Iterative solutions to sequences of Helmholtz equations
 Thesis presentation

Jan de Gier
29 august 2012

TUD ${ }^{\text {THIft }}$

Outline

- Introduction
- Problem description
- Physical problem
- Mathematical problem
- Solution to a test problem
- Solving the mathematical problem
- IDR(s)
- Shifted Laplace Preconditioning
- Reducing the computation time
- Using previous solutions
- Updating the preconditioner
- Using spectral information
- Conclusions and future research

Introduction
 Problem description

The reduction of noise in a car.
\diamond Noise is caused by the engine, road contact and head wind.

Model the car and the propagation of the acoustic waves.
Solve the resulting problem for sequencies of frequencies.

Use information of earlier obtained solutions for speeding up the comnitations

Solution vectors, spectral information and information on
the performance of the algorithm.

Introduction
 Problem description

The reduction of noise in a car.
\diamond Noise is caused by the engine, road contact and head wind.

Model the car and the propagation of the acoustic waves. Solve the resulting problem for sequencies of frequencies.

Use information of earlier obtained solutions for speeding up the computations.

Solution vectors, spectral information and information on the performance of the algorithm.

Introduction
 Problem description

The reduction of noise in a car.
\diamond Noise is caused by the engine, road contact and head wind.

Model the car and the propagation of the acoustic waves.
Solve the resulting problem for sequencies of frequencies.

Use information of earlier obtained solutions for speeding up the computations.
\diamond Solution vectors, spectral information and information on the performance of the algorithm.

Introduction

Physical problem

Sound generates small disturbances in the ambient pressure p.

The wave equation:

The Helmholtz equation:

TUDelft

Introduction

Physical problem

Sound generates small disturbances in the ambient pressure p.
The wave equation:

$$
\frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}} p(\mathbf{x}, t)-\nabla^{2} p(\mathbf{x}, t)=s(\mathbf{x}, t)
$$

Introduction

Physical problem

Sound generates small disturbances in the ambient pressure p.

The wave equation:

$$
\frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}} p(\mathbf{x}, t)-\nabla^{2} p(\mathbf{x}, t)=s(\mathbf{x}, t)
$$

The Helmholtz equation:

$$
-k^{2} P(\mathbf{x})-\nabla^{2} P(\mathbf{x})=S(\mathbf{x}), \text { with } k=f \frac{2 \pi}{c_{0}} .
$$

Introduction

Physical problem

The Helmholtz equation on a domain

$$
-k^{2} P(\mathbf{x})-\nabla^{2} P(\mathbf{x})=S(\mathbf{x}) \text { on } \Omega \quad\left(k=f 2 \pi / c_{0}\right),
$$

satisfies the boundary condition

Introduction

Physical problem

The Helmholtz equation on a domain

$$
-k^{2} P(\mathbf{x})-\nabla^{2} P(\mathbf{x})=S(\mathbf{x}) \text { on } \Omega \quad\left(k=f 2 \pi / c_{0}\right),
$$

satisfies the boundary condition

$$
Z_{n} \frac{\partial}{\partial n} P(\mathbf{x})+i k P(\mathbf{x})=0 \text { on } \Gamma .
$$

Introduction

Mathematical problem

$$
\begin{cases}-k^{2} P(\mathbf{x})-\nabla^{2} P(\mathbf{x})=\delta\left(\mathbf{x}-\mathbf{x}_{s}\right) & \text { on } \Omega, \\ Z_{n} \frac{\partial}{\partial n} P(\mathbf{x})+i k P(\mathbf{x})=0 & \text { on } \Gamma .\end{cases}
$$

The weak form equals

The finite element method results in a discretised linear system

Introduction

Mathematical problem

$$
\begin{cases}-k^{2} P(\mathbf{x})-\nabla^{2} P(\mathbf{x})=\delta\left(\mathbf{x}-\mathbf{x}_{s}\right) & \text { on } \Omega, \\ Z_{n} \frac{\partial}{\partial n} P(\mathbf{x})+i k P(\mathbf{x})=0 & \text { on } \Gamma .\end{cases}
$$

The weak form equals
$-k^{2} \int_{\Omega} \eta P d \Omega+\int_{\Omega} \nabla P \cdot \nabla \eta d \Omega+i k \oint_{\Gamma} \frac{1}{Z_{n}} \eta P d \Gamma=\int_{\Omega} \eta \delta\left(\mathbf{x}-\mathbf{x}_{s}\right) d \Omega$.

