 Uh (
) such that:

B ((uh ; qh ); (v� ; w � )) = F ((v� ; w � )) ; 8(v� ; w � ) 2 V � (Ph )
(63)

Here V � (Ph ) � V (Ph ) is spanned by the approximations of the test functions

f (~ei
h ; ~E

i
h )gN

i =1 ; f (~ej
x h

; ~E
j
x h

)gN
j =1 ; and f (~ek

yh
; ~E

k
y h

)gN
k=1 : (64)
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that can be computed using (60). As was mentioned a few times, the fact that the philosophy of the
DPG method is used means that the �nite element discretisation in (63) is unconditionally stable,
which removes the need for additional mesh dependent stabilization.

3 Data-Driven Approaches

The goal of this section is to provide a comprehensive overview of data-driven approaches for solving
PDEs. More speci�cally, how deep learning has been used to solve PDEs. Deep learning has been
one of the most revolutionary disciplines in machine learning of the past decade. Due to advances
in computational resources, deep learning has been extremely successful in �elds like computer
vision, natural language processing, and speech recognition. To work well however, deep learning
approaches generally need a lot data. This restriction has lead to a slower adoption rate in �elds in
which a lot of data is not readily available, like in the case of solving complex engineering systems.
In the past couple of years, the use of deep learning to solve partial di�erential equations and
boundary value problems has become a more common practice. Some approaches get around the
lack of data by using custom loss functions that employ prior information about a PDE to train
deep neural networks [4], while other methods use the weak formulation to rewrite the original
equation into a min-max problem ( [22], [1]).
Neural networks have several advantages over numerical approaches like the �nite element method.
When neural networks convergence correctly, there is no issue of instability in the solution. Numeri-
cal methods that discretise a domain into a grid are limited in their application to higher-dimensional
problems, due to the curse of dimensionality; neural networks do not have this problem. Further-
more, neural networks can produce solutions almost instantaneously once trained. This property
becomes especially powerful when combined with new architectures like the Deep Operator Net-
work [3] that can learn to approximate the operators (functions that map from a space of functions
into a space of functions) that govern a PDE.

3.1 Deep Ritz Method: a Deep Learning-Based Numerical Algorithm
for Solving Variational Problems

In [32] a deep learning method is proposed called the Deep Ritz Method, for numerically solving
variational problems. The name of the method comes from the way neural networks represent
functions in the Ritz method.

The authors focus on solving the following variational problem

min
u2 H

I (u) (65)

with

I (u) =
Z




�
1
2

jr u(x)j2 � f (x)u(x)
�

dx (66)

and whereH is a set of so-called trial functions, denoted byu. Furthermore, f is a function that is
given, that represents external forcing to the system. Essentially, the Deep Ritz method consists of
three main ideas. The fact the trial functions are being approximated using a deep neural network,
that numerical quadrature rules are used to approximate the functional, and that an algorithm is
employed to solve the optimization problem.
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3.1.1 Approximating the Trial Functions

As was mentioned briey, approximating the trial functions is done using a deep neural network.
This approximation is essentially a nonlinear transformation

x ! z� (x) 2 Rm (67)

where z� denotes a neural network with parameters represented by� . The layers of the network
used in [32] consist of so-called blocks. Each block is made up out of two linear transformations,
two linear activation functions, and a residual connection (residual meaning that the input of layers
is added back to outputs of layers further down the network). The authors show that blocki can
be written as a function of its input

f i (s) = � (Wi; 2 � � (Wi; 1s + bi; 1) + bi; 2) + s (68)

Here, Wi; 1, Wi; 2 are m � m matrices of block i , and � is an activation function. By adding the
term s in (68), i.e., the residual connection, the vanishing gradient is avoided making the network
easier to train. Figure 3 shows what the neural network architecture, composed of two blocks and
an output layers, looks like.

Figure 3: Neural network composed of two blocks and a linear output layer, [32]

Combining these separate blocks, the full network can be represented as follows

z� (x) = f n � : : : � f 1(x) (69)
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where, again, � represents the parameters corresponding to the network. Now that the neural
network architecture has been laid out, the approximation of the trial function can be speci�ed

u(x; � ) = a � z� (x) + b (70)

By substituting this expression into the functional in (66), the latter can be rewritten to

g(x; � ) =
1
2

jr x u(x; � )j2 � f (x)u(x; � ) (71)

and the minimization problem from (65) can be rewritten to

min
�

L(� ); L (� ) =
Z



g(x; � )dx (72)

3.1.2 Mini-Batch Gradient Descent and Discretisation

Now that approximation of the trial function has been explained, there are two more parts left.
The optimization algorithm that will be used to train the neural network and the discretisation of
the integral in (72). This discretisation of (72) is needed because integrals with functions as the
one de�ned in (71) cannot be calculated explicitly.
To optimize the neural network the mini-batch gradient descent algorithm is used, which is an
algorithm that is very similar to the stochastic gradient descentalgorithm. In stochastic gradient
descent the parameters in the network are updated by calculating the loss function corresponding
to a randomly chosen point in the training dataset. One iteration of the algorithm looks like this

�  � � � r � L (x; � ) (73)

Here, � represents the network parameters,� is parameter that is user-chosen andL (x; � ) is the
loss function evaluated at the point x with network parameters � . The mini-batch gradient descent
algorithm di�ers from the stochastic gradient descent algorithm in that it calculates the loss function
corresponding to a randomly chosenbatch of points in the training dataset (instead of just a single
random point). One iteration of the mini-batch gradient descent algorithm looks like this

