
Deep Learning Techniques
for Low-Field MRI

D. B. Gecmen

D
elf

t
Un

iv
er

sit
y

of
Te

ch
no

lo
gy

Deep Learning Techniques
for Low-field Magnetic Resonance

Imaging
by

Dilan Burçin Gecmen

In partial fulfillment of the requirements for the degree of
Master of Science in Applied Mathematics

at the Delft University of Technology,
as part of the master program

Applied Mathematics

Student number: 4221168
Thesis committee: Dr. ir. M.B. van Gijzen, TU Delft, supervisor

Ir. M. de Leeuw den Bouter, TU Delft, supervisor
Prof. dr. ir. H.X. Lin, TU Delft
Dr. ir. R.F. Remis, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

PREFACE

To many I am indebted for their support in various ways. However, above all there are a few to whom I am
most obliged. First of all, I would like to thank my supervisor Martin van Gijzen and project members Thomas
O’Reilly and Danny de Gans for their incessant support. Without their generous guidance none of this would
have been possible. Secondly, yet to no lesser extent, I want to thank my parents, sisters, friends, and my
boyfriend. Their unconditional and loving trust in my abilities have often helped me beyond the scope of
their and my own knowledge.

D. B. Gecmen
Delft, February 2020

v

ABSTRACT

Delft University of Technology (TU Delft), Leiden University Medical Center (LUMC), Pennsylvania State Uni-
versity (PSU) and Mbarara University of Science and Technology (MUST) have an ongoing collaboration to
create an affordable, portable and simplified version of the magnetic resonance imaging (MRI) scan for the
CURE children’s hospital to diagnose children with hydrocephalus (water on the brain). As opposed to the
conventional MRI scan, the low-field MRI prototype uses permanent magnets to create a magnetic field in the
order of Milliteslas (mT). A downside of the low-field MRI application is the difficulty with spatial encoding
due to small variations in the strength of magnetic field. This is a major problem for image reconstruction.

The purpose of this research was to implement a deep learning (DL) network to overcome two of the
major bottlenecks in image reconstruction for low-field MRI. These are the lack of real measured data for DL
purposes, and the signal model associated with the low-field MRI. For DL purposes we generated synthetic
data and acquired measured data. Each dataset consists of samples and each sample consist of an image
and the corresponding signal. Due to technical limitations the measured dataset is small, 53 samples. To
partially circumvent the problem, the data set was augmented to a total of 1908 samples. In addition, we
used Transfer learning, which is a powerful method that applies knowledge gained from one problem to a
different but related problem.

We present three image reconstruction techniques, Model I, II, and III, based on convolutional and feed-
forward neural networks, which take MR signal data as input and directly and quickly outputs an image. We
demonstrated that DL generates high quality images using synthetic data. In addition, we showed that Model
III needs less training to reconstructs good quality images compared to Models I and II, respectively. Finally,
Models I and III were unsuccessfully applied to real measured data. However, this study shows that neural
networks are able to find a mapping between signal and image, therefore this idea can be extended to work
on real measured data.

vii

CONTENTS

Preface v

Abstract vii

Abbreviations xi

1 Introduction 1
1.1 Scope . 2
1.2 Report outline. 2

2 Conventional: Magnetic Resonance Imaging 3
2.1 History of MRI . 3
2.2 Hardware components . 4

2.2.1 The primary magnet . 4
2.2.2 The gradient system . 4
2.2.3 The radio frequency system . 5

2.3 Signal generation and detection . 5
2.3.1 Magnetized nuclear spin systems . 5
2.3.2 Net magnetization . 6
2.3.3 Free precession, excitation and relaxation . 8
2.3.4 The MR signal . 9

3 Non-conventional: Low field MRI 11
3.1 Magnet design . 11
3.2 The signal model . 14
3.3 Results . 15

4 Deep learning 17
4.1 The multi-layer perceptron . 20

4.1.1 Performance and optimization. 22
4.1.2 Backpropagation. 25
4.1.3 Validation . 26
4.1.4 Regularization . 27

4.2 Convolutional Neural Network . 29
4.3 Convolutional layer . 29

4.3.1 Pooling layer . 30
4.3.2 Fully connected layer . 30

4.4 DL for ill-posed inverse problems . 30

5 Data acquisition and pre-processing 31
5.1 Measured data . 31

5.1.1 Phantom . 32
5.1.2 Acquisition method . 34
5.1.3 Data analysis. 37
5.1.4 Data augmentation . 38

5.2 Simulated data . 39

6 Architectures and test cases 41
6.1 Model architectures . 42

6.1.1 Model I. 42
6.1.2 Model II . 43
6.1.3 Model III . 44

ix

x CONTENTS

6.2 Design of test cases . 44
6.3 Implementation . 48

7 Results: Synthetic Data 49
7.1 Model I . 49
7.2 Model II . 54
7.3 Model III . 57

8 Results: Measured Data 61
8.1 53 Samples . 61
8.2 Data augmentation . 62
8.3 Transfer learning . 63

9 Conclusions and Recommendations 65
9.1 Further research . 66

Bibliography 67

Appendices 71

A Signal detection 73

B Measured data set 75

C Additional versions of Model II 83

ABBREVIATIONS

AI Artificial intelligence
ANN Artificial neural network
BGD Batch gradient descent
CGLS Gradient method for least squares
CNN Convolutional neural network
CPU Central processing unit
CT Computed tomography
DL Deep learning
FFT Fast fourier transform
FNN Feedforward neural network
FID Free induction decays
GAN General adversarial network
GD Gradient descent
INSY Intelligent Systems Department
LReLU Leaky rectified linear unit
ML Machine learning
MLP Multi-layer perceptron
MRI Magnetic resonance imaging
NMR Nuclear Magnetic Resonance
PSD Phase-sensitive detection
QD Quadrature detection
ReLU Rectified linear unit
RF Radio frequency
rSEMs Rotating spatial encoding magnetic fields
SE Spin echo
SEM Spatial encoding magnetic field
SGD Stochastic gradient descent
SSR Super-resolution reconstruction
TE Echo time

xi

1
INTRODUCTION

From visible light, the visual system (part of the central nervous system) builds a representation of our sur-
rounding environment. These representations, which consists out of images, play a key role in our daily lives.
As a matter of fact, not only the visual system, but also various imaging devices are responsible for a huge
part of the knowledge humankind has attained about themselves, the world, and even the universe. For the
human body, Magnetic Resonance Imaging (MRI) has extended the range of the human vision regarding the
human body. MRI produces detailed images of the inside of the body at high resolution, speed, and infor-
mation content. This makes MRI an effective way to detect many different diseases. However, conventional
MRI scanners found in hospitals are complex, use strong magnetic fields, require high power electricity to
push through the coiled copper wires and as a result require very active cooling using liquid helium. This
makes conventional MRI scanners complex, expensive and difficult to operate and maintain. As a result, this
powerful technology is sparsely or not at all accessible to doctors and patients in many parts of the world.

Due to the lack of access to MRI scanners in developing countries, many diseases remain untreated. One
of these diseases is hydrocephalus, often called ’water on the brain’. If left untreated hydrocephalus leads to
permanent brain damage, and in many cases eventually death. This disease usually occurs in infants causing
swelling of the skull and is often caused by a bacterial infection. In Uganda, there is an estimation of 1000 to
2000 cases of hydrocephalus on a yearly basis [1]. Many of these cases remain untreated as the country, with
a population of over 40 million, has limited access to MRI scans. The CURE children’s hospital in Uganda,
specialized in the detection and treatment of infant hydrocephalus, uses computed tomography (CT) brain
imaging. The use of CT scans is highly undesirable due to X-ray radiation, which is dangerous for developing
children.

Delft University of Technology (TU Delft), Leiden University Medical Center (LUMC), Pennsylvania State
University (PSU) and Mbarara University of Science and Technology (MUST) have an ongoing collaboration
to create an affordable, portable and simplified version of the MRI scan for the CURE children’s hospital to
diagnose children with hydrocephalus. The low-field MRI prototype created by TU Delft and LUMC is given
in Figure 1.1.

(a) Exterior of the low-field
MRI prototype.

(b) Inside of the low-field MRI
prototype.

Figure 1.1: The low-field MRI prototype designed by TU Delft and LUMC to image the head.

1

2 1. INTRODUCTION

A conventional MRI scan uses a magnet, radio waves and mathematics to make highly detailed images. When
a body is placed in the magnetic field of the scan, the magnetic hydrogen atoms align to the field. After this
alignment, a radio wave pulses the atoms and thereby distorts their polarity. A built-in sensor then detects
the time that the atoms need to return to their original alignment. Mathematical methods are used to process
the measurements by a computer and create a black and white image. Hard bone and air do not give an MR
signal, as a result, these areas appear black. Soft tissue, blood, spinal fluid, and bone marrow vary in intensity
from black to white.

As opposed to the conventional MRI scan, the low-field MRI prototype uses permanent magnets to create
a magnetic field in the order of Milliteslas (mT). A downside of the low-field MRI application is the difficulty
with spatial encoding due to small variations in the strength of magnetic field. This is a major problem for
image reconstruction.

1.1. SCOPE
In recent years, deep learning has played an increasingly important role in the field of medical imaging [2].
This raises the question of whether we can implement a deep learning-based approach for low-field MRI. The
goal of this thesis is to extensively test various deep learning models for low-field image reconstruction using
synthetic and measured data. This leads to our research question:

“Is it possible to implement a deep learning based approach to generate images using measured signals
from the low-field MRI?”

1.2. REPORT OUTLINE
The report starts in Chapter 2 with an overview of the principles of the conventional MRI scan. Subsequently,
the low-field MRI prototype and the signal model developed by TU Delft and LUMC is introduced in Chapter
3. Because of the non-homogeneous magnetic field of the prototype, standard model based reconstruction
techniques do not yield good enough images to use in a clinical setting. Therefore, a deep learning-based
approach will be considered in this research. In Chapter 4 the theory of deep learning will be discussed. The
main focus is to present neural network architectures that can be used to develop an image reconstruction
model. Among these architectures are the Feed Forward Neural Network and the Convolutional Neural Net-
work, which are extended to our current problem.

For the evaluation of the deep learning models, synthetic data based on the signal model of the low-field
MRI scan, as well as measured data from the actual scanner are used. The generation of simulated data and
the acquisition of measured data are described in Chapter 5.

In Chapter 6 we formulate our three new deep learning models for image reconstruction. Besides the
models, we elaborate upon the design of test cases used to run the simulations. The results of these test cases
are presented, analyzed and evaluated for simulated and measured data in Chapters 7 and 8. Finally, Chapter
9 contains the conclusions and a discussion.

2
CONVENTIONAL: MAGNETIC RESONANCE

IMAGING

An MRI scan takes detailed pictures of various human body tissues using electromagnetic waves coming from
the hydrogen atoms in water and fat molecules. A hydrogen nucleus consists of a single proton, which can be
visualized as a small bar magnet with a north-south pole spinning on its axis, see Figure 2.1.

Figure 2.1: Illustration of a hydrogen proton as a small bar magnet spinning on its axis, which is randomly aligned [3].

When a radiologist in the hospital turns on the MRI scan, a strong constant magnetic field B0 is produced,
which forces the hydrogen protons to align with this field. B0 remains in place for the duration of the mea-
surement. For a short time, the MRI emits pulses from a weaker electromagnetic field B1, applied perpendic-
ularly to B0. B1 is used to disrupts the alignment of the protons with B0 and make them ’jiggle’; this jiggling
is also known as nuclear magnetic spin. After the end of the pulses, the protons are gradually aligned again
with B0. The duration of time that the re-alignment requires depends on the tissue being examined. The
re-alignment of the protons results in the emission of low energy, radio frequency photons. The detector of
an MRI monitors the emission of the photons, allowing a radiologist to identify different tissues.

MRI is a medical imaging technique that arises from the application of Nuclear Magnetic Resonance
(NMR) to radiological imaging. For this reason, MRI could also be called Nuclear Magnetic Resonance Imag-
ing (NMRI). Because MRI was invented during the Cold War, there was widespread concern about everything
that contained the word nuclear. As a result, the medical world embraces MRI instead of NMRI.

In this Chapter the principles of MRI will be discussed. The theory and images in this Chapter are based
on [3], [4] [5].

2.1. HISTORY OF MRI
As already mentioned, MRI is based on the phenomenon of Nuclear Magnetic Resonance (NMR). MRI has its
underpinnings in the discovery of the spin of a proton in 1922 by physicists Otto Stern and Walter Gerlach
[6]. This discovery prompted physicist Isidor Rabi to pursue the spin of the proton and its interaction with
a magnetic field. In 1938 Rabi developed a technique to measure the movement of atomic nuclei, which
he called NMR [7]. With the help of this new technique, Rabi described and measured NMR in molecular

3

4 2. CONVENTIONAL: MAGNETIC RESONANCE IMAGING

beams and in 1944 he received the Nobel Prize in Physics for his efforts. Rabi’s method was extended for use
on liquids and solids in 1946, simultaneously and independently by physicists Felix Bloch [8] and Edward
Purcell [9]. They measured a precessional signal of samples taken from solids and liquids.

Rabi’s techniques were mainly used to analyze structures of chemical substances. In the 1960s, physician
Raymond Damadian wondered whether the same techniques could be used on organisms. In 1971 he came
to the conclusion that cancerous tissue contains more water than healthy tissue, which can be detected by a
scanner that emits radio waves, and detects and measures emissions from the hydrogen atoms in the tissue
[10]. At the same time, the first 2D and 3D MRI images of green peppers and clams where generated by
chemist Paul Lauterbur [11]. After reading the work of Damadian, Lauterbur realized that his method could
also have biomedical applications. According to Lauterbur, two-dimensional images can be stacked to create
a three-dimensional image [12]. Meanwhile, the first biomedical application was carried out by physicist
Peter Mansfield [13], who wanted to create a new method to complete scans in minutes instead of in hours.
He was the first to successfully scan a body part using NMR, namely a student’s finger within 15-23 minutes.

In 1977, Damadian and his team built a scanner that was large enough for the human body and after
several experiments they succeeded in creating a two-dimensional image [14]. However, Damadian’s meth-
ods were too slow to use in a clinical setting and they were rejected. Instead, the methods of Lauterbur and
Mansfield were adopted and in 2003 they received the Nobel Prize in Medicine, which Damadian could not
appreciate.

In 1980, physicist Paul Bottomley and his team built the first whole body MRI, which translated into a
successful MRI product-line that is still in use.

2.2. HARDWARE COMPONENTS

An MRI scan consists of three main hardware components: a main magnet, a magnetic field gradient sys-
tem, and an RF system. These components are the magnetic field sources used to manipulate the magnetic
moments of the hydrogen atoms in tissue. In this Section, each hardware component is briefly discussed.

2.2.1. THE PRIMARY MAGNET

The purpose of magnets used for MRI is to produce a static, strong and homogeneous magnetic field that is
referred to as the B0 field over a clinically useful field of view (FOV). The optimum field strength for imaging
is application dependent.

Most of the B0 magnets in MRI scans are superconducting magnets that can generate a magnetic field of
up to 9 Tesla (T), resulting in a high signal-to-noise ratio. A superconducting magnet is a solenoid electro-
magnet made with superconducting wire. The wire is immersed in liquid helium that causes the resistance
of the wire to drop to zero to allow electric current to flow through the coil to create the magnetic field. This
use of liquid helium makes a superconducting magnet very expensive.

Resistive magnets and permanent magnets are used for low-field MRI applications. Resistive magnets
generate a B0 field of < 0.5 T. The homogeneity limitation results in very heavy magnets and a constant power
supply, which can be very expensive in maintenance. That is why LUMC and TU Delft have built a low-field
MRI with permanent magnets. Permanent magnets are magnetized using an external magnetic field. When
the external field is removed a residual permanent magnetization Br , called the remanent flux density, is left
in the magnet that is always present and at full strength. This means that a permanent magnet costs nothing
to maintain. A major disadvantage is that these magnets are very heavy and that even heavier magnets are
needed to generate higher fields.

2.2.2. THE GRADIENT SYSTEM

In conventional MRI systems, the magnetic field gradient consists of three sets of orthogonal gradient coils:
the x-, y-, and z-gradients. Figure 2.2 shows the configuration of such coils. The primary function of the
gradient coils is to produce deliberate variations in the B0-field, which allows the spatial encoding of the MR
signal in the x-, y- and z-direction. An important requirement for a gradient system is the maximum gradient
strength. The unit of measurement of the gradient strength is in millitesla per meter (mT/m) and the higher
the gradient strength, the better. Another important feature is the speed at which the maximum gradient
strength can be obtained. The rise time is the time interval that a gradient system needs to reach full strength
and the better the gradient system, the shorter the rise time.

2.3. SIGNAL GENERATION AND DETECTION 5

Figure 2.2: Schematic representation of the x-, y-, z-gradient coil used to establish the x-, y- and z- gradient [4].

2.2.3. THE RADIO FREQUENCY SYSTEM
The third main component of the MRI system is the radio frequency (RF) system. The RF system consists
of coils that can serve as transmitters, receivers, or both. Coils that are used as transmitters are capable
of generating a rotating magnetic field, called the B1-field, for excitation of a spin system. The B1 field is
perpendicular to the B0-field and is only enabled for a short time, called RF pulses. To convert the precessing
magnetization into an electric signal, receiver coils are used. Transmitter and receiver coils are also called
RF-coils because they resonate at radio frequency, for excitation of the spin system and signal detection.
Necessary functions of the RF system are to provide a uniform B1 field and high detection sensitivity. To this
end, an MRI scan often contains RF coils with different designs and physics for specific body regions.

2.3. SIGNAL GENERATION AND DETECTION
The focus in this Section is on signals. In particular, what are signals and how are they generated and detected
from objects.

2.3.1. MAGNETIZED NUCLEAR SPIN SYSTEMS
Atoms are the building blocks of every physical object. Atoms are composed of electrons, protons, and neu-
trons. In the central part of the atom, protons and neutrons are clustered together, this is called the nucleus of
an atom. Electrons rotate around the nuclei. When atoms come together they form molecules, which in turn

form physical objects. Nuclei with odd atomic numbers have a spin angular momentum of
−→
J . The nucleus of

the hydrogen atom consists of a single, positively charged proton, see Figure 2.3, therefore it possesses spin.

Figure 2.3: Illustration of a hydrogen atom [3].

Spin can be visualized as a physical rotation similar to the spinning of a top around its own axis. An important
property of a nucleus with spin is known as nuclear magnetism created via setting it in an external magnetic
field. This is physically represented by the vector −→µ , called the nuclear magnetic moment. The nuclear spin

angular momentum
−→
J and the nuclear magnetic moment −→µ are related to each other by

−→µ = γ−→J (2.1)

where γ is the gyromagnetic ratio. The value of this ratio is nucleus dependent and for hydrogen it is
γ= 42.6 MHz· T−1. Because −→µ is a vector quantity, we need to know its magnitude and orientation. With or
without a magnetic field, the magnitude of −→µ is known. However, if there is no external magnetic field, the

6 2. CONVENTIONAL: MAGNETIC RESONANCE IMAGING

direction of −→µ is completely random, see Figure 2.4a. By applying a strong external magnetic field B0, the
spin vectors are forced to align, see Figure 2.4b. You can compare this with a compass needle, where in our
case −→µ tries to align with B0.

(a) Nuclear magnetic moment vectors
randomly oriented without a magnetic

field.

(b) A part of the nuclear magnetic
moment vectors aligns with B0 and a

part does not align.

Figure 2.4: Alignment of the nuclear magnetic moment vectors with and without B0 [3].

B0 is applied in the z-direction such that

−→
B0 = B0

−→
k (2.2)

where
−→
k is the unit vector in the direction of the z-axis. For hydrogen atoms, the spin system is called spin- 1

2 .
For atoms with a spin- 1

2 system the direction of −→µ points upwards (parallel) or downwards (antiparallel), see
Figure 2.5a. When −→µ is aligned with B0, it experiences a torque τ given by

τ=−→µ ×−→
B 0 (2.3)

The movement described by the previous Equation is called nuclear precession, which can be compared to
a wobbling top around its gravitational axis, see Figure 2.5b. The angular frequency of nuclear precession is
called the Larmor frequency or the demodulation frequency and is given by

ω0 = γB0 (2.4)

(a) Spin orientation [4]. (b) Spin precession [3].

Figure 2.5: For a spin- 1
2 system, parallel and anti-parallel are the two preferred spin orientations in the presence of B0.

