Iterative solutions to sequences of Helmholtz equations

Thesis presentation

Jan de Gier 29 august 2012

Solving sequences of Helmholtz equations

</₽> < 3> < 3

Outline

- Introduction
 - Problem description
 - Physical problem
 - Mathematical problem
 - Solution to a test problem
- Solving the mathematical problem
 - ► IDR(s)
 - Shifted Laplace Preconditioning
- Reducing the computation time
 - Using previous solutions
 - Updating the preconditioner
 - Using spectral information
- Conclusions and future research

</₽> < E> < E>

Introduction Problem description

The reduction of noise in a car.

 \diamond Noise is caused by the engine, road contact and head wind.

Model the car and the propagation of the acoustic waves. Solve the resulting problem for sequencies of frequencies.

Use information of earlier obtained solutions for speeding up the computations.

 Solution vectors, spectral information and information on the performance of the algorithm.

Introduction Problem description

The reduction of noise in a car.

 \diamond Noise is caused by the engine, road contact and head wind.

Model the car and the propagation of the acoustic waves. Solve the resulting problem for sequencies of frequencies.

Use information of earlier obtained solutions for speeding up the computations.

 Solution vectors, spectral information and information on the performance of the algorithm.

Introduction Problem description

The reduction of noise in a car.

 \diamond Noise is caused by the engine, road contact and head wind.

Model the car and the propagation of the acoustic waves. Solve the resulting problem for sequencies of frequencies.

Use information of earlier obtained solutions for speeding up the computations.

◊ Solution vectors, spectral information and information on the performance of the algorithm.

Sound generates small disturbances in the ambient pressure *p*.

The wave equation:

$$rac{1}{c_0^2}rac{\partial^2}{\partial t^2} p(\mathbf{x},t) -
abla^2 p(\mathbf{x},t) = s(\mathbf{x},t).$$

The Helmholtz equation:

$$-k^2 P(\mathbf{x}) - \nabla^2 P(\mathbf{x}) = S(\mathbf{x}), \text{ with } k = f \frac{2\pi}{c_0}.$$

Sound generates small disturbances in the ambient pressure *p*.

The wave equation:

$$\frac{1}{c_0^2}\frac{\partial^2}{\partial t^2}p(\mathbf{x},t)-\nabla^2 p(\mathbf{x},t)=s(\mathbf{x},t).$$

The Helmholtz equation:

$$-k^2 P(\mathbf{x}) - \nabla^2 P(\mathbf{x}) = S(\mathbf{x}), \text{ with } k = f \frac{2\pi}{c_0}.$$

< □ ▶

· • @ • • = • • = •

Sound generates small disturbances in the ambient pressure *p*.

The wave equation:

$$\frac{1}{c_0^2}\frac{\partial^2}{\partial t^2}p(\mathbf{x},t)-\nabla^2 p(\mathbf{x},t)=s(\mathbf{x},t).$$

The Helmholtz equation:

$$-k^2 P(\mathbf{x}) - \nabla^2 P(\mathbf{x}) = S(\mathbf{x}), \text{ with } k = f \frac{2\pi}{c_0}.$$

</₽> < E> < E>

The Helmholtz equation on a domain

$$-k^2 P(\mathbf{x}) - \nabla^2 P(\mathbf{x}) = S(\mathbf{x})$$
 on Ω $(k = f \ 2\pi/c_0)$,

satisfies the boundary condition

$$Z_n \frac{\partial}{\partial n} P(\mathbf{x}) + ikP(\mathbf{x}) = 0 \text{ on } \Gamma$$

The Helmholtz equation on a domain

$$-k^2 P(\mathbf{x}) -
abla^2 P(\mathbf{x}) = S(\mathbf{x}) ext{ on } \Omega \quad (k = f \ 2\pi/c_0),$$

satisfies the boundary condition

$$Z_n \frac{\partial}{\partial n} P(\mathbf{x}) + ikP(\mathbf{x}) = 0$$
 on Γ .

< □ ▶

· • @ • • = • • = •

Introduction Mathematical problem

$$\begin{cases} -k^2 P(\mathbf{x}) - \nabla^2 P(\mathbf{x}) = \delta(\mathbf{x} - \mathbf{x}_s) & \text{on } \Omega, \\ Z_n \frac{\partial}{\partial n} P(\mathbf{x}) + ikP(\mathbf{x}) = 0 & \text{on } \Gamma. \end{cases}$$

The weak form equals

$$-k^{2}\int_{\Omega}\eta Pd\Omega + \int_{\Omega}\nabla P\cdot\nabla\eta d\Omega + ik\oint_{\Gamma}\frac{1}{Z_{n}}\eta Pd\Gamma = \int_{\Omega}\eta\delta(\mathbf{x}-\mathbf{x}_{s})d\Omega.$$