�  � � � r �
1
N

NX

i =1

L (x i ; � ) (74)

Note that in the context of the Deep Ritz method, the loss function is essentiallyg(x; � ), and the
datapoints that are used to evaluateg(x; � ) are simply points on the domain. The authors in [32]
proceed in the following way: for each iterationk of the training algorithm, they uniformly sample
a mini-batch f x j;k gN

j =1 from the domain 
, and use the mean of g(x; � ) evaluated at thoseN points
to represent the integral. A single iteration in the resulting approach looks like this

� k+1  � k � � r �
1
N

NX

j =1

g(x j;k ; � ) (75)

The fact that the points used to evaluate the integral are sampled randomly is important here.
If �xed points were used the algorithm would only minimize the integral at those points and not
necessarily over the entire domain. The neural network that is trained during this process can be
used to approximate the solution u(x) at any point in the domain.
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3.2 Deep Least-Squares Methods: An Unsupervised Learning-Based Nu-
merical Method for Solving Elliptic PDEs

In [33] an unsupervised deep learning based approach for solving PDEs is proposed. The method
uses least-squares functionals as loss functions that can be minimized by deep neural networks. The
authors consider the following problem. Let 
 be a bounded subset ofRd with Lipschitz boundary
@
 = �� D [ �� N . The authors consider the following second-order scalar elliptic pde

� r � (Ar u) + Xu = f; in 
 (76)

with
u = gD ; on � D and � n � Ar u = gN ; on � N (77)

with f 2 L 2(
), gD 2 H 1=2(� D ); gN 2 H � 1=2(� N ). Furthermore, A(x) is a matrix of functions in
L 2(
) that is symmetric and has dimension n � n, X is a di�erential operator that is linear and is
of order of at most one, andn is the outward unit vector normal to the � N . Lastly, the authors
assume thatA is uniformly positive de�nite.

Since problem (76)-(77) is generally non-symmetric, it does not have an underlying minimization
principle that can be used to solve it. Since neural networks essentially solve minimization prob-
lems, (76)-(77) needs to be rewritten so that it does lend itself to minimization. This is where the
least squares formulation comes in. The authors use the so called �rst-order system least squares
(FOSLS) formulation that was introduced in [34]. It is possible to rewrite (76)-(77), a second order
problem, into a �rst-order system, by introducing a ux variable q = � Ar u:

(
r � q + Xu = f; in 

q + Ar = 0 ; in 


(78)

with
u = gD ; on � D and n � q = gN ; on � N (79)

Now, the authors let
H (div; 
) := f v 2 L 2(
) d : div v 2 L 2(
) g (80)

and denote the subsets ofH 1(
) and H (div; 
) that satisfy the non-homogeneous boundary con-
ditions by

H 1
D;g (
) = f v 2 H 1(
) : vj � D = gD g and HN;g = f � 2 H (div; 
) : � � nj � N = gN g (81)

Furthermore, they state that if gD = 0 and gN = 0, then the subsets in (81) become subspaces and
will be denoted by H 1

D (
) and HN (div; 
). Let

Vg = HN;g (div; 
) � H 1
D;g (
) and V0 = Hn (div; 
) � H 1

D (
) ; (82)

Now, given (82) the FOSLS formulation is as follows: �nd (q; u) 2 Vg such that

~G(q; u; f ) = min
( � ;v )2V g

~G(� ; v; f ) (83)

Here, f = ( f; g D ; gN ) and ~G(� ; u; f ) is de�ned as

~G(� ; v; f ) = kr � � + Xv � f k2
0;
 + kA � 1=2� + A1=2r vk2

0;
 (84)
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The authors mention that it has been proven in [34] that the homogeneous functional�G(� ; v; 0) is
coercive and bounded inV0, i.e., positive constantsc1 and c2 exist such that

c1jjj (� ; v)jjj 2 � ~G(� ; v; 0) � c2jjj (� ; v)jjj 2; 8(� ; v) 2 V0 (85)

Here, the notation jjj�jjj is used to for the FOSLS energy norm given by

jjj (� ; v)jjj = ( k� k2
0;
 + kr � � k2

0;
 + kvk2
1;
 )1=2 (86)

This result (the coercivity and boundedness of~G(� ; v; 0)) is very important as it implies that (83)
is well-posed, i.e., that it has a unique solution.

The neural network that will be used to approximate the solution to (76) does need to satisfy
the boundary conditions (77). However, in [32] it was observed that in general it is not easy
to make a neural network satisfy prescribed boundary conditions. Therefore, the authors of [33]
proceed by adding both the Dirichlet and Neumann boundary conditions to the functional in (84)

G(� ; v; f ) = kr � � + Xv � f k2
0;
 + kA � 1=2� + A1=2r vk2

0;
 (87)

+ � D kv � gD k2
1=2;� D

+ � N kn � � � gN k2
� 1=2;� N

(88)

for all ( � ; v) := H (div; 
) � H 1(
). Here � D and � N are constants that need to be added to deal
with the di�erence in scale between the interior norm and the boundary norm (by the Sobolev trace
theorem). The new FOSLS formulation becomes: �nd (q; u) 2 V such that

G(q; u; f ) = min
( � ;v )2V

G(� ; v; f ) (89)

It is possible to prove the functional G(� ; v; 0) is coercive and bounded inV, which again means
that the problem (89) has a unique solution.