The finite element method results in a discretised linear system

Introduction

Mathematical problem

$$
\begin{cases}-k^{2} P(\mathbf{x})-\nabla^{2} P(\mathbf{x})=\delta\left(\mathbf{x}-\mathbf{x}_{s}\right) & \text { on } \Omega, \\ Z_{n} \frac{\partial}{\partial n} P(\mathbf{x})+i k P(\mathbf{x})=0 & \text { on } \Gamma .\end{cases}
$$

The weak form equals
$-k^{2} \int_{\Omega} \eta P d \Omega+\int_{\Omega} \nabla P \cdot \nabla \eta d \Omega+i k \oint_{\Gamma} \frac{1}{Z_{n}} \eta P d \Gamma=\int_{\Omega} \eta \delta\left(\mathbf{x}-\mathbf{x}_{s}\right) d \Omega$.

The finite element method results in a discretised linear system

$$
\left(-f^{2} \mathbf{M}+\mathbf{K}+i f \mathbf{C}\right) \mathbf{p}=\mathbf{b}
$$

Introduction

Solution to a test problem

THDelft

Introduction

Solution to a test problem

TUDelft

Solving the mathematical problem

THDelft

Solving the mathematical problem

We solve the system

$$
\left\{\left(\begin{array}{cc}
\mathbf{K}_{\mathrm{s}} & \mathbf{0} \\
\mathbf{0} & \mathbf{K}_{\mathrm{f}}
\end{array}\right)+i f\left(\begin{array}{cc}
\mathbf{C}_{\mathrm{s}} & i \mathbf{C}_{\mathrm{sf}}^{\top} \\
i \mathbf{C}_{\mathrm{sf}} & \mathbf{C}_{\mathrm{f}}
\end{array}\right)-f^{2}\left(\begin{array}{cc}
\mathbf{M}_{\mathrm{s}} & \mathbf{0} \\
\mathbf{0} & \mathbf{M}_{\mathrm{f}}
\end{array}\right)\right\}\binom{\mathbf{u}}{\mathbf{p}}=\binom{\mathbf{b}_{\mathrm{s}}}{\mathbf{b}_{\mathrm{f}}}
$$

and the (symmetric) system matrix can be written as

Solving the mathematical problem

We solve the system

$$
\left\{\left(\begin{array}{cc}
\mathbf{K}_{\mathrm{s}} & \mathbf{0} \\
\mathbf{0} & \mathbf{K}_{\mathrm{f}}
\end{array}\right)+i f\left(\begin{array}{cc}
\mathbf{C}_{\mathrm{s}} & i \mathbf{C}_{\mathrm{sf}}^{\top} \\
i \mathbf{C}_{\mathrm{sf}} & \mathbf{C}_{\mathrm{f}}
\end{array}\right)-f^{2}\left(\begin{array}{cc}
\mathbf{M}_{\mathrm{s}} & \mathbf{0} \\
\mathbf{0} & \mathbf{M}_{\mathrm{f}}
\end{array}\right)\right\}\binom{\mathbf{u}}{\mathbf{p}}=\binom{\mathbf{b}_{\mathrm{s}}}{\mathbf{b}_{\mathrm{f}}}
$$

and the (symmetric) system matrix can be written as

$$
\mathbf{A}(f)=\mathbf{K} \quad+\quad \text { if } \mathbf{C} \quad-\quad f^{2} \mathbf{M}
$$

Solving the mathematical problem IDR(s)

$\operatorname{IDR}(s)$:
\diamond Iterative method:
Start with \mathbf{x}_{0} and determine $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \rightarrow \mathbf{x}$.

$\mathbf{r}_{i}=\mathbf{b}-\mathbf{A} \mathbf{x}_{i}$ are the residuals: the amount we are wrong.