2.3.2. NET MAGNETIZATION
As mentioned earlier, there are two spin states: parallel or antiparallel. According to quantum theory, spin
states have an energy of

E =−γmIħB0 (2.5)

2.3. SIGNAL GENERATION AND DETECTION 7

where ħ is Planck’s constant. For spins pointing up mI = 1
2 ,

E ↑=−1

2
γħB0 (2.6)

and for spins pointing down mI =− 1
2 ,

E ↓= 1

2
γħB0 (2.7)

The spin-up state is the lower energy state and the spin-down state is the higher energy state. The energy
difference between the two states is called the Zeeman splitting, see Figure 2.6a, and is given by

∆E = E ↓ −E ↑= γħB0 (2.8)

(a) The Zeeman splitting for a spin- 1
2

system [4].
(b) More spins jump into the lower energy state E− than

into the higher state E+ [3].

Figure 2.6: Illustration of the Zeeman splitting.

A nuclear spin is more likely to take the lower energy state because of the higher stability. Therefore, more
spins jump into the lower energy state, see Figure 2.6b. This produces a perceptible macroscopic magnetiza-

tion that points in the same direction as B0, referred to as net magnetization
−→
M given by

−→
M =

Ns∑
n=1

−→µ n (2.9)

where Ns is the number of spins and µn is the magnetic moment of the nth spin. The magnitude of
−→
M is

directly proportional to B0 and Ns . An illustration of net magnetization is given in Figure 2.7

Figure 2.7: The excess spin magnets m form a perceptible macroscopic magnetization
−→
M . [3]

For an object imaged, the net magnetization
−→
M induced by

−→
B0 for each point −→r = (x, y, z) is given by

−→
M = Mx

−→
i +My

−→
j +Mz

−→
k (2.10)

where
−→
i ,

−→
j ,

−→
k represent the unit vectors along the x, y , and z axes.

8 2. CONVENTIONAL: MAGNETIC RESONANCE IMAGING

2.3.3. FREE PRECESSION, EXCITATION AND RELAXATION
During the excitation stage, the energy for an MRI system is supplied in the form of an external magnetic field−→
B 1(−→r , t) perpendicular to

−→
B0 to induce time-varying changes in the magnetization:

−→
M(−→r , t) = Mx (−→r , t)

−→
i +My (−→r , t)

−→
j +Mz (−→r , t)

−→
k (2.11)

−→
B 1 alternates at the Larmor frequency for a short duration of time, also known as radio frequency (RF) pulses,

and tips
−→
M away from equilibrium, i.e., z-axis. This causes

−→
M to have a component in the transverse plane,

i.e., (x, y)−plane. The transverse magnetization is defined by:

M(−→r , t) = Mx (−→r , t)+ i My (−→r , t) (2.12)

If B1 is removed and enough time is given, the spin eventually returns to its thermal equilibrium state. This
process is illustrated in Figure 2.8.

Figure 2.8: Left: Free precession of
−→
M about B0 following a 90◦ excitation pulse that flips M in the transverse plane. Middle: During the

relaxation period, M returns to its original alignment with B0. This process of recovering the longitudinal magnetization Mz is called
transverse relaxation. Right: The transverse magnetization Mx y is destructed and Mz is recovered.[3]

During the relaxation period,
−→
M spirals back to the z-axis, the magnitude is not preserved due to the relax-

ation process. This is different during the excitation period, where
−→
M spirals down from the z-axis with a fixed

magnitude. An important equation to consider is the Larmor relation:

ω= γ|−→B | (2.13)

This relationship states that any magnetization that is transverse (orthogonal) to an applied field will precess
at a frequencyω that is proportional to the magnitude of the applied field. Let t = 0 be the time the excitation
pulse is complete and let t > 0 be time during the recovery of the longitudinal magnetization. The magnitude
of Mx y decreases exponentially with time T ∗

2 called the relaxation factor. The transverse magnetization is
given by:

Mx y (−→r , t) = Mx y (−→r ,0)e
− t

T∗
2 (−→r) e−iγ

∫ t
0 B1,z (−→r ,s)d s = Mx y (−→r ,0)e

− t
T2 e−iω0t (2.14)

where Mx y (−→r ,0) is the magnetization along the transverse plane immediately after an RF pulse. This value

is used to form an image in MRI and depends on the spin density and the RF pulse used to flip
−→
M . The

longitudinal magnetization Mz is given by

Mz (−→r , t) = M 0
z

(
1−e

− t
T1

)
+Mz (−→r ,0)e

− t
T1 (2.15)

where M 0
z is the longitudinal magnetization at thermal equilibrium, Mz (−→r ,0) is the longitudinal magnetiza-

tion immediately after an RF pulse, and T1 is the time required for the regrowth of Mz (−→r ,0) to M 0
z .

2.3. SIGNAL GENERATION AND DETECTION 9

2.3.4. THE MR SIGNAL
Magnetic flux through the coil is given by

Φ(t) =
∫ −→

B r (r) ·−→M(r, t)dr (2.16)

where
−→
B r (r) is the laboratory frame magnetic field at location r = (x, y, z) . By Faraday’s law of induction, the

induced voltage signal in the coil is

V (t) =−∂Φ(t)

∂t
=− ∂

∂t

∫ −→
B r (r) ·−→M(r, t)dr (2.17)

where

−→
B r = Br,x

−→
i +Br,y

−→
j +Br,z

−→
k (2.18)

V (t) is a high frequency signal, which can cause problems in later processing stages. Using signal demodula-
tion, V (t) is moved to a low-frequency band. This results in the MR signal S(t) given by:

S(t) =
∫
ω(r)Mx y (r,0)e−t/T2(r)e−i∆ω(r)t dr (2.19)

A more thorough derivation of the signal S can be found in Appendix A.

3
NON-CONVENTIONAL: LOW FIELD MRI

In Uganda, many children with hydrocephalus do not have access to an MRI scan, which is a crucial clinical
tool for imaging to identify which spaces within the brain are enlarged. The diagnosis of hydrocephalus does
not require an expensive MRI scan for high resolution images. A low-field MRI scan can aid surgical treatment
with high enough resolution. However, the development of a low-field prototype MRI scan, faces several chal-
lenges: permanent magnet design, spatial encoding without switching gradients and image reconstruction.
This Chapter explains the low-field MRI prototype developed by TU Delft and LUMC.

3.1. MAGNET DESIGN
One of the hardest challenges in making the low-field MRI prototype is the design of the magnet that creates
the homogeneous B0 field in one direction. In Figure 3.1 a configuration of the axes in low-field MRI is given.

Figure 3.1: Configuration of the axes in low-field MRI.

Based on literature [15], the decision was made to use permanent magnets in a Halbach array to create B0. In
the 1980s, the Halbach array was invented by physicist Klaus Halbach to focus particle accelerator beams. For
the low-field prototype a circular Halbach array is used. In theory, the circular Halbach array is an infinitely
long cylinder made of magnetic material where the direction of the magnetization continuously varies. This
configuration creates a strong magnetic field inside the cylinder while cancelling the field outside the cylin-
der.

The circular Halbach array used for the low-field prototype contains 24 1-inch cube NdFeB N52 perma-
nent magnets which creates a fairly homogeneous B0 that is oriented in the z-plane over an angle θ, see
Figure 3.2b. The remanent flux density, Br , of the permanent magnets is between 1450−1480 mT.

11

12 3. NON-CONVENTIONAL: LOW FIELD MRI

(a) Configuration of 24 1-inch cube permanent
magnets. The B0-field direction depends on angle θ.

(b) Simulation of the magnetic field of the Halbach
array.

Figure 3.2: Circular Halbach array used in the low-field prototype.

To measure an object with a certain height x, four circular Halbach arrays are stacked together, see Figure 3.3.

Figure 3.3: Four ring Halbach array.

The intensity of the magnetic field is the largest in the z−direction, this causes field inhomogeneities. To
increase homogeneity in the z−direction two extra rings of smaller magnets are placed beneath the array,
this process is called magnet shimming see Figure 3.4a. The outer ring consists of 20 magnets and the inner
ring of 6 magnets. The magnets are 12 mm NdFeB N48 cubes with a Br between 1370−1420 mT.

(a) End shim rings. (b) Gradient rings.

Figure 3.4: Extra magnet rings placed inside the Halbach array for shimming.

3.1. MAGNET DESIGN 13

After the shimming process, B0 is fairly homogeneous. The magnet configuration also creates a magnetic
field in the x−direction with values in the order of 10−16 mT. Therefore, the magnetic field in the x−direction
is neglected.

Due to B0 being fairly homogeneous, we will not be able to resolve spatial difference. To obtain variations
in the field, three rings of smaller magnets are placed inside the four ring Halbach array, see Figure 3.4b. Each
ring contains 16, 5 mm NdFeB N42 cubes with a Br between 1290−1320 mT.

The field strength of the scan is measured for the Halbach array with the shimming rings and the gradient
rings. For every 5 mm the magnetic flux density is measured in the x−, y−, and z−direction. A more detailed
description of the low-field prototype and the magnets can be found in [16] [17].

The bore of the magnet lies along the x-axis. Measured from the bottom of the scan, the center of the
magnet is assumed to be located at x = 247 mm which is 3 mm above the surface of the phantom placed in
the RF coil. Starting at x = 232 mm, B0 is measured for xi = 232+ i ∗5 mm with i ∈ {0,1,2,3,4,5,6}. We use
the B0−field for x = 247 mm, this position corresponds to the bottom of the phantom placed in the scan for
measurements. These objects are filled sunflower oil until 3 mm from the top, this because of variations in B0

in the x−direction.

Figure 3.5: Field strength of the four ring Halbach array with the gradient and shimming rings. The field of view (FOV) in the
z−direction is set to be 0.09 m

The measured signal strength at x = 247 mm is given in Figure 3.5. We will use this field to generate simulated
signal from images. Note that the magnetic field is symmetrical, which means that different locations in the
scan correspond to the same resonance frequency. To solve this, an outer gradient ring is added around the
MRI scan to create a linear monotonic field, see Figure 3.6. This, to make sure that the resonance frequency
varies linearly with the strength of the field. For the remainder of this research, the MRI scan without the
outer gradient ring is used.

Figure 3.6: Outer gradient ring containing 36 1-inch cube NdFeB N52 magnets with Br between 1450−1480 mT.

14 3. NON-CONVENTIONAL: LOW FIELD MRI

3.2. THE SIGNAL MODEL
To derive the signal model for the low-field MRI, we start with the general signal expression S(t) derived in
the previous Chapter:

S(t) =
∫
ω(r)Mx y (r ,0)e−t/T ∗

2 (r)e−i∆ω(r)t dr (3.1)

The quality of magnetic resonance images is highly dependent upon the coil used to receive the radio fre-
quency signal emitted from tissue. Therefore, the coil sensitivity c(r) is added to (3.1) [18]:

S(t) =
∫

c(r)ω(r)Mx y (r,0)e−t/T ∗
2 (r)e−i∆ω(r)t dr (3.2)

In general, the coil sensitivity decreases with distance from the coil, which can cause spatial variations in the
signal strength. If uncorrected, these variations can be a challenge for image reconstruction methods. The
relationship between the transverse magnetization Mx y (r ,0) and the spin density ρ(r) is given by:

Mx y (r ,0) = γħ2

4kB T
ρ(r)ω(r) (3.3)

where kB = 1.381 ·10−23 m2 kg s2 K−1 is the Boltzmann constant and T is the temperature. The spin density
is the concentration of signal bearing spins and is therefore a direct measure of the tissue type. When con-
sidering an high field MRI, the B0 field is homogeneous and therefore Mx y (r ,0) and p(r) only differ with a
constant value. For the low field problem we substitute (3.3) into (3.2) and absorb the constants into c(r):

S(t) =
∫

c(r)ω2(r)ρ(r)B∗
r,x y (r)e−t/T ∗

2 (r)e−i∆ω(r)t dr (3.4)

The decay rate T ∗
2 can be ignored due to spatial variations in B0 in the low-field setting:

S(t) =
∫

c(r)ω2(r)ρ(r)e−i∆ω(r)t dr (3.5)

Measurements from an MRI scan consists of noisy samples of the signal. These noisy samples are given by
adding a measurement error to Equation (3.5) [5]:

bi = S(ti)+ei i = 1, . . . ,L (3.6)

Here, bi denotes the i th noisy sample of the signal, L is the number of time samples, and ei is the i th mea-
surement error. Usually, the ti values are equally spaced, and often the signal is strong at certain time values
due to magnetization phases. The measurement errors are modelled by white Gaussian noise.
Traditionally, from raw measurements MR images are reconstructed by a simple inverse 2D or 3D fast Fourier
transform (FFT). For low-field MRI, the inverse problem is ill-posed and FFT is inadequate. To perform image
reconstruction, spatial variations in the B0−field can be used. However, if the variations are too small, the
signal contains little spatial information. On the other hand, if the variations are too large, T ∗

2 cannot be
neglected and the FOV becomes too small.

Based on literature [5], model-based image reconstruction is an adequate alternative for image recon-
struction. First, the spin density ρ(r) is approximated by using a finite series expansion as follows:

ρ(r) =
N∑

j=1
x jφ(r − r j) (3.7)

where x j denotes the coefficients, φ(·) is the object basis function, and r j is the center of the j th translated
basis function. Usually, rectangular basis function are used and therefore N denotes the number of pixels.
Substituting the basis expansion (3.7) into the low-field signal model (3.6) and simplifying yields:{

S(ti) =∑N
j=1 ai j x j

ai j =
∫
φ(r − r j)c(r)ω2(r)e−i∆ω(r)ti dr

(3.8)

Usually, the basis functions are highly localized, so “center of pixel” approximation is used:

ai j = c(r j)ω2(r j)e−i∆ω(r j)ti∆x∆y∆z (3.9)

3.3. RESULTS 15

where ∆x∆y∆z is the voxel size. In other words, ∆y∆z is the pixel size and ∆x is the slice thickness. Combin-
ing Equations (3.6) and (3.8) results in the following system of equations:

b = Ax +e (3.10)

Here, the elements of A are given by Equation (3.9). The RF system used in the prototype is a solenoid RF-coil,
which serves as both the transmitter and the receiver. After sending out RF-pulses the solenoid coil creates
a fairly homogeneous B1−field. In the prototype there are no switching linear gradients to allow for spatial
encoding. Therefore, conventional two-dimensional Fourier transform image reconstruction cannot be used
as the method relies on a static, strong and homogeneous magnetic B0−field and high strength linear spatial
encoding magnetic fields (SEMs). The variations in the B0 field can be used for spatial localization. However,
the B0-field is symmetric and so it is impossible to determine the contribution of each pixel to the signal from
just a single measured signal.

Based on literature [19], two-dimensional imaging in low-field MRI is possible without gradient coils.
The inhomogeneity of B0 in the prototype can be used for spatial encoding, called the encoding technique
of rotating spatial encoding magnetic fields (rSEMs). The magnet is rotated several times with an angular
increment θ around a sample. At each increment, the field experienced by the sample changes due to the
inhomogeneity of B0. With each rotation new information is provided.

3.3. RESULTS
In order to ensure that the low-field MRI prototype and the imaging methods work correctly, imaging phan-
toms are used. The word phantom may evoke scary thoughts related to ghosts, shims, or illusions, but in the
medical world phantoms are medical devices used to analyze, evaluate and tune the performance of imaging
devices. To test the low-field MRI prototype of the LUMC, the phantom from Figure 3.7a is used.

(a) The phantom. (b) Illustration of the phantom.

Figure 3.7: Phantom used by the LUMC.

In the phantom of Figure 3.7a different areas are filled with air and oil. This is more clearly shown in the
illustration of the phantom given in Figure 3.7b, where the gray areas indicate air and the yellow area indicates
oil. The signals generated from the phantom and super-resolution reconstruction (SRR) are used to produce
an image with higher resolution. The results obtained1 are given in Figure 3.8. The darker areas correspond
to the two circles and the square filled with air of the formerly described image. Air does not give a signal, so
these areas are dark in the final image. It is clear that standard model based reconstruction techniques do not
yield in images good enough to use in a clinical setting.

1The results were obtained by research done by M. L. de Leeuw den Bouter.

16 3. NON-CONVENTIONAL: LOW FIELD MRI

Figure 3.8: High resolution image from the LUMC phantom generated using SRR. The red arrows indicate the two circles and square.

4
DEEP LEARNING

Artificial Intelligence (AI) is the study and creation of machines that can perform tasks that would require in-
telligence if a human were to do the same job. AI is a blend of many sciences: mathematics, computer science,
robotics, neurology, and many more. Each new idea in AI sparks another idea just like the limbs of a tree. The
roots of this constantly changing field are planted by scientists who could imagine all the possibilities.

Over a hundred years ago, before the first computer was built, people already wondered whether one
day machines might be intelligent. In 1844 mathematician and writer Countess Augusta Ada King wanted to
create a mathematical model for how the brain gives rise to thoughts and nerves to feelings ("a calculus of
the nervous system") [20]. Even though Ada did not achieve this she is often regarded as the first computer
programmer in history. She was the first to recognize the application of machines beyond calculation [21].

Two strategies for prediction and problem solving are logic and intuition. Logical problem solving in-
volves problems that are described by a list of formal and mathematical rules. Although this is a difficult
mental undertaking for a human being, it is an easy task for a computer. The real challenge for AI lies in
solving intuition related tasks, such as recognizing certain objects in an image, or sarcasm in spoken words.
These tasks are difficult for computers to solve, but relatively straightforward for human beings [22].

The capability of computers tackling problems using real world knowledge and make ’subjective’ deci-
sions is called Machine Learning (ML), which is a sub-field of AI. The name ML was coined by computer
scientist Arthur Samuel in 1959 [23]. Samuel defined ML as the field of study that gives computers the ability
to learn without being explicitly programmed. A more recent and widely quoted definition is given by Tom
Mitchell in 1997: "A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T , as measured by P , improves with experience
E" [23].

ML is a method for statistical learning where each sample in the input data set is described by human-
defined features. As a result, the performance of ML algorithms highly depend on the representation of the
data they are given. For example, in Figure 4.1 a representation of the data is displayed in cartesian and polar
coordinates. If we want to separate the two classes of data by a linear line, the task becomes simple when the
data is represented in polar coordinates. It is clear that the choice of representation has a huge effect on the
performance of ML algorithms.

Figure 4.1: Data representation. [22]

17

18 4. DEEP LEARNING

For many AI tasks extracting the right features is difficult. For example, suppose we want to design a program
that detects cats in pictures. A computer interprets an image in a different way than we humans do. For a
computer a color image is a three-dimensional array of pixel values that define the red, green, and blue color
components for each pixel, see Figure 4.2.

Figure 4.2: RGB image of a cat. [24]

We know that cats have whiskers, tails, fur textures, and so forth, so we might use these as features. However,
each of the proposed features is difficult to describe in terms of individual pixel values. Therefore, the features
should be described in configurations of groups of pixels rather than in individual pixels. Now let us create
a simple algorithm that tells the computer what a cat exactly is using simple geometric shapes: if there is a
circle with radius r1, if there are two circles with radii r2 < r1, and if there are two triangles on top of the circle
with radius r1 measuring 45 degrees from the center of the circle, then the image is that of a cat, see Figure
4.3.

Figure 4.3: Classifying a cats face in an image using simple predescribed geometric shapes. [24]

Our classifier will clearly fail in a wide variety of situations. For instance, when applied to an image where
only a small part of a cat is showing. One way to tackle this problem is to code up all possible orientations,
sizes, shapes, and so forth for each cat in the world, which is an impossible task.

The problem of extracting abstract higher-level features from group of pixels without human intervention
is solved by Deep Learning (DL) [25], a sub-field of ML, see Figure 4.4. DL solves the problem by allowing
computers to learn and improve from experience and data. DL is an approach to AI that represents the world
in terms of a nested hierarchy of concepts [22]. The computer learns difficult concepts based on simpler
concepts using the so-called hidden layers. These hidden layers can extract increasingly abstract features,
see Figure 4.5. Here, pixels are mapped to an object identity. The input layer is the visible layer, because it
consists of variables that we can perceive, namely the pixels. The hidden layers extract increasingly abstract
features. For example, edges are used to define corners and contours which are parts of higher-level objects.
The output layer is created by a simple classifier, which identifies the objects in the input image: a car, a
person or an animal.

19

Figure 4.4: Flowcharts of how ML and DL work. The boxes with a black edge indicate components that are able to learn from data
without human intervention.