To approximate the solution (q̂(x; � ); û(x; � )) a neural network is used, where� again is used to
denote all the parameters in the neural network. The parameters� can be optimized using any
kind of gradient descent algorithm and to train the network values for x can be sampled randomly
from the domain.

3.3 Weak Adversarial Networks

In [1] an new approach is proposed for solving PDEs. The usefulness of this approach lies in
the fact that it is very applicable to high-dimensional problems on arbitrary domains. Most of
the conventional approaches that are used to solve PDEs, like �nite di�erence and �nite element
methods, discretise the domain 
. While these methods are very capable at solving highly complex
problems, they su�er from the curse of dimensionality. As the dimensiond of the PDE increases, the
number of grid points used in the discretisation increase exponentially. The method proposed in [1],
using so calledweak adversarial networks(WAN) does not su�er from the curve of dimensionality
because it avoids using any kind of discretisation.
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3.3.1 Training the Weak Adversarial Networks

Instead of discretising the domain, the new method uses so-called weak adversarial networks to
solve the weak formulation of a PDE. In the weak formulation of the PDE, the weak solution and
the test function are parameterised using two neural networks. By rewriting the weak form into a
min max problem, these two networks can be trained in an unsupervised way. The �rst network,
representing the weak solution, will learn to minimize the loss function corresponding to this prob-
lem, while the second network will maximise the same loss function.

The authors use the second-order elliptic PDE with Dirichlet's or Neumann's boundary conditions
on a domain 
 � Rd as an example,

8
>><

>>:

�
dX

i =1

@i (
dX

j =1

aij @j u) +
dX

i =1

bi @i u + cu � f = 0 ; in 


u(x) � g(x) = 0 or ( @u=@�! n )(x) � g(x) = 0 on @


(90)

Here, aij ; bi ; c : 
 ! R for i; j 2 [d] := f 1; : : : ; dg; f : 
 ! R and g : @
 ! R are given, and
(@u=@�! n )(x) denotes the normal derivative of u at the boundary point x 2 @
. The paper also
discusses solving PDEs that introduce time as another variable, but those will not be examined in
this literature review.

The weak formulation can be found by multiplying the left and right hand side of PDE in (90)
with a test function � 2 H 1

0 (
; R) and integrating by parts. The weak form corresponding to (90)
looks like this

Find u 2 H 1(
; R), such that
8
><

>:

hA[u]; � i := �
Z




� dX

j =1

dX

i =1

aij @j u@i � +
dX

i =1

bi �@i u + cu� � f �
�

dx = 0

B[u] = 0 ; on @


(91)

Here H 1
0 (
; R) denotes the Sobolev space, andu is called the weak solution of (91).

The weak formulation (91) can be reformulated as a min max problem in the following way. First,
think of A [u] : H 1

0 (
) ! R as a linear functional operator so that A [u](� ) := hA[u]; � i , de�ned in
(91). In that case the operator norm of A [u] that is derived from the L 2 is de�ned by

kA [u]kop := max
�

hA[u]; � i =k� k2 j � 2 H 1
0 ; � 6= 0g; (92)

Here, k� k2 =
� R


 j� (x)j2 dx
� 1=2

. With this de�nition of the operator norm of A [u] it becomes
evident that the weak solution u of (90) satis�es kA [u]kop = 0 and B[u] = 0 on @
. Since the
operator norm of A [u], kA [u]kop , is zero or positive, the weak solution to (90) thus solves the
following two equivalent problems

min
u2 H 1

kA [u]k2
op , min

u2 H 1
max
� 2 H 1

0

jhA[u]; � ij 2 =k� k2
2 (93)

In [1] these results are summarised in the following theorem
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Theorem. Suppose thatu� satis�es the boundary condition B[u� ] = 0 , then u� is a weak solu-
tion of the BVP (90) if and only if u� solves the problems(93) and kA [u� ]kop = 0 .

Using the result in (93) it is possible to use what the authors of [1] call an "adversarial approach" to
�nd the weak solution corresponding to (91). The goal of the approach is to train a neural network
with parameter � to learn the function u� : Rd ! R, such that A [u] minimizes the operator norm
(93). At the same time a neural network with parameter � is trained to model the test function � ,
that challengesu� by maximising hA[u� ]; � � i modulus k� � k2. Given the strictly monotone nature
of the logarithm function, equation (93) which de�nes the loss function for u� and � � on 
, can be
reformulated into

L int (�; � ) := jhA[u]; � ij 2 � logk� � k2
2 (94)

Lastly, u� also needs to satisfyB[u] = 0 on @
 and it is not necessarily true that the neural network
that is trained to minimize (94) will automatically learn to satisfy the boundary condition too. If
f x ( j )

b gN b
j =1 are a set ofNb points on the boundary @
, then the mean squared error of u� for the

Dirichlet boundary condition on @
 is as follows

L bdry (� ) := (1 =Nb) �
N bX

j =1

�
�
�u� (x ( j )

b ) � g(x ( j )
b )

�
�
�
2

(95)

If there is a Neumann boundary condition imposed instead, thenu� (x ( j )
b ) is simply replaced with

ni (x
( j )
b )@i u� (x ( j )

b )

i.e., the outward normal derivative of u� . Using a weighted sum ofL int and L bdry the �nal objective
function for u� and � � is de�ned as a min max problem

min
�

max
�

L(�; � ); where L(�; � ) := L int (�; � ) + �L bdry (� ) (96)

where � > 0 is a parameter that can be set to speed up convergence and is chosen by the user.