The finite element method results in a discretised linear system

$$(-f^2\mathbf{M} + \mathbf{K} + if\mathbf{C})\mathbf{p} = \mathbf{b}.$$

Introduction Mathematical problem

$$\begin{cases} -k^2 P(\mathbf{x}) - \nabla^2 P(\mathbf{x}) = \delta(\mathbf{x} - \mathbf{x}_s) & \text{on } \Omega, \\ Z_n \frac{\partial}{\partial n} P(\mathbf{x}) + ikP(\mathbf{x}) = 0 & \text{on } \Gamma. \end{cases}$$

The weak form equals

$$-k^{2}\int_{\Omega}\eta Pd\Omega + \int_{\Omega}\nabla P\cdot\nabla\eta d\Omega + ik\oint_{\Gamma}\frac{1}{Z_{n}}\eta Pd\Gamma = \int_{\Omega}\eta\delta(\mathbf{x}-\mathbf{x}_{s})d\Omega.$$

The finite element method results in a discretised linear system

$$(-f^2\mathbf{M} + \mathbf{K} + if\mathbf{C})\mathbf{p} = \mathbf{b}.$$

Introduction Mathematical problem

$$\begin{cases} -k^2 P(\mathbf{x}) - \nabla^2 P(\mathbf{x}) = \delta(\mathbf{x} - \mathbf{x}_s) & \text{on } \Omega, \\ Z_n \frac{\partial}{\partial n} P(\mathbf{x}) + ikP(\mathbf{x}) = 0 & \text{on } \Gamma. \end{cases}$$

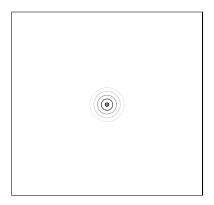
The weak form equals

$$-k^{2}\int_{\Omega}\eta Pd\Omega + \int_{\Omega}\nabla P\cdot\nabla\eta d\Omega + ik\oint_{\Gamma}\frac{1}{Z_{n}}\eta Pd\Gamma = \int_{\Omega}\eta\delta(\mathbf{x}-\mathbf{x}_{s})d\Omega.$$

The finite element method results in a discretised linear system

$$(-f^2\mathbf{M} + \mathbf{K} + if\mathbf{C})\mathbf{p} = \mathbf{b}.$$

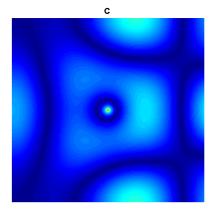
Introduction Solution to a test problem



▲□▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲
■▶ ▲

Solving sequences of Helmholtz equations

Introduction Solution to a test problem



▲□▶ ▲舂▶ ▲差▶ ▲差▶ (差) 少久(

Solving sequences of Helmholtz equations

<□▶</₽>< 글▶</⊒></2>

Solving sequences of Helmholtz equations

We solve the system

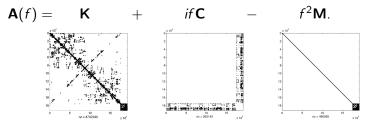
$$\left\{ \begin{pmatrix} \mathbf{K}_{\mathrm{s}} & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_{\mathrm{f}} \end{pmatrix} + if \begin{pmatrix} \mathbf{C}_{\mathrm{s}} & i\mathbf{C}_{\mathrm{sf}}^{\top} \\ i\mathbf{C}_{\mathrm{sf}} & \mathbf{C}_{\mathrm{f}} \end{pmatrix} - f^{2} \begin{pmatrix} \mathbf{M}_{\mathrm{s}} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{\mathrm{f}} \end{pmatrix} \right\} \begin{pmatrix} \mathbf{u} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{b}_{\mathrm{s}} \\ \mathbf{b}_{\mathrm{f}} \end{pmatrix}$$

and the (symmetric) system matrix can be written as $\mathbf{A}(f) = \mathbf{K} + if \mathbf{C} - f^2 \mathbf{M}.$

We solve the system

$$\left\{ \begin{pmatrix} \mathbf{K}_{\mathrm{s}} & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_{\mathrm{f}} \end{pmatrix} + if \begin{pmatrix} \mathbf{C}_{\mathrm{s}} & i\mathbf{C}_{\mathrm{sf}}^{\top} \\ i\mathbf{C}_{\mathrm{sf}} & \mathbf{C}_{\mathrm{f}} \end{pmatrix} - f^{2} \begin{pmatrix} \mathbf{M}_{\mathrm{s}} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{\mathrm{f}} \end{pmatrix} \right\} \begin{pmatrix} \mathbf{u} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{b}_{\mathrm{s}} \\ \mathbf{b}_{\mathrm{f}} \end{pmatrix}$$

and the (symmetric) system matrix can be written as



IDR(s):

Iterative method:

Start with \textbf{x}_0 and determine $\textbf{x}_1, \textbf{x}_2, \ldots \rightarrow \textbf{x}.$

◊ Krylov subspace method:

 $\mathbf{x}_i - \mathbf{x}_0 = P_{i-1}(\mathbf{A})\mathbf{r}_0 \in \operatorname{span}\{\mathbf{r}_0, \mathbf{A}\mathbf{r}_0, \dots \mathbf{A}^{i-1}\mathbf{r}_0\}$

 $\mathbf{r}_i = \mathbf{b} - \mathbf{A}\mathbf{x}_i$ are the residuals: the amount we are wrong.