Solving the mathematical problem IDR(s)

IDR(s):
\diamond Iterative method:
Start with \mathbf{x}_{0} and determine $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \rightarrow \mathbf{x}$.
\diamond Krylov subspace method:

$$
\mathbf{x}_{i}-\mathbf{x}_{0}=P_{i-1}(\mathbf{A}) \mathbf{r}_{0} \in \operatorname{span}\left\{\mathbf{r}_{0}, \mathbf{A} \mathbf{r}_{0}, \ldots \mathbf{A}^{i-1} \mathbf{r}_{0}\right\}
$$

$\mathbf{r}_{i}=\mathbf{b}-\mathbf{A} \mathbf{x}_{i}$ are the residuals: the amount we are wrong.

Solving the mathematical problem IDR(s)

IDR(s):
\diamond Iterative method:
Start with \mathbf{x}_{0} and determine $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \rightarrow \mathbf{x}$.
\diamond Krylov subspace method:

$$
\mathbf{x}_{i}-\mathbf{x}_{0}=P_{i-1}(\mathbf{A}) \mathbf{r}_{0} \in \operatorname{span}\left\{\mathbf{r}_{0}, \mathbf{A} \mathbf{r}_{0}, \ldots \mathbf{A}^{i-1} \mathbf{r}_{0}\right\}
$$

$\mathbf{r}_{i}=\mathbf{b}-\mathbf{A} \mathbf{x}_{i}$ are the residuals: the amount we are wrong.
\square
Stopping criterium: $\left\|r_{i}\right\| /\|\mathrm{b}\| \leq 10^{-8}$ (or \# iterations ≥ 1000)

Solving the mathematical problem IDR(s)

IDR(s):
\diamond Iterative method:
Start with \mathbf{x}_{0} and determine $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \rightarrow \mathbf{x}$.
\diamond Krylov subspace method:

$$
\mathbf{x}_{i}-\mathbf{x}_{0}=P_{i-1}(\mathbf{A}) \mathbf{r}_{0} \in \operatorname{span}\left\{\mathbf{r}_{0}, \mathbf{A} \mathbf{r}_{0}, \ldots \mathbf{A}^{i-1} \mathbf{r}_{0}\right\} .
$$

$\mathbf{r}_{i}=\mathbf{b}-\mathbf{A} \mathbf{x}_{i}$ are the residuals: the amount we are wrong.

$$
\mathbf{r}_{i}=R_{i}(\mathbf{A}) \mathbf{r}_{0}=\left[\mathbf{I}-\mathbf{A} P_{i-1}(\mathbf{A})\right] \mathbf{r}_{0}
$$

Solving the mathematical problem IDR(s)

IDR(s):
\diamond Iterative method:
Start with \mathbf{x}_{0} and determine $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \rightarrow \mathbf{x}$.
\diamond Krylov subspace method:

$$
\mathbf{x}_{i}-\mathbf{x}_{0}=P_{i-1}(\mathbf{A}) \mathbf{r}_{0} \in \operatorname{span}\left\{\mathbf{r}_{0}, \mathbf{A} \mathbf{r}_{0}, \ldots \mathbf{A}^{i-1} \mathbf{r}_{0}\right\} .
$$

$\mathbf{r}_{i}=\mathbf{b}-\mathbf{A} \mathbf{x}_{i}$ are the residuals: the amount we are wrong.

$$
\mathbf{r}_{i}=R_{i}(\mathbf{A}) \mathbf{r}_{0}=\left[\mathbf{I}-\mathbf{A} P_{i-1}(\mathbf{A})\right] \mathbf{r}_{0}
$$

Stopping criterium: $\left\|\mathbf{r}_{i}\right\| /\|\mathbf{b}\| \leq 10^{-8}$ (or $\#$ iterations ≥ 1000).

Solving the mathematical problem IDR(s)

Generate residuals $\mathbf{r}_{i} \in \mathcal{G}_{j}$, where

$$
\begin{aligned}
& \diamond \mathcal{G}_{0}=\mathcal{K}_{n}\left(\mathbf{A}, \mathbf{r}_{0}\right)=\mathbb{C}^{n}, \\
& \diamond \mathcal{G}_{j+1}=\left(\mathbf{I}-\omega_{j+1} \mathbf{A}\right)\left(\mathcal{G}_{j} \cap \mathcal{S}\right) .
\end{aligned}
$$

Solving the mathematical problem IDR(s)