Evaluating the objective function (96) can then be done through evaluation ofL int by sampling
points on the interior of 
, and through evaluation of L bdry by sampling points on @
. Training the
networks then comes down to �nding the gradients ofL (�; � ) with respect to the network parame-
ters � and � . With the gradients, � and � can be optimized using any gradient descent algorithm.
Depending on the con�guration used, each iteration consists of performingK u steps of gradient
descent on� , and then performing K � steps of gradient descent on� .

3.4 Physics Informed Neural Networks

Where weak adversarial networks use the weak formulation of a PDE to solve the strong form,
Physics Informed Neural Networks (PINNs), introduced in [4], use the strong form directly. PINNs
are deep neural networks that are used together with automatic di�erentiation. As these neural
networks will be di�erentiated with respect to their parameters and input data, they automatically
respect symmetries, invariances, and conservation principles that come from the physical laws gov-
erning the data, as they are modeled from the PDEs.
[4] is divided into two parts that focus on two main classes of problems: data-driven solution and
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data-driven discovery of partial di�erential equations. In this literature review, the focus will be on
the �rst type of problem, the data-driven solutions of partial di�erential equations.

The authors consider parameterised and nonlinear partial di�erential equation of the form

ut + N [u; � ] = 0 ; x 2 
 ; t 2 [0; T]; (97)

where u(t; x ) denotes the unknown solution for which the equation should be solved,N [�; � ] is an
operator that is nonlinear and is parameterised by� , and 
 � RD . In [4], two types of algorithms
are considered, continuous and discrete time models. In this literature review only continuous time
models will be covered.
The authors de�ne f (t; x ) to be the left hand side of equation (97), i.e., they de�ne f (t; x ) such
that

f := ut + N [u] (98)

and proceed by approximatingu(t; x ) by a deep neural network. They explain that this assumption
together with equation (98) results in what is a so called physics-informed neural networkf (t; x ).
While this network has the same parameters as the network used to approximateu(t; x ) it has
di�erent activation functions due to the impact of the di�erential operator N . The parameters that
are used by bothu(t; x ) and f (t; x ) can be optimized by minimizing the mean squared error loss

MSE = MSE u + MSE f (99)

with

MSEu =
1

Nu

N uX

i =1

�
�u(t i

u ; x i
u ) � ui

�
� ; (100)

and

MSEf =
1

N f

N fX

i =1

�
� f (t i

f ; x i
f )

�
�2

(101)

In this formulation, the points f t i
u ; x i

u ; ui gN u
i =1 represent the initial and boundary points on u(t; x ),

while the collocation points for f (t; x ) are denoted by f t i
f ; x i

f gN f
i =1 . In this loss function, the part

MSEu relates to the initial and boundary data and the part MSE f makes sure that equation (97)
is enforced at the collocation points.
The approach in [4] di�ers from existing approaches in the literature that use machine learning to
solve PDEs [9{21]. Those approaches use machine learning algorithms as what the authors of [4]
call black-boxmodels. The approach in [4] goes one step further though, by directly implementing
the underlying di�erential operator into the custom loss functions. To see the di�erence, it makes
sense to think about another way in which a neural network could be trained to approximate the
solution to equation (97). One could approximate the solutions at a random set of points on the
domain using any type of algorithm, and then train a neural network to approximate the solution
at those points by using the mean squared error loss function. In doing just that, one might end up
with a neural network that can produce very accurate approximations, but the way in which the
network learns to approximate the solution is di�erent. Updating the network's weights based on
the approximate solution to (97) solely, means that the network only learns about the PDE through
its solution. When instead the network is provided with direct information about the PDE as in
(101), it can learn to approximate the solution using a much simpler architecture and using less
training data.
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3.5 VPINNs: Variational Physics-Informed Neural Networks

In [22] a variational physics-informed neural network (VPINN) is developed. The approach in this
paper operates within the Petrov-Galerkin framework. In this framework the solution is approxi-
mated by a neural network, while the test functions come from linear function spaces. The approach
di�ers from the approach in [4] in that it evaluates the weak formulation of the problem, instead of
directly incorporating the strong form. It does so by constructing a variational loss function. The
authors of [22] list several advantages to this approach.
Firstly, using integration by parts to reduce the order of the di�erential operators, reduces the
required regularity in the solution space. One of the results of this strategy is that the VPINNs
will be less computationally expensive compared to PINNs. Besides being less computationally
expensive, the VPINNs use a loss function that can be expressed analytically. This means that
numerical analyses can be run. Furthermore, VPINNs use a small number of quadrature points
compared to the number of penalising points used in PINNs, which means that the network leads
less data to train. Lastly, the authors mention that the integrals in the weak formulation allow for
the possible bene�t a decomposition of the domain. By dividing the domain up into sub-domains it
is possible to use a separate number of test functions based on the local regularity of the solution.
In the next section the VPINN network will be introduced using a steady state problem.

3.5.1 Training VPINNs

The following formulation of the governing equation of a physical problem in steady state is used
to demonstrate the VPINN

L qu(x) = f (x); x 2 
 (102a)

u(x) = h(x); x 2 @
 (102b)

Here 
 � Rd with dimensionality d and boundaries@
. The function u(x) : 
 ! R is used to
represent the underlying physics, the forcing termf (x) is some external excitation, and lastly, the
authors mention that L usually contains di�erential and/or integro-di�erential operators with the
parametersq.

