Implementation of cellular traction forces in agent-based models

Wilbert Gorter

Delft University of Technology
VORtech bv
June 4th, 2020

Content

- Introduction
- Biology of burn injuries and contraction
- Purely elastic model
- Viscoelastic model
- Morphoelastic model
- Extension to two dimensions
- On programming
- Future work

Introduction

Introduction

Research on burn injuries and scars
Elasticity model: Daan Smits

Agent-based model: Eline Kleimann
Special objective: obtain more understanding of burn contraction

Biology of burn injuries and contraction

Structure of the skin

Skin model

Wound contraction

The way to wound contraction:
Platelets \rightarrow chemokines \rightarrow (myo)fibroblasts \rightarrow contraction
Plastic and elastic deformation

Model types

Elastic models:

- Purely elastic model
- Viscoelastic model
- Morphoelastic model

Carried out in one and two dimensions

Purely elastic model

Initializing quantities and more

Location $x(X, t)$
Langrangian location $X:=x_{0}$
Displacement $u:=x-X$
Velocity $v:=\partial x / \partial t$
Stress $\sigma:=$ force per area
Strain $\varepsilon:=\partial u / \partial x$
All quantities c can be expressed Eulerian: $c(x, t)$ as well as Lagrangian: $c(X, t)$
e.g. $u(x, t)=x-X(x, t)$ while $u(X, t)=x(X, t)-X$

Material derivative: $\frac{\mathrm{D}}{\mathrm{Dt}}:=\frac{\partial}{\partial t}+v \frac{\partial}{\partial x}$

Stress and strain tensor

In more dimensions, stress and strain are tensors.
$\underline{\underline{\sigma}}=\left(\begin{array}{lll}\sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33}\end{array}\right) \quad \underline{\underline{\varepsilon}}=\left(\begin{array}{lll}\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}\end{array}\right)$
normal stress: $\sigma_{i i}$
shear stress: $\sigma_{i j}(i \neq j)$

Normal and shear stress

Cube with normal and shear stress

Shear stress

Hooke's law (1D)

$$
\sigma=\kappa \varepsilon=\kappa \frac{\partial u}{\partial x}
$$

κ is called 'Young's modulus'.

Hooke's law in more dimensions (normal and shear modulus).

Cauchy momentum equation

Newton's second law: impulse is proportional with force
$\rho \frac{\mathrm{Dv}}{\mathrm{D} t}=\nabla \cdot \underline{\underline{\sigma}}+\mathbf{f}$
One dimension: $\rho \frac{\mathrm{D} v}{\mathrm{D} t}=\frac{\partial \sigma}{\partial x}+f$
ρ : density,
v : velocity,
σ : stress, $\sigma=\kappa \frac{\partial u}{\partial x}$
f : internal force; caused by (myo)fibroblasts

Numerical aspects

$$
\begin{aligned}
& \rho \frac{\mathrm{D} v}{\mathrm{D} t}=\frac{\partial \sigma}{\partial x}+f \\
& \sigma=\kappa \frac{\partial u}{\partial x}
\end{aligned}
$$

Finite Element Method with moving mesh
Euler Backward
$\rho M^{k+1} \mathbf{v}^{k+1}=M^{k} \mathbf{v}^{k}+\Delta t S^{k+1} \mathbf{u}^{k+1}+\Delta t \mathbf{f}^{k+1}$
Approximate:
$x_{i}^{k+1} \approx x_{i}^{k}+\Delta t \cdot v_{i}^{k}$ (forward)
$x_{i}^{k+1} \approx x_{i}^{k}+\Delta t \cdot v_{i}^{k+1}$ (backward)

Results: purely elastic model

$$
f(x, t):=5.0 \cdot \begin{cases}1-\exp \left(-4 \cdot t / t_{f}\right) & \text { if } 0 \leq t<20 \\ \left(1-\exp \left(-4 \cdot t / t_{f}\right)\right) \exp \left(-\left(t-t_{f}\right)\right) & \text { if } t \geq 20\end{cases}
$$

plot of current (red, x) against initial (blue, X)
plot of length against time (t)

Viscoelastic model

Viscosity

Suppose the blue fluid isn't water, but honey...

Difference between pure elasticity and viscoelasticity

Instead of

$$
\sigma=\kappa \varepsilon
$$

we have

$$
\sigma=\kappa \varepsilon+\mu \frac{\mathrm{D} \varepsilon}{\mathrm{D} t}
$$

$$
\mu=\text { viscosity rate }
$$

($\frac{\mathrm{D} \varepsilon}{\mathrm{D} t}$ can also be written as $\frac{\partial v}{\partial x}$.)