 $\mathbf{r}_i = R_i(\mathbf{A})\mathbf{r}_0 = [\mathbf{I} - \mathbf{A}P_{i-1}(\mathbf{A})]\mathbf{r}_0.$

Stopping criterium: $\|\mathbf{r}_i\|/\|\mathbf{b}\| \leq 10^{-8}$ (or # iterations ≥ 1000).

IDR(s):

- Iterative method:
 - Start with \textbf{x}_0 and determine $\textbf{x}_1, \textbf{x}_2, \ldots \rightarrow \textbf{x}.$
- ◊ Krylov subspace method:

$$\mathbf{x}_i - \mathbf{x}_0 = P_{i-1}(\mathbf{A})\mathbf{r}_0 \in \operatorname{span}\{\mathbf{r}_0, \mathbf{A}\mathbf{r}_0, \dots \mathbf{A}^{i-1}\mathbf{r}_0\}.$$

 $\mathbf{r}_i = \mathbf{b} - \mathbf{A}\mathbf{x}_i$ are the residuals: the amount we are wrong.

$$\mathbf{r}_i = R_i(\mathbf{A})\mathbf{r}_0 = [\mathbf{I} - \mathbf{A}P_{i-1}(\mathbf{A})]\mathbf{r}_0.$$

Stopping criterium: $\|{f r}_i\|/\|{f b}\|\leq 10^{-8}$ (or # iterations ≥ 1000).

IDR(s):

- Iterative method:
 - Start with \mathbf{x}_0 and determine $\mathbf{x}_1, \mathbf{x}_2, \ldots \rightarrow \mathbf{x}$.
- ◊ Krylov subspace method:

$$\mathbf{x}_i - \mathbf{x}_0 = P_{i-1}(\mathbf{A})\mathbf{r}_0 \in \operatorname{span}{\mathbf{r}_0, \mathbf{Ar}_0, \dots \mathbf{A}^{i-1}\mathbf{r}_0}.$$

 $\mathbf{r}_i = \mathbf{b} - \mathbf{A}\mathbf{x}_i$ are the residuals: the amount we are wrong.

$$\mathbf{r}_i = R_i(\mathbf{A})\mathbf{r}_0 = [\mathbf{I} - \mathbf{A}P_{i-1}(\mathbf{A})]\mathbf{r}_0.$$

Stopping criterium: $\|{f r}_i\|/\|{f b}\|\leq 10^{-8}$ (or # iterations ≥ 1000).

IDR(s):

Iterative method:

Start with \mathbf{x}_0 and determine $\mathbf{x}_1, \mathbf{x}_2, \ldots \rightarrow \mathbf{x}$.

◊ Krylov subspace method:

$$\mathbf{x}_i - \mathbf{x}_0 = P_{i-1}(\mathbf{A})\mathbf{r}_0 \in \operatorname{span}{\mathbf{r}_0, \mathbf{Ar}_0, \dots \mathbf{A}^{i-1}\mathbf{r}_0}.$$

 $\mathbf{r}_i = \mathbf{b} - \mathbf{A}\mathbf{x}_i$ are the residuals: the amount we are wrong.

$$\mathbf{r}_i = R_i(\mathbf{A})\mathbf{r}_0 = [\mathbf{I} - \mathbf{A}P_{i-1}(\mathbf{A})]\mathbf{r}_0.$$

Stopping criterium: $\|\mathbf{r}_i\|/\|\mathbf{b}\| \leq 10^{-8}$ (or # iterations ≥ 1000).

IDR(s):

◊ Iterative method:

Start with \textbf{x}_0 and determine $\textbf{x}_1, \textbf{x}_2, \ldots \rightarrow \textbf{x}.$

◊ Krylov subspace method:

$$\mathbf{x}_i - \mathbf{x}_0 = P_{i-1}(\mathbf{A})\mathbf{r}_0 \in \operatorname{span}{\mathbf{r}_0, \mathbf{Ar}_0, \dots \mathbf{A}^{i-1}\mathbf{r}_0}.$$

 $\mathbf{r}_i = \mathbf{b} - \mathbf{A}\mathbf{x}_i$ are the residuals: the amount we are wrong.

$$\mathbf{r}_i = R_i(\mathbf{A})\mathbf{r}_0 = [\mathbf{I} - \mathbf{A}P_{i-1}(\mathbf{A})]\mathbf{r}_0.$$

Stopping criterium: $\|\mathbf{r}_i\| / \|\mathbf{b}\| \le 10^{-8}$ (or # iterations ≥ 1000).