The approximate solution ~u(x) is given by the weights and the biases of the neural network,uNN .
Alternatively, ~u(x) = uNN (x ; w ; b). The equation (102a) is multiplied by a test function v(x) and
integrated over the whole domain to obtain the variational form

(L quNN (x); v(x)) 
 = ( f (x); v(x)) 
 (103a)

u(x) = h(x); x 2 @
 (103b)

Here, (�; �) represents the inner product. Now that the variational form is de�ned, the variational
residual is introduced as follows

Residualv = R � F � r b; (104)

R = ( L quNN ; v) 
 ; F = ( f; v ) 


Here, the variational residual is enforced for all test functionsvk ; k = 1 ; 2; : : : and r b is de�ned as
follows

r b(x) = uNN (x) � h(x); 8x 2 @
 (105)
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Then, the authors de�ne a discrete �nite dimensional spaceVk using a �nite set of admissible test
functions

Vk = spanf vk ; k = 1 ; 2; : : : ; K g (106)

Using the de�nition of the residual Residualv and of r b the variational loss function can be de�ned

L v = L v
R + L u (107)

L v
R =

1
K

KX

k=1

jR k � Fk j2 ; L u = �
1

Nu

N uX

i =1

�
�r b(xu i )

�
�2

Here, � is a user chosen parameter and the superscriptv is used to refer to the loss function
corresponding to the variational form of the residual. Using these new de�nitions the problem of
solving (103a) and (103b) can be reformulated as

�nd ~u(x) = uNN (x ; w � ; b � ) such that f w � ; b � g = arg min( L v (w ; b)) (108)

Given the objective function above, and the earlier de�ned variational loss function (107) the neural
network uNN (x ; w ; b) can be trained using any type of gradient descent algorithm, by evaluating the
loss function at the collocation points and adjusting the parameters so that the result is minimised.
Figure 4 shows the VPINN approach, consisting of the network layers, the variational residual and
the test functions.

Figure 4: VPINN approach, shown in [22]. The authors note that in the Petrov-Galerkin approach
the neural networks represent the trial functions and that the test functions can either be from
another neural network (as in the WAN approach) or other functions spaces. The green parts in
this Figure represent the test functions whereas the red parts represent the di�erential operators in
the trial function space.

3.6 Deep Operator Networks

In [3] an approach is introduced that approximates nonlinear operators using a new type of neural
network architecture, called a Deep Operator Network (DeepONet). In the papers that have been
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covered so far, neural networks were trained to approximate the solutions to a particular PDE.
Instead, the authors in [3] lay out a method that uses deep neural networks to approximate the
operator G that takes in the input function u. The value that the neural networks predict is
G(u)(y), the function value of the function that is G(u). Instead of taking in just a set of points on
a domain, the DeepONet takes inu and y. What makes this network so powerful for the application
in this thesis (especially compared to other networks), is that it can take in a trial function as an
input variable. The DeepONets will be able to generate the optimal test functions corresponding to
multiple di�erent trial functions, while with the other network architectures a single neural network
per optimal test function would have been needed.

3.7 Training DeepONets

The authors base their approach on a theorem that states that a neural network can accurately
approximate any functional [25{27], which is a mapping from a function space to the real numbers,
or nonlinear operator [28,29], which is a mapping of a space of functions into a space of functions.
Based on this second result from [28], the authors present the following theorem

Theorem: (Universal Approximation Theorem for Operator). Suppose that� is a con-
tinuous non-polynomial function, X is a Banach space,K 1 � X; K 2 � Rd are two compact sets
in X and Rd, respectively, V is a compact set in C(K 1), G is a nonlinear continuous operator,
which maps V into C(K 2). Then for any � > 0, there are positive integersn; p; m; constants
ck

i ; � k
ij ; � k

i ; � k 2 R; wk 2 Rd; x j 2 K 1; i = 1 ; : : : ; n; k = 1 ; : : : ; p; j = 1 ; : : : ; m; such that

�
�
�
�
�
G(u)(y) �

pX

k=1

nX

i =1

ck
i �

� mX

j =1

� k
ij u(x j ) + � k

i

�

| {z }
branch

� (wk � y + � k )
| {z }

trunk

�
�
�
�
�

< � (109)

holds for all u 2 V and y 2 K 2 and whereG(u)(y) denotes the function value of the output function
corresponding to the operatorG and the input function u at the point y in the domain.

This theorem forms the basis for the DeepONet approach that is shown in Figure 5.

29



Figure 5: Deep Operator Network Approach, [3]

In (A) of Figure 5, the inputs and outputs of the network are shown. The network is fed an array
[u(x1); : : : ; u(xm )] consisting of the values of an input function u at a �nite number of �xed points,
called "sensors" and a point on the domainy 2 Rd. (B) shows what the training data looks like:
input functions u evaluated at the �xed sensors, points in the domainy, and the corresponding so-
lutions G(u)(y). The DeepONet can be trained using any type of gradient descent based algorithm
by iterating over the training data.
(C) and (D) show two di�erent variations of the actual network architecture. The architecture in
(C) is what the authors call a stacked DeepONet, that consists of multiple branchesand a single
trunk. Each branch is a neural network and is used to process the information that is given by the
input function u, while the trunk, also a neural network, operates on the point of the domainy.
(D) shows what the authors call anunstacked DeepONet. It di�ers from the stacked network in
that it uses a single branch network to process the information that lies in the input function u.

