
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Implementation of the Deflated Preconditioned
Conjugate Gradient Method for Bubbly Flow on

the Graphical Processing Unit(GPU)

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

COMPUTER ENGINEERING

by

Rohit Gupta

Delft, the Netherlands
August 2010

Copyright c© 2010 by Rohit Gupta. All rights reserved.

MSc THESIS COMPUTER ENGINEERING

“Implementation of the Deflated Preconditioned Conjugate Gradient Method
for Bubbly Flow on the

Graphical Processing Unit(GPU)”

ROHIT GUPTA

Delft University of Technology

Daily supervisors Responsible professor

Prof. dr. ir. C. Vuik Prof. dr. ir. H.J. Sips
Ir. C.W.J. Lemmens

Other thesis committee member(s)

Dr. ir. M.B. van Gijzen

August 2010 Delft, the Netherlands

Abstract

In this work we have implemented the Iterative Method of Conjugate Gradients with two
levels of Preconditioning to solve a System of Linear Equations on Graphical Processing
Unit(GPU). This system represents the discretized Pressure equation resulting from the

Level Set Method Solution of the Incompressible Navier Stokes Equation used to
compute Bubbly Flows. We have tried to explore the problem space with different grid

sizes, number of preconditioning blocks and deflation vectors. The results show that
when the methods for preconditioning are chosen so that they can exhibit ample

parallelism we can achieve considerable performance up to 20 times better than the CPU
version. We show in our analysis that we are very close to maximum achievable speedup.
We also report on the accuracy of our results and argue that GPUs can be beneficial in

solving such problems efficiently.

iii

Acknowledgments

I thank God :). I thank My Family for their blessings and I thank my supervisors for
helping me and trusting me to complete this work.

Contents

1 Introduction 1

2 Problem Definition 2
2.1 Formulating the Problem for Two-Phase Flow 2

3 Iterative Methods for Linear Systems 5
3.1 Conjugate Gradient . 7

3.1.1 Arnoldi Orthogonalization . 8
3.1.2 Lanczos Method . 8
3.1.3 Conjugate Gradient Algorithm . 9

3.2 Preconditioning . 12
3.2.1 Incomplete Cholesky Preconditioning 13
3.2.2 Incomplete Poisson Preconditioning 13

3.3 Deflation . 16
3.3.1 Subdomain Deflation . 18

4 GPU for Scientific Computing 18
4.1 Device Architecture . 18

4.1.1 Execution Configuration . 19
4.1.2 Execution of Threads . 20
4.1.3 Memory Model . 21

4.2 Language Extensions . 21
4.3 Methods of reducing code execution times 21

5 Previous Work 22
5.1 Solving Linear Systems on the GPU . 23

5.1.1 Prefix Scan for calculating sum . 23
5.1.2 Sparse Matrix Vector Products- SpMVs 24

5.2 Conjugate Gradient . 25
5.3 Preconditioning . 25
5.4 Precision Improvement . 26
5.5 Other Important Approaches . 27

6 Implementation 27
6.1 SpMV Kernel . 28
6.2 Preconditioning Kernel . 28
6.3 Deflation Kernels . 29

7 Optimizations and Results 29
7.1 Conjugate Gradient - Vanilla Version . 29

7.1.1 Code Commentary . 29
7.1.2 Comparisons with GPU versions . 31
7.1.3 Profiler Picture . 32

7.2 Diagonal Preconditioning . 33
7.3 Conjugate Gradient with Preconditioning 33

7.3.1 Code Commentary . 33
7.3.2 Comparisons with GPU versions . 33
7.3.3 Profiler Picture . 35

7.4 Conjugate Gradient with Deflation and Preconditioning-Block IC 36
7.4.1 Code Commentary . 36
7.4.2 Comparisons with GPU versions . 37

i

7.4.3 Profiler Picture . 39
7.5 Conjugate Gradient with Deflation and Preconditioning - AZ storage opti-

mized . 39
7.5.1 Comparisons with GPU versions . 43
7.5.2 Profiler Picture . 43

7.6 Conjugate Gradient with Deflation and IP Preconditioning - AZ storage
optimized . 45
7.6.1 Comparisons with GPU versions . 45
7.6.2 Profiler Picture . 47