Figure 4.5: Example of a DL application. [22] [26]

DL is a fast-growing field that models high-level patterns in data as complex multilayer networks. In recent
years a variety of neural network types have been studied, including fully-connected networks and convolu-
tional neural networks. Companies such as Google and Microsoft use these type of networks to solve prob-
lems in areas such as image recognition and natural language processing. However, the models used for these
tasks are complex and not easy to understand. Therefore, if we want to consider a DL approach for image re-
construction in low-field MRI, we must first cover the basic mechanics of DL. The core components of any
DL problem are [22]:

1. The learning problem and the data set that we can learn from.

2. A model that transforms the data.

3. A performance measure to quantify how well our model is doing.

4. A learning algorithm that adjusts the parameters of the model to minimize the performance measure.

5. Validation and regularization techniques to measure and control model performance.

20 4. DEEP LEARNING

In the remainder of this Chapter, each component is discussed based on the first and simplest type of arti-
ficial neural network known as a multi-layer perceptron or a feedforward neural network. In addition, two
extremely powerful neural network architectures are briefly discussed: the convolutional neural network and
generative adversarial networks.

4.1. THE MULTI-LAYER PERCEPTRON
An artificial neural network (ANN) is an information processing system that is inspired by the way biological
nervous systems, such as the brain, process information. An ANN contains a large number of highly inter-
connected processing artificial neurons, nodes or units. The aim of ANNs is to find regularities and patterns
within the data by itself. One of the simplest ANN architectures is the perceptron [2], see Figure 4.6.

Figure 4.6: Visualisation of a perceptron.

The perceptron consists of an input layer having input units and an output layer having a single unit. The in-
put and output are interconnected by modifiable weights and the output unit is connected to a bias. Formally,
the perceptron is defined by:

ŷ(x ,Θ) = f (w T x +w0)︸ ︷︷ ︸
z

(4.1)

where x = {xi }D
i=1 is the input vector, ŷ is the output, Θ= {w , w0} is the parameter set containing the weights

w = {wi }D
i=1 and the bias w0. The quantity z is known as the activation and is transformed using a differen-

tiable, nonlinear activation function f (·). The perceptron can only be used for the classification of patterns
that are linearly separable. This limitation has led to the development of the multi-layer perceptron (MLP),
which serves for both non-linear function approximation and non-linear classification tasks [27]. A MLP also
known as a feedforward artificial neural network (FNN) is an interconnection of perceptrons where data and
calculations flow in one direction, from input to output. A (L +1)−layer FNN consists of an input layer, an
output layer, and L hidden layers. The input layer is not counted as a hidden layer as no real processing takes
place. The number of layers is called the depth and the number of units in a specific layer is called the width.
The output in the i th neuron within a layer l is given by:

y (l)
i = f (l)

i

(
z(l)

i

)
with z(l)

i =
m(l−1)∑

j=1
w (l)

i j y (l−1)
j +w (l)

i 0 (4.2)

Here, w (l)
i j denotes the weighted connection between the i th unit in layer l and the j th unit in layer (l − 1),

w (l)
i 0 denotes the bias associated with unit i within layer l , and y (0) is the input. The input layer has D = m(0)

inputs and the output layers has C = m(L+1) targets. The bias parameters can be absorbed into the set of
weight parameters by introducing a dummy unit y (l)

0 = 1 in each layer:

y (l)
i = f (l)

i

(
z(l)

i

)
with z(l)

i =
m(l−1)∑

j=0
w (l)

i j y (l−1)
j (4.3)

For an illustration of the MLP see Figure 4.7.

4.1. THE MULTI-LAYER PERCEPTRON 21

Figure 4.7: A (L+1)-layer perceptron. [?]

Activation functions are used to control the networks outputs. Across various different domains for instance
self-driving cars, cancer detection systems, weather forecast, and many more it has been validated that a
correct choice of activation function improves the results in neural network computing [28]. Generally, a
distinguish is made between saturated and non-saturated activation functions. Common used saturated
activation functions include the logistic sigmoid function:

σ(x) = 1

1+e−x (4.4)

and the tangent hyperbolic function:

tanh(x) = ex −e−x

ex +e−x (4.5)

Graphs of both functions are given in Figure 4.8. For the training of multi-layer neural networks the tanh func-
tion is the preferred function as it gives better training performance compared to the sigmoid function. How-
ever, both activation functions suffer from vanishing gradients during backpropagation, see Section 4.1.2.
This limitation led to further research into other activation functions and led to the birth of the rectified lin-
ear unit (ReLU) [22], see Figure 4.9, which is a non-saturated activation function:

f (x) = max(0, x) =
{

x, if x ≥ 0

0, if x < 0
(4.6)

Figure 4.8: Left: The sigmoid activation function squeezes the real numbers to a range between [0,1]. Right: The tanh activation
function squeezes the real numbers to a range between [-1,1].

ReLU has a strong biological and mathematical underpinning [29]. It is the most widely used activation func-
tion and has achieved state-of-the-art results in many deep learning applications. Compared to the sigmoid
and tanh activations functions ReLU offers better performance and overall faster computation of neural net-
works on complex and high-dimensional data since it does not compute divisions and exponentials [30] [31]
[32]. Another advantage of ReLU is that it introduces sparsity in the hidden layers of the neural network.
Furthermore, there is no saturation in ReLU which means that we have efficient backpropagation without

22 4. DEEP LEARNING

vanishing or exploding gradients. These advantages combined make the ReLU a good choice for optimizing
deep neural networks. However, ReLU suffers from a major drawback in that it easily overfits compared to
the sigmoid function. This limitation has been reduced by using a regularization technique called dropout,
see Section 4.1.4. Another significant limitation is that ReLU units in a network can be fragile during training.
When training a network the networks parameters are optimized for a specific task using backpropagatian.
This technique uses gradient descent in order to update the networks weights. For negative inputs ReLU units
have zero output and as a consequence zero derivatives. If certain weights in the network lead to negative
inputs this causes the so-called ’dead neurons’ or ’dead ReLUs’ as they do not contribute to the training of the
network [22]. An approach to this problem is to set a small learning rate during the parameter update in gra-
dient descent, see Section 4.1.1. Another approach to resolve the dead neuron issues is applying parametric
ReLU (PReLU):

f (x) = 1(x<0)(αx)+ 1(x≥0)(x) =
{

x, if x ≥ 0

αx, if x < 0
(4.7)

where α introduces a learnable small negative slope to the ReLU function. This prevents the gradients to
become zero during the entire training process [33]. We have mentioned some of the most common used ac-
tivation functions in neural networks. However, there are many more activation functions one may encounter
in practice [28].

Figure 4.9: Left: The ReLU activation function. Right: The LReLU activation function.

4.1.1. PERFORMANCE AND OPTIMIZATION

After setting the hyperparameters that define the networks structure (e.g. depth and width) the next step is to
optimize the networks weights. This is done by setting hyperparameters that determine how the network is
trained (activation function, learning rate). The most common learning paradigms to train neural networks
include supervised learning and unsupervised learning. The focus in this study is on supervised learning,
since it is the problem with most structure. Supervised learning is the ML task of learning a mapping from
inputs x to targets y given a labeled set of input-target pairs D = {(x i , y i)}N

i=1. Here D is called the training set,
and N is the number of training samples.

Supervised training is accomplished by minimising some cost function which can be interpreted as an er-
ror measure E by iteratively adjusting the networks parameters to make the calculated output ŷ more similar
to the target y [22] [34].

There are various error measures which can be considered depending on the particular application [35].
Common choices include the sum-of-squared error measure:

E(w) =
N∑

n=1
En(w) =

N∑
n=1

C∑
k=1

(ŷk (xn , w)− yn,k)2 (4.8)

and the cross-entropy error measure:

E(w) =
N∑

n=1
En(w) =−

N∑
n=1

C∑
k=1

yn,k log(ŷk (xn , w))) (4.9)

4.1. THE MULTI-LAYER PERCEPTRON 23

Here, yn,k denotes the kth entry of the target y n associated with input xn and w is the weight vector containing
the weights and biases. The necessary criterion for minimisation is given by:

∂E

∂w
=∇E(w) = 0 (4.10)

where ∇E is the gradient. Due to the complexity of the error we cannot find an analytical solution to the
equation ∇E(w) = 0. Therefore, we resort to iterative numerical procedures. Most techniques involve choos-
ing some initial weight w [0] and update the weights accordingly after each iteration step τ:

w [τ+1] = w [τ]+∆w [τ] (4.11)

After each update, the gradient is re-evaluated for the new weight vector and the process is repeated. A simple
method to minimise the error is called gradient descent (GD) [22], which is a first-order iterative optimization
technique. The idea behind GD is to minimise the error measure by adjusting the weights, see Figure 4.10.

Figure 4.10: Gradient descent on a series of level curves.

This is done by taking a step in the direction of the steepest descent of the error measure, or in other words
by adjusting the weights in the direction that shows the largest decrease in the error measure. The weight
update in GD is given by:

∆w [τ] =−η∇E(w [τ]) (4.12)

where η> 0 is the learning rate and indicates the relative size of the change in weights. The learning rate is a
hyperparameter and much time is invested in finding and adjusting the value. A small learning rate can cost a
huge, often unacceptable amount of time, given that in each update smaller changes are made to the weights.
On the other hand, a large learning rate causes the model to converge very fast to a suboptimal solution and
remain oscillating around the optimal solution without finding it. The optimal learning rate is one that gets
fast learning while avoiding oscillation.

There are three variants of GD [36]: batch gradient descent, stochastic gradient descent, and mini-batch
gradient descent. The difference between these variants is the amount of data used from the training set to
compute the gradient for each parameter update, also known as the learning step. A trade-off is made be-
tween the accuracy of the parameter update and the time complexity of each update. Batch gradient descent
(BGD) or vanilla gradient descent updates the parameters based on the overall error: E(w) = ∑N

n=1 En(w).
BGD is guaranteed to converge to the global minimum for convex problems and to a local minimum for non-
convex problems. However, training sets of many DL-related tasks contain an enormous amount of samples
and scanning throughout the set before making an update can be a costly operation.

Unlike BGD, stochastic gradient descent (SGD) performs a parameter update for each training sample
based on the error: En(w). That is why SGD is much faster than BGD. A disadvantage of SGD is the high
variance of different training samples and the frequent updates performed by SGD cause a heavily fluctuating
cost function, see Figure 4.11. As a result, SGD keeps overshooting the minimum. By slowly decreasing the
learning rate, SGD shows the same convergence behavior as BGD.
By combining BGD and SGD, we get the best of both worlds, namely mini-batch gradient descent. This is the
algorithm of choice when training a neural network and often the term SGD is employed when mini-batches
are used. Mini-batch gradient descent performs a weight update by processing a random subset (mini-batch)
of M training examples. The weights are updated based on the cumulative error: EM (w) =∑

n∈M En(w). This

24 4. DEEP LEARNING

Figure 4.11: SGD fluctuation of the error measure. [36]

approach reduces the variance in the parameter updates, which can lead to a better and stable convergence.
Common batch sizes range from 50 to 256, but this can vary for different applications. The number of times
a mini-batch of data passes through a learning algorithm is known as the iteration step and the number of
times a learning algorithm works through the entire training set is defined by the number of epochs.

Mini-batch gradient descent does not guarantee good convergence, because choosing a proper learning
rate is difficult. In general, the optimal learning rate cannot be analytically calculated in advance [37]. In-
stead, a proper learning rate is estimated through trial and error. A good starting point is to use a default
value of 0.1 or 0.01. Another approach is to grid search learning rates on a logarithmic scale from 0.1 to 10−5

or 10−6 [22].
Instead of using a fixed learning rate, a better approach is to decay the rate over time. This is known as the

learning rate schedule or the learning rate decay. There are three common strategies for implementing the
learning rate decay [22]:

• Step decay drops the learning rate by a factor every few epochs. Typically, the learning rate is reduced
by half every five epochs, or by 0.1 every 20 epochs. The factor value depends on the type of problem
and the model.

• Exponential decay is given by ητ = η0e−kτ where η0, k are hyperparameters and τ is the iteration step.

• 1
τ decay is given by ητ = η0

1+kτ where η0, k are hyperparameters and τ is the iteration step.

In practice, step decay is preferred as no additional hyperparameter k needs to be set. A challenge when
using learning rate schedules is that their hyperparameters must be predefined and therefore they cannot be
adapted to the characteristics of the training set. Adaptive learning rate methods are an alternative to this
problem. These methods monitor the performance of the model on the training set and adjust the learning
rate accordingly. The most popular adaptive optimization algorithms include SGD with momentum (Figure
4.12), Adam and NAdam [22].

Figure 4.12: To speed up the process of configuring the learning rate, Momentum can be added to the learning process. Momentum
helps SGD to accelerate in the right direction and damps oscillations. [36]

4.1. THE MULTI-LAYER PERCEPTRON 25

4.1.2. BACKPROPAGATION
Supervised training algorithms generally involve an iterative process to minimize the error function, with
adjustments to the networks weights being made in a sequence of iterations. At each iteration, a distinguish
is made between two different stages. In the first stage, the derivatives of the error function with respect
to the weights are evaluated. This is commonly done by error backpropagation or simply backprop [38],
which enables ANNs to solve complex problems. Backprop is one of the simplest and most general learning
algorithm for supervised training. The technique derives its name from the fact that partial derivatives of
the error measure with respect to the weights of the network are determined by back propagating the error
signals (computed by the output units) through the network, layer by layer. In general, backpropagation can
be decomposed in the following four steps:

STEP 1: FORWARD PROPAGATION

Forward propagate the input value y 0 through the network to find the activations of all the hidden units and
output units by successive application of:

y (l)
i = f (l)

i (z(l)
i) with z(l)

i =
m(l−1)∑

j=0
w (l)

i j y (l−1)
j (4.13)

STEP 2: ERRORS OUTPUT LAYER

The next step is to calculate the error of each unit in the output layer. This is done by subtracting the target
value from the actual output for each output unit k:

δk = ŷk − yk (4.14)

An illustration of step 1 and step 2 is given in Figure 4.13a.

STEP 3: BACKWARD PROPAGATION

The errors for the hidden units can be obtained by backpropagating the errors from units higher up in the
network. This is done by using the backpropagation formula:

δ(l)
i = f ′(z(l)

i)
m(l+1)∑

k=1
w (l+1)

ki δ(l+1)
k (4.15)

Backpropagation is illustrated in Figure 4.13b.

(a) Forward propagation (b) Backward propagation

Figure 4.13: Left: Forward propagation indicated in red arrows starting from the hidden unit j in layer (l −1) through unit i in layer (l)
to the output units in layer (l +1). After the forward propagation step the errors of each unit in the output layer are calculated. Right:
Backward propagation indicated in blue arrows starting from the units in the output layer (l +1) through unit i in layer (l) to unit j in

layer (l −1).

STEP 4: EVALUATE DERIVATIVES

The last step in the backpropagation algorithm is to evaluate the derivatives of the error measure with respect
to the weights:

∂E

∂w (l)
i j

= δ(l)
i y (l−1)

j (4.16)

26 4. DEEP LEARNING

Details and a more thorough derivation of backprop can be found in [34].
In the second stage, the derivatives calculated in the fourth step of backprop are used to adjust the weights
of the network. The simplest and most popular optimization procedure for weight adjustment is gradient
descent. As already explained in the previous Section there are three variants of GD. Each variant in com-
bination with backprop gives a different training algorithm. For instance, stochastic backprop is given by
[39]:

Algorithm 1: Stochastic backpropagation

1 begin initialize network topology (depth, width), w , criterion θ, η, m ← 0

2 do m ← m +1
3 y0 ← random chosen input vector
4 wi j = wi j −ηδi y j

5 until ∇E(w) < θ
6 return w
7 end

and mini-batch backprop is given by:

Algorithm 2: Mini-batch backpropagation

1 begin initialize network topology (depth, width), w , criterion θ, η, r ← 0, mini-batch size n

2 do r ← r +1
3 m ← 0, ∆wi j ← 0,
4 do m ← m +1
5 y0 ← random chosen input vector
6 ∆wi j =∆wi j −ηδi y j

7 until m = n
8 wi j ← wi j +∆wi j

9 until ∇E(w) < θ
10 return w
11 end

4.1.3. VALIDATION
Once training is complete, the question arises how well our learning algorithm performs on unseen data.
Due to the problem of overfitting, see Section 4.1.4, the training set is not a good indicator of the predictive
performance of the model on unseen data. Luckily, supervised learning algorithms involve data sets with
labelled examples. If there is sufficient data, a general approach to measure the effectiveness of a learning
algorithm is to shuffle the examples and split the data into three subsets: training, validation, and test [40].
The training set is usually the biggest and used to build a model. The validation and test sets are samples of
the data held back from building a model. That is why these sets are also called the hold-out sets. For a large
amount of data, both sets are roughly of the same size and much smaller than the training set.

During training the validation set is frequently used to evaluate the performance of the model through
calculating the loss. Subsequently, the hyperparameters are fine-tuned based on the results on the validation
set. After the training phase is over the test set is used for a final accuracy evaluation of the model. The test
set is not used for learning or for any architectural or hyperparameter decisions.

The split ratio of the data depends on the total number of examples and the model that is being trained. In
many applications the amount of data will be limited. In order to build a good model on would go for a larger
training set. On the other hand, a small validation set will give a noisy estimate of predictive performance
[34]. The common technique to this problem is to perform k-fold cross-validation, which is illustrated in
Figure 4.14.

4.1. THE MULTI-LAYER PERCEPTRON 27

Figure 4.14: k-fold cross-validation illustrated for the case k = 4. After fixing the hyperparameters the data is randomly partitioned into
k disjoint subsets (which are of equal size in a simple setting). k −1 groups are used to train the model and one is retained (red block) as

a validation set. This process is then repeated until each subset is used as a validation set. After the model is evaluated for k runs, the
performance results are averaged to give a final estimation of the models performance. [34]

4.1.4. REGULARIZATION

If the model is unable to capture the underlying pattern of the training data, we say that the model underfits
or that the model has a high bias. The solution to underfitting is to increase the complexity of the model or to
engineer features with a higher predictive power [41].

On the other hand, when the training error is low on the training set, but high on at least one of the hold-
out sets, we say that the model overfits or that the model has a high variance. There are various solutions to
prevent overfitting: a simpler model, dimensionality reduction of the data, more training data or regulariza-
tion [41]. Regularization is the most commonly used method to prevent overfitting by forcing the learning
algorithm to build a less complex model. This technique considerably reduces the variance, but also leads to
a slightly higher bias, known as the bias-variance trade-off.

There are various regularization techniques that benefit neural networks: weight regularization, early
stopping, dropout, batch normalization, and data augmentation [41].

Figure 4.15: Graphs showing scenarios of underfitting, overfitting and just right separation.

WEIGHT REGULARIZATION

Weight regularization updates the learning algorithm to encourage the network to keep the weights small
because large weights are a sign of a more complex model that overfits the training data [22]. To create a
regularized model, a parameter norm penalty Ω(w) is added to the error measure which aims to control the
complexity and form of the solution :

Ê(w) = E(w)+ηΩ(w) (4.17)

Here, η ∈ [0,∞) is a hyperparameter that determines how much the weights are penalized. The two most
common types of weight regularization are L1-regularization and L2-regularization. L1-regularization, also
known as lasso regression, defines the norm penalty as:

Ω(w) = ||w ||1 (4.18)

28 4. DEEP LEARNING

L1 enforces sparsity of weights by making many weights equal to zero, so a feature selection is made by de-
ciding which features are essential for making predictions and which are not [41]. This increases the explain-
ability of the model. However, if the main goal is to improve the performance of the model on unseen data
L2-regularization, also known as ridge regression or Tikhonov regularization, usually produces better results.
L2-regularization defines the penalty norm as:

Ω(w) = ||w ||22 (4.19)

DROPOUT

Dropout is inspired by the role of sexual reproduction in evolution [42]. Sexual reproduction involves taking
half of the genes of both parents, adding a hint of random mutation and combining both to produce off-
spring. On the other hand, asexual reproduction creates offspring that inherits a slightly mutated copy of the
genes of only one parent. Intuitively one may assume that asexual reproduction is the better way to opti-
mize individual fitness, because the set of genes that work well together is inherited directly by the offspring.
Sexual reproduction will most likely to break co-adapted sets of genes, especially with larger sets. However,
sexual reproduction is the way most advanced organisms developed. A possible explanation is that a criterion
for natural selection is the mixing capacity of genes instead of individual fitness. The mix-ability of random
sets of genes makes them more robust. A gene cannot rely on a large number of partner genes to always be
present, it must learn something useful in collaboration with any set of other genes.

This idea of mix-ability is applied with dropout in neural nets. Dropout temporarily removes units (input
and hidden) from the neural network, see Figure 4.16. The probability of retaining one unit is p ∈ [0,1] inde-
pendent of other units. For a wide range of networks and tasks, the optimal probability of retaining hidden
units is close to p = 0.5 and for the input units, this value is closer to 1.

Dropout is implemented per layer in a neural network and samples a “thinned” version of the network
consisting of all units that survived. A network with n units has a collection of 2n possible thinned networks.
For each training example a new thinned network is sampled and trained. After training dropout is not used
to fit the network. However, the weights of the network will be larger because of dropout and just before
finalizing the trained network the weights are scaled by the chosen dropout rate.