The focus lies on being able to learn operators in a general setting, with the single requirement for
the training data being the �xed location of the sensors f x1; : : : ; xm g for the input functions. The
inputs consists of two parts: [u(x1); : : : ; u(xm )]T and y, and the goal is to reach high performance
by using a suitable architecture. Lu Lu et al. note that one approach would be to use a regular
neural network and concatenate the inputs, [u(x1); : : : ; u(xm ); y], but explain that the drawback of
this idea would be that as the dimensiond of y gets bigger, it would no longer match the dimension
of u(x i ) for i = 1 ; 2; : : : ; m. This in turn would mean that it would no longer be possible to treat
u(x i ) and y equally. Therefore two separate networks are needed to deal with [u(x1); : : : ; u(xm )]T

and y.

When Lu Lu et al. de�ne the DeepONet they mention that the branch and the trunk networks
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can be any types of neural networks. There are some general points that can be made about them
though. First, the trunk network takes in y as its input and outputs [t1; : : : ; tp]T 2 Rp. Secondly,
the p branch networks each take in [u(x1); : : : ; u(xm )]T as the input, and output a scalar bk 2 R
for k = 1 ; 2; : : : ; p. Therefore, the approximation in equation (109) can be written in terms of the
outputs of the branches and the trunk

G(u)(y) �
pX

k=1

bk tk (110)

Lu Lu et al. use an activation function in the �nal layer of the trunk network, i.e., tk = � (�) for
k = 1 ; 2; : : : ; p. If this fact is combined with equation (110), the trunk-branch network can be seen
as a trunk network where each weight in the last layers, i.e.bk , is being parameterised by another
network instead of being treated as a classical parameter.
In [3] it is mentioned that p is at least of the order of 10, meaning that the stacked version of the
DeepONet is computationally expensive, see(C) of Figure 5. This is why the unstacked version is
created, see(D) of Figure 5. Here all the branch networks are merged into a single network that
outputs the vector [b1; : : : ; bp]T 2 Rp.

3.7.1 Example: a 1D Dynamic System

The authors demonstrate that the DeepONets, due to their superior ability to generalise well,
achieve better results for solving ODEs and PDEs than regular fully connected neural networks
(FNNs). In one of their examples they consider the problem of �nding s(x) over the domain [0; 1]
for any u(x) in the following 1D dynamic system

ds(x)
dx

= u(x); x 2 [0; 1] (111)

The authors mention that solving this problem can essentially be seen as learning the following
operator

G : u(x) ! s(x) =
Z x

0
u(� )d� (112)

To compare with, a regular FNN is trained to learn the operator in (112). A grid search is performed,
using a depth from 2 to 4, width from 10 to 2560, and learning rates 0:01, 0:001, and 0:001 together
with the Adam optimizer. Figure 6 shows the mean squared error of the resulting networks on a
test dataset.
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Figure 6: Errors of FNNs trained to learn the antiderivative operator, [3].

To compare with the regular neural network, a stacked and an unstacked DeepONet (seeC and
D of Figure 5) are trained to learn (112). Of both types, two versions are trained: one with and
one without bias (resulting in four networks in total). The addition of bias means that instead of
outputting (110), the networks output

G(u)(y) �
pX

k=1

bk tk + b0 (113)

where b0 is a parameter that is learned by the network. For all the DeepONets branches of depth
2, width 40, and trunks of depth 3, width 40 are used (the authors note that they did not try to
�nd the optimal con�guration and did not use a grid search). The results of testing the DeepOnets,
together with the best performing FNN, are shown in Figure 7. One interesting point to make here
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is that the DeepONets have a much smaller generalisation error compared to the regular FNN, even
without a grid search.

Figure 7: Errors of DeepONets trained to learn the antiderivative operator, [3].

3.8 Neural Network Approximation of Piecewise Continuous Functions:
Application to Friction Compensation

The universal approximation theorem that was introduced in [23] holds for continuous functions
only. In [37] an approach for approximating functions with discontinuities is proposed. If the
locations of the discontinuities of the function that is to be approximated are known, the authors
show that they can be dealt with using a speci�c type of activation function. Using a neural network
architecture that can deal with discontinuities could be very useful for this thesis. It was shown in
sections 2.1.4.2 and 2.2.2 that the optimal test functions with multi-element support exhibit jumps
between elements. As will be covered in section 4, a major goal of this thesis will be to generate
optimal test functions using neural networks. If the neural network of choice is not able to deal with
the inter-element jumps in the test functions, multiple networks will be needed to approximate the
continuous parts of the optimal test functions, which will reduce the e�cacy of the overall approach.

3.8.1 Augmented Neural Network for Jump Function Approximation

One of the most commonly used activation functions in deep learning is the so called sigmoid
function, that is de�ned as follows

� (x) =
1

1 + e� x (114)

This activation function is used in the universal approximation theorem [23] for neural networks.
This theorem states that a neural network with a single layer together with a sigmoid activation
function can approximate any continuous function arbitrarily close, given enough neurons. The
universal approximation theorem does not make any statements about discontinuous functions
however, which is why the authors of [37] introduce a new type of activation calledsigmoidal jump
approximation functions. Several choices for these discontinuous functions include

� k (x) =

8
><

>:

0; for x < x J�
1 � e� x

1 + e� x

� k

; for x � xJ
(115)
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and

� k (x) =

8
><

>:

0; for x < x J�
ex � e� x

ex + e� x

� k

; for x � xJ
(116)

Here xJ denotes the value ofx for which the jump in the function occurs. These discontinuous
jump functions can be used in tandem with the sigmoid activation functions. The authors of [37]
propose an augmented neural network that is shown in Figure 8.