Generate residuals $\mathbf{r}_{i} \in \mathcal{G}_{j}$, where

$$
\begin{aligned}
& \diamond \mathcal{G}_{0}=\mathcal{K}_{n}\left(\mathbf{A}, \mathbf{r}_{0}\right)=\mathbb{C}^{n}, \\
& \diamond \mathcal{G}_{j+1}=\left(\mathbf{I}-\omega_{j+1} \mathbf{A}\right)\left(\mathcal{G}_{j} \cap \mathcal{S}\right) .
\end{aligned}
$$

Properties of the Sonneveld spaces \mathcal{G}_{j} are:
$\diamond \mathcal{G}_{j+1} \subset \mathcal{G}_{j}$ and even $\operatorname{dim}\left(\mathcal{G}_{j+1}\right)=\operatorname{dim}\left(\mathcal{G}_{j}\right)-s$,
$\diamond \mathcal{G}_{k}=\{\mathbf{0}\}$ for a $k \ll n$.

Solving the mathematical problem

Apply preconditioner: condition the problem into a form that is more suitable for the numerical method.

$$
\mathbf{A x}=\mathbf{b} \quad \rightarrow \quad \mathbf{P}^{-1} \mathbf{A} \mathbf{x}=\mathbf{P}^{-1} \mathbf{b}
$$

\mathbf{P} should preferably be
\diamond a good approximation of A .

Solving the mathematical problem

Apply preconditioner: condition the problem into a form that is more suitable for the numerical method.

$$
\mathbf{A x}=\mathbf{b} \quad \rightarrow \quad \mathbf{P}^{-1} \mathbf{A} \mathbf{x}=\mathbf{P}^{-1} \mathbf{b}
$$

\mathbf{P} should preferably be
\diamond a good approximation of \mathbf{A},
\diamond easy to construct and apply.

Solving the mathematical problem Shifted Laplace Preconditioning

The system matrix equals $\mathbf{A}(f)=\mathbf{K}+i f \mathbf{C}-f^{2} \mathbf{M}$,
and we consider the preconditioners
$\diamond \mathbf{P}^{i}\left(f_{0}\right)=\mathbf{K}+i f_{0} \mathbf{C}+i f_{0}^{2} \mathbf{M}$ (imaginary shift),

Solving the mathematical problem Shifted Laplace Preconditioning

The system matrix equals $\mathbf{A}(f)=\mathbf{K}+i f \mathbf{C}-f^{2} \mathbf{M}$, and we consider the preconditioners

$$
\begin{aligned}
& \diamond \mathbf{P}^{i}\left(f_{0}\right)=\mathbf{K}+i f_{0} \mathbf{C}+i f_{0}^{2} \mathbf{M} \text { (imaginary shift), } \\
& \diamond \mathbf{P}^{r}\left(f_{0}\right)=\mathbf{K}+i f_{0} \mathbf{C}-f_{0}^{2} \mathbf{M} \text { (real shift), }
\end{aligned}
$$

Solving the mathematical problem Shifted Laplace Preconditioning

The system matrix equals $\mathbf{A}(f)=\mathbf{K}+i f \mathbf{C}-f^{2} \mathbf{M}$,
and we consider the preconditioners
$\diamond \mathbf{P}^{i}\left(f_{0}\right)=\mathbf{K}+i f_{0} \mathbf{C}+i f_{0}^{2} \mathbf{M}$ (imaginary shift),
$\diamond \mathbf{P}^{r}\left(f_{0}\right)=\mathbf{K}+i f_{0} \mathbf{C}-f_{0}^{2} \mathbf{M}$ (real shift),
$\diamond \mathbf{P}^{m}\left(f_{0}\right)=\operatorname{Re}(\mathbf{K})-f_{0}^{2} \mathbf{M}$ (modified real shift).