Generate residuals $\mathbf{r}_i \in \mathcal{G}_j$, where

$$\diamond \ \mathcal{G}_0 = \mathcal{K}_n(\mathbf{A}, \mathbf{r}_0) = \mathbb{C}^n$$
,

$$\diamond \mathcal{G}_{j+1} = (\mathbf{I} - \omega_{j+1} \mathbf{A})(\mathcal{G}_j \cap \mathcal{S}).$$

Properties of the Sonneveld spaces \mathcal{G}_j are:

 $\diamond \ \mathcal{G}_{j+1} \subset \mathcal{G}_j$ and even $\dim(\mathcal{G}_{j+1}) = \dim(\mathcal{G}_j) - s$,

 $\diamond \mathcal{G}_k = \{\mathbf{0}\} \text{ for a } k \ll n.$

< /⊒ > < ≣

Generate residuals $\mathbf{r}_i \in \mathcal{G}_j$, where

$$\diamond \mathcal{G}_0 = \mathcal{K}_n(\mathbf{A}, \mathbf{r}_0) = \mathbb{C}^n$$
,

$$\diamond \mathcal{G}_{j+1} = (\mathbf{I} - \omega_{j+1} \mathbf{A})(\mathcal{G}_j \cap \mathcal{S}).$$

Properties of the Sonneveld spaces G_j are:

$$\diamond \ \mathcal{G}_{j+1} \subset \mathcal{G}_{j}$$
 and even $\dim(\mathcal{G}_{j+1}) = \dim(\mathcal{G}_{j}) - s$,

$$\diamond \mathcal{G}_k = \{\mathbf{0}\}$$
 for a $k \ll n$.

∢ /, ▶ **∢ ∃ ▶ ∢**

Apply preconditioner: condition the problem into a form that is more suitable for the numerical method.

$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \rightarrow \quad \mathbf{P}^{-1}\mathbf{A}\mathbf{x} = \mathbf{P}^{-1}\mathbf{b}.$

P should preferably be
 ◇ a good approximation of A,
 ◇ easy to construct and apply.

- ∢ /⊡ ▶ - ∢ ⊒

Apply preconditioner: condition the problem into a form that is more suitable for the numerical method.

 $\mathbf{A}\mathbf{x} = \mathbf{b} \quad \rightarrow \quad \mathbf{P}^{-1}\mathbf{A}\mathbf{x} = \mathbf{P}^{-1}\mathbf{b}.$

P should preferably be
◇ a good approximation of A,
◇ easy to construct and apply.

The system matrix equals $\mathbf{A}(f) = \mathbf{K} + if\mathbf{C} - f^2\mathbf{M}$,

and we consider the preconditioners $\diamond \mathbf{P}^{i}(f_{0}) = \mathbf{K} + if_{0}\mathbf{C} + if_{0}^{2}\mathbf{M}$ (imaginary shift), $\diamond \mathbf{P}^{r}(f_{0}) = \mathbf{K} + if_{0}\mathbf{C} - f_{0}^{2}\mathbf{M}$ (real shift), $\diamond \mathbf{P}^{m}(f_{0}) = \operatorname{Re}(\mathbf{K}) - f_{0}^{2}\mathbf{M}$ (modified real shift).

We use LU decomposition of the preconditioner, such that ${f Q}_1 \ {f P}^*(f_0) \ {f Q}_2 = {f L} \ {f U}.$

The system matrix equals $\mathbf{A}(f) = \mathbf{K} + if\mathbf{C} - f^2\mathbf{M}$,

and we consider the preconditioners $\diamond \mathbf{P}^{i}(f_{0}) = \mathbf{K} + if_{0}\mathbf{C} + if_{0}^{2}\mathbf{M}$ (imaginary shift), $\diamond \mathbf{P}^{r}(f_{0}) = \mathbf{K} + if_{0}\mathbf{C} - f_{0}^{2}\mathbf{M}$ (real shift), $\diamond \mathbf{P}^{m}(f_{0}) = \operatorname{Re}(\mathbf{K}) - f_{0}^{2}\mathbf{M}$ (modified real shift).

We use LU decomposition of the preconditioner, such that $\mathbf{Q}_1 \mathbf{P}^*(f_0) \mathbf{Q}_2 = \mathbf{L} \mathbf{U}$.

The system matrix equals $\mathbf{A}(f) = \mathbf{K} + if\mathbf{C} - f^2\mathbf{M}$,

and we consider the preconditioners

- $\diamond \mathbf{P}^{i}(f_{0}) = \mathbf{K} + if_{0}\mathbf{C} + if_{0}^{2}\mathbf{M}$ (imaginary shift),
- $\diamond \mathbf{P}^{r}(f_{0}) = \mathbf{K} + if_{0}\mathbf{C} f_{0}^{2}\mathbf{M} \text{ (real shift),}$
- $\diamond \mathbf{P}^{m}(f_{0}) = \operatorname{Re}(\mathbf{K}) f_{0}^{2}\mathbf{M} \text{ (modified real shift).}$

We use LU decomposition of the preconditioner, such that $\mathbf{Q}_1 \mathbf{P}^*(f_0) \mathbf{Q}_2 = \mathbf{L} \mathbf{U}$.

