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Introduction
Problem description

The reduction of noise in a car.
� Noise is caused by the engine, road contact and head wind.

Model the car and the propagation of the acoustic waves.
Solve the resulting problem for sequencies of frequencies.

Use information of earlier obtained solutions for speeding up the
computations.
� Solution vectors, spectral information and information on
� the performance of the algorithm.
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Introduction
Physical problem

Sound generates small disturbances in the ambient pressure p.

The wave equation:

1

c2
0

∂2

∂t2
p(x, t)−∇2p(x, t) = s(x, t).

The Helmholtz equation:

−k2P(x)−∇2P(x) = S(x), with k = f
2π

c0
.
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Introduction
Physical problem

The Helmholtz equation on a domain

−k2P(x)−∇2P(x) = S(x) on Ω (k = f 2π/c0),

satisfies the boundary condition

Zn
∂

∂n
P(x) + ikP(x) = 0 on Γ.
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Introduction
Mathematical problem

{
−k2P(x)−∇2P(x) = δ(x− xs) on Ω,

Zn
∂
∂nP(x) + ikP(x) = 0 on Γ.

The weak form equals

−k2

∫
Ω
ηPdΩ+

∫
Ω
∇P·∇ηdΩ+ik

∮
Γ

1

Zn
ηPdΓ =

∫
Ω
ηδ(x−xs)dΩ.

The finite element method results in a discretised linear system

(−f 2M + K + if C)p = b.
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Introduction
Solution to a test problem
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Solving the mathematical problem
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Solving the mathematical problem

We solve the system{(
Ks 0
0 Kf

)
+ if

(
Cs iC>sf
iCsf Cf

)
− f 2

(
Ms 0
0 Mf

)}(
u
p

)
=

(
bs
bf

)
and the (symmetric) system matrix can be written as

A(f ) = K + if C − f 2M.
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Solving the mathematical problem
IDR(s)

IDR(s):
� Iterative method:
� Start with x0 and determine x1, x2, . . .→ x.
� Krylov subspace method:
� xi − x0 = Pi−1(A)r0 ∈ span{r0,Ar0, . . .Ai−1r0}.

ri = b− Axi are the residuals: the amount we are wrong.

ri = Ri (A)r0 = [I− APi−1(A)]r0.

Stopping criterium: ‖ri‖/‖b‖ ≤ 10−8 (or # iterations ≥ 1000).

() Solving sequences of Helmholtz equations 11 / 26



Solving the mathematical problem
IDR(s)

IDR(s):
� Iterative method:
� Start with x0 and determine x1, x2, . . .→ x.
� Krylov subspace method:
� xi − x0 = Pi−1(A)r0 ∈ span{r0,Ar0, . . .Ai−1r0}.

ri = b− Axi are the residuals: the amount we are wrong.

ri = Ri (A)r0 = [I− APi−1(A)]r0.

Stopping criterium: ‖ri‖/‖b‖ ≤ 10−8 (or # iterations ≥ 1000).

() Solving sequences of Helmholtz equations 11 / 26



Solving the mathematical problem
IDR(s)

IDR(s):
� Iterative method:
� Start with x0 and determine x1, x2, . . .→ x.
� Krylov subspace method:
� xi − x0 = Pi−1(A)r0 ∈ span{r0,Ar0, . . .Ai−1r0}.

ri = b− Axi are the residuals: the amount we are wrong.

ri = Ri (A)r0 = [I− APi−1(A)]r0.

Stopping criterium: ‖ri‖/‖b‖ ≤ 10−8 (or # iterations ≥ 1000).

() Solving sequences of Helmholtz equations 11 / 26



Solving the mathematical problem
IDR(s)

IDR(s):
� Iterative method:
� Start with x0 and determine x1, x2, . . .→ x.
� Krylov subspace method:
� xi − x0 = Pi−1(A)r0 ∈ span{r0,Ar0, . . .Ai−1r0}.

ri = b− Axi are the residuals: the amount we are wrong.

ri = Ri (A)r0 = [I− APi−1(A)]r0.

Stopping criterium: ‖ri‖/‖b‖ ≤ 10−8 (or # iterations ≥ 1000).

() Solving sequences of Helmholtz equations 11 / 26



Solving the mathematical problem
IDR(s)

IDR(s):
� Iterative method:
� Start with x0 and determine x1, x2, . . .→ x.
� Krylov subspace method:
� xi − x0 = Pi−1(A)r0 ∈ span{r0,Ar0, . . .Ai−1r0}.

ri = b− Axi are the residuals: the amount we are wrong.

ri = Ri (A)r0 = [I− APi−1(A)]r0.