TUDelft

Solving the mathematical problem Shifted Laplace Preconditioning

The system matrix equals $\mathbf{A}(f)=\mathbf{K}+i f \mathbf{C}-f^{2} \mathbf{M}$,
and we consider the preconditioners
$\diamond \mathbf{P}^{i}\left(f_{0}\right)=\mathbf{K}+i f_{0} \mathbf{C}+i f_{0}^{2} \mathbf{M}$ (imaginary shift),
$\diamond \mathbf{P}^{r}\left(f_{0}\right)=\mathbf{K}+i f_{0} \mathbf{C}-f_{0}^{2} \mathbf{M}$ (real shift),
$\diamond \mathbf{P}^{m}\left(f_{0}\right)=\operatorname{Re}(\mathbf{K})-f_{0}^{2} \mathbf{M}$ (modified real shift).
We use LU decomposition of the preconditioner, such that $\mathbf{Q}_{1} \mathbf{P}^{*}\left(f_{0}\right) \mathbf{Q}_{2}=\mathbf{L} \mathbf{U}$.

Reducing the computation time

Using previous solutions

We solve the linear system $\mathbf{A}(f) \mathbf{x}^{f}=\mathbf{b}$ for $f=1,2, \ldots \mathrm{~Hz}$.
For $f=\varphi \mathrm{Hz}$, the solutions to $f=1,2, \ldots, \varphi-1 \mathrm{~Hz}$ are
available.

Idea: use (some of) these vectors $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathrm{x}^{\varphi-1}$ for \diamond improving the initial guess \mathbf{x}_{0}^{φ} (by Lagrange extrapolation) \diamond the initial search space \mathcal{U}_{0}
$\mathbf{u}_{i} \in \mathcal{U}_{j}$ corresponds to $\mathbf{g}_{i} \in \mathcal{G}_{j}$ through $\mathbf{g}_{i}=\mathbf{A} \mathbf{u}_{i}$

Reducing the computation time
 Using previous solutions

We solve the linear system $\mathbf{A}(f) \mathbf{x}^{f}=\mathbf{b}$ for $f=1,2, \ldots \mathrm{~Hz}$.

For $f=\varphi \mathrm{Hz}$, the solutions to $f=1,2, \ldots, \varphi-1 \mathrm{~Hz}$ are available.

Idea: use (some of) these vectors $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{\varphi-1}$ for \diamond improving the initial guess \mathbf{x}_{0}^{φ} (by Lagrange extrapolation),

Reducing the computation time
 Using previous solutions

We solve the linear system $\mathbf{A}(f) \mathbf{x}^{f}=\mathbf{b}$ for $f=1,2, \ldots \mathrm{~Hz}$.

For $f=\varphi \mathrm{Hz}$, the solutions to $f=1,2, \ldots, \varphi-1 \mathrm{~Hz}$ are available.

Idea: use (some of) these vectors $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{\varphi-1}$ for \diamond improving the initial guess \mathbf{x}_{0}^{φ} (by Lagrange extrapolation),
\diamond the initial search space \mathcal{U}_{0}.
$\mathbf{u}_{i} \in \mathcal{U}_{j}$ corresponds to $\mathbf{g}_{i} \in \mathcal{G}_{j}$ through $\mathbf{g}_{i}=\mathbf{A} \mathbf{u}_{i}$.

Reducing the computation time

 Using previous solutions

	none	x_{0}	\mathcal{U}_{0}	x_{0}, \mathcal{U}_{0}
\# iterations	9667			
improvement	-			

Reducing the computation time

 Using previous solutions

	none	x_{0}	\mathcal{U}_{0}	$\mathrm{x}_{0}, \mathcal{U}_{0}$
\# iterations	9667	8867		
improvement	-	8.3%		

Reducing the computation time

 Using previous solutions

	none	x_{0}	\mathcal{U}_{0}	$\mathrm{x}_{0}, \mathcal{U}_{0}$
\# iterations	9667	8867	7806	
improvement	-	8.3%	19.3%	

Reducing the computation time

 Using previous solutions

	none	x_{0}	\mathcal{U}_{0}	$\mathrm{x}_{0}, \mathcal{U}_{0}$
\# iterations	9667	8867	7806	7745
improvement	-	8.3%	19.3%	19.9%

Reducing the computation time

Using previous solutions

Some observations:
\diamond For higher frequencies, the problem is more difficult to solve.
Different x_{0} give equivalent results if we use \mathcal{U}_{0}

Reducing the computation time
 Using previous solutions

Some observations:
\diamond For higher frequencies, the problem is more difficult to solve.
\diamond Using previous solutions results in a significant reduction.