7.7 Conjugate Gradient with Deflation and IP Preconditioning - AZ storage
optimized and optimized Matrix Vector (E−1b) Multiplication 47
7.7.1 Comparisons with GPU versions . 47
7.7.2 Profiler Picture . 50

8 Experiments with Two Phase Flow Matrix 50
8.1 Conjugate Gradient -Vanilla Version and with Block- IC and Diagonal Pre-

conditioning . 50
8.1.1 Comparisons with GPU versions . 54

8.2 Conjugate Gradient with Deflation and Block-IC Preconditioning 54
8.3 Conjugate Gradient with Deflation and IP Preconditioning 59

9 Analysis 59
9.1 Static Analysis . 59
9.2 Kernels- Performance . 64
9.3 Bandwidth Utilization . 65
9.4 Discussion on Possible Speedup Limits . 67

9.4.1 Summary . 68

10 Future Work and Conclusions 68

A How the Appendix is organized 73

B Grid, Matrix, Blocks, Domains, Matrices 73
B.1 The Grid . 73
B.2 The Matrix . 74
B.3 Blocks for Incomplete Cholesky . 74
B.4 Domains for Deflation . 74
B.5 Coefficients in different types of Matrices 74

B.5.1 Poisson Type . 74
B.5.2 Two-Phase Matrix . 74

C Detailed Results 78
C.1 Poisson Type . 78

C.1.1 Deflated CG-with Block Incomplete Cholesky Preconditioning . . . 78
C.2 Two Phase . 78

C.2.1 Deflated CG-with Block Incomplete Cholesky Preconditioning . . . 78

ii

1 Introduction

Computations of Bubbly flows is the main application for this implementation. Under-
standing the dynamics and interaction of bubbles and droplets in a large variety of pro-
cesses in nature, engineering, and industry are crucial for economically and ecologically
optimized design. Bubbly flow occur, for example, in chemical reactors, boiling, fuel
injectors, coating and volcanic eruptions.

Two phase flows are complicated to simulate, because the geometry of the problem
typically varies with time, and the fluids involved have very different material properties.
Following from the previous work [Tang, 2008] we consider stationary and time-dependent
bubbly flows, where the computational domain is always a unit square or unit cube filled
with a fluid to a certain height. The bubbles and droplets in the domain are always chosen
such that they are located in a structured way and have equal radius, at the starting time.

Mathematically bubbly flows are modeled using the Navier Stokes equations including
boundary and interface conditions, which can be approximated numerically using operator
splitting techniques. In these schemes, equations for the velocity and pressure are solved
sequentially at each time step. In many popular operator-splitting methods, the pressure
correction is formulated implicitly, requiring the solution of a linear system (3) at each
time step. This system takes the form of a Poisson equation with discontinuous coefficients
(also called the ’pressure(-correction) equation’) and Neumann boundary conditions, i.e.,

−5 .

(
1

ρ(x)
5 p(x)

)
= f(x), x ∈ Ω, (1)

∂

∂n
p(x) = g(x), x ∈ ∂Ω, (2)

where Ω, p, ρ, x and n denote the computational domain, pressure, density, spatial
coordinates, and the unit normal vector to the boundary, ∂Ω, respectively. Right-hand
sides f and g follow explicitly from the operator-splitting method, where g is such that
mass is conserved, leading to a singular but compatible linear system (3).

In this work we look at the implementation of a numerical solution of a Linear Partial
Differential Equation (PDE), resulting from the mathematical modeling of bubbly flows.
The PDEs have been discretized through the use of finite differences. A Linear Sytem
arises from such a discretization. We are interested in systems of the form,

Ax = b, A ∈ Rn×n, n ∈ N (3)

where n is the number of degrees of freedom and is also called the dimension of A. Also
A is symmetric positive definite(SPD), i.e.,

A = AT , yTAy > 0 ∀ y ∈ R y 6= 0. (4)

The linear system given by (3) is usually sparse and ill-conditioned. This means that
there are few non-zero elements per row of A and also that the condition number κ(A)
is usually large. Put in other words, the ratio of the largest eigenvalue to the smallest is
large and this leads to slow convergence of the Conjugate Gradient Method.