Like other regularization methods, dropout is more effective on problems with smaller datasets [22]. For
very large datasets, dropout does not have much extra benefit and the computational cost of applying it can
outweigh the benefit of regularization.

Figure 4.16: Dropout applied to a FNN with two hidden layers. The units that are crossed are dropped resulting in a thinned network.
[43]

BATCH NORMALIZATION

Batch normalization is a technique that consists of standardizing the output of each layer before the units of
the next layer receive them as input. In practice, batch normalization leads to faster and more stable training,
as well as to some regularization.

EARLY STOPPING

The challenge of training a model is to train long enough to learn a mapping without overfitting. Early stop-
ping is a technique used to prevent overtraining. When iteratively training a learning algorithm, the training
error decreases steadily with the number of iterations. At a given moment, however, the model can start
overfitting the training set and as a result the error on the validation set starts to rise. This overfitting can be
prevented by stopping the training as soon as the error in the validation set reaches a minimum.

4.2. CONVOLUTIONAL NEURAL NETWORK 29

This may seem easy at first, but the ugly reality is that validation error curves always have more than one
local minimum. This problem can be solved by using a stopping criterion [44].

DATA AUGMENTATION

Data augmentation is often used to regularize models that work with images. A synthetic image is made from
the original image by applying different transformations that are likely to be found in unseen data.

4.2. CONVOLUTIONAL NEURAL NETWORK
When the training examples of an ANN are images, the input is very high-dimensional and a large number of
parameters would be needed to characterize the network. Optimizing such large models is computationally
intensive and because of the complexity of the model it is likely to overfit. The solution to these problems is
a special type of FNN for processing data with a grid-like topology: the convolutional neural network (CNN)
[45] [46]. CNNs are mainly used in the field of pattern recognition with images, which allows certain proper-
ties to be encoded in the architecture while drastically reducing the number of parameters required to set up
the model. CNNs are composed by stacking three types of layers: convolutional layers, pooling layers, and
fully-connected layers. These layers are grouped based on their functionality: the convolution and pooling
layers together perform feature extraction and the fully connected layers maps the extracted features to an
output, for an illustration see Figure 4.18.

In the remainder of this Section the building blocks of a CNN architecture are discussed. Because CNNs
are mainly used to analyse images, we will explain the network using images as input.

Figure 4.17: Illustration of a CNN architecture. [?]

4.3. CONVOLUTIONAL LAYER
The convolutional layer is the fundamental layer of a CNN that is used for feature extraction. The first layer
in a CNN is always a convolutional layer that is used to extract the simple features from the input like lines,
edges, and corners. The higher-level convolutional layers are used to extract higher-level features. This fea-
ture extraction is performed by a linear operator called convolution, where a kernel (filter), a set of weights,
is systematically applied to the input (tensor) to create a feature map. Different kernels can be used to form
multiple feature maps, each representing a different feature of the input. Two hyperparameters that define
convolution are the size and the number of kernels. For simplicity, let’s define a grayscale image I of size
(n1 ×n2) [22]:

I : {1, . . . ,n1}× {1, . . . ,n2} →R, (i , j) 7→ Ii , j (4.20)

The discrete convolution (I ∗K) of image I with kernel K ∈R(2h1+1)×(2h2+1) is given by:

(I ∗K)r,s =
h1∑

u=−h1

h2∑
v=−h2

Ku,v Ir+u,s+v (4.21)

with

K =

K−h1,−h2 · · · K−h1,h2

... K0,0
...

Kh1,−h2 · · · Kh1,h2

 (4.22)

30 4. DEEP LEARNING

Let l be a convolutional layer, the input of l consists of m(l−1)
1 feature maps from the previous layer each of

size m(l−1)
2 ×m(l−1)

3 . If l = 1 the input is a single image I that consists of one or more channels. The m(l)
1 feature

maps in layer l are computed as:

Y (l)
i = B (l)

i +
m(l−1)

1∑
j=1

K (l)
i , j ∗Y (l−1)

j ∀1 ≤ i ≤ m(l)
1 (4.23)

Here, B (l)
i is the bias matrix and K (l)

i , j ∈R(2h(l)
1 +1)×(2h(l)

2 +1) is the filter matrix, which connects the j th feature map

in layer (l −1) with the i th feature map in layer l .

Figure 4.18: Feature map.

The complexity of the model can be considerably reduced by optimizing the output of a convolutional layer
using the following hyperparameters: the size of the filter, the number of filters (depth of the next layer), the
stride and setting zero-padding, see [22].

4.3.1. POOLING LAYER
The pooling layer is often placed after the convolutional layer. The purpose of pooling layers is to down
sample the spatial dimensionality of the given input for the next convolutional layer. This reduces the number
of parameters and the computational complexity of the network and therefore prevents overfitting.

4.3.2. FULLY CONNECTED LAYER
The fully connected layers perform classification based on the features extracted by the previous layers. The
fully connected layers are traditional neural networks typically containing a soft max activation function in
the last layer for classification.

4.4. DL FOR ILL-POSED INVERSE PROBLEMS
Motivated by the performance of DL models in many different domains, researches have begun to solve in-
verse problems in imaging. These new techniques are based on the use of various artificial neural networks.
In this Section we briefly discuss the recent experimental work done in this area. In an inverse problem, a
signal ftrue ∈ X is reconstructed from data g ∈ Y :

g = T(ftrue)+δg (4.24)

Here, X and Y are topological vector spaces, T : X → Y , and δg ∈ Y is the noise component. ML applied to
the inverse problem amounts to reconstructing a non-linear mapping:

TΘ : Y → X (4.25)

where, TΘ(g) ≈ ftrue, and Θ ∈ Z is the parameter set. One way to construct a mapping is to use an FNN [47]
[48]. Although this technique gives reliable results, the biggest disadvantage of using FNNs is the large mem-
ory requirement needed during training. CNNs have shown outstanding performance for solving inverse
problems in imaging, see [49] [50] [51] [52].

5
DATA ACQUISITION AND PRE-PROCESSING

The goal of this research is to reconstruct an image from measured signal using supervised methods. Due
to technical limitations the measured data set is small and this can be a problem since the size of a dataset
is often responsible for poor performances in DL projects. This problem can be partially circumvented by
augmenting the measured data set. Another technique is to use a larger synthetic data set, somewhat similar
to the measured data set, train a neural network and then fine tune this pre-trained network with the smaller
measured data set.

In this research, we will use four datasets. Each dataset consists of samples and each sample consist of
an image and the corresponding signal. The first two datasets are synthetic in that the signals and images
are calculated using simulations, while the last two datasets come from real measurements. Due to technical
limitations measured dataset is small.

The images of the sets consists of variations of four geometric shapes: circles, ellipses, squares, and rect-
angles. In this Chapter the setup of the electronics and parameters of the MRI scan are given. Furthermore,
the acquisition of the measured and simulated data is described.

5.1. MEASURED DATA
The low field MRI scan is a mix of different subsystems, each providing the necessary functionality to generate
signals from phantoms. A schematic setup of the MRI scan is given in Figure 5.1.

Figure 5.1: A simplified schematic representation of the low-field MRI scan setup. The wavy black arrows indicate signal leaving and
entering the Rf coil.

Before starting any measurements, a phantom needs to be placed inside the RF coil in the scan, see Figure 5.2.
From the PC, the user enables the USRP, a software defined radio, to generate and acquire RF signals. In our
case, the USRP generates a single spin echo sequence: two successive RF pulses a 90◦−180◦ pair. The duration
of a single RF pulse is set to 10 µs. Before the next spin echo sequence is applied to the same phantom, the
system must wait before generating the next spin echo. The time between two successive pulse sequences
is known as the repetition time (TR). The repetition time depends on the T1 value of the liquid placed in the
phantom. We do not want to use a liquid that has a high T1 value, such as water (T1 = 4000 ms), because this
leads to measurements taking too long. That is why we use sunflower oil for the measurements, which has a
T1 value of 90 ms. The TR is set to 0.5 s, which gives the excited protons in the sunflower oil sufficient time to
return to equilibrium.

31

32 5. DATA ACQUISITION AND PRE-PROCESSING

Figure 5.2: RF coil placed inside the magnet. The phantom used for measurements is placed inside the RF coil.

After the RF signal is generated, the RF power amplifier amplifies the signal to increase the amplitude so that
the signal is loud enough for the desired reception to occur. The transmission and reception (T/R) switch con-
trols the transmission of RF signals to the RF coil. After the second 180◦ pulse, the excited protons lose energy
and realign with their equilibrium B0. This realignment results in the emission of low energy RF photons that
are converted into an electric signal by the receiver coil. The nuclei in the sample precess at a frequency f
that is proportional to B0:

f = γ

2π
B0 (5.1)

For the measured field given in Figure 3.5, B0-field is measured in the z−direction and as already said ne-
glected in the x−direction. The bandwidth of the signal is defined to be the difference between the upper and
lower frequency:

fH − fL = 150 kHz (5.2)

The receiver bandwidth (rBW) is measured as 215 kHz. This means that the signal falls within the range of
frequencies involved in the reception.

After the signal is received by the RF coil, it is routed to the T/R switch and then passes through the low
noise amplifier to increase the amplitude of weak signals. The signal is then directed to the low pass filter in
the USRP, which blocks frequencies that are higher than the cutoff frequency. This is done to reduce noise
and to prevent aliasing. The cutoff frequency is set to 100 kHz and the transition bandwidth is set to 200 kHz.
This frequency is chosen on electrical grounds.

5.1.1. PHANTOM
For the measurements an efficient phantom has been designed that can contain multiple geometric shapes
in 12 different positions. The shapes consist of squares, circles, ellipses, and rectangles. A 2D illustration of
the phantom and shapes is given in Figure 5.3.

Figure 5.3: The shapes are depicted in yellow, the phantom in purple, and the holes in white. A square is placed at the back of each
shape that fits into the holes.

The phantom has a radius of 40 mm. Each hole in the phantom is made of two congruent squares with

5.1. MEASURED DATA 33

the same center at 45◦ angles. The dimensions of each square are 5× 5× 2.3 mm. A block with the same
dimensions is placed behind each shape so that each shape can be rotated by 45◦ in each hole.

The bore of the magnet lies along the x-axis. Measured from the bottom of the scan, it is assumed that the
center of the magnet is x = 247 mm, which is 3 mm above the surface of the phantom in the RF coil. From
x = 232 mm, B0 is measured for xi = 232+ i ∗5 mm with i ∈ {0,1,2,3,4,5,6}. We use the B0−field for x = 247
mm because this position corresponds to the bottom of the shapes placed in the phantom. Each shape is
filled with sunflower oil until 3 mm from the top due to variations in B0 in the direction of x.

We want to place the oil filled shapes in the phantom as easily as possible without spilling oil. Therefore
the height of the shapes is 9 mm. As you can imagine, filling oil up to 3 mm is not an easy task with the naked
eye. To make this easier for ourselves, the height is divided by a horizontal line, so that the upper height is 6
mm and the lower height 3 mm. The previous is illustrated in Figure 5.4.

Figure 5.4: The height h, length l , and width w illustrated for each shape. For each geometric shape, variations are made with the same
height but with different length and width, see Table 5.1. This is done to make the data set as diverse as possible to prevent the DL

models from overfitting.

Ellipse Circle Square Rectangle

Shape Length Width Length Length Length Width
1. 60 20 35 40 40 20
2. 50 10 30 30 50 20
3. 40 30 25 25 30 20
4. 40 20 20 20 40 30
5. 30 20 - - - -
6. 20 10 - - - -

Table 5.1: Length l and width w for each shape in millimeters.

SolidWorks, a computer-aided design software, is used to create 3D printable models. The phantom and
shapes are printed using the 3D printer Formlabs Form 2, which uses clear resin (SLA). For the measurements
in the scan the shapes are filed with sunflower oil. Using clear resin to print the shapes is very convenient as
the material does not absorb sunflower oil.

The phantom is printed using the fused filament fabrication 3D printer Ultimaker 2+, which uses a con-
tinuous filament of polylactide (PLA). PLA is a compostable thermoplastic material made from renewable
resources, such as sugarcane or corn starch. The 3D printed phantom holder and shapes are given in Figure
5.5.

34 5. DATA ACQUISITION AND PRE-PROCESSING

Figure 5.5: 3D printed phantom holder and shapes. Each number is linked to the corresponding length and width in Table 4.1.

The process of filling the shapes with oil and placing the phantom in the scan is illustrated in Figure 5.6.

Figure 5.6: Process of placing the phantom with the oil filled shapes in the scan.

5.1.2. ACQUISITION METHOD
As already explained, the inhomogeneity of B0 can be used for spatial encoding. To do this, the very heavy
magnet needs to be physically rotated in discrete steps around the phantom. Instead of rotating the magnet,
the RF coil is rotated in the magnet with an angular increment of θ. At each increment, the field experienced
by the sample changes due to the inhomogeneity of B0. An illustration of the previous is given in Figure 5.7.

Figure 5.7: Phantom containing a circle and square rotated in the field. After each rotation of 90◦ the signal is measured and the time
signal is plotted.

Starting from θ = 0◦ the RF coil is rotated by increments of ten degrees and after each rotation the signal is

5.1. MEASURED DATA 35

measured (0◦ − 350◦). The number of samples recorded after a spin echo sequence is set to 512. One spin
echo sequence results in measured signal with a low SNR. Averaging can be applied to improve the SNR
of the measurements. For each rotation, the measurements are repeated a hundred times. The hundred
measurement are then summed up and result in the measured signal vector of size (1×512) for each angle θi .
The measurements are done for 36 angles, so the signal matrix for one phantom is of size (36×512).

After rotating the coil 90◦ in the scan, the measured signal is getting worse. This is because the wire that
is responsible for the transmission and reception of the pulse from and to the T/R switch is under tension.
Therefore, after rotating θi = i ×60◦ with i ∈ {1,2,3,4,5} the RF coil is rotated 50◦ counterclockwise and the
phantom inside the RF coil is rotated 60◦ clockwise. The rotation of the RF coil is illustrated in Figure 5.8.

Figure 5.8: Illustration of the turning process of the RF coil after turning 60◦.

A limiting factor in improving the quality of the measurements by averaging is the time needed to repeat the
measurements. The acquisition time for one full rotation is 40 minutes in total. Due to time restrictions, the
measured data set contains 53 labelled samples. Here, a labelled sample is an input-output pair of a signal
and a corresponding image.

Of each variation of shapes in the phantom a digital image x is implemented. The image matrix x is
represented by a square matrix of size (64× 64) whose elements are pixel values corresponding to black or
white. Black pixel values represent areas that do not give signal and white values are the areas filled with
oil, which give signal. The process of creating one labelled sample is illustrated in Figure 5.9. Each sample
i ∈ {1, . . . ,53} consists of a signal and its corresponding image (label). The full set of samples can be found in
Appendix B.

Figure 5.9: Process of creating one labelled sample for the data set. The labelled data set is used to apply deep learning models on so
that the model can predict labels for unlabelled samples.

36 5. DATA ACQUISITION AND PRE-PROCESSING

The signal data of each measurement is stored in a netCDF file, a standard file format for storing multidimen-
sional data. A total of 53 netCDF files are created and each file consists of twelve one-dimensional variables
and two multidimensional variables. The stored variables can be found in Table 5.2.

Format: netcdf4_classic

Global Attributes
Echo time 0.01
Repitition time 0.5
RF 2.61 ·106

FlipTime 1e-05
RFamplitude 1
ScanWidth 512
spinEcho 100
samplingRate 1 ·106

phantom ‘signal_i ’
angle_increment 10

Dimensions
no_angles 1
scan_width 512

Variables
signal_real

Size 36×512
Dimensions no_angles, scan_width
Datatype double

signal_imag
Size 36×512
Dimensions no_angles, scan_width
Datatype double

Table 5.2: The input and output variables of a measurement stored in a netCDF file.

The neural network computational framework (TensorFlow) used for implementing our deep learning mod-
els operates on real-valued inputs and parameters. Therefore, the complex signal matrix must be split into its
real and imaginary components and concatenated in one vector. The signal matrix is of size (72×512). For
this research, neural networks are build that take one/two dimensional data as input/output. Therefore, the
signal and image data are stored in two different ways, visualized in Figure 5.10.

Figure 5.10: The measured signals and images from set 1 are flattened in set 2.

An important data pre-processing step is data scaling. This is done to improve the stability and performance
of the DL models. Normalization reduces the variance, which in turn improves the convergence of a DL
model. The signal values are within the range of 0 and 1, so only the image values are normalized. The
images are gray scale and each pixel value is between 0 and 255. The pixel values are normalized by dividing
each value by 255.

5.1. MEASURED DATA 37

5.1.3. DATA ANALYSIS
Before applying any deep learning algorithms, the data needs to be analysed, because the model will be only
as bad or as good as the collected data. A total of i = 53 signals are measured. The 53 measured signals can be
arranged in a matrix M of size (pq × i), where the columns of size pq correspond to the 53 measured signals.
We want to see if it is possible to reconstruct an image based on a linear combination of other measured
signals, which means that there must be some sort of correlation between the measured signals. This leads
to a system of equations of the form:

M ′
pq×i y i×1 = spq×1 (5.3)

where y is the unknown, s is one of the measured signals, and M ′ is the matrix M where the column corre-
sponding to signal s is replaced by zeros. The singular value decomposition (SVD) of M ′ is given by:

M ′
pq×i =U pq×iΣi×i V T

i×i (5.4)

and M ′ has rank r = 52. The least squares solution to (5.3) is given explicitly by:

y =
r∑

j=1

v j uT
j

σ j
s (5.5)

where, u j and v j are the columns of U and V , respectively. Now y can be used to reconstruct the signal s and
the corresponding image x , where the reconstruction is denoted by s ′ and x ′:

s ′ =∑53
j=1 y j s j

x ′ =∑53
j=1 y j x j

(5.6)

Let s and x correspond to the first measured sample, Signal_1 and Image_1, see Appendix B. The signal and
the reconstruction are given in Figure 5.11. We can see that the amplitude of the signal for each angle is
reconstructed reasonably well, in contrast to the noise, which is white Gaussian noise and assumed to be the
background noise from the MRI scan. Therefore, it is different for each measurement and it is not possible to
find a linear combination to reconstruct the noise.

Figure 5.11: The measured time signals (blue) plotted against the reconstructed signals (red) for each angle. The measured signal
corresponds to the first measured sample, Sample_1, given in Appendix B.

The reconstruction of the measured signal looks promising and therefore it should also be possible to recon-
struct a fairly reasonable image. The image and its reconstruction are visualized in Figure 5.12. We can see
that it is possible to reconstruct an image based on a linear combination of other measured signals, which
means that there is a correlation between the measured signals. As expected shapes placed in the same posi-
tion correspond to a similar signal.

38 5. DATA ACQUISITION AND PRE-PROCESSING

Figure 5.12: Left: The image corresponds to the first measured sample, Sample_1, given in Appendix B. Middle: Linear reconstruction of
the image using (5.6) Right: Dotted lines around the edges of the shapes in the original image are placed in the reconstructed image for

a better visualization of the reconstruction.

The samples in the measured data set are varied. For each measurement the shapes are placed inside the
phantom in a different way. From Figure 5.13 we can see that the images are built up from other images
containing shapes in the same location. This can be seen more clearly in Figure 5.14. Here, we can see that
each image is a combination of the other two images. We can conclude that the signal contains information
about the position of the shapes and therefore the measured data can be used for deep learning techniques.

Figure 5.13: The images corresponds to the seventh measured sample, Sample_7, and 46th measured sample, Sample_46, given in
Appendix B.

Figure 5.14: The images corresponds to the 26th measured sample, Sample_26, the 9th measured sample, Sample_9, and the 14th

measured sample, Sample_14, given in Appendix B.

5.1.4. DATA AUGMENTATION
In addition to data-scaling, another important data pre-processing step is data augmentation. Our measured
dataset is very small and limited datasets are a major bottleneck for deep learning experiments. As already
mentioned, the acquisition time for one sample in the measured data set is 40 minutes. We need a minimum
of 1000 samples to build a reasonable functioning neural network and it takes about a month of non-stop
measurement to build a data set of that size. So adding more measured samples is simply not the solution.
The problem can be partially circumvented by augmenting the data. I want to point out that we can never
replace the data with something as good as the original, but we can try. Our approach is to augment the
data by generating 36 realizations of each 2D image by rotating the images 10◦ and rotating the signal matrix
accordingly. This results in a measured set of size 1908.