The system matrix equals $\mathbf{A}(f) = \mathbf{K} + if\mathbf{C} - f^2\mathbf{M}$,

and we consider the preconditioners

- $\diamond \mathbf{P}^{i}(f_{0}) = \mathbf{K} + if_{0}\mathbf{C} + if_{0}^{2}\mathbf{M}$ (imaginary shift),
- $\diamond \mathbf{P}^{r}(f_{0}) = \mathbf{K} + if_{0}\mathbf{C} f_{0}^{2}\mathbf{M} \text{ (real shift),}$
- $\diamond \mathbf{P}^{m}(f_{0}) = \operatorname{Re}(\mathbf{K}) f_{0}^{2}\mathbf{M} \text{ (modified real shift).}$

We use LU decomposition of the preconditioner, such that $\mathbf{Q}_1 \mathbf{P}^*(f_0) \mathbf{Q}_2 = \mathbf{L} \mathbf{U}$.

We solve the linear system $\mathbf{A}(f)\mathbf{x}^{f} = \mathbf{b}$ for f = 1, 2, ... Hz.

For $f = \varphi$ Hz, the solutions to $f = 1, 2, \dots, \varphi - 1$ Hz are available.

Idea: use (some of) these vectors $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^{\varphi-1}$ for \diamond improving the initial guess \mathbf{x}_0^{φ} (by Lagrange extrapolation), \diamond the initial search space \mathcal{U}_0 .

 $\mathbf{u}_i \in \mathcal{U}_j$ corresponds to $\mathbf{g}_i \in \mathcal{G}_j$ through $\mathbf{g}_i = \mathbf{A}\mathbf{u}_i$.

We solve the linear system $\mathbf{A}(f)\mathbf{x}^{f} = \mathbf{b}$ for f = 1, 2, ... Hz.

For $f = \varphi$ Hz, the solutions to $f = 1, 2, \dots, \varphi - 1$ Hz are available.

Idea: use (some of) these vectors $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^{\varphi-1}$ for \diamond improving the initial guess \mathbf{x}_0^{φ} (by Lagrange extrapolation), \diamond the initial search space \mathcal{U}_0 .

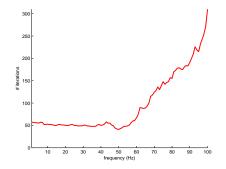
 $\mathbf{u}_i \in \mathcal{U}_j$ corresponds to $\mathbf{g}_i \in \mathcal{G}_j$ through $\mathbf{g}_i = \mathbf{A}\mathbf{u}_i$.

We solve the linear system $\mathbf{A}(f)\mathbf{x}^{f} = \mathbf{b}$ for f = 1, 2, ... Hz.

For $f = \varphi$ Hz, the solutions to $f = 1, 2, \dots, \varphi - 1$ Hz are available.

Idea: use (some of) these vectors $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^{\varphi-1}$ for \diamond improving the initial guess \mathbf{x}_0^{φ} (by Lagrange extrapolation), \diamond the initial search space \mathcal{U}_0 .

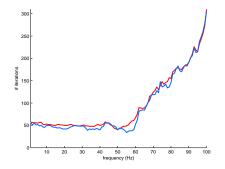
 $\mathbf{u}_i \in \mathcal{U}_j$ corresponds to $\mathbf{g}_i \in \mathcal{G}_j$ through $\mathbf{g}_i = \mathbf{A}\mathbf{u}_i$.



	none	x 0	\mathcal{U}_0	$\mathbf{x}_0, \mathcal{U}_0$
# iterations	9667			
improvement	-			

< □ ▶

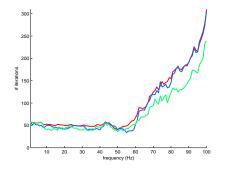
· • @ • • = • • = •



	none	x 0	\mathcal{U}_0	$\mathbf{x}_0, \mathcal{U}_0$
# iterations	9667	8867		
improvement	-	8.3%		

< □ ▶

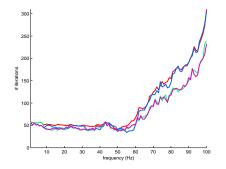
· ◀ @ ▶ ◀ 글 ▶



	none	x 0	\mathcal{U}_0	$\mathbf{x}_0, \mathcal{U}_0$
# iterations	9667	8867	7806	
improvement	-	8.3%	19.3%	

< □ ▶

-∢ /⊒ ▶ ∢ ⊒



	none	x 0	\mathcal{U}_0	$\mathbf{x}_0, \mathcal{U}_0$
# iterations	9667	8867	7806	7745
improvement	-	8.3%	19.3%	19.9%

< □ ▶

I → I = I

Some observations:

 \diamond For higher frequencies, the problem is more difficult to solve.