κ(A) : =
λn
λ1

(5)

where 0 < λ1 ≤ λ2 ≤ ... ≤ λn are eigenvalues of matrix A.
Solving the system (3) by direct methods is also an option but it is usually not memory-

wise or computationally efficient. Though these methods are robust and generally appli-
cable but they also tend to be prohibitively expensive. The sparsity of the matrix A

1

necessitates the use of efficient storage methods and computation with ’iterative meth-
ods’. The term ’iterative method’ refers to a wide range of techniques that use iterates,
or successive approximations to obtain more accurate solutions to a linear system at each
iteration step.

Krylov subspace methods, especially the Conjugate Gradient Method is the prominent
choice for solving such systems. However the convergence of this method depends heavily
on κ(A). In order to avoid more and more iterations, as κ(A) rises with increasing problem
sizes, the matrix A is preconditioned to bring down the condition number form κ(A) to

κ(M
−1
2 AM

1
2) which is equivalent to κ(M−1A). The coefficient matrix A is multiplied by

M−1, the preconditioner. The original system (3) then looks like,

M−1Ax = M−1b, (6)

where M is symmetric and positive definite just like A. M−1 is chosen in such a way
that the cost of the operation M−1y with a vector y is computationally cheap. However,
sometimes preconditioning might also not be enough. In that case we use second level of
preconditioning or Deflation in order to reduce κ(A). In this work some previous results
[Tang, 2008] are used for implementation. The focus is to implement these methods on
the Graphical Processing Unit (GPU).

Recently Scientific Computing has largely benefited from the data parallel architecture
of graphical processors. Many interesting problems which are computationally intensive
are ideally suited to the GPU, especially matrix calculations. It is only intuitive to use
them for solution of discretized partial equations. With the advent of the Component
Unified Device Architecture (CUDA) paradigm of computing available on NVIDIA GPU
devices, it has become easier to write such applications. More time can be spent in explor-
ing the ’What If?’ scenarios that are of scientific importance rather than understanding
device specifics. We briefly define the problem of Bubbly flows followed by a background
on Iterative Methods. Subsequently we introduce the Parallelization of Iterative meth-
ods. After introducing some of the Architectural details of the GPU and and a glimpse
of the programming techniques we discuss the recent work that has been done on the
GPU with respect to solving iteratively the linear systems emerging from discretization of
PDEs. Then we present an overview of the Implementation followed by the results from
the Numerical Experiments. Further, we analyze our results and we end this report with
a conclusion.

2 Problem Definition

Solving the linear system (3), that is a discretization of (1), within an operator splitting
approach is a bottleneck in the fluid-flow simulation, since it typically consumes the bulk
of the computing time. In order to accelerate the calculation of the solution by the Precon-
ditioned Conjugate Gradient Algorithm with deflation we propose to use the GPU. The
challenge lies in optimizing the computation on the GPU in such a way so as to extract
the maximum computation throughput it can deliver. This requires exploring Algorith-
mic enhancements and Architectural provisions to achieve the best possible performance
speedup.

2.1 Formulating the Problem for Two-Phase Flow

To solve the Pressure equation’s (1) discretization (3) we have to work on a matrix that
represents the grid in Figure 72 in the Appendix B.5. This is a standard 5-point Laplacean
stencil for a square grid. We use such a matrix for all the grid sizes we conduct our
experiments with. We start with Conjugate Gradient and step by step add Preconditioning

2

��������	
��������

�����	�����

�����	�����

���������	��	���	���	������

��������ρ = 1000

��������ρ =1

Figure 1: Two phase Flow Computational Model

and Deflation to it. For the 5-point Laplacean matrix we do not see any change in diagonal
preconditioning since the coefficients are not having any discontinuities.