5.2. SIMULATED DATA 39

5.2. SIMULATED DATA
From Section 3.2 we know that the signal model for the low-field MRI is given by:

b = Ax +e (5.7)

where, b is the measured signal polluted by noise e, A is the known matrix, and x is the unknown image. In
the simulated case A, x and ε are known and x is the unknown.

We want to make the simulated data set as similar as possible to the measured data set. To calculate the
matrix A the B0−field strength discussed in Section 3.1 is used. In low-field MRI, the image is represented
by a square matrix whose elements are proportional to the intensity of each pixel. Once this image or matrix
is known, the signal can be calculated. First, an image of size (64× 64) is generated. An image consists of
random variations of ellipses, circles, squares, and rectangles. Each shape has a random position and is
rotated randomly by nπ

4 rad with n ∈ {1, . . . ,8}. The image is flattened to a (4096×1) vector.
For each RF pulse, the number of time steps is set to 512. Rotating the field with 10◦ after each RF pulse results
in a simulated signal vector b of size (18432×1). An illustration of the previous is given by Figure 5.15.

Figure 5.15: Simulated signal reconstruction.

As already mentioned in the previous Section, the neural networks build cannot take complex valued input
and only take one/two dimensional data as input/output. Therefore, the simulated images and signals are
also stored in two different ways, visualized in Figure 5.16.

Figure 5.16: The simulated signals and images from set 1 are flattened in set 2.

To make the simulated data set more similar to the measured set, noise ε is added to the simulated signals.
The noise is white Gaussian noise and assumed to be the background noise coming from the MRI scan. For
each signal sample noise is added with a gaussian distribution N (0, σnoise) to obtain a signal similar to the
measured signal-to-noise ratio (SNR). However, it is not quite clear what the SNR for the measured signals is.
We assume that the SNR∈ [10,80] and add white gaussian noise to each signal based on a random SNR value
within its range.

The signal strength of the simulated signal is much greater than the measured signal. This is because
the simulated setting assumes that all protons are excited. However, the measured setting is far from ideal,
because it has much less excited protons. The simulated signal strength is approximately 102 greater than
the measured signal strength. Therefore, the simulated signals are randomly scaled between a range of the
minimum and maximum peak values (pvmeas) of the measured signal: pvmeas ∈ [0.06,0.3].

40 5. DATA ACQUISITION AND PRE-PROCESSING

TISSUE TYPES

The human head can be separated into five general components: brain matter, bone marrow, cerebrospinal
fluid, muscular skin and the skull. Besides black and white images, it is also interesting to research if it is
possible to reconstruct an image containing various pixel values. We build a second simulated data set that
consists of random variations of the Shepp-Logan phantom of size (64×64), depicted in Figure 5.17.

Figure 5.17: Shepp-Logan image consisting of five different pixel values.

6
ARCHITECTURES AND TEST CASES

In the previous Chapters, we introduced the theoretical knowledge needed to develop a model to reconstruct
an image from MR signal. In this Chapter we present the details of three different model architectures. For
each model we also present the hyperparameter space used as a starting point to find the best hyperparame-
ter configuration.

For the low-field MRI, the inverse problem of reconstructing a signal X ∈X from an image Y ∈Y is given
by the forward model:

X = T(Y)+ε (6.1)

Here, X represents the input space (feature space), Y represents the output space (label space), mtrain is the
number of training samples, and ε is a single sampled Y −valued noise component of the observed data. The
unknown joint probability distribution on X ×Y is defined as PX ,Y . The training set Dmtrain = (Xi ,Yi)mtrain

i=1
are pairs of i.i.d random variables to be distributed by PX ,Y . In supervised learning, DL applied to the inverse
problem amounts to finding a non-linear mapping from a fixed class of prediction rules T :

T†
Θ

: X →Y (6.2)

where, T†
Θ
∈ T , T†

Θ
(X) ≈ Y (pseudo-inverse property), and Θ ∈ Z is a multi dimensional parameter set. The

function T†
Θ

is learned by minimizing the squared error loss:

l
(
T†
Θ

(X),Y
)
= ||T†

Θ
(X)−Y ||2Y = 1

p

p∑
i=1

(
Yi −T†

Θ
(Xi)

)2
(6.3)

Here, T†
Θ

(X) is the model image, Y is the ground truth and p the number of image pixels. The weight update
is based on the mean squared error, also known as the true risk:

R
(
T†
Θ

)
= ET†

Θ

[
l
(
T†
Θ

(X),Y
)]

(6.4)

R
(
T†
Θ

)
is random as T†

Θ
is a function of Dm , which is random. However, the risk cannot be calculated because

the distribution PX ,Y is unknown. Instead, we calculate an approximation of the true, unknown statistical
risk, called the empirical risk:

R̂mtrain (T†
Θ

) = 1

mtrain

mtrain∑
i=1

l
(
T†
Θ

(Xi),Yi

)
(6.5)

According to the strong law of large numbers, the empirical risk for each fixed prediction rule will converge to
the true risk. To find the best performing predictor from a pool of candidates the empirical risk is minimized:

R∗ = argmin
T†
Θ
∈T

R̂
(
T†
Θ

)
(6.6)

41

42 6. ARCHITECTURES AND TEST CASES

6.1. MODEL ARCHITECTURES
In this Section three different model architectures are presented: Model I, Model II, and Model III.

6.1.1. MODEL I
The universal approximation theorem states that a feedforward neural network (FNN), see Section 4.1., with
one hidden layer and a finite number of nodes can approximate continuous functions under some assump-
tions. To be precise, let M0 denote the number of input nodes, M = ML denote the number of output nodes,
and Ml the number of nodes in layer l . The theorem states [53]:

Theorem 1 Let ϕ be a non constant, bounded, and monotonically increasing continuous function. Let IM0

denote the M0−dimensional unit hyper cube [0,1]M0 . The space of continuous functions on IM0 is denoted by
C (IM0). Then, given any ε> 0 and function f ∈C (M0), there exists an integer M, real constants αi , bi and real
vectors wi j , with i = 1, . . . , M1 and j = 1, . . . , M0, such that we may define:

F (x1, . . . , xM0) =
M1∑
i=1

αiϕ

(
M0∑
j=1

wi j x j +bi

)
(6.7)

as an approximate realization of the function f ; that is,

|F (x1, . . . , xM0)− f (x1, . . . , xM0)| < ε, (6.8)

∀x ∈ IM0 .

Equation (6.7) represents the output of an FNN with a single hidden layer:

• The network consists of an input layer of M0 nodes and a hidden layer of M1 nodes. The input to the
network is x1, . . . , xM0 .

• The weights wi 1, . . . , wi M0 denote the weighted connections between the i th node in the hidden layer
and the nodes from the input layer, and the bias is denoted by bi .

• The output layer has weights α1, . . . ,αM1 . The output of the FNN is a linear combination of the outputs
of the hidden nodes

The approximation theorem states that a single hidden layer is sufficient for an FNN to compute an uniform ε

approximation to a given training set [53]. This is just an existence theorem, it does not say that an FNN with
one hidden layer is optimal in the sense of ease of implementation, computation time, or generalization.
However, the theorem states that a simple FNN with a single hidden layer is able to find a non-linear input-
output mapping, even if the model needs a lot of data for training in order to find this mapping.

Based on the existence theorem, the first model architecture is a conventional feedforward neural network
(FNN) with one hidden layer. The input and output of the FNN is a one dimensional vector. The simulated
dataset described in Chapter 5 is used for the development of the FNN. A schematic illustration of the FNN
architecture of Model I is visualized in Figure 6.1. The input FCin of the network is produced by the data
pre-processing steps detailed in Chapter 5 and is of size (2pq × 1). FCin is fully connected to an (m × 1)
dimensional hidden layer FCh and activated by a non-linear activation function. FCh is fully connected to
an (n2 ×1) dimensional output layer FCout, which is reshaped to an (n ×n) reconstructed image.

The number of hidden nodes in FCh has not yet been specified. We need to be careful when specifying
the number of hidden nodes, because of issues related to overfitting and underfitting, see Section 4.1.4. If
we use too many hidden nodes, this can lead to overfitting. The network begins to learn increasingly subtle
patterns in the training data and this does not generalize well to the testing data. Using too few hidden nodes
may lead to underfitting. If it is possible to reconstruct an image from an FNN, we can certainly build a model
based on different layers in addition to fully-connected layers to create an even more accurate model.

6.1. MODEL ARCHITECTURES 43

Figure 6.1: Schematic representation of the Model I architecture. The input to the network is an (p ×q) signal reshaped to an (2pq ×1)
dimensional vector and fed to FCin. This process is depicted in black. Each of the 2pq nodes in FCin is connected to m nodes in the

hidden layer FCh . This full connectivity between the layers is depicted in green. FCh is fully connected to the output layer FCout. The
output, depicted in blue, is reshaped to an (n ×n) image

6.1.2. MODEL II
The signal data contains spatial information because of the inhomogeneous B0. Therefore, it is convenient
to use convolutional layers, which works well with data with a spatial relationship. Convolutional layers are
sparsely connected rather than fully connected and can go deeper to extract more abstract features without
overfitting. Model II is a modification of Model I, where the dense layer is replaced by convolutional layers.
The architecture of Model II loosely mimicks the convolutional neural network model VGG, which is short
for Oxford’s Visual Geomtery Group (VGG). See [54] for an explanation of this type of network. The VGG
network is already mimicked by the DeepPET model [51], which reconstructs images for positron emission
tomography (PET). VGG neural networks are unique, because the focus does not lie in tuning a large number
of hyperparameters to achieve a desired accuracy. Instead, the focus lies on stacking the right number of
sequential blocks of convolutions with filter (kernel) size (3× 3), strides s ∈ [1,2] and a factor 2 increase in
the number of output feature maps. VGG networks are mainly used for image classification tasks and to this
purpose the last three layers consists of dense layers.

Model II loosely mimicking the VGG architecture with modifications is visualized in Figure 6.2. The com-
plex signal (p×q) is split into its real and imaginary components and treated as separate channels. The input
to the neural network is of size (2×p ×q), where 2 indicates the number of channels: real and imaginary.

Figure 6.2: Schematic representation of the Model II architecture. The real and imaginary components of the complex signal (p ×q) are
separated into two channels (2×p ×q). After convolving the reshaped input through convolutional layers, the output consists of n2

feature maps of size (1×1), depicted in purple. The output is reshaped and represents the reconstructed (n ×n) image.

44 6. ARCHITECTURES AND TEST CASES

The model contracts input data in a manner typical to CNNs. It consists of sequential blocks of convolutions
with stride s and a factor 1 or 2 increase in the number of output features followed by an ReLU activation. The
stride, which defines the step size of the kernel, is set to be 1 or 2. Throughout the network, spatial down-
sampling is achieved by convolutional layers employing a kernel stride of two. The final output consists of
n2 feature maps of size (1×1) where each feature is a nonlinear function of an extensive portion of the input
signal. The contracted feature representation is reshaped into an image of size (n ×n). We are going to im-
plement variations of Model II, where the focus lies on the architecture: tuning the number of convolutional
blocks, filter sizes, and strides.

6.1.3. MODEL III
The main cause for the big memory footprint in neural networks is the fully connected layers. However, they
are fast, while convolutions use most of the computing power, even though they have a compact number
of parameters. Finding the optimal parameter configuration for Model III can be a very tedious process as
convolutions largely increase the computing power and the time needed for training is painfully long.

The question arises if we can built a more efficient model that uses both fully connected and convolu-
tional layers to reduce the memory and computational requirements. Model III is a modification of Model I,
between the dense layer FCh and the output layer convolutional layers are placed.

A visualization of Model III is given in Figure 6.3. Model III is loosely mimicked from the AUTOMAP
architecture with modifications. The AUTOMAP architecture reconstructs an MRI image using signals from a
conventional MRI scan and therefore we can use elements of the model in the design of our own model. For
a detailed explanation of AUTOMAP see [52].

In our model the input layer FCin is fully connected to an (n2 × 1) dimensional hidden layer FCh and
activated by an activation function. The first hidden layer is then reshaped to an (n×n) matrix in preparation
for convolutional processing. A total of k convolutional layers are added to the model. Each layer has f filters
that convolve with stride 1 followed by an activation function. The final output is spatially down sampled
(deconvolved) and represents the reconstructed (n ×n) image.

Figure 6.3: Schematic representation of the Model III architecture. The input to the network is a (p ×q) signal reshaped to an (2pq ×1)
dimensional vector and fed to FCin. This process is depicted in gray. Each of the 2pq neurons in FCin is connected to n2 neurons in the

hidden layer FCh and followed by an activation function. The full connectivity between FCin and FCh is depicted in green. FCh is
reshaped to an (n ×n) matrix in preparation for convolutional processing. The reshaped output is depicted in purple. Each

convolutional layer is followed by an activation function. After convolving the reshaped output through k convolutional layers, the
output consists of f feature maps and is spatially down sampled (deconvolved) to represent the reconstructed (n ×n) image.

6.2. DESIGN OF TEST CASES
In this Section, test cases are built to find the best hyperparameter configuration for each of the proposed
model architectures. A high-performance model with good generalization abilities requires the tuning of
many interdependent hyperparameters. This is a tedious manual process of repetition (trial-and-error). To
automate the workflow of conducting hyperparameter optimization a machine-assisted approach is used.

Before starting the learning process we need to ask ourselves which hyperparameters should be tuned
and in which ranges. In this Section, we define these hyperparameters and set their range based on recom-
mendations from literature. Finally, the initial hyperparameter configuration for each of the proposed model

6.2. DESIGN OF TEST CASES 45

architectures is given, which will be used as a starting point for training and developing the proposed models.

TRAIN AND VALIDATION SPLIT
The simulated dataset is randomly divided into three splits: train, validation and test. Throughout the exper-
iments, the three sets are kept separate. A common train and validation split ratio is 80/20, also known as the
Pareto principle. Out of m = 20,000 randomly generated signal and image pairs, mtrain = 16,000 is used for
training, mval = 4000 is used for validation and a separate set is generated for testing:

Dsim
mtrain

= (
Xi ,Yi

)mtrain
i=1

Dsim
mval

= (
Xi ,Yi

)mval
i=1

Dsim
mtest

= (
Xi ,Yi

)mtest
i=1

The measured data set and its augmentation are small. From the 53 measured samples, mtrain = 40 are used
for training, mval = 10 for validating, and mtest = 3 for testing. From the augmented data set, we consider
three recommended train and validation split ratios from literature [22]: 60/40 ,70/30, 80/20. Before splitting
the data, a small part is separated for testing purposes.

Dmeas
mtrain

= (
Xi ,Yi

)mtrain
i=1

Dmeas
mval

= (
Xi ,Yi

)mval
i=1

Dmeas
mtest

= (
Xi ,Yi

)mtest
i=1

FULLY CONNECTED AND CONVOLUTIONAL LAYERS
For Model I, the number of hidden neurons in the dense layer is kept low enough in order to secure the ability
of the network to generalize. If we have a large excess of nodes, the network can become a memory bank
that can recall the training set to perfection, but does not perform well on samples that were not part of the
training set. Ultimately, the selection of the number of hidden nodes comes down to trial and error. Besides
the problems of overfitting and underfitting, we cannot use too many hidden nodes, as we might otherwise
overload CPU memory. For example, a single fully connected layer between input and output would require
a staggering 1.5 ·108 weights. Storing these weights in single precision (32-bit floating-point) would require
1.5 gigabyte of memory. For the hidden layer, we vary the number of hidden nodes to n2.

Model II, inspired on the VGG and the DeepPET architecture, consists of only convolutional layers. First,
the signal is passed through a stack of sequential convolutional blocks, where each block i convolves Fi filters
with either a filter of size (3×3) or (5×5). After each block the number of output feature layers is increased
with a factor 1 or 2. The input of each block is spatially downsampled by using convolutions with stride
2. Occasionally, convolutions with stride 1 are used in order to see if it makes any difference in regards to
accuracy. The output of the sequential blocks is spatially upsampled to n2 feature maps of size (2×2) which
is then convolved by 4096 filters of size (2×2) and reshaped to the (n ×n) reconstructed image.

The hidden layer in Model III is followed by convolutional layers. The convolution layers serve as a refine-
ment of the image quality. Each layer convolves f filters with stride 1 and the output of the final convolutional
layer is deconvolved with a filter with stride 1. In practice, it is common to use filters of size (3, 3) and (5, 5).
It is rare to see filter sizes larger than (7,7) [22]. A (3× 3) filter results in less weights, but more layers and
therefore is able to learn more complex features. A larger filter size of (5×5) learns simpler nonlinear features
using less layers but more weights. This is more computationally expensive, but uses less memory for back-
propagation. As a starting point, based on the AUTOMAP architecture, each convolutional layer convolves 32
filters of size (5×5) and stride 1. Finally, the f output feature maps provided by the convolutional layer(s) are
deconvolved with a (7×7) sized filter with stride 1.

The measured data set is small and this can create generalization issues. To avoid overfitting, the mea-
sured data requires a model that has a low complexity. Therefore, we can use Model I, a simple FNN, with a
low number of hidden nodes.

46 6. ARCHITECTURES AND TEST CASES

ACTIVATION FUNCTION
A common used activation function in fully connected and convolutional layers is the ReLU activation due
to the sparsity effects and the induced regularization. In Model I and II, the layers are followed by a ReLU
activation.

In the AUTOMAP architecture the fully connected hidden layer is followed by a Tanh activation and the
convolutional layers are followed by a ReLU activation. We conduct experiments using both the ReLU and
Tanh activation after the hidden layer in Model III. The convolutional layers are followed by a ReLU activation.
No activation function is used for the output layer. A regression problem is solved and therefore we are inter-
ested in directly predicting numerical values (pixel values) without any transformation.

WEIGHT INITIALIZATION
Before training starts, the weights must be initialized to small random numbers instead of using the same set
of weights every time the network is trained. For instance, if the weights are set to be zero then the learning
algorithm will fail to make changes to the weights of the network, which leads to the model being stuck.

Furthermore, it is important to properly initialize the weights W of the neural network, because this re-
duces the chance of gradient problems and speeds up the convergence to the least MSE. A too-small ini-
tialization leads to vanishing gradients and a too-large initialization leads to exploding gradients. Note that
there is no single best way to initialize the weights of a neural network. Our understanding of how initial
points affects generalization is especially primitive, offering little to no guidance for how to select the initial
point [22]. The most used strategy for weight initialization depends on the activation used in the model. For
ReLU activations [22], it is common to initialize the weights for each hidden layer (l) normal:

W (l) ∼N (0,0.05) (6.9)

or uniform:
W (l) ∼U (−0.05,0.05). (6.10)

For Model I, we experiment with normal and uniform distributed weights. Models II and III go deeper and
deep networks face the difficulty that the variance of the layer outputs decreases as the data continuous up-
stream. This causes vanishing gradients and leads to a slow converging model. To mitigate slow learning for
deep models, it is recommended to use Glorot or He weight initialization, see [32][55]. If the activation func-
tion is Tanh, one should use Glorot initialization, which performs random initialization from a distribution
with a variance of 1p

N
. If the activation function is ReLU, He initialization is recommended, which performs

random initialization from a distribution with a variance of 2
N . In Model II the focus lies on finding the right

architecture. Glorot uniform initialization is used as it is also used for initializing the weights in the VGG
inspired DeepPET architecture.

For Model III, we experiment with Glorot and He initialization. From research, it is unclear if normal or
uniform initialization works better and it all comes down to experimenting which one works better for our
specific problem.

OPTIMIZATION ALGORITHM
Adaptive learning rate gradient methods are very popular optimization methods for training deep neural net-
works due to their fast convergence compared to classical stochastic gradient descent (SGD) [56]. However,
it is argued that SGD has better generalization to the validation and test sets than adaptive methods [57]. The
adaptive methods Adam and NAdam, see Section 4.1.1 and [58] [59], are well suited for problems that are
large in terms of parameters and data. Besides that, no additional hyperparameters have to be tuned when
using these optimizations. It is recommended to leave the parameters of Adam and NAdam at their default
values as recommended by the original papers [58] [59]:

Adam NAdam SGD
η 0.001 0.002 [0.1, 10−3, 10−5]
β1 0.9 0.9 -
β2 0.999 0.999 -

Table 6.1: Recommended values for Adam, Nadam, and SGD. Finding the right learning rate η for SGD typically involves grid search on
a log scale from 0.1 to 10−5 [22]. The exponential decay rates β1 and β2 are left at their default values as recommended by the original

papers [58] [59].

6.2. DESIGN OF TEST CASES 47

For Model I, we test three different optimization algorithms: SGD, Adam, and Nadam. For Models II and III,
Adam is used.