Stopping criterium: ‖ri‖/‖b‖ ≤ 10−8 (or # iterations ≥ 1000).

() Solving sequences of Helmholtz equations 11 / 26



Solving the mathematical problem
IDR(s)

Generate residuals ri ∈ Gj , where

� G0 = Kn(A, r0) = Cn,

� Gj+1 = (I− ωj+1A)(Gj ∩ S).

Properties of the Sonneveld spaces Gj are:

� Gj+1 ⊂ Gj and even dim(Gj+1) = dim(Gj)− s,

� Gk = {0} for a k � n.
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Solving the mathematical problem

Apply preconditioner: condition the problem into a form that is
more suitable for the numerical method.

Ax = b → P−1Ax = P−1b.

P should preferably be
� a good approximation of A,
� easy to construct and apply.
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Solving the mathematical problem
Shifted Laplace Preconditioning

The system matrix equals A(f ) = K + if C− f 2M,

and we consider the preconditioners
� Pi (f0) = K + if0C + if 2

0 M (imaginary shift),

� Pr (f0) = K + if0C− f 2
0 M (real shift),

� Pm(f0) = Re(K)− f 2
0 M (modified real shift).

We use LU decomposition of the preconditioner, such that
Q1 P∗(f0) Q2 = L U.
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Reducing the computation time
Using previous solutions

We solve the linear system A(f )xf = b for f = 1, 2, . . . Hz.

For f = ϕ Hz, the solutions to f = 1, 2, . . . , ϕ− 1 Hz are
available.

Idea: use (some of) these vectors x1, x2, . . . , xϕ−1 for
� improving the initial guess xϕ0 (by Lagrange extrapolation),
� the initial search space U0.

ui ∈ Uj corresponds to gi ∈ Gj through gi = Aui .
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Reducing the computation time
Using previous solutions
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Reducing the computation time
Using previous solutions

Some observations:
� For higher frequencies, the problem is more difficult to solve.
� Using previous solutions results in a significant reduction.
� Different x0 give equivalent results if we use U0.

Side notes:
� Other preconditioners lead to very similar results.
� Smaller s in IDR(s) results in more iterations for higher
� frequencies and in less reduction.
� For the car problem, extrapolation for x0 and using U0 give
� almost identical results.
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Reducing the computation time
Updating the preconditioner
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Reducing the computation time
Updating the preconditioner

Some observations:

� Updating the preconditioner approximately halves the
� computation time.

� For higher frequencies we need to update more often.

� The modified shifted Laplace preconditioner is the best
� preconditioner.
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Reducing the computation time
Using spectral information

In IDR(s), the residuals ri ∈ Gj and hence ∃ r̂i ∈ G0 such that

ri =

j∏
`=1

(I− ω`A)r̂i .

Rewriting the residual updates results in the relation

Ar̂i−1 =
i∑

`=i−s−1

h`r̂`,

or in matrix form

AR̂i = R̂iHi + hi+1,1r̂i+1e
>
i .
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Reducing the computation time
Using spectral information

The residuals of a Krylov subspace method satisfy ri = Ri (A)r0.

‖ri‖ ≤ ‖Ri (A)‖‖r0‖ : Ri (ξ) small on the spectrum of A.

� IDR(s): Ri (ξ) =
∏j

`=1(1− ω`ξ)Ψi−j(ξ) = Ωj(ξ)Ψi−j(ξ).

� Smallest polynomial on area enclosed by an ellipse: Tj(ξ).

Choose an ellipse that encloses the Ritz values and choose ω`

such that the roots of Ωj(ξ) and Tj(ξ) coincide.
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Reducing the computation time
Using spectral information
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Choice for ωj :
� minimise ‖ri‖ w.r.t. ωj

� Chebyshev nodes for f = ϕ− 1 Hz
� as blue, but ωj = (vi · vi )/(vi · Avi ) ∈ FOV for f = 19 Hz
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Reducing the computation time
Using spectral information

Some observations:

� There is an increase in the number of iterations with
� the new approach.

� The choice of ωj impacts the Ritz values.
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Conclusions

� Using the solution vectors for x0 or U0 leads to a significant
� reduction in iterations.

� Updating the right preconditioners leads to serious reduction.

� Using spectral information does not lead to better results.

The best results are obtained with
� a preconditioner Pm(f0) with updating strategy for f0,
� IDR(s) and s = 8,
� extrapolation of solution vectors for x0.
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Future research

� Analyses on Ritz values with IDR(s): dependency of Ritz
� values on ωj , convergence of Ritz values.

� Consider other residual polynomials: base choices for ωj on
� Leja points or Ritz values itself.

� Use Fortran and parallisation.
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Questions
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