However when we consider the matrix for a two phase problem then instead of the
smooth coefficients on the diagonals we have big jumps or discontinuities in the matrix.
Table B.5.2 in the Appendix B.5 lists a part of the Two Phase Matrix (Density Contrast
1000 : 1). This is attributed to the large difference in the densities of the two fluids we
are trying to model. Now we explain how we arrive on this kind of a matrix.

First let us take a look at the picture (Figure 1) of the problem in terms of an interface
and two mediums with Neumann Boundary Conditions.

When we discretize the problem, a grid results which has coefficients placed on the 5
diagonals with the jumps appearing at the interface region. We follow a mass conserving
approach (as shown in Figure 2) while calculating the coefficients on the interface.

There is some flux that enters horizontally and vertically and some of it leaves a cell.
By taking the cell-centered approach (wherein the discretization point is at the center of
the cell) and taking into account the contribution of all the flows through that point we
arrive on a stencil.

The stencils for the cells which are not on the interfaces are straightforward to calculate.

3

��������	��
��

��������	���	

������������

���������	
�	�

�	��������������������������

����� ������������������

���������

���������

Figure 2: Flux entering and leaving a discretized cell

4

Figure 3: 8× 8 grid with two mediums and an interface.

Below we briefly talk about the points on the interface and how we calculated their stencils.
Consider the model grid of dimension 8 × 8 in which we have a point that lies on

the interface and also adjoining the boundary. The cell is highlighted with a thick black
border in the Figure 3.

Refer to the Flux picture as shown in Figure 2. For example if we consider the left cell
with co-ordinates ((i − 1), j) to be on the boundary (the gray colored section in Figure
1). Then there is no flux coming in from the horizontal direction however since the cell
((i + 1), j) is inside (not adjoining the boundary) we have some flux going out. In the
vertical direction we have flux coming in from the the point (i, (j − 1)) and flux going out
from the cell (i, (j + 1)). Keeping these in mind and assuming that the density ratio of
the rarer medium (orange) to the denser medium is ε. We can write for this point

1

h
[−Pi,j−1 − εP(i, j + 1)− (

1

2
+

1

2
ε)Pi+1,j + (1

1

2
+ 1

1

2
ε)Pi,j] (7)

where h is the dimension of a cell i.e. 1
n for a n×n grid. Further we can get the stencil

[−1 0 (1
1

2
+ 1

1

2
ε) (−1

2
− 1

2
ε) −ε]. (8)

Deriving stencils in this way the complete matrix (as provided in Table B.5.2 in the
Appendix B.5) for this 8× 8 grid can be worked out.

3 Iterative Methods for Linear Systems

There are a variety of methods to approximate a solution to the system

Ax = b (9)

where x is an unknown vector, b is a known vector, and A is a known matrix of
coefficients. To begin we consider two basic methods.

These methods might take a large number of iterations to converge to a solution and
might not be useful as standalone solvers.

Jacobi Method

5

The Jacobi iteration is based on the idea of splitting up A into D, E and F.

A = D − E − F (10)

in which D is the diagonal of A, −E its strict lower part, and −F its strict upper part, It
is always assumed that the diagonal entries of A are all nonzero.

The Jacobi iteration determines the i−th component of the next approximation so as
to annihilate the i−th component of the residual vector. In the following, ξi denotes the
i−th component of the iterate xk and βi the i−th component of the right-hand side b.
Thus, writing

(b−Axk+1)i = 0 (11)

in which (y)i represents the i−th component of the vector y, yields

aiiξ
(k+1)
i = −

n∑
j=1,j 6=1

aijξ
(k)
j + βi, (12)

or

ξ
(k+1)
i =

1

aii

(
βi −

n∑
j=1j 6=1

aijξ
(k)
j

)
i = 1, ..., n (13)

This is a component-wise form of the Jacobi iteration. All components of the next
iterate can be grouped into the vector xk+1. The above notation can be used to rewrite
the Jacobi iteration (13) in vector form as

xk+1 = D−1(E + F)xk +D−1b (14)