BATCH SIZE AND EPOCHS
As already stated in Chapter 4, processing the entire synthetic data set leads to fluctuations and an unsta-
ble convergence. To control the stability and convergence speed, we process the synthetic data set in mini-
batches. In this research, several common batch sizes are used: 128, 256, 512 and 1024. Based on the results,
the size will be lowered or increased. For the measured data set, we will use a small batch size due to its size.
The number of epochs is not that relevant. It is more important that the training and test error keep reducing
and that the learning curves show no sign of underfitting or overfitting.

GRID SEARCH VS RANDOM SEARCH
After setting up a grid of hyperparameter values, we need to find the best configuration. We could manually
search for good candidate values for hyperparameters or we could resort to machine-assisted help. Two most
widely used machine assisted methods for hyperparameter tuning are: grid search and random search.

In grid search, every combination of hyperparameters is tried. By contrast, random search down samples
grid search by randomly picking a predefined percentage of parameter combinations. In this research, we
will mostly use grid search, because we build models from scratch and it is important to do this accurately.
However, sometimes the ranges of the hyperparameters are very large and we end up training more than
a 100 models, which can be very time consuming and unneccesary. If not all hyperparameters affect the
performance of the model, then randomly selecting models can outperform grid search.

BIAS-VARIANCE TRADEOFF
Besides performing well on the training data, we also want the predictor to perform well on unseen data. To
find the best model the MSE needs to be small on both the training and the validation data. The MSE for the
predictor has the following bias-variance decomposition:

MSE = E
[(

Y −T†
Θ

(X)
)2

]
(6.11)

=
(
E
[

T†
Θ

(X)
]
−Y

)2

︸ ︷︷ ︸
Bias

(
T†
Θ

(X),Y
)2

+E
[(

T†
Θ

(Xi)−E
[

T†
Θ

(X)
])2

]
︸ ︷︷ ︸

Var
(
T†
Θ

(X)
)

(6.12)

It is very important to keep in mind that between experiments, we should not make drastic changes based
on the validation results. This will create bias towards the validation set and the model will not be well-
generalized to the test set.

INITIAL PARAMETER CONFIGURATION
To give a better overview of the previously discussed, the initial hyperparameter configuration is given for
each model architecture. These configurations will be used as a starting point for the experiments on syn-
thetic data.

Model I
Batch size [128, 256]
Epochs [10, 20]
Optimizer [SGD, Adam, NAdam]
Metric Mean Squared Error
Activation ReLU
Weight initialization [Normal, Uniform]
Learning rate η ∈[0.1, 10−5]
Hidden neurons m1 ∈[100, 4500]

[Glorot Normal/Uniform

Table 6.2: Initial parameter boundaries for Model I using synthetic
data to develop Model I.

Model II
Batch size 1024
Epochs [50, 100, 150]
Optimizer Adam
Metric Mean Squared Error
Activation C ReLU
Weight initialization Glorot Uniform
Convolutions [3×3, 2×2]
Features [32, 64, 128, 256]
Stride [1,2]

Table 6.3: Initial parameter boundaries for Model II using synthetic
data to develop Model II.

48 6. ARCHITECTURES AND TEST CASES

Model III
Batch size [512, 1024]
Epochs 20
Optimizer Adam
Metric Mean Squared Error
Activation FCh [Tanh, ReLU]
Activation C1 ReLU
Weight initialization [Glorot, He]
Hidden neurons FCh1 n2 =4096
Convolutions C1 5×5
Deconvolution 7×7
Features 32
Stride 1

Table 6.4: Initial parameter boundaries for Model III using synthetic data to develop Model III.

6.3. IMPLEMENTATION
The models are implemented and trained in Python. Keras [60], an open-source and user-friendly neural
network library written in Python, is used for network definition and training.

The simulated data set has a size of 6.4 GB. If the CPU and RAM resources are limited, the size of the
data set and network architectures can cause problems with crashing algorithms and memory errors. This
problem can be solved by using Amazon Web Services (AWS). AWS offers machines with dozens of gigabytes
for which computation time can be rented. From the Amazon cluster a C5 instance, ideal for computation
intensive workloads [61], is used.

7
RESULTS: SYNTHETIC DATA

In this Chapter we present the results obtained after implementation and running simulations of the models
using the initial parameter configurations and the simulated data set. We would like to know the effect of dif-
ferent architectures on the simulated data sets and which parameter configuration results in the best model.
The results are divided in correspondence with the Models I, II and III. For each part we present results of
various parameter configurations.

To compare models and test their relevance we predict an image of a control signal, a signal not used
during training. The control images used are given in Figure 7.1. The first control image is a simple heart. The
second control image consists of three randomly rotated geometric shapes: a heart, an ellipse, and a triangle.
Heart and triangle shapes were not used during training. The third image is a modification of the famous
Shepp-Logan phantom, a simplified model of the human head. These complicated control images are used
to test the relevance of the models; is the network able to reconstruct complicated patterns not used during
training. The Shepp-Logan image is the most difficult to reconstruct because we train the models on data
that contain a maximum of 3 geometric shapes. If a model can reconstruct the Shepp-Logan image, we can
conclude that the model has successfully reconstructed the mapping between signal and image. The SNR
value for the control signals is a random value between [10, 80].

The best performing architecture is used as a starting point for experiments on synthetic data containing
variations of the Shepp-Logan image, see Section 5.2. An extensive discussion of all results and associated
conclusions is documented in Chapter 9.

Figure 7.1: Three different control images used to check the performance of the Models I, II and III.

7.1. MODEL I
The initial parameter configuration for Model I is given in Table 6.2. Of the total number of permutations,
65% is picked using random search. The results are given in Table 7.1. For each optimizer, the results are split
according to normal or uniform weight initialization and for each initialization, the validation loss is given in
ascending value.

For each optimizer, the validation loss plotted against the training loss is given in Figure 7.2. It is clear
that SGD is outperformed by Adam and Nadam. However, it is claimed that adaptive methods generally
perform well in the initial phase of training, but SGD outperforms them in the long run. If we look at the
generalization abilities of the model that has been trained with SGD, see Figure 7.3, it is clear that the model
does not generalize well to unseen data. This may be due to the fact that the initial number of epochs is kept

49

50 7. RESULTS: SYNTHETIC DATA

low. Increasing the number of epochs could improve the performance of SGD. In addition to increasing the
number of epochs, SGD requires more experiments (tuning of the learning rate) to converge and this can be
a tedious process. To alleviate some of the pressure of choosing a learning rate and learning rate schedule
and also because of the limited available computational power, SGD is dropped for the remainder of the
experiment.

From Table 7.1 it is clear that the number of epochs has an influence on the convergence. By looking at the
validation and training losses, we see that they are quite close to each other. There are no signs of overfitting
or underfitting, so we can safely say that increasing the number of epochs will improve convergence.

Val Loss Train Loss Batch Epochs Neurons Weights Learning rate

Adam
1 0.021923 0.016371 128 20 4500 Normal -
2 0.023897 0.018875 256 20 4500 Normal -
3 0.024743 0.020641 128 20 100 Normal -
4 0.028368 0.025728 256 10 4500 Normal -
1 0.012053 0.009346 128 20 4500 Uniform -
2 0.012837 0.010119 256 20 4500 Uniform -
3 0.022961 0.020489 128 20 100 Uniform -
4 0.026413 0.026413 256 20 100 Uniform -

NAdam
1 0.062805 0.061860 128 20 4500 Normal -
2 0.070727 0.069776 128 20 100 Normal -
3 0.080078 0.077190 256 10 4500 Normal -
1 0.016070 0.01339 128 20 4500 Uniform -
2 0.022283 0.017830 256 20 4500 Uniform -
3 0.023804 0.021183 128 10 100 Uniform -
4 0.032842 0.029542 256 20 100 Uniform -

SGD
1 0.160216 0.161904 128 20 4500 Normal 10−5

2 0.164960 0.167248 256 20 100 Normal 10−5

3 0.242931 0.246604 128 10 4500 Normal 10−5

1 0.142097 0.143419 128 20 4500 Uniform 0.1
2 0.143182 0.145098 128 20 4500 Uniform 10−5

3 0.162518 0.165643 128 10 4500 Uniform 0.1

Table 7.1: Results run 1 Model I. For each optimizer, the results are split according to normal or uniform weight initialization and for
each initialization, the validation loss is given in ascending value.

Figure 7.2: The training loss plotted against the validation loss with respect to the optimizers: SGD, Adam and NAdam. For each
optimizer, the loss is plotted for both kernel initializers: Normal and uniform. The points fall in a straight line (red), which is a sign that

the model is not overfitting or underfitting, the training loss is almost equal to the validation loss.

7.1. MODEL I 51

Figure 7.3: The performance of the model trained with SGD checked using the heart control image. The hyperparameters of the model
used correspond to the row in yellow in Table 7.1.

The parameter space for the second run is given in 7.2. A grid search is performed that results in 16 permuta-
tions. The results are given in Table 7.2. The situation is fairly clear; generally Adam outperforms NAdam, see
Figure 7.4.

In terms of initialization, uniform kernel initialization works best in combination with Adam and NAdam.
Normal initialization and NAdam are dropped for the remainder of the experiment. Besides the initialization,
we can see that a hidden layer that contains 4500 hidden neurons has a slightly lower loss than with 100
hidden neurons. Training a hidden layer that contains 100 hidden nodes is ten times faster. Therefore, it is
interesting to see if increasing the number of epochs decreases the validation loss even further. Note that
even if the loss decreases, this does not mean that the generalization abilities of the model increases. It might
be the case that a low number of hidden neurons is not enough to find the right mapping between input and
output.

Model I
Batch size [256, 512]
Epochs 30
Optimizer [Adam, NAdam]
Metric Mean Squared Error
Activation ReLU
Weight initialization [Normal, Uniform]
Hidden neurons m1 [100, 4500]

Table 7.2: Second run parameter configuration Model I.

Val Loss Train Loss Batch Nodes Weights

Adam
1 0.022541 0.016684 256 4500 Normal
2 0.025939 0.020961 512 4500 Normal
3 0.026214 0.022865 256 100 Normal
4 0.035425 0.031925 512 100 Normal
1 0.013020 0.009759 256 4500 Uniform
2 0.018388 0.014479 512 4500 Uniform
3 0.028093 0.025093 256 100 Uniform
4 0.033066 0.031656 512 100 Uniform

NAdam
1 0.026869 0.022879 256 4500 Normal
2 0.029113 0.027175 512 4500 Normal
3 0.034254 0.029234 512 100 Normal
4 0.034902 0.030988 256 100 Normal
1 0.016751 0.013799 256 4500 Uniform
2 0.024483 0.019382 512 4500 Uniform
3 0.028931 0.025341 256 100 Uniform
4 0.033031 0.027649 512 100 Uniform

Table 7.2: Results run 2 Model I. For each optimizer, the results are split
according to normal or uniform weight initialization and for each

initialization, the validation loss is given in ascending value.

52 7. RESULTS: SYNTHETIC DATA

Figure 7.4: A comparison plot between the hyperparameters: Nodes, kernel initializer, and optimizer.

For the third run of experiments the initial parameter configurations are given in Table 7.3. Based on the
previous experiment, we are interested to see what the impact is of the width of the hidden layer on the
generalization abilities of the model. Two models are trained, each containing a different number of hidden
nodes. The number of epochs is increased to 100 and the batch size is fixed at 256. The results of the third
round of experiments are given in Table 7.4. It is evident that a wider network decreases the loss even further.
Looking at the loss curves, see Figure 7.5, both the training and validation loss keep decreasing, with the
validation loss eventually plateauing. Hence, increasing the capacity of the model does not lead to overfitting
the training data set, but increases the generalization abilities of the model to unseen data, see Figure 7.6.

Model I
Batch size 256
Epochs 100
Optimizer Adam
Metric Mean Squared Error
Activation ReLU
Weight initialization Uniform
Hidden nodes m1 [100, 1000]

Table 7.3: Third run parameter configuration Model I.

Val Loss Train Loss Nodes

Adam
0.023185 0.016521 100
0.009557 0.004504 1000

Table 7.4: Results run 3 Model I. The losses

of two models each containing a

different width.

(a) 100 hidden nodes (b) 1000 hidden nodes

Figure 7.5: The convergence behaviour of the MSE computed between the ground truth simulation images and the reconstructed
images. The training error (blue) and validation error (red) are depicted for each epoch. The error for both losses decrease, which mean

that the network leans to represent the data features.

7.1. MODEL I 53

Figure 7.6: Top: Image reconstruction with the model containing 100 hidden nodes in the hidden layer. Bottom: Image reconstruction
with the model containing 1000 hidden nodes in the hidden layer.

FINALIZED MODEL
As we have seen, a wider network increases the generalization abilities of the network to new data. For the
final model, the number of hidden nodes is set to 4000. The results of the control images and the losses are
shown in Figure 7.7. We can see that the model is able to reconstruct images reasonably well; especially the
heart. However, with smaller and complicated patterns, the model captures the rough position but fails to
predict small details. For instance, the corners of the triangle and the contours of the small shaped heart in
the second control image.

Figure 7.7: Left: Image reconstruction Model I. Right: The convergence behaviour of the MSE computed between the ground truth
simulation images and the reconstructed images. The training error (blue) and validation error (red) are depicted for each epoch. The

error for both losses decrease, which mean that the network leans to represent the data features.

54 7. RESULTS: SYNTHETIC DATA

7.2. MODEL II
As discussed in Chapter 6, for Model II, we implement and explore different architectures loosely mimicking
the convolutional neural network model VGG. Our goal is to find the optimal convolutional architecture. We
implement several models varying the number of convolutional layers, the filter size, the number of filters,
and the stride. For each model, Adam is used for learning and the weights are uniform Glorot initialized, as
discussed in Chapter 6. The number of epochs is varied and the batch size is set to 1024. If we increase the
number of epochs and decrease the batch size, we should get better results, but when the number of filters is
large the computation time increases and training a network can take almost an entire day.

The validation loss for the most relevant convolutional architectures, C1 through C3, are given in Table
7.4. The models are evaluated by comparing the reconstructed image quality on the control images. The
models are also compared between each other based on the computational time for training.

Other convolutional architectures that are not included in this Chapter can be found in Appendix C. These
models went deeper, but failed to perform and are therefore left out of this Chapter.

Name Val Loss Train Loss Epochs

Adam
C1 0.028198 0.028504 50

0.023082 0.022977 150
C2 0.018602 0.017483 100
C3 0.018232 0.017490 50

Table 7.4: Performance of the most relevant convolutional architectures with different epochs.

MODEL: C1
Model C1 consist of sequential convolutional blocks, each containing 32 filters of size (3×3) with stride 2, see
Figure 7.8. The output of this sequence is then upsampled and another convolutional layer with 4096 filters
of size (2×2) convolves the output to 4096 features of size (1×1), which is then reshaped to the reconstructed
image of size (64×64). The results of the control images and the loss curves for training and validation are
given in Figure 7.9. We can see that the network is able to generate the rough positions of the shapes. However,
looking at the learning curve we can see that the validation and training losses are still decreasing, which
means that the model is not done learning and increasing the number of epochs would lead to a model that
is better able to generalize to unseen data. The number of epochs is increased to 150 and the results on the
control images and the loss curves are given in Figure 7.10. Comparing the control images in Figures 7.9 and
7.10, we can see that increasing the number of epochs results in a slightly better reconstructed heart and the
position of the shapes. However, the model still has difficulties with reconstructing the edges and contours
of the smaller shapes. Increasing the number of epochs from 50 to 150 has increased the computational time
considerably, it took 5 hours to train the network with 150 epochs. If we look at the loss curve we can see that
the losses are not converging and are still slightly decreasing. However, it seems that the model is close to
converging, and based on that we can conclude that adding more epochs and increasing the computational
time would not give us more information than we already have.

Figure 7.8: Schematic representation of the C1 architecture.

7.2. MODEL II 55

Figure 7.9: Left: Image reconstruction. Right: The convergence behaviour of the MSE computed between the ground truth simulation
images and the reconstructed images. The training error (blue) and validation error (red) are depicted for each epoch. The error for

both losses decrease, which mean that the network leans to represent the data features.

Figure 7.10: Left: Image reconstruction. Right: The convergence behaviour of the MSE computed between the ground truth simulation
images and the reconstructed images. The training error (blue) and validation error (red) are depicted for each epoch. The error for

both losses decrease, which mean that the network leans to represent the data features.

MODEL: C2
In the previous model, 32 filters of size (3×3) are used in each convolutional block. We built a model C2, see
Figure 7.11, where the network consists of three convolutional blocks and each block consists of 3 convolu-
tional layers convolving a different number of filters of size (3×3) and stride 2. The number of epochs is set
to 100 and the results of the control images and the loss curves for training and validation are given in Figure
7.12. If we compare the results with the results from model C1, see Figure 7.10, we can see that C2 needs less
epochs to learn even more from the data.

Figure 7.11: Schematic representation of the C2 architecture.

56 7. RESULTS: SYNTHETIC DATA

Figure 7.12: Left: Image reconstruction. Right: The convergence behaviour of the MSE computed between the ground truth simulation
images and the reconstructed images is given in Figure. The training error (blue) and validation error (red) are depicted for each epoch.

The error for both losses decrease, which mean that the network leans to represent the data features.

MODEL: C3
For a visualization of the C3 architecture, see Figure 7.13. Model C3 consist of sequential convolutional
blocks, of which every two consecutive blocks contain a factor 2 increase in the number of filters. The fil-
ters are of size (3×3) with stride 2. The output of this sequence is then upsampled and another convolutional
layer with 4096 filters of size (2× 2) convolves the output to 4096 features of size (1× 1), which is then re-
shaped to the reconstructed image of size (64× 64). The number of epochs is set to 50 and the results are
given in Figure 7.14. Compared to the results from C1, see Figure 7.10, we can see that the C3 is better able
to reconstruct the heart and the Shepp-Logan with 50 epochs. Both models have difficulties reconstructing
the second control image. As the losses of C3 are still decreasing, we could increase the number of epochs
to increase the learning abilities of the network. However, training the model C3 with 50 epochs was roughly
four times longer than training model C1 with 150 epochs, but the model yields better results.

Figure 7.13: Schematic representation of the C3 architecture.

Figure 7.14: Left: Image reconstruction. Right: The convergence behaviour of the MSE computed between the ground truth simulation
images and the reconstructed images. The training error (blue) and validation error (red) are depicted for each epoch. The error for

both losses decrease, which mean that the network leans to represent the data features.

7.3. MODEL III 57

7.3. MODEL III
The initial parameter configuration for Model III is given in Table 6.4. A grid search is performed and we are
left with 16 permutations. The results are given in Table 7.5. For each initializer, the results are split according
to normal or uniform weight initialization and for each initialization, the validation loss is given in ascending
value. The losses of each weight initializer are given in Figure 7.15. It is clear that Glorot weight initialization
outperforms He weight initialization for both uniform and normal initialization. For the remainder of the
experiment He initialization is dropped. We can also see that Tanh activation on the hidden layer FCh per-
forms better than a ReLU activation. As mentioned in Section 6.2., the AUTOMAP architecture used the Tanh
function on the fully connected hidden layer. This indicates that literature can be very useful when setting
parameters.

Val Loss Train Loss Batch Activation FCh Weights

Adam
1 0.003796 0.002304 512 Tanh Glorot uniform
2 0.005600 0.005023 1024 Tanh Glorot uniform
3 0.006659 0.005701 1024 ReLU Glorot uniform
4 0.009880 0.007049 512 ReLU Glorot uniform
1 0.005733 0.003813 512 Tanh Glorot normal
2 0.006273 0.005491 1024 Tanh Glorot normal
3 0.008438 0.006449 1024 ReLU Glorot normal
4 0.021993 0.024004 512 Tanh Glorot normal
1 0.005269 0.003846 512 Tanh He uniform
2 0.014180 0.013883 1024 Tanh He uniform
3 0.016181 0.013444 1024 ReLU He uniform
4 0.021270 0.015900 512 ReLU He uniform
1 0.010690 0.009990 512 Tanh He normal
2 0.014817 0.011277 512 ReLU He normal
3 0.015331 0.015024 1024 Tanh He normal
4 0.045965 0.042600 1024 ReLU He normal

Table 7.5: Results run 1 Model III. The optimizer and the number of epochs are fixed: Adam and 20. The results are split according to
Glorot/He normal and uniform weight initialization and for each initialization, the validation loss is given in ascending value.

Figure 7.15: The training loss plotted against the validation loss of the weight initializers: Glorot and He. For each initialization the loss
is plotted for both normal and uniform initialization. The points fall in a straight line (red), which means that the model is not

overfitting or underfitting.

For the next round of experiments we look at three different batch sizes in order to compare if uniform or
normal Glorot initialization performs better. The results are given in Table 7.6. For each batch size, we can
see that Glorot normal performs slightly better.