Using previous solutions results in a significant reduction.

 \diamond Different \mathbf{x}_0 give equivalent results if we use \mathcal{U}_0 .

Side notes:

Other preconditioners lead to very similar results.

- Smaller s in IDR(s) results in more iterations for higher frequencies and in less reduction.
- For the car problem, extrapolation for x₀ and using U₀ give almost identical results.

Some observations:

- \diamond For higher frequencies, the problem is more difficult to solve.
- \diamond Using previous solutions results in a significant reduction.
- \diamond Different \mathbf{x}_0 give equivalent results if we use \mathcal{U}_0 .

Side notes:

- Other preconditioners lead to very similar results.
- Smaller s in IDR(s) results in more iterations for higher frequencies and in less reduction.
- \diamond For the car problem, extrapolation for \textbf{x}_0 and using \mathcal{U}_0 give almost identical results.

Some observations:

- \diamond For higher frequencies, the problem is more difficult to solve.
- \diamond Using previous solutions results in a significant reduction.
- \diamond Different \textbf{x}_0 give equivalent results if we use $\mathcal{U}_0.$

Side notes:

- Other preconditioners lead to very similar results.
- Smaller s in IDR(s) results in more iterations for higher frequencies and in less reduction.
- \diamond For the car problem, extrapolation for \textbf{x}_0 and using \mathcal{U}_0 give almost identical results.

Some observations:

- \diamond For higher frequencies, the problem is more difficult to solve.
- \diamond Using previous solutions results in a significant reduction.
- \diamond Different \textbf{x}_0 give equivalent results if we use $\mathcal{U}_0.$

Side notes:

\diamond Other preconditioners lead to very similar results.

- Smaller s in IDR(s) results in more iterations for higher frequencies and in less reduction.
- \diamond For the car problem, extrapolation for \textbf{x}_0 and using \mathcal{U}_0 give almost identical results.

Some observations:

- \diamond For higher frequencies, the problem is more difficult to solve.
- \diamond Using previous solutions results in a significant reduction.
- \diamond Different \textbf{x}_0 give equivalent results if we use $\mathcal{U}_0.$

Side notes:

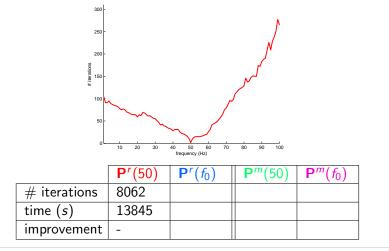
- \diamond Other preconditioners lead to very similar results.
- \diamond Smaller s in IDR(s) results in more iterations for higher frequencies and in less reduction.
- \diamond For the car problem, extrapolation for x_0 and using \mathcal{U}_0 give almost identical results.

Some observations:

- \diamond For higher frequencies, the problem is more difficult to solve.
- \diamond Using previous solutions results in a significant reduction.
- \diamond Different \textbf{x}_0 give equivalent results if we use $\mathcal{U}_0.$

Side notes:

- \diamond Other preconditioners lead to very similar results.
- \diamond Smaller s in IDR(s) results in more iterations for higher frequencies and in less reduction.
- \diamond For the car problem, extrapolation for \textbf{x}_0 and using \mathcal{U}_0 give almost identical results.

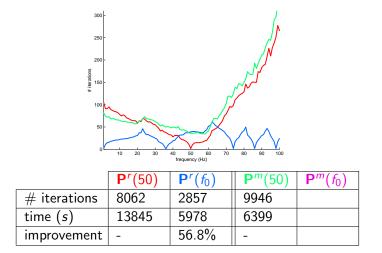


TUDelft

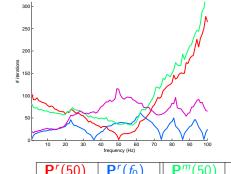
· • @ • • = • • = •



TUDelft



TUDelft



	P ^r (50)	$\mathbf{P}^{r}(f_{0})$	$P^{m}(50)$	$\mathbf{P}^m(f_0)$
# iterations	8062	2857	9946	5816
time (s)	13845	5978	6399	3686
improvement	-	56.8%	-	42.4%

TUDelft

< /⊒ > < ≣

Some observations:

- ◊ Updating the preconditioner approximately halves the computation time.
- ♦ For higher frequencies we need to update more often.
- The modified shifted Laplace preconditioner is the best preconditioner.

< /⊒ ► < ≣

Some observations:

- ◊ Updating the preconditioner approximately halves the computation time.
- \diamond For higher frequencies we need to update more often.
- The modified shifted Laplace preconditioner is the best preconditioner.