Gauss-Seidel

The Gauss-Seidel iteration corrects the i−th component of the current approximate solu-
tion, in the order i = 1, 2, ..., n , again to annihilate the i−th component of the residual.
However, this time the approximate solution is updated immediately after the new com-

ponent is determined. The newly computed components ξ
(k)
i , i = 1, 2, ..., n can be changed

within a working vector which is redefined at each relaxation step. Thus, since the order
is i = 1, 2, ..., n, the result at the i−th step is

βi −
i−1∑
j=1

aijξ
(k+1)
j − aiiξ(k+1)

i −
n∑

j=i+1

aijξ
(k)
j = 0, (15)

which leads to the iteration,

ξ
(k+1)
i =

1

aii

(
−

i−1∑
j=1

aijξ
(k+1)
j −

n∑
j=i+1

aijξ
(k)
j + βi

)
, i = 1, ..., n (16)

the defining equation (15) can be written as

b+ Exk+1 −Dxk+1 + Fxk = 0, (17)

which leads immediately to the vector form of the Gauss-Seidel iteration

xk+1 = (D − E)−1Fxk + (D − E)−1b. (18)

6

Computing the new approximation in (14) requires multiplying by the inverse of the
diagonal matrix D. In (18) a triangular system must be solved with D−E, the lower tri-
angular part of A. Thus, the new approximation in a Gauss-Seidel step can be determined
either by solving a triangular system with the matrix D − E or from the relation (15).

A backward Gauss-Seidel iteration can also be defined as

(D − F)xk+1 = Exk + b, (19)

which is equivalent to making the coordinate corrections in the order n, n − 1, ..., 1.
A Symmetric Gauss-Seidel Iteration consists of a forward sweep followed by a backward
sweep. The Jacobi and the Gauss-Seidel iterations are both of the form

Mxk+1 = Nxk + b = (M −A)xk + b, (20)

in which
A = M −N (21)

is a splitting of A , with M = D for Jacobi, M = D−E for forward Gauss-Seidel,and
M = D − F for backward Gauss-Seidel.

Writing in terms of the solution vector xk at the kth iteration we have the Jacobi and
Gauss-Seidel iterations look like the form

xk+1 = Gxk + f, (22)

in which

GJA(A) = I −D−1A (23)

GGS(A) = I − (D − E)−1A, (24)

for the Jacobi and Gauss-Seidel iterations, respectively.

3.1 Conjugate Gradient

The Conjugate Gradient method is an important method for solving sparse linear systems.
It is based on the idea of using a projection method on Krylov Subspaces Km to find an
approximate solution xm to

Ax = b (25)

This is in turn done by imposing a Petrov Galerkin condition

b−Axm⊥Lm, (26)

where Lm is another subspace of dimension m. Here, x0 represents an arbitrary initial
guess to the solution. The subspace Km is written as

Km(A, r0) = span{r0, Ar0, A2r0, ..., A
m−1r0}, (27)

where r0 = b−Ax0.
When there is no ambiguity, Km(A, r0)will be denoted by Km. The different versions

of Krylov subspace methods arise from different choices of the subspace Lm and from the
ways in which the system is preconditioned.

Two broad choices for Lm give rise to the best known techniques. The first is simply
Lm = Km and the minimum-residual variation Lm = AKm.

An important assumption, for The Conjugate Gradient Method, is that the coefficient
matrix A is Symmetric Positive Definite(SPD).

7

3.1.1 Arnoldi Orthogonalization

The Arnoldi method is an orthogonal projection method ontoKm for general non-Hermitian
matrices. The procedure was introduced in 1951 as a means of reducing a dense matrix
into Hessenberg form. Arnoldi presented his method in this manner but hinted that the
eigenvalues of the Hessenberg matrix obtained from a number of steps smaller than n could
provide accurate approximations to some eigenvalues of the original matrix. It was later
discovered that this strategy leads to an efficient technique for approximating eigenvalues
of large sparse matrices.