Side notes:
Other prec onditioners lead to very similar results.

Reducing the computation time
 Using previous solutions

Some observations:
\diamond For higher frequencies, the problem is more difficult to solve.
\diamond Using previous solutions results in a significant reduction.
\diamond Different \mathbf{x}_{0} give equivalent results if we use \mathcal{U}_{0}.
Side notes:
Other preconditioners lead to very similar results
Smaller s in IDR(s) results in more iterations for higher
frequencies and in less reduction

Reducing the computation time
 Using previous solutions

Some observations:
\diamond For higher frequencies, the problem is more difficult to solve.
\diamond Using previous solutions results in a significant reduction.
\diamond Different \mathbf{x}_{0} give equivalent results if we use \mathcal{U}_{0}.
Side notes:
\diamond Other preconditioners lead to very similar results.
frequencies and in less reduction.
For the car problem, extrapolation for x_{0} and using U_{0} give
almost identical results.

Reducing the computation time Using previous solutions

Some observations:
\diamond For higher frequencies, the problem is more difficult to solve.
\diamond Using previous solutions results in a significant reduction.
\diamond Different \mathbf{x}_{0} give equivalent results if we use \mathcal{U}_{0}.
Side notes:
\diamond Other preconditioners lead to very similar results.
\diamond Smaller s in $\operatorname{IDR}(s)$ results in more iterations for higher frequencies and in less reduction.
almost identical results.

Reducing the computation time Using previous solutions

Some observations:
\diamond For higher frequencies, the problem is more difficult to solve.
\diamond Using previous solutions results in a significant reduction.
\diamond Different \mathbf{x}_{0} give equivalent results if we use \mathcal{U}_{0}.
Side notes:
\diamond Other preconditioners lead to very similar results.
\diamond Smaller s in $\operatorname{IDR}(s)$ results in more iterations for higher frequencies and in less reduction.
\diamond For the car problem, extrapolation for \mathbf{x}_{0} and using \mathcal{U}_{0} give almost identical results.

Reducing the computation time

Updating the preconditioner

	$\mathbf{P}^{r}(50)$	$\mathbf{P}^{r}\left(f_{0}\right)$	$\mathbf{P}^{m}(50)$	$\mathbf{P}^{m}\left(f_{0}\right)$
\# iterations	8062			
time (s)	13845			
improvement	-			

TUDelft

Reducing the computation time

Updating the preconditioner

	$\mathbf{P}^{r}(50)$	$\mathbf{P}^{r}\left(f_{0}\right)$	$\mathbf{P}^{m}(50)$	$\mathbf{P}^{m}\left(f_{0}\right)$
\# iterations	8062	2857		
time (s)	13845	5978		
improvement	-	56.8%		

TUDelft

Reducing the computation time

Updating the preconditioner

	$\mathbf{P}^{r}(50)$	$\mathbf{P}^{r}\left(f_{0}\right)$	$\mathbf{P}^{m}(50)$	$\mathbf{P}^{m}\left(f_{0}\right)$
\# iterations	8062	2857	9946	
time (s)	13845	5978	6399	
improvement	-	56.8%	-	

TUDelft

Reducing the computation time

Updating the preconditioner

	$\mathbf{P}^{r}(50)$	$\mathbf{P}^{r}\left(f_{0}\right)$	$\mathbf{P}^{m}(50)$	$\mathbf{P}^{m}\left(f_{0}\right)$
\# iterations	8062	2857	9946	5816
time (s)	13845	5978	6399	3686
improvement	-	56.8%	-	42.4%

Reducing the computation time

Updating the preconditioner

Some observations:
\diamond Updating the preconditioner approximately halves the computation time.

For higher frequencies we need to update more often. The modified shifted Laplace preconditioner is the best preconditioner.

Reducing the computation time Updating the preconditioner

Some observations:
\diamond Updating the preconditioner approximately halves the computation time.
\diamond For higher frequencies we need to update more often.
The modified shifted Laplace preconditioner is the best
preconditioner.

Reducing the computation time Updating the preconditioner

Some observations:
\diamond Updating the preconditioner approximately halves the computation time.
\diamond For higher frequencies we need to update more often.
\diamond The modified shifted Laplace preconditioner is the best preconditioner.