Figure 8: Augmented Neural Network, [37].

With this type of architecture, the neural network output looks like this

y =
LX

l =1

w1;l � (v1;l x + c1;l ) +
NX

k=1

w2;k ' k (v2;k x + c2;k ) + b (117)

Here, v1;l and v2;k correspond to the elements ofV T
1 and V T

2 respectively, andw1;l and w2;k corre-
spond to the elements ofW T

1 and W T
2 , respectively. Furthermore, c1;l and c2;k correspond to the

biases of the sigmoid functions and sigmoidal jump approximation functions respectively, andb is
the bias associated with the last layer, i.e., with the output y.
To test the performance of the new network, it was used to approximate the following two discon-
tinuous functions

y =

(
sin(x) x < � 1
sin(x) + 1 x � � 1

(118a)

y =

(
x x < 0
0:5x + 1 x � 0

(118b)

The results were compared to approximating the same functions with a regular neural network
without jump approximation functions, as shown in Figures 9 and 10.
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Figure 9: Approximation of function (118a), by a regular neural network (a), and by a neural
network with jump activation functions (b); neural network (full line), true function (dashed line),
[37].

Figure 10: Approximation of function (118b) by a regular neural network (a), and by a neural
network with jump activation functions (b); neural network (full line), true function (dashed line)
[37].

In both cases, the regular neural network and the jump approximation network had 20 sigmoid
nodes, and the jump network had two additional jump nodes. Both types of networks were trained
with the same number of iterations. The Figures show clearly that the augmented neural networks
are much better suited to the regular neural networks. The jump networks are able to determine
the height of the jump, while the regular neural networks appear to average out the function values
around the jump.
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4 Research Questions

The goal of this research is to �nd out out whether it's possible to use the numerical approximation
methods together with the data-driven approaches that have been covered in the previous chap-
ter and combine the best of both worlds. The numerical methods like the DPG scheme [2] and
variations on that scheme [35] are more accurate than data-driven approaches like the Deep Ritz
Method [32], the Physics-Informed Neural Networks [4], the Variational Physics Informed Neural
Networks [22], the Weak Adversarial Networks [1], and the Deep Operator Networks [3]. Further-
more, these schemes are an improvement over regular �nite element methods, since they use optimal
test functions to stabilize the approximate solution. The data-driven approaches however, while
less accurate, have advantages over the numerical approaches as well. One of the biggest being that
they require less computation and can produce an approximate solution almost instantaneously
once trained. New network architectures like the deep operator networks, can be trained to learn
operators that govern partial di�erential equations, and can thereafter be used to generate solutions
for di�erent variations of a particular problem.

Research Question 1: Can data-driven approaches be used to generate optimal test functions
corresponding to particular trial functions, that improve the stability/accuracy of �nite element
methods?

The data-driven approaches will be used to generate optimal test functions for the original DPG
scheme [2] and other comparable approaches that go one step further, like the AVS-FE method [35].
A neural network will be trained to approximate the optimal test function corresponding to a par-
ticular PDE and a particular trial function.
More speci�cally, the goal is to �rst generate the optimal test functions for the 1D pure convection
equation and 1D advection-di�usion equation using the deep learning approaches that were covered
previously, using trial functions that are non-zero on a single element, and allowing for inter-element
discontinuities in the optimal test functions, like was done in the original DPG scheme [2]. Once
the optimal test functions corresponding to these problems have successfully been generated, it is
possible to test how using them in �nite element schemes improves the stability of the approximate
solutions, by comparing the results to other FEM schemes. If the 1D cases prove to be a success,
the 2D versions of these problems will be the next step.
The next step is to use globally continuous trial functions that are non-zero on multiple elements, as
was done in the AVS-FE scheme [35]. Approximating optimal test functions in the case of globally
continuous trial functions could be harder, as the support of each test function is identical to that
of the corresponding trial function, resulting in a piecewise continuous function that is non-zero
on multiple elements. Ideally, this piecewise continuous test function should be approximated by a
single neural network, but if this proves to be infeasible each continuous part could be approximated
with a single neural network. The paper on approximating piecewise continuous functions [37] could
prove very useful here. Once the optimal test functions for these globally continuous trial functions
have successfully been approximated, they will be implemented using �nite element methods to see
if they improve the stability of the approximate solution.

Research Question 2: Can data-driven approaches be used to generate optimal test functions,
using trial functions as variables, that improve the stability/accuracy of �nite element methods?
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This is the most logical next step after the �rst research question has been proven to be a suc-
cess. Instead of training a network on a speci�c choice of trial functions, it will be interesting
to see whether it is possible to train a network to generate the optimal test function given using
the trial function as a variable. This would make it possible to try out several trial functions and
generate multiple optimal test functions without having to retrain the neural network. Again, once
the optimal test functions have been generated by the neural network, they will be implemented in
�nite element schemes to see whether they improve the results.

Research Question 3: Can neural networks be trained to generate optimal test functions, us-
ing problem speci�c parameters like the di�usion coe�cient as variables, to improve the stabil-
ity/accuracy of �nite element methods?