Algorithm 1 Arnoldi Orthogonalization

1: Choose a vector v1 of norm 1
2: for For j = 1, 2, ...m do
3: Compute hij = (Avj , vi) for i = 1, 2, ..., j

4: Compute wj := Avj −
∑j

i=1 hijvi
5: hj+1,j = ‖wj‖2
6: if hj+1,j = 0 then
7: Stop
8: end if
9: vj+1 = wj/hj+1,j

10: end for

At each step, the Algorithm 1 multiplies the previous Arnoldi vector vj by A and
then orthonormalizes the resulting vector wj against all previous vis by a standard Gram-
Schmidt procedure. It stops if the vector wj vanishes.

3.1.2 Lanczos Method

The symmetric Lanczos algorithm can be viewed as a simplification of the Arnoldi method
for the particular case when the matrix is symmetric. When A is symmetric, then the Hes-
senberg matrix Hm becomes symmetric tridiagonal. This leads to a three-term recurrence
in the Arnoldi process and short-term recurrences for solution algorithms such as FOM
and GMRES. The standard notation used to describe the Lanczos algorithm is obtained
by setting

αj ≡ hij , βj ≡ hj−1,j , (28)

and if Tm denotes the resulting Hm matrix, it is of the form,

Tm =

α1 β2
β2 α2 β3

· · ·
βm−1 αm−1 βm

βm αm

 . (29)

This leads to the Lanczos algorithm specified in Algorithm 2.
It is rather surprising that the above simple algorithm guarantees, at least in exact

arithmetic, that the vectors vi, i = 1, 2, ..., are orthogonal. In reality, exact orthogonality
of these vectors is only observed at the beginning of the process. At some point the vis
start losing their global orthogonality rapidly. The major practical differences with the
Arnoldi method are that the matrix Hm is tridiagonal and, more importantly, that only
three vectors must be stored, unless some form of re-orthogonalization is employed.

8

Algorithm 2 Lanczos Algorithm

1: Choose an initial vector v1 of norm unity. Set β1 ≡ 0, v0 ≡ 0
2: for j = 1, 2, ...,m do
3: wj := Avj − βjvj−1
4: αj := (wj , vj)
5: wj := wj − αjvj
6: βj+1 := ‖wj‖2
7: if βj+1 = 0 then
8: Stop
9: end if

10: vj+1 := wj/βj+1.
11: end for

3.1.3 Conjugate Gradient Algorithm

The Conjugate Gradient method is a realization of an orthogonal projection technique
onto the Krylov Subspace Km(A, r0) where, r0 is the initial residual.

First we derive the Arnoldi Method for the case when A is symmetric. Given an initial
guess x0 to the linear system Ax = b and the Lanczos vectors vi, i = 1, ...,m together
with the tridiagonal matrix Tm, the approximate solution obtained from an orthogonal
projection method onto Km, is given by

xm = x0 + Vmym, ym = T−1m (βe1). (30)

We now have the Lanczos method for linear systems in Algorithm 3. We can write LU

Algorithm 3 Lanczos Method for Linear Systems

1: Compute r0 = b−Ax0, β : = ‖r0‖2, and v1 : = r0/β
2: for j = 1, 1, ...,m do
3: wj = Avj − βjvj−1(If j = 1 set β1v0 ≡ 0)
4: αj = (wj , vj)
5: wj := wj − αjvj
6: βj+1 = ‖wj‖2
7: if βj+1 = 0 then
8: set m : = j and go to 9
9: end if

10: vj+1 = wj/βj+1

11: end for
12: Set Tm = tridiag (βi, αi, βi+1), and Vm = [v1, ..., vm].
13: Compute ym = T−1m (βe1) and xm = x0 + Vmym

factorization of Tm as Tm = LmUm. The matrix Lm is unit lower bi-diagonal and Um is
upper bi-diagonal. Thus, the factorization of Tm is of the form

Tm =

1
λ2 1

λ3 1
λ4 1

λ5 1

×

η1 β2

η2 β3
η3 β4

η4 β5
η5

 . (31)

The approximate solution is then given by,

xm = x0 + VmU
−1
m L−1m (βe1). (32)

9

Letting

Pm ≡ VmU−1m (33)

and
zm = L−1m βe1, (34)

then,
xm = x0 + Pmzm. (35)