Reducing the computation time

Using spectral information

In $\operatorname{IDR}(s)$, the residuals $\mathbf{r}_{i} \in \mathcal{G}_{j}$ and hence $\exists \hat{\mathbf{r}}_{i} \in \mathcal{G}_{0}$ such that

$$
\mathbf{r}_{i}=\prod_{\ell=1}^{j}\left(\mathbf{I}-\omega_{\ell} \mathbf{A}\right) \hat{\mathbf{r}}_{i}
$$

Rewriting the residual updates results in the relation
or in matrix form

Reducing the computation time

Using spectral information

In $\operatorname{IDR}(s)$, the residuals $\mathbf{r}_{i} \in \mathcal{G}_{j}$ and hence $\exists \hat{\mathbf{r}}_{i} \in \mathcal{G}_{0}$ such that

$$
\mathbf{r}_{i}=\prod_{\ell=1}^{j}\left(\mathbf{I}-\omega_{\ell} \mathbf{A}\right) \hat{\mathbf{r}}_{i}
$$

Rewriting the residual updates results in the relation

$$
\mathbf{A} \hat{\mathbf{r}}_{i-1}=\sum_{\ell=i-s-1}^{i} h_{\ell} \hat{\mathbf{r}}_{\ell}
$$

or in matrix form

$$
\mathbf{A} \hat{\mathbf{R}}_{i}=\hat{\mathbf{R}}_{i} \mathbf{H}_{i}+h_{i+1,1} \hat{\mathbf{r}}_{i+1} \mathbf{e}_{i}^{\top} .
$$

Reducing the computation time

Using spectral information

The residuals of a Krylov subspace method satisfy $\mathbf{r}_{i}=R_{i}(\mathbf{A}) \mathbf{r}_{0}$.

Smallest polynomial on area enclosed by an ellipse

Reducing the computation time

Using spectral information

The residuals of a Krylov subspace method satisfy $\mathbf{r}_{i}=R_{i}(\mathbf{A}) \mathbf{r}_{0}$.

$$
\left\|\mathbf{r}_{i}\right\| \leq\left\|R_{i}(\mathbf{A})\right\|\left\|\mathbf{r}_{0}\right\|: R_{i}(\xi) \text { small on the spectrum of } \mathbf{A} .
$$

Smallest polynomial on area enclosed by an ellipse:

Choose an ellipse that encloses the Ritz values and choose
such that the roots of $\Omega_{i}(\xi)$ and $T_{i}(\xi)$ coincide.

Reducing the computation time
 Using spectral information

The residuals of a Krylov subspace method satisfy $\mathbf{r}_{i}=R_{i}(\mathbf{A}) \mathbf{r}_{0}$.
$\left\|\mathbf{r}_{i}\right\| \leq\left\|R_{i}(\mathbf{A})\right\|\left\|\mathbf{r}_{0}\right\|: R_{i}(\xi)$ small on the spectrum of \mathbf{A}.
$\diamond \operatorname{IDR}(s): R_{i}(\xi)=\prod_{\ell=1}^{j}\left(1-\omega_{\ell} \xi\right) \Psi_{i-j}(\xi)=\Omega_{j}(\xi) \Psi_{i-j}(\xi)$.
\diamond Smallest polynomial on area enclosed by an ellipse: $T_{j}(\xi)$.
Choose an ellipse that encloses the Ritz values and choose such that the roots of $\Omega_{j}(\xi)$ and $T_{j}(\xi)$ coincide.

Reducing the computation time
 Using spectral information

The residuals of a Krylov subspace method satisfy $\mathbf{r}_{i}=R_{i}(\mathbf{A}) \mathbf{r}_{0}$.
$\left\|\mathbf{r}_{i}\right\| \leq\left\|R_{i}(\mathbf{A})\right\|\left\|\mathbf{r}_{0}\right\|: R_{i}(\xi)$ small on the spectrum of \mathbf{A}.
$\diamond \operatorname{IDR}(s): R_{i}(\xi)=\prod_{\ell=1}^{j}\left(1-\omega_{\ell} \xi\right) \Psi_{i-j}(\xi)=\Omega_{j}(\xi) \Psi_{i-j}(\xi)$.
\diamond Smallest polynomial on area enclosed by an ellipse: $T_{j}(\xi)$.
Choose an ellipse that encloses the Ritz values and choose ω_{ℓ} such that the roots of $\Omega_{j}(\xi)$ and $T_{j}(\xi)$ coincide.