For the remainder of the experiments, we focus on finding the optimal number of convolutional layers
and filter size. We experiment with filters of size (3× 3) and (5× 5). Based on the previous results, a batch
size of 128 is used and Glorot normal weight initialization. The parameter configurations are given in 7.7 and

58 7. RESULTS: SYNTHETIC DATA

Val Loss Train Loss Batch size Weights

Adam
1 0.002938 0.001180 128 Glorot Normal
2 0.002986 0.001317 128 Glorot Uniform
1 0.003255 0.001476 256 Glorot Normal
2 0.017861 0.018078 256 Glorot Uniform
1 0.004171 0.003055 512 Glorot Normal
2 0.004404 0.003152 512 Glorot Uniform

Table 7.6: Results run 2 Model III. Activation function used on the hidden layer is the tanh.

the results are given in 7.8. A filter size of (5×5) performs slightly better than a filter of size (3×3) for each
deconvolution. Larger filter sizes have a higher number of weights but need lesser layers as opposed to small
filter sizes. On the downside, a larger filter size is computationally expensive and training takes more time.
As the validation loss does not differ too much, we shall compare the performance of the models using one
of the control images, see Figure 7.16. We can see that both models are able to find the rough position of the
shapes. However, the smaller kernel size is able to capture the edges of the heart, so it is able to detect smaller
and more complex features.

Model III
Batch size 128
Epochs 30
Optimizer Adam
Metric Mean Squared Error
Activation FCh Tanh
Activation C1 ReLU
Activation C2 ReLU
Weight initialization Glorot Normal
Hidden neurons FCh1 n2 =4096
Convolutions C1 [5×5, 3×3]
Deconvolution [3×3, 5×5, 7×7]
Features 32
Stride 1

Table 7.7: Third run parameter configuration Model III.

Kernel size
Val Loss Train Loss C1, C2 Deconv.

Adam
1 0.002686 0.000993 (3×3) (3×3)
2 0.002684 0.000993 (3×3) (5×5)
3 0.002725 0.001035 (3×3) (7×7)
1 0.002682 0.001075 (5×5) (3×3)
2 0.002648 0.001163 (5×5) (5×5)
3 0.002703 0.001095 (5×5) (7×7)

Table 7.8: Results run 3 Model III. Each model contains a different
kernel size and the number of filters is fixed to 32.

Figure 7.16: Image reconstruction using two different models that contain two hidden convolutional layers: C1 and C2. Both models
spatially downsample the output of the convolutional layers, C1 and C2, using a filter of size (5×5). Top: C1 and C2 convolve 32 filters of

size (3×3). Bottom: C1 and C2 convolve 32 filters of size (5×5).

7.3. MODEL III 59

Adding more layers can lead to abstracting more complex features. However, adding too much layers can lead
to overfitting. For the final round of experiments, we run four models each containing a different number of
convolutional layers. The parameter configuration is given in 7.9 and the results are given in 7.10. We can see
that after adding more than two layers the validation loss starts to decrease.

We know that using more hidden layers will add more complexity and the model will be able to extract
more complex features. If we look at Figure 4.5 in Chapter 4, we can see that in each layer a certain feature is
extracted. From Model I, we can see that a fully connected hidden layer outputs fairly good images. However,
the corners and contours are not that defined. Therefore, maybe one extra convolutional layer could do the
trick instead of adding more layers. Which is correct, if we look at Figure 7.17, we see that adding more lay-
ers does not increase the generalization abilities of the network. More layers only increases the complexity,
which is clearly not necessary to find the right mapping between input and output.

Model III
Batch size 128
Epochs 50
Optimizer Adam
Metric Mean Squared Error
Activation FCh Tanh
Activation C ReLU
Weight initialization Glorot Normal
Hidden neurons FCh1 n2 =4096
Convolutions C 3×3
Deconvolution 5×5
Features 32
Stride 1

Table 7.9: Fourth run parameter configuration Model III.

Val Loss Train Loss # Conv. layers

Adam
0.003526 0.000789 1
0.002473 0.000635 2
0.002541 0.000641 3
0.002356 0.000596 4

Table 7.10: Results run 4 Model III. Four different architectures,
each containing a different number of convolutional layers.

Figure 7.17: Image reconstruction using two models with a different number of convolutional layers. Top: Model with one
convolutional layer. Bottom: Model with four convolutional layers.

60 7. RESULTS: SYNTHETIC DATA

FINAL MODEL
As we have seen, a deeper network does not increase the generalization abilities of the network to new data.
The final model is trained using one convolutional layer. The loss curves and the results of the control images
are shown in Figure 7.18. We can conclude that Model III is able to reconstruct good quality images.

Figure 7.18: Left: Image reconstruction. Right: The convergence behaviour of the MSE computed between the ground truth simulation
images and the reconstructed images. The training error (blue) and validation error (red) are depicted for each epoch. The error for

both losses decrease, which mean that the network leans to represent the data features.

TISSUE TYPES
Finaly, we tested Model III on the data set containing random variations of the Shepp-Logan phantom, see
Section 5.2. The same parameter configuration is used as in Table 7.9 only the number of epochs was changed
to 100. The results are given Figure 7.19. We can see that the architecture of Model III with the final hyperpa-
rameters is able to reconstruct a relatively good Shepp-Logan phantom.

Figure 7.19: Image reconstruction using the standard Shepp-Logan phantom as test sample.

8
RESULTS: MEASURED DATA

In this Chapter we present the results obtained after implementation and running simulations using mea-
sured data. The number of measured samples is limited and in practice DL models trained with limited data
tend to overfit and produce inaccurate results. This problem can be partially circumvented by keeping the
architecture trained with measured data simple and use the augmented measured data set described in Sec-
tion 4.1. Another technique is to use a pre-trained model with synthetic data and fine tune the pre-trained
model with the measured data set. This approach is known as transfer learning, which is also a type of data
extension, see [22]. For the pre-trained network, Model III is used, because it showed the most promising
results on synthetic data.

A complex model with many parameters is more prone to overfitting. A network trained with a small
dataset exhibits sporadic fluctuations, due to the randomness from the network initialisation and training.
Therefore, it is recommended to use a simple model to mitigate the small dataset problem, see [62]. On the
measured data set we used Model I, see section 6.1, because Model I is the least complex. For training, based
on the results on synthetic data, Adam is used as the optimizer and ReLU as the activation in the hidden layer.

The results are subdivided in correspondence with the measured data set. First, we present results of
training using the 53 measured data samples, followed by training on the augmented data set. Thereafter,
we present the results using transfer learning. An extensive discussion of all outcomes and corresponding
conclusions is documented in Chapter 9.

8.1. 53 SAMPLES
The initial parameter configuration for the measured data is given in Table 8.1. The results on the test signals
and the average training and validation loss using 5-fold cross-validation, see Section 4.1.3, are given in Table
8.2. We can see that increasing the number of hidden nodes increases the difference between the validation
and training loss. In Figure 8.1, image reconstruction using the test signals and the loss curves are given for the
model containing 100 nodes. The validation loss fluctuates, which is caused by the small batch size. Besides
the fluctuations, from the loss curves we can observe that the model is overfitting. This can also be seen in
the image reconstruction with the test signals. The reconstructed images are combinations of the images in
the training set. This means that the model is excessively adjusted to the training data. It sees patters that are
not relevant and performs poorly when predicting.

61

62 8. RESULTS: MEASURED DATA

Measured Model
Train/validation/test split 40/10/3
Batch size 1
Epochs 100
Optimizer Adam
Metric Mean Squared Error
Activation FCh ReLU
Hidden neurons m1 [10, 100, 500, 1000]

Table 8.1: Initial parameter configuration: 53 measured samples.

Nodes Val Loss Train Loss ∆Val−Train

Adam
10 0.171030 0.043441 0.13
100 0.156191 0.012327 0.14
500 0.159050 0.010686 0.15
1000 0.168578 0.001091 0.17

Table 8.2: Difference between the mean validation and mean train losses for each model with a different number of hidden nodes
trained with 5-fold cross-validation.

Figure 8.1: Image reconstruction using the model with a hidden layer of 100 hidden nodes.

8.2. DATA AUGMENTATION
The initial parameter configuration for the augmented data set is given in Table 8.3. The train-validation
split ratio of the data relies on the problem being solved. As we have limited data, we experiment with three
different train and validation splits to test which one works best four our problem, as explained in Section
6.2. Before the data is split, eight random samples are omitted, which are used as test samples. In addition to
fine-tuning the split ratio, the number of hidden nodes is also tuned. The results are given in Table 8.4.

We can see that increasing the number of nodes decreases the gap between the training and validation
loss. The losses of each model using a 70/30 split ratio is given in Figure 8.2. We can see that after each epoch
the training loss keeps decreasing and the validation loss slightly increases. The models are not generalizing
well enough on the validation set, so the models are overfitting. The models recognize specific samples in the
training set and therefore can no longer generalize to unseen data.

8.3. TRANSFER LEARNING 63

Measured Model
Train/validation [60/40, 70/30, 80/20]
Batch size 32
Epochs 30
Optimizer Adam
Metric Mean Squared Error
Activation FCh ReLU
Hidden neurons m1 [100, 1000]

Table 8.3: Initial parameter configuration: augmented measured
data.

nodes FCh Val Loss Train Loss ∆Val−Train

60/40
100 0.184792 0.024768 0.16
1000 0.159211 0.008027 0.15

70/30
100 0.187405 0.025653 0.16
1000 0.155818 0.008685 0.15

80/20
100 0.188177 0.026704 0.16
1000 0.160979 0.009462 0.15

Table 8.4: Results training models with augmented data using
different train and validation splits.

Figure 8.2: Image reconstruction using the models trained with a 70/30 split ratio. The loss curves for each model are given next to the
reconstructed image.

8.3. TRANSFER LEARNING
Transfer learning is a powerful method that applies knowledge gained from one problem to another different
but related problem. For this purpose, we used the finalized version of Model III from Chapter 7. The results
on test data is given in Figure 8.3. We can see that the performance of the pre-trained model fine-tuned with
measured data performs very poorly. The reconstructed images are very noisy, which means that the network
has failed to see patterns in the measured data. The model is pre-trained on synthetic data and has therefore
learned assumptions and simplifications used in the simulations, which clearly do not hold for measured
data.

Figure 8.3: The images corresponds to the 1th measured sample, the 9th measured sample, and the 14th measured sample given in
Appendix B.

9
CONCLUSIONS AND RECOMMENDATIONS

After our research to low-field MRI and Deep Learning, we can answer our research question:

“Is it possible to implement a deep learning based approach to generate images using measured signals
from the low-field MRI?”

The answer to this question is believed to be yes; our research provides a promising framework but lacks
measured data and computing power to achieve perfect results. Throughout our research, we have seen
promising results on synthetic data indicating it might be possible to reconstruct images using measured
signals.

We developed three different DL models: Model I, II and III. Each model consists of different architectures
and is tuned using different hyperparameters. The process of DL model development can be seen as a black
box. Hence, we developed several test cases attempting to point out the effect of tuning the hyperparameters
and to explain the connection between input and output. However, some parts of the tuning process remain
a black box, because the literature on DL is extensive, but far from complete.

Analysis of simulations run with the models on synthetic data shows that Models I and III provided most
promising results with regard to image reconstruction and computational time. Model I is capable of recon-
structing images with quite good quality, see Figure 7.7. The model is able to predict the rough position of
the shapes. However, it failed to predict the edges and contours of the smaller shapes. In Model II, a convo-
lutional layer placed beneath the hidden layer seemed to provide promising results with the same amount of
epochs, see Figure 7.18. The small filter size in the convolutional layer proved to be able to detect the pattern
related to the edges and the contours of the smaller shapes. Using a larger filter size decreases the validation
loss slightly, but failed to identify patterns related to the edges and contours of the smaller shapes.

In addition to the prediction abilities, uniform weight initialization proved to be the best for models that
contain one hidden layer and Glorot normal weight initialization for models containing a combination of a
hidden layer and a convolutional layer.

Model II did not prove to be a good approach, because of the number of epochs needed to reconstruct
good images. Increasing the number of epochs results in an exponential increase in the computation time
and the improvement of the prediction is only marginal. Model C1 consists of convolutional blocks and
increasing the number of epochs yielded in a slightly better prediction. However, we used blocks containing
only 32 features, which explains the need for a lot of epochs. In model C3 the total number of filters was
increased and this indeed yielded better reconstructed images for less epochs and the same amount of time
as C1 trained with 150 epochs, see Figures 7.10 and 7.14. Furthermore, many epochs were required in order
to improve images generated by models C2 and C3, which increased computation time considerably. Finding
the right combination of convolutional blocks required a lot of trial-and-error as well as a lot of computational
resources.

The experiments on the measured data failed, due to the limited size of the measured data set. To partially
circumvent this problem one possible solution proposed was to augment the measured data set. The data was
augmented by generating 36 realizations of each 2D image by rotating the images 10◦ and rotating the signal
matrix accordingly. This resulted in a measured set of size 1908. For experiments on the small measured
data set and its augmented variant, we decided to use Model I. We did not use a complex model, as it is more

65

66 9. CONCLUSIONS AND RECOMMENDATIONS

prone to overfitting. Model I is a simple FNN with just one hidden layer. As expected, from the experiments
on the measured data set, the models overfitted the training set. Therefore, we tried to augment the data.
Each measured sample in the augmented set corresponds to a certain angular rotation within the magnetic
field. As stated before, a signal measured from one angle contains little information and it is clear that the DL
models were not able to extract this information.

Transfer learning produced noisy images, see Figure 8.3, because of a mismatch between the measured
data and the simulated data. As the simulated and measured data are related to the same problem, we ap-
plied transfer learning to the measured data. Model III showed the most promising results on synthetic data,
therefore, we used the pre-trained Model III and fine tuned the model with measured data. This resulted in
very noisy images indicating that there is no sufficient correlation between the measured and synthetic sig-
nals. The pre-trained model has learned simplifications and assumptions used in the simulations. The signal
model, see equation (3.10), assumes that the field-strength of the magnet can be neglected in the x−direction.
Incorporating the magnetic field in the x−direction into the signal model would result in a model that is a bet-
ter representation of the low-field MRI. In addition, the lack of measured data could also be the reason that
transfer learning failed. There are some similarities between the synthetic and measured data, but the lack of
actual data might be the reason the model failed to learn these similarities.

Our research, has shown that there is a correlation between the measured signals. Hence, we should not
dismiss DL entirely. If there is enough available measured data, DL could be able to reconstruct an image.
The synthetic images contain much more complicated patterns compared to the measured images. This
complexity requires larger amounts of data in order to learn the patterns within the data. To this end, Model
III seems to be the best fit, as the hidden layer quickly extracts general patterns and the convolutional layer is
able to find more complicated patters.

9.1. FURTHER RESEARCH
The low-field MRI problem is not simple. There is still a lot of research that remains to be done on this topic.
Therefore, we propose some ideas for further research.

• Computational time
A big problem in this thesis was the computational time to find an optimal solution for the models
using synthetic data. Especially, with models using only convolutional layers. Using a large amount
of filters increases the number of weights, which is computationally expensive. For the training of the
models a CPU was used instead of a GPU, due to lack of availability. However, using a GPU accelerates
the training considerably. This could mean that Model II might be able to outperform the other two
models. We have shown in Model III that the convolutional layer was able to detect more complex
patterns, such as the edges and contours of the smaller shapes. A fully convolutional network could
detect the smaller dots in the Shepp-Logan phantom.

• Data size
The DL models showed promising results on the synthetic data, with Model III showing the best results.
Unfortunately, the size of the measured data limited the performance of DL models. We recommend
increasing the data size by doing more measurements, however it should be kept in mind that this re-
quires a lot of time, which can limit the feasibility of this solution. If we look at the magnet field, in
Figure 3.5, we can see that some regions provide the same information. Therefore, one could experi-
ment by lowering the number of angles. This could speed up the measurement process. Note that a
single measured signal from one angle for each phantom variation is likely to be not enough, as our
data augmentation technique based on that idea failed. We would recommend studying more data
augmentation methods to augment the measured samples.

• Signal model
As it is quite hard to increase the measured data set and transfer learning failed, we still recommended
to use synthetic data and transfer learning. We have seen that the signal model is not representative for
the low-field MRI. Therefore, additional research needs to be done in order to reconstruct a better signal
model. For instance, taking into consideration the magnetic field in the x−direction might improve
results.

BIBLIOGRAPHY

[1] J. W. Quinn and G. Barnard, CURE Hydrocephalus: Setting a Course for Sustainability, http://www.
globalsurgery.info/wp-content/uploads/2014/09/CURE-Hydrocephalus-Uganda.pdf (2015).

[2] F. Rosenblatt, The Perceptron: A Probabilistic Model for Information Storage and Organization in The
Brain, Psychological Review 65, 386-408 (1985) .

[3] V. M. Runge, S. Schonberg, and X.Li, Magnets, Spins, and Resonances: An introduction to the basics of
Magnetic Resonance (Siemens Medical Solutions, 2013).

[4] Z. Liang and P. C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective
(SPIE Optical Engineering Press, 2000).

[5] J. A. Fessler, Model-based image reconstruction for MRI, IEEE Signal Processing Magazine 27, 81–89
(2018) .

[6] H. Schmidt-Böcking, L. Schmidt, H. J. Lüdde, W. Trageser, and T. Sauer, The Stern-Gerlach Experiment
Revisited, The European Physical Journal 41, 327-364 (2016) .

[7] I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, A New Method of Measuring Nuclear Magnetic Mo-
ment, Psychological Review 53(4), 318-327 (1938) .

[8] F. Bloch, W. W. Hansen, and M. Packard, The Nuclear Induction Experiment, Psychological Review 70,
474-485 (1946) .

[9] E. M. Purcell, H. C. Torrey, and R. V. Pound, Resonance Absorption by Nuclear Magnetic Moments in a
Solid, Psychological Review 69, 37-38 (1946) .

[10] R. V. Damadian, Tumor Detection by Nuclear Magnetic Resonance, Science 171, 1151-1153 (1971) .

[11] E. D. Becker, Obituary: Paul Christian Lauterbur, Physics Today 60, 77-78 (2007) .

[12] P. C. Lauterbur, Image Formation by Induced Local Interaction; Examples Employing Nuclear Magnetic
Resonance, Nature 242, 190-191 (1973) .

[13] R. Turner, Peter Mansfield (1933–2017), Nature, 543, 180-186 (2017) .

[14] R. Damadian and L. M. M. Goldsmith, NMR in cancer: XVI. FONAR image of the live human body, Physiol
Chem Phys 9(1), 97-100 (1977) .

[15] C. Z. Cooley, Portable low-cost magnetic resonance imaging, Ph.D. thesis (MIT 2014).

[16] A. Meijer, Optimizing the gradient ring of a low-field MRI scanner, Bachelor’s thesis, (TU Delft 2019).

[17] R. Burgwal, Measuring NMR and developing 2D imaging in a low-cost, portable MRI prototype, Master’s
thesis, (Leiden University 2018).

[18] M. L. de Leeuw den Bouter, M. B. van Gijzen, and R. Remis, Conjugate gradient variants for Lp-
regularized image reconstruction in low-field mri, SN Applied Sciences 1, 1736 (2019) .

[19] C. Z. Cooley, J. P. Stockmann, B. D. Armstrong, M. Sarracanie, M. H. Lev, M. S. Rosen, and L. L. Wald, Two-
dimensional imaging in a lightweight portable MRI scanner without gradient coils, Magnetic resonance
in medicine: Official journal of the Society of Magnetic Resonance in Medicine 73, 872-883 (2014) .

[20] B. Woolley, The Bride of Science: Romance, Reason, and Byron’s Daughter (McGraw-Hill, 2000).

[21] J. Fessler and J. Francis, Lovelace & Babbage and the creation of the 1843 ‘notes’, IEEE Annals of the History
of Computing 25, 16–26 (2003) .

67

http://www.globalsurgery.info/wp-content/uploads/2014/09/CURE-Hydrocephalus-Uganda.pdf
http://www.globalsurgery.info/wp-content/uploads/2014/09/CURE-Hydrocephalus-Uganda.pdf

68 BIBLIOGRAPHY

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016).

[23] T. Mitchell, Machine Learning (McGraw Hill, 1997).

[24] J. Vijayan, Classifying Devanagari vowels with TFLearn, https://jayanand90.github.io/
Classifying-Devanagari-vowels-with-TFLearn/ (2017).

[25] Y. LeCun, Y. Bengio, and G. Hinton, Deep Learning, Nature 521, 436-44 (2015) .

[26] D. Hoving, MRI for Africa, Retrieved from https://www.delta.tudelft.nl/article/mri-africa, (2017) .