Some observations:

- ◊ Updating the preconditioner approximately halves the computation time.
- ◊ For higher frequencies we need to update more often.
- The modified shifted Laplace preconditioner is the best preconditioner.

In IDR(s), the residuals $\mathbf{r}_i \in \mathcal{G}_j$ and hence $\exists \ \hat{\mathbf{r}}_i \in \mathcal{G}_0$ such that

$$\mathbf{r}_i = \prod_{\ell=1}^j (\mathbf{I} - \omega_\ell \mathbf{A}) \hat{\mathbf{r}}_i.$$

Rewriting the residual updates results in the relation

$$\mathbf{A}\hat{\mathbf{r}}_{i-1} = \sum_{\ell=i-s-1}^{i} h_{\ell}\hat{\mathbf{r}}_{\ell},$$

or in matrix form

$$\mathbf{A}\hat{\mathbf{R}}_i = \hat{\mathbf{R}}_i \mathbf{H}_i + h_{i+1,1}\hat{\mathbf{r}}_{i+1}\mathbf{e}_i^{\top}.$$

In IDR(s), the residuals $\mathbf{r}_i \in \mathcal{G}_j$ and hence $\exists \ \hat{\mathbf{r}}_i \in \mathcal{G}_0$ such that

$$\mathbf{r}_i = \prod_{\ell=1}^j (\mathbf{I} - \omega_\ell \mathbf{A}) \hat{\mathbf{r}}_i.$$

Rewriting the residual updates results in the relation

$$\mathbf{A}\hat{\mathbf{r}}_{i-1} = \sum_{\ell=i-s-1}^{i} h_{\ell}\hat{\mathbf{r}}_{\ell},$$

or in matrix form

$$\mathbf{A}\hat{\mathbf{R}}_{i} = \hat{\mathbf{R}}_{i}\mathbf{H}_{i} + h_{i+1,1}\hat{\mathbf{r}}_{i+1}\mathbf{e}_{i}^{\top}.$$

The residuals of a Krylov subspace method satisfy $\mathbf{r}_i = R_i(\mathbf{A})\mathbf{r}_0$.

 $\|\mathbf{r}_i\| \leq \|R_i(\mathbf{A})\|\|\mathbf{r}_0\|$: $R_i(\xi)$ small on the spectrum of \mathbf{A} .

 $\diamond \operatorname{IDR}(s): R_i(\xi) = \prod_{\ell=1}^{J} (1 - \omega_\ell \xi) \Psi_{i-j}(\xi) = \Omega_j(\xi) \Psi_{i-j}(\xi).$

 \diamond Smallest polynomial on area enclosed by an ellipse: $T_j(\xi)$.

Choose an ellipse that encloses the Ritz values and choose ω_{ℓ} such that the roots of $\Omega_i(\xi)$ and $T_j(\xi)$ coincide.

The residuals of a Krylov subspace method satisfy $\mathbf{r}_i = R_i(\mathbf{A})\mathbf{r}_0$. $\|\mathbf{r}_i\| \le \|R_i(\mathbf{A})\|\|\mathbf{r}_0\| : R_i(\xi)$ small on the spectrum of \mathbf{A} .

 $\diamond \operatorname{IDR}(s): R_i(\xi) = \prod_{\ell=1}^j (1 - \omega_\ell \xi) \Psi_{i-j}(\xi) = \Omega_j(\xi) \Psi_{i-j}(\xi).$

 \diamond Smallest polynomial on area enclosed by an ellipse: $T_j(\xi)$.

Choose an ellipse that encloses the Ritz values and choose ω_{ℓ} such that the roots of $\Omega_j(\xi)$ and $T_j(\xi)$ coincide.

The residuals of a Krylov subspace method satisfy $\mathbf{r}_i = R_i(\mathbf{A})\mathbf{r}_0$.

 $\|\mathbf{r}_i\| \le \|R_i(\mathbf{A})\|\|\mathbf{r}_0\|$: $R_i(\xi)$ small on the spectrum of \mathbf{A} .

$$\diamond \mathsf{IDR}(s): \ \mathsf{R}_i(\xi) = \prod_{\ell=1}^j (1 - \omega_\ell \xi) \Psi_{i-j}(\xi) = \Omega_j(\xi) \Psi_{i-j}(\xi).$$

 \diamond Smallest polynomial on area enclosed by an ellipse: $T_j(\xi)$.

Choose an ellipse that encloses the Ritz values and choose ω_{ℓ} such that the roots of $\Omega_j(\xi)$ and $T_j(\xi)$ coincide.

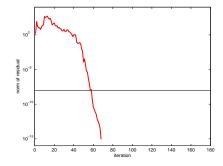
The residuals of a Krylov subspace method satisfy $\mathbf{r}_i = R_i(\mathbf{A})\mathbf{r}_0$.