Once the optimal test functions have been successfully approximated using deep learning archi-
tectures and their impact on the stability of the approximate solution has been tested, it is time
to go one step further. Consider the case of generating optimal test functions for the advection-
di�usion equation. What if instead of training a neural network for a speci�c value of the di�usion
coe�cient, it would be possible to train a network that uses the di�usion coe�cient as a variable?
This would greatly increase the overall applicability of the approach, especially when combined
with research question 2. After training a network for the advection-di�usion equation, it would be
possible to provide the network with a trial function, the problem's parameters, and the network
would output the optimal test function.

Research Question 4: Can data-driven methods be used to estimate the �nite element inte-
grals?

In the Galerkin method, the weak formulation is used to construct a system of equations that
can be used to determine the approximate solution of the original problem. Let's consider this
system of equations,Kd = f , whereK is a matrix whose elements consist of integrals over the trial
and test functions, d are the constants used in the approximate solution, andf is a vector whose
elements consist of integrals over the test functions and the functionf from the original problem.
Instead of approximating the optimal test functions, which was the approach in the previous three
research questions, it might be possible to approximate the elements ofK , i.e., the coe�cients of
the �nite element equations. This could make more sense, as the point-wise values of the optimal
test functions are not used in the �nite element method. Instead of approximating the optimal test
functions and then using sampling to approximate their integrals, it would be possible to approxi-
mate the integrals directly.

Research Question 5: Can data-driven methods be used to estimate the perturbation introduced
to the �nite element integrals, caused by using optimal test functions?

Suppose that v is the usual test function used andw is the optimal test function. The e�ect
of using an optimal test function can be seen as a perturbation to the �nite element integrals. If
the integral over (v � w)u is close to zero (with trial function u), then no additional stabilization
would be needed. If this integral is not close to zero, it means that using the optimal test function
would change the coe�cients used in the �nite element equations.
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5 Implementing DeepONet Generated Optimal Test Func-
tions Into the Finite Element Method

In this section, DeepONets will be used to approximate and implement optimal test functions
into the �nite element method, with the goal of improving the stability and the accuracy of the
approximate solution. The previous section covered many di�erent neural network architectures
that can all be used to solve partial di�erential equations. In this thesis the only neural network
architecture that will be used is the DeepONet as it has a few deciding advantages over the other
network architectures.
The most distinctive di�erence between the DeepONet and the rest of the neural networks that
were summarised in the previous section is that the DeepONet approximates operators (a mapping
from one space of functions to another space of functions), using input functions as variables. This
is extremely useful in the context this thesis, as it means that a single DeepONet can approximate
multiple optimal test functions, by passing the trial functions as input variables to the network. In
the setting of a 2D weak formulation that does not employ a mixed strategy, there already exist
14 unique optimal test functions corresponding to trial functions that are the tensor product of C0

piecewise linear,C0 quadratic, and C1 quadratic B-splines. Using the VPINN architecture would
have meant that 14 di�erent networks would have to be trained. In the case of a mixed weak
formulation that uses discontinuous test spaces in the spirit of the DPG method, the number of
neural network that would have had to been trained could be much higher.
Another advantage of the DeepONet over some of the other architectures is that it uses supervised
learning. This means that it is relatively easy to treat problem speci�c parameters like the di�usion
coe�cient as a variable.

5.1 1D Non-mixed Weak Formulation

As was mentioned previously, the advection-di�usion equation will be used to test the implemen-
tation of the optimal test functions. More speci�cally, the following boundary value problem will
be considered 8

<

:
� �

d2u
dx2 + c

du
dx

= f; x 2 (0; 1)

u(0) = 0 ; u(1) = 1
(119)

where � and c are scalars that denote the di�usion coe�cient and advection velocity. In this thesis
c = 1 will be used for all problems, and only � will be adjusted to experiment with di�erent P�eclet
numbers. This is a nice problem to test the use of optimal test functions with, as the exact solution
is known and the Galerkin method will produce oscillatory behaviour for large P�eclet numbers.

5.1.1 Weak Form

Using a discretisation of the domain into open sub-intervalsP =
P n

k=1 
 k , with 
 k = ( xk � 1; xk ),
and x0 = 0 ; xk = 1, the �rst weak form that will be used to �nd a weak solution to (119) is the
following

Find u 2 U such that

�
nX

k=1

Z


 k

u0w0 �
nX

k=1

Z


 k

uw0 =
nX

k=1

Z


 k

fv; 8v 2 V
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Here, the H 1([0; 1]) space is used for the trial and test spacesU and V , i.e, U and V are de�ned as
follows

U = f u : u 2 L 2([0; 1]); u0 2 L 2([0; 1])g

V = f v : v 2 L 2([0; 1]); v0 2 L 2([0; 1])g
(120)

By introducing the notation

b(u; v) = �
nX

k=1

Z


 k

u0w0 �
nX

k=1

Z


 k

uw0

l (v) =
nX

k=1

Z


 k

fv

(121)

the weak formulation can be written in compact form as follows

Find u 2 U such that

b(u; v) = l(v); 8v 2 V
(122)

That this weak form leads to a well de�ned �nite element scheme can be seen in Figure 11. The
instability that has been show earlier can be seen here as well. As the number of elements in the
discretisation increases, the instability disappears as the local P�eclet number becomes smaller.
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