Numerical aspects

$\rho \frac{\mathrm{D} v}{\mathrm{D} t}=\frac{\partial \sigma}{\partial x}+f$
$\sigma=\kappa \frac{\partial u}{\partial x}+\mu \frac{\partial v}{\partial x}$
Finite Element Method

Euler Backward
$M^{k+1} \mathbf{v}^{k+1}=M^{k} \mathbf{v}^{k}+\Delta t S^{k+1} \mathbf{u}^{k+1}+\Delta t S^{k+1} \mathbf{v}^{k+1}+\Delta t \mathbf{f}^{k+1}$

Results: comparing purely elastic and viscoelastic model

Plots of length against time (t)

Purely elastic

Viscoelastic

Morphoelastic model

Elastic and plastic behaviour

Elastic and plastic deformation

Deformation gradient $F:=\frac{\partial x}{\partial x}$
$F=\frac{\partial x}{\partial z} \frac{\partial z}{\partial X}:=\alpha \gamma$
α : elastic deformation
γ : plastic deformation
X : initial state
z : zero-stress state, equals X as long as $\frac{\mathrm{D}_{\gamma}}{\mathrm{D} t}=0$
x : current state, equals z and X at $t=0$

Elastic and plastic deformation (2)

Elastic and plastic deformation (3)

$\frac{\mathrm{D}_{\gamma}}{\mathrm{D} t}=F g$
g : growth rate; $g=\xi \varepsilon$ (choice)

$$
u_{z}:=x-z
$$

Strain evolution equation:
$\frac{\mathrm{D} \varepsilon}{\mathrm{D} t}+(\varepsilon-1) \frac{\partial v}{\partial x}=-g$
$\varepsilon=$ new strain based on u_{z}, i.e. $\varepsilon=\frac{\partial u_{z}}{\partial x}$

Numerical aspects

Cauchy momentum: $\rho \frac{\mathrm{D} v}{\mathrm{D} t}=\frac{\partial \sigma}{\partial x}+f$
Viscoelasticity: $\sigma=\kappa \varepsilon+\mu \frac{\partial v}{\partial x}$
Strain evolution: $\frac{\mathrm{D} \varepsilon}{\mathrm{D} t}+(\varepsilon-1) \frac{\partial v}{\partial x}=-g$
\Downarrow
$S^{k+1} \mathbf{w}^{k+1}=T^{k} \mathbf{w}^{k}+\Delta t \Phi^{k+1}$
$\mathbf{w}^{k}:=\binom{\boldsymbol{\varepsilon}^{k}}{\mathbf{v}^{k}}$ and $\Phi^{k}:=\binom{\mathbf{0}}{\mathbf{f}^{k}}$
Equations combined in one Euler Backward FEM system.

Results: comparing visco- and morphoelastic model

Plots of length against time (t)

Viscoelastic

Morphoelastic

Two-dimensional models

More-dimensional equations

Cauchy momentum: $\rho \frac{\mathrm{Dv}}{\mathrm{D} t}=\nabla \cdot \underline{\underline{\sigma}}+\mathbf{f}$
Viscoelasticity:

$$
\underline{\underline{\sigma}}=\mu_{1} \operatorname{sym}(\nabla \mathbf{v})+\mu_{2} \operatorname{Tr}(\nabla \mathbf{v}) I+\frac{\kappa \sqrt{\rho}}{1+\eta}\left(\underline{\underline{\varepsilon}}+\frac{\eta}{1-2 \eta} \operatorname{Tr}(\underline{\underline{\varepsilon}}) I\right) .
$$

Strain evolution:
$\frac{\mathrm{D} \underline{\underline{\varepsilon}}}{\mathrm{D} t}+\underline{\underline{\varepsilon}} \operatorname{skw}\left(\frac{\partial \mathrm{v}}{\partial \mathbf{x}}\right)-\operatorname{skw}\left(\frac{\partial \mathrm{v}}{\partial \mathbf{x}}\right) \underline{\underline{\varepsilon}}+(\operatorname{Tr}(\underline{\underline{\varepsilon}})-1) \operatorname{sym}\left(\frac{\partial \mathrm{v}}{\partial \mathbf{x}}\right)=-\underline{\underline{G}}$.

Numerical aspects

System to solve:
$\bar{M}^{k+1} \mathbf{w}^{k+1}=M^{k} \mathbf{w}^{k}+\Delta t S^{k+1} \mathbf{w}^{k+1}+\Delta t \mathbf{f}^{k+1}\left(\mathbf{w}^{k+1}\right)$
$\mathbf{w}^{k}:=\left(\begin{array}{c}\boldsymbol{\varepsilon}_{11}^{k} \\ \boldsymbol{\varepsilon}_{12}^{k} \\ \boldsymbol{\varepsilon}_{22}^{k} \\ \mathbf{v}_{1}^{k} \\ \mathbf{v}_{2}^{k}\end{array}\right)$
Non-linear system: use iterative method of Picard (in each B.E. iteration)

Results: morphoelastic model in 2D

current state (black) and initial state (red)

plot of area against time (t)

On programming

Specifying the path..

$$
\begin{gathered}
\text { Python } \\
\Downarrow \\
\text { C++ } \\
\Downarrow \\
\text { GPU (Cuda) }
\end{gathered}
$$

$\Rightarrow \mathrm{C}++$ (much) faster than Python
\Rightarrow work of Eline Kleimann in C++ and on GPU

Future work

Future (or actually: current) work

Doing something on parameters...

Combining models (agent-based and elastic, in $\mathrm{C}++$)
Triangulation
GPU-implementation?

Three-dimensions?

Questions?