 $\|\mathbf{r}_i\| \le \|R_i(\mathbf{A})\|\|\mathbf{r}_0\|$: $R_i(\xi)$ small on the spectrum of \mathbf{A} .

$$\diamond$$
 IDR(s): $R_i(\xi) = \prod_{\ell=1}^j (1 - \omega_\ell \xi) \Psi_{i-j}(\xi) = \Omega_j(\xi) \Psi_{i-j}(\xi)$

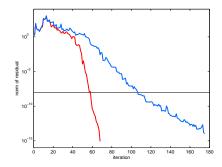
 \diamond Smallest polynomial on area enclosed by an ellipse: $T_j(\xi)$.

Choose an ellipse that encloses the Ritz values and choose ω_{ℓ} such that the roots of $\Omega_i(\xi)$ and $T_i(\xi)$ coincide.

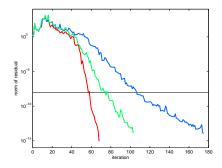


Choice for ω_j : \diamond minimise $||\mathbf{r}_i||$ w.r.t. ω_j

∢ /⊒ ▶ ∢ ∃



Choice for ω_j : \diamond minimise $||\mathbf{r}_i||$ w.r.t. ω_j \diamond Chebyshev nodes for f = 19 Hz



Choice for ω_i :

- \diamond minimise $\|\mathbf{r}_i\|$ w.r.t. ω_j
- \diamond Chebyshev nodes for f = 19 Hz

 \diamond as blue, but $\omega_j = (\mathbf{v}_i \cdot \mathbf{v}_i)/(\mathbf{v}_i \cdot \mathbf{A}\mathbf{v}_i) \in$ FOV for f = 19 Hz

TUDelft

Some observations:

◊ There is an increase in the number of iterations with the new approach.

 \diamond The choice of ω_j impacts the Ritz values.

< /⊒ > < ⊒

Some observations:

◊ There is an increase in the number of iterations with the new approach.

 \diamond The choice of ω_{j} impacts the Ritz values.

 \diamond Using the solution vectors for \textbf{x}_0 or \mathcal{U}_0 leads to a significant reduction in iterations.

 \diamond Updating the right preconditioners leads to serious reduction.

◊ Using spectral information does not lead to better results.

The best results are obtained with \diamond a preconditioner $\mathbf{P}^{m}(f_{0})$ with updating strategy for f_{0} , \diamond IDR(s) and s = 8, \diamond extrapolation of solution vectors for \mathbf{x}_{0} .

 \diamond Using the solution vectors for \textbf{x}_0 or \mathcal{U}_0 leads to a significant reduction in iterations.

 \diamond Updating the right preconditioners leads to serious reduction.

Osing spectral information does not lead to better results.

The best results are obtained with \diamond a preconditioner $\mathbf{P}^{m}(f_{0})$ with updating strategy for f_{0} , \diamond IDR(s) and s = 8, \diamond extrapolation of solution vectors for \mathbf{x}_{0} .

- \diamond Using the solution vectors for \textbf{x}_0 or \mathcal{U}_0 leads to a significant reduction in iterations.
- \diamond Updating the right preconditioners leads to serious reduction.
- ◊ Using spectral information does not lead to better results.
- The best results are obtained with \diamond a preconditioner $\mathbf{P}^{m}(f_{0})$ with updating strategy for f_{0} , \diamond IDR(s) and s = 8, \diamond extrapolation of solution vectors for \mathbf{x}_{0} .

- \diamond Using the solution vectors for \textbf{x}_0 or \mathcal{U}_0 leads to a significant reduction in iterations.
- \diamond Updating the right preconditioners leads to serious reduction.
- ◊ Using spectral information does not lead to better results.
- The best results are obtained with \diamond a preconditioner $\mathbf{P}^{m}(f_{0})$ with updating strategy for f_{0} , \diamond IDR(s) and s = 8, \diamond extrapolation of solution vectors for \mathbf{x}_{0} .

Future research

- \diamond Analyses on Ritz values with IDR(s): dependency of Ritz values on ω_j , convergence of Ritz values.
- \diamond Consider other residual polynomials: base choices for ω_j on Leja points or Ritz values itself.
- ♦ Use Fortran and parallisation.

· ◀ /@ ▶ ◀ 글

Future research

- \diamond Analyses on Ritz values with IDR(s): dependency of Ritz values on ω_j , convergence of Ritz values.
- \diamond Consider other residual polynomials: base choices for ω_j on Leja points or Ritz values itself.

♦ Use Fortran and parallisation.

Future research

- \diamond Analyses on Ritz values with IDR(s): dependency of Ritz values on ω_j , convergence of Ritz values.
- \diamond Consider other residual polynomials: base choices for ω_j on Leja points or Ritz values itself.
- ♦ Use Fortran and parallisation.

Questions

▲□▶ ▲@▶ ▲ 差▶ ▲ 差▶ → 差 → の

Solving sequences of Helmholtz equations

26 / 26