[27] A. Baese and V. Schmid, Pattern Recognition and Signal Analysis in Medical Imaging (Academic Press,
2014).

[28] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, Activation Functions: Comparison of trends in
Practice and Research for Deep Learning, arXiv:1811.03378 (2018) .

[29] R. Hahnloser, R. Sarpeshkar, M. Mahowald, R. J. Douglas, and H. Seung, Digital selection and analogue
amplification coexist in a cortex-inspired silicon circuit, Nature 405, 947–951 (2000) .

[30] M. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and
G. Hinton, On rectified linear units for speech processing, In ICASSP, 2013 .

[31] G. E. Dahl, T. N. Sainath, and G. E. Hinton, Improving deep neural networks for LVCSR using rectified
linear units and dropout, In ICASSP, 2013 .

[32] X. Glorot, A. Bordes, and Y. Bengio, Deep Sparse Rectifier Neural Networks, Journal of Machine Learning
Research 15, 315-323 (2011) .

[33] A. H. A. Maas and A. Ng, Rectifier Nonlinearities Improve Neural Network Acoustic Models, International
Conference on Machine Learning - Proc. icml, 2013 .

[34] C. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).

[35] C. Bishop, Neural Networks for Pattern Recognition (Clarendon Press Oxford, 1995).

[36] S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint arXiv:1609.04747(2016)
.

[37] R. Reed and R. Marks, Neural smithing: Supervised Learning in Feedforward Artificial Neural Networks
(MIT Press, 1999).

[38] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors,
Nature 3, 533-536 (1986) .

[39] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. (Wiley, 2001).

[40] R. D. Brian and N. L. Hjort, Pattern Recognition and Neural Networks (Cambridge University Press, 1995).

[41] A. Burkov, The Hundred-Page Machine Learning Book (Andriy Burkov, 2019).

[42] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Improving neural networks
by preventing co-adaptation of feature detectors, arXiv preprint arXiv:1207.0580 (2012) .

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A Simple Way to
Prevent Neural Networks from Overfitting, Journal of Machine Learning Research 15, 1929-1958 (2014) .

[44] G. Montavon, G. Orr, and K. Müller, Neural Networks: Tricks of the Trade, 2nd ed. (Springer Publishing
Company, Incorporated, 2012).

[45] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition,
Proceedings of the IEEE 86, 2278-2324 (1998) .

[46] Y. LeCun, K. Kavukcuoglu, and C. Farabet, Convolutional networks and applications in vision, In IEEE
International Symposium on Circuits and Systems (ISCAS), 253-256 (2010) .

https://jayanand90.github.io/Classifying-Devanagari-vowels-with-TFLearn/
https://jayanand90.github.io/Classifying-Devanagari-vowels-with-TFLearn/

BIBLIOGRAPHY 69

[47] M. Argyrou, D. Maintas, C. Tsoumpas, and E. S. Stiliaris, Tomographic Image Reconstruction based on
Artificial Neural Network (ANN) techniques, In IEEE Nuclear Science Symposium and Medical Imaging
Conference Record (NSS/MIC) (2012) .

[48] P. Paschalis, N. D. Giokaris, A. Karabarbounis, G. K. Loudos, D. Maintas, C. N. Papanicolas, V. Spanoudaki,
C. Tsoumpas, and E. Stiliaris, Tomographic image reconstruction using Artificial Neural Networks, Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 527, 211-215 (2004) .

[49] M. T. McCann, K. H. Jin, and M. Unser, Convolutional Neural Networks for Inverse Problems in Imaging:
A Review, IEEE Signal Processing Magazine 34, 85-95 (2017) .

[50] J. Adler and O. Ozan, Solving ill-posed inverse problems using iterative deep neural networks, Inverse
Problems 33(12), 124007 (2017) .

[51] I. Häggström, C. Schmidtlein, G. Campanella, and T. Fuchs, DeepPET: A deep encoder-decoder network
for directly solving the pet image reconstruction inverse problem, Medical Image Analysis 54, 253 (2019).

[52] B. Zhu, J. Z. Liu, B. Rosen, and M. Rosen, Image reconstruction by domain-transform manifold learning,
Nature 555, 487-492 (2018) .

[53] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1998).

[54] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition,
arXiv 1409.1556 (2014).

[55] K. He, X. Zhang, S. Ren, and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification, arXiv:1502.01852 (2015) .

[56] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, The Marginal Value of Adaptive Gradient
Methods in Machine Learning, .

[57] N. S. Keskar and R. Socher, Improving Generalization Performance by Switching from Adam to SGD, arXiv
preprint at arXiv:1712.07628 (2017) .

[58] D. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, In International Conference on Learn-
ing Representations ICLR (2015) (2014).

[59] T. Dozat, Incorporating nesterov momentum into adam, Proc. Workshop Track ICLR, 1-4 (2016) .

[60] F. Chollet et al., Keras, https://keras.io (2015).

[61] Amazon, Amazon EC2 Instances, https://aws.amazon.com/ec2/instance-types/c5/ (2019).

[62] T. Shaikhina and N. A. Khovanova, Handling limited datasets with neural networks in medical applica-
tions: A small-data approach, Artificial intelligence in medicine 75, 51-63 (2017) .

https://keras.io
https://aws.amazon.com/ec2/instance-types/c5/

Appendices

71

A
SIGNAL DETECTION

Magnetic flux through the coil is given by

Φ(t) =
∫ −→

B r (r) ·−→M(r, t)dr (A.1)

where
−→
B r (r) is the laboratory frame magnetic field at location r = (x, y, z) . By Faraday’s law of induction, the

induced voltage signal in the coil is

V (t) =−∂Φ(t)

∂t
=− ∂

∂t

∫ −→
B r (r) ·−→M(r, t)dr (A.2)

where

−→
B r = Br,x

−→
i +Br,y

−→
j +Br,z

−→
k (A.3)

Equation (A.2) is the simplest formula for signal detection and can be rewritten in scalar form as

V (t) =−
∫ [

Br,x (r)
∂Mx (r, t)

∂t
+Br,y (r)

∂My (r, t)

∂t

]
dr (A.4)

As Mz varies slowly compared to the free precession of Mx and My the term Br,z (r)Mz (r, t) is ignored in Equa-
tion (A.4). To further develop the expression of V (t), Br,x and Br,y are rewritten as{

Br,x = |Br,x y (r)|cos(φr (r))

Br,y = |Br,x y (r)|sin(φr (r))
(A.5)

where φr (r) ∈ [0,2π] is the reception phase angle. From the free precession Equation (2.16) we obtain{
Mx (r, t) = |Mx y (r,0)|e−t/T2(r) cos[−ω(r)t +φe (r)]

My (r, t) = |Mx y (r,0)|e−t/T2(r) sin[−ω(r)t +φe (r)]
(A.6)

Here, φe (r) ∈ [0,2π] denotes the initial phase shift introduced by the RF excitation, ω(r) is the precessional
frequency, and Mx y (r,0) is the equilibrium magnetization. The derivative of (A.6) with respect to t is

{
∂Mx (r),t

∂t =ω(r)|Mx y (r,0)|e−t/T2(r) sin[−ω(r)t +φe (r)]− 1
T2(r) |Mx y (r,0)|e−t/T2(r) cos[−ω(r)t +φe (r)]

∂My (r),t
∂t =−ω(r)|Mx y (r,0)|e−t/T2(r) cos[−ω(r)t +φe (r)]− 1

T2(r) |Mx y (r,0)|e−t/T2(r) sin[−ω(r)t +φe (r)]
(A.7)

Because free precession is at a much faster rate than relaxation ω(r) À 1
T2(r) , the second terms are omitted in

Equation (A.7), resulting in{
∂Mx (r),t

∂t =ω(r)|Mx y (r,0)|e−t/T2(r) sin[−ω(r)t +φe (r)]
∂My (r),t

∂t =−ω(r)|Mx y (r,0)|e−t/T2(r) cos[−ω(r)t +φe (r)]
(A.8)

73

74 A. SIGNAL DETECTION

Substituting Equations (A.5) and (A.8) into Equation (A.4) and simplifying gives

V (t) =
∫
ω(r)|Br,x y (r)||Mx y (r,0)|e−t/T2(r) cos

[
−ω(r)t +φe (r)−φr (r)+ π

2

]
dr (A.9)

where Br,x y (r) is the detection sensitivity of the receiver coil,ω(r) is the free precession frequency, φr (r) is the
reception phase angle and φe (r) is the initial phase shift introduced by RF excitation. Because Mx y (r,0) pre-
cesses at the Larmor frequency, V (t) is a high-frequency signal, which can cause problems in later processing
stages. Using the phase-sensitive detection method (PSD), or signal demodulation method, V (t) is moved to
a low-frequency band. The PSD method, see Figure A.1a, consists of two steps: multiplying V (t) by a sinu-
soidal reference signal 2cosω0t and removing the high-frequency component by applying low-pass-filtering.
The output of PSD is a low-frequency signal given by

Vpsd(t) = SR (t) =
∫
ω(r)|Br,x y (r)||Mx y (r,0)|e−t/T2(r) cos

[
−∆ω(r)t +φe (r)−φr (r)+ π

2

]
dr (A.10)

where ω(r) = ω0 +∆ω(r), with ∆ω(r) the spatially dependent resonance frequency in the rotating frame. It
cannot be determined if the precession is clockwise (∆ω> 0) or counterclockwise (∆ω< 0). Therefore V (t) is
multiplied with reference signal 2sinω0t and passed through the low-pass filter again:

Vpsd(t) = S I (t) =
∫
ω(r)|Br,x y (r)||Mx y (r,0)|e−t/T2(r) sin

[
−∆ω(r)t +φe (r)−φr (r)+ π

2

]
dr (A.11)

Detecting rotating magnetization using two orthogonal detectors is called quadrature detection (QD), see
Figure A.1b. The output of QD is often given in complex form:

S(t) = SR (t)+ i S I (t) =
∫
ω(r)|Br,x y (r)||Mx y (r,0)|e−t/T2(r)e−i [∆ω(r)t−φe (r)+φr (r)+π/2]dr (A.12)

(a) PSD (b) Quadrature detection

Figure A.1: Illustration of PSD [4].

Using the complex conjugate of the reception field B∗
r,x y of Br,x y and{

|Br,x y (r)|e−iφr (r) = B∗
r,x y (r)

|Mx y (r,0)|e iφe (r) = Mx y (r,0)
(A.13)

Equation (A.14) can be rewritten as

S(t) =
∫
ω(r)B∗

r,x y (r)Mx y (r,0)e−t/T2(r)e−i∆ω(r)t dr (A.14)

where the scaling constant e−iπ/2 is omitted. Furthermore, when considering an high field MRI Br,x y is ho-
mogeneous and the signal expression can be further simplified to

S(t) =
∫
ω(r)Mx y (r,0)e−t/T2(r)e−i∆ω(r)t dr (A.15)

B
MEASURED DATA SET

The position of the holes in the phantom are visualized in Figure B.1. The radius of the phantom and the
position of the holes are given in millimeters and scaled down to a 0-1 range.

Figure B.1

The width and height of each shape placed in the phantom is given in Table B.7

Ellipse Circle Square Rectangle

Shape Length Width Length Length Length Width
1. 60 20 35 40 40 30
2. 50 10 30 30 50 20
3. 40 30 25 25 40 20
4. 40 20 20 20 30 20
5. 30 10 - - - -
6. 20 10 - - - -

Table B.1: Length l and width w for each shape given in millimeters.

75

76 B. MEASURED DATA SET

Each shape can be rotated in the holes in the phantom. The possible rotations for each shape in an arbitrary
hole is given in Figure B.2.

Figure B.2

The description of each sample is given in the Tables below.

Samples Measured Data set

Sample_i Signal_i Image_i

Sample_1 Signal_1 Image_1
Shape Hole Rotation
Ellipse_1 9 4
Ellipse_3 2 3
Circle_3 6 1

Sample_2 Signal_2 Image_2
Shape Hole Rotation
Ellipse_1 9 4
Ellipse_3 4 2

Sample_3 Signal_3 Image_3
Shape Hole Rotation
Ellipse_1 2 3
Ellipse_3 9 4
Ellipse_4 6 2

Sample_4 Signal_4 Image_3
Shape Hole Rotation
Ellipse_1 5 1
Ellipse_3 9 4
Ellipse_5 12 4

Sample_5 Signal_5 Image_3
Shape Hole Rotation
Ellipse_2 4 4
Ellipse_3 8 3
Ellipse_4 11 2

Table B.2

77

Samples Measured Data set

Sample_i Signal_i Image_i

Sample_6 Signal_6 Image_6
Shape Hole Rotation
Circle_1 12 1
Circle_2 8 1

Sample_7 Signal_7 Image_7
Shape Hole Rotation
Circle_1 2 1
Circle_2 9 1
Circle_3 6 1

Sample_8 Signal_8 Image_8
Shape Hole Rotation
Circle_1 1 1

Sample_9 Signal_9 Image_9
Shape Hole Rotation
Circle_2 5 1
Circle_3 9 1

Sample_10 Signal_10 Image_10
Shape Hole Rotation
Square_1 1 2

Sample_11 Signal_11 Image_11
Shape Hole Rotation
Square_2 2 1
Square_3 8 1

Sample_12 Signal_12 Image_12
Shape Hole Rotation
Square_2 5 2
Square_3 12 2
Square_4 9 1

Sample_13 Signal_13 Image_13
Shape Hole Rotation
Square_1 10 2

Sample_14 Signal_14 Image_14
Shape Hole Rotation
Square_2 5 2
Square_3 9 2

Sample_15 Signal_15 Image_15
Shape Hole Rotation
Rectangle_1 5 1
Rectangle_4 11 4

Sample_16 Signal_16 Image_16
Shape Hole Rotation
Rectangle_2 1 2

Table B.3

78 B. MEASURED DATA SET

Samples Measured Data set

Sample_i Signal_i Image_i

Sample_17 Signal_17 Image_17
Shape Hole Rotation
Rectangle_1 2 3
Rectangle_3 8 3

Sample_18 Signal_18 Image_18
Shape Hole Rotation
Rectangle_2 4 4
Rectangle_4 11 2

Sample_19 Signal_19 Image_19
Shape Hole Rotation
Rectangle_3 11 1
Rectangle_4 5 4

Sample_20 Signal_20 Image_20
Shape Hole Rotation
Circle_1 5 1
Ellipse_3 11 1

Sample_21 Signal_21 Image_21
Shape Hole Rotation
Circle_2 12 1
Circle_3 6 1
Ellipse_2 9 4

Sample_22 Signal_22 Image_22
Shape Hole Rotation
Circle_2 11 1
Ellipse_2 4 4
Ellipse_4 8 2

Sample_23 Signal_23 Image_23
Shape Hole Rotation
Circle_1 11 1
Ellipse_1 5 1

Sample_24 Signal_24 Image_24
Shape Hole Rotation
Circle_3 6 1
Ellipse_3 9 4
Ellipse_4 2 2

Sample_25 Signal_25 Image_25
Shape Hole Rotation
Circle_1 2 1
Ellipse_4 6 2
Ellipse_5 9 2

Sample_26 Signal_26 Image_26
Shape Hole Rotation
Circle_3 9 1
Square_2 4 2

Sample_27 Signal_27 Image_27
Shape Hole Rotation
Circle_2 9 1
Circle_3 5 1
Square_3 12 1

Table B.4

79

Samples Measured Data set

Sample_i Signal_i Image_i

Sample_28 Signal_28 Image_28
Shape Hole Rotation
Circle_2 11 1
Square_2 5 1

Sample_29 Signal_29 Image_29
Shape Hole Rotation
Circle_3 6 1
Square_2 2 2
Square_3 9 2

Sample_30 Signal_30 Image_30
Shape Hole Rotation
Circle_1 2 1
Square_3 8 1

Sample_31 Signal_31 Image_31
Shape Hole Rotation
Ellipse_2 1 1
Ellipse_4 6 2
Rectangle_3 11 1

Sample_32 Signal_32 Image_32
Shape Hole Rotation
Ellipse_1 7 2
Rectangle_4 12 2

Sample_33 Signal_33 Image_33
Shape Hole Rotation
Ellipse_4 3 4
Rectangle_2 7 3

Sample_34 Signal_34 Image_34
Shape Hole Rotation
Ellipse_3 2 4
Ellipse_5 6 1
Rectangle_4 8 1

Sample_35 Signal_35 Image_35
Shape Hole Rotation
Ellipse_4 9 4
Rectangle_1 4 4

Sample_36 Signal_36 Image_36
Shape Hole Rotation
Ellipse_4 3 4
Square_1 10 2

Sample_37 Signal_37 Image_37
Shape Hole Rotation
Ellipse_3 12 2
Square_3 5 2
Square_4 8 2

Sample_38 Signal_38 Image_38
Shape Hole Rotation
Ellipse_1 11 1
Square_2 5 1

Table B.5

80 B. MEASURED DATA SET

Samples Measured Data set

Sample_i Signal_i Image_i

Sample_39 Signal_39 Image_39
Shape Hole Rotation
Ellipse_2 2 3
Ellipse_4 6 2
Square_3 9 2

Sample_40 Signal_40 Image_40
Shape Hole Rotation
Ellipse_3 8 3
Ellipse_5 11 3
Square_3 4 1

Sample_41 Signal_41 Image_41
Shape Hole Rotation
Rectangle_1 4 2
Square_3 9 2

Sample_42 Signal_42 Image_42
Shape Hole Rotation
Rectangle_3 11 1
Square_2 5 2

Sample_43 Signal_43 Image_43
Shape Hole Rotation
Rectangle_2 1 4
Square_3 9 2

Sample_44 Signal_44 Image_44
Shape Hole Rotation
Rectangle_4 12 2
Square_3 5 2
Square_4 9 1

Sample_45 Signal_45 Image_45
Shape Hole Rotation
Rectangle_3 5 1
Square_2 11 1

Sample_46 Signal_46 Image_46
Shape Hole Rotation
Circle_3 8 1
Ellipse_1 4 4
Square_3 11 2

Sample_47 Signal_47 Image_47
Shape Hole Rotation
Circle_2 9 1
Ellipse_4 12 2
Rectangle_2 5 1

Sample_48 Signal_48 Image_48
Shape Hole Rotation
Ellipse_2 9 4
Rectangle_4 6 2
Square_2 2 1

Sample_49 Signal_49 Image_49
Shape Hole Rotation
Ellipse_3 12 2
Rectangle_3 8 3
Square_4 5 1

Table B.6

81

Samples Measured Data set

Sample_i Signal_i Image_i

Sample_50 Signal_50 Image_50
Shape Hole Rotation
Circle_3 8 1
Ellipse_5 11 1
Rectangle_1 4 4

Sample_51 Signal_51 Image_51
Shape Hole Rotation
Circle_3 11 1
Ellipse_4 8 3
Rectangle_3 4 4

Sample_52 Signal_52 Image_52
Shape Hole Rotation
Circle_3 3 1
Rectangle_4 6 2
Square_2 11 1

Sample_53 Signal_53 Image_53
Shape Hole Rotation
Circle_3 3 1
Ellipse_5 5 3
Rectangle_4 11 2
Square_3 8 1

Table B.7

C
ADDITIONAL VERSIONS OF MODEL II

Figure C.1: Schematic representation of the architecture.

Figure C.2: Image reconstruction.

83

84 C. ADDITIONAL VERSIONS OF MODEL II

Figure C.3: Schematic representation of the architecture.

Figure C.4: Image reconstruction.

	Preface
	Abstract
	Abbreviations
	Introduction
	Scope
	Report outline

	Conventional: Magnetic Resonance Imaging
	History of MRI
	Hardware components
	The primary magnet
	The gradient system
	The radio frequency system

	Signal generation and detection
	Magnetized nuclear spin systems
	Net magnetization
	Free precession, excitation and relaxation
	The MR signal

	Non-conventional: Low field MRI
	Magnet design
	The signal model
	Results

	Deep learning
	The multi-layer perceptron
	Performance and optimization
	Backpropagation
	Validation
	Regularization

	Convolutional Neural Network
	Convolutional layer
	Pooling layer
	Fully connected layer

	DL for ill-posed inverse problems

	Data acquisition and pre-processing
	Measured data
	Phantom
	Acquisition method
	Data analysis
	Data augmentation

	Simulated data

	Architectures and test cases
	Model architectures
	Model I
	Model II
	Model III

	Design of test cases
	Implementation

	Results: Synthetic Data
	Model I
	Model II
	Model III

	Results: Measured Data
	53 Samples
	Data augmentation
	Transfer learning

	Conclusions and Recommendations
	Further research

	Bibliography
	Appendices
	Signal detection
	Measured data set
	Additional versions of Model II