Reducing the computation time

 Using spectral information

Choice for ω_{j} :
\diamond minimise $\left\|\boldsymbol{r}_{i}\right\|$ w.r.t. ω_{j}

Reducing the computation time

Using spectral information

Choice for ω_{j} :
\diamond minimise $\left\|\mathbf{r}_{i}\right\|$ w.r.t. ω_{j}
\diamond Chebyshev nodes for $f=19 \mathrm{~Hz}$

Reducing the computation time

Using spectral information

Choice for ω_{j} :
\diamond minimise $\left\|\mathbf{r}_{i}\right\|$ w.r.t. ω_{j}
\diamond Chebyshev nodes for $f=19 \mathrm{~Hz}$
\diamond as blue, but $\omega_{j}=\left(\mathbf{v}_{i} \cdot \mathbf{v}_{i}\right) /\left(\mathbf{v}_{i} \cdot \mathbf{A} \mathbf{v}_{i}\right) \in$ FOV for $f=19 \mathrm{~Hz}$
TUD ${ }^{\text {THIft }}$

Reducing the computation time Using spectral information

Some observations:

\diamond There is an increase in the number of iterations with the new approach.

Reducing the computation time
 Using spectral information

Some observations:
\diamond There is an increase in the number of iterations with the new approach.
\diamond The choice of ω_{j} impacts the Ritz values.

Conclusions

\diamond Using the solution vectors for \mathbf{x}_{0} or \mathcal{U}_{0} leads to a significant reduction in iterations.

\diamond Updating the right preconditioners leads to serious reduction.

 Using spectral information does not lead to better results
Conclusions

\diamond Using the solution vectors for \mathbf{x}_{0} or \mathcal{U}_{0} leads to a significant reduction in iterations.
\diamond Updating the right preconditioners leads to serious reduction.

Using spectral information does not lead to better results.

The best results are obtained with
a preconditioner $\mathbf{P}^{m}\left(f_{0}\right)$ with updating strategy for fo, $\diamond \operatorname{DR}(s)$ and $s=8$ \diamond extrapolation of solution vectors for x_{0}.

Conclusions

\diamond Using the solution vectors for \mathbf{x}_{0} or \mathcal{U}_{0} leads to a significant reduction in iterations.
\diamond Updating the right preconditioners leads to serious reduction.
\diamond Using spectral information does not lead to better results.
best results are obtained with
a preconditioner $\mathbf{P}^{m}\left(f_{0}\right)$ with updating strategy for f_{0}
$\bullet \operatorname{IDR}(s)$ and $s=8$
extrapolation of solution vectors for x_{0}.
TUDelft

Conclusions

\diamond Using the solution vectors for \mathbf{x}_{0} or \mathcal{U}_{0} leads to a significant reduction in iterations.
\diamond Updating the right preconditioners leads to serious reduction.
\diamond Using spectral information does not lead to better results.

The best results are obtained with
\diamond a preconditioner $\mathbf{P}^{m}\left(f_{0}\right)$ with updating strategy for f_{0},
$\diamond \operatorname{IDR}(s)$ and $s=8$,
\diamond extrapolation of solution vectors for \mathbf{x}_{0}.

Future research

\diamond Analyses on Ritz values with IDR(s): dependency of Ritz values on ω_{j}, convergence of Ritz values.

\diamond Consider other residual polynomials: base choices for ω_{j} on Leja points or Ritz values itself.

Use Fortran and parallisation

Future research

\diamond Analyses on Ritz values with IDR(s): dependency of Ritz values on ω_{j}, convergence of Ritz values.
\diamond Consider other residual polynomials: base choices for ω_{j} on Leja points or Ritz values itself.

Use Fortran and parallisation.

Future research

\diamond Analyses on Ritz values with IDR(s): dependency of Ritz values on ω_{j}, convergence of Ritz values.
\diamond Consider other residual polynomials: base choices for ω_{j} on Leja points or Ritz values itself.
\diamond Use Fortran and parallisation.

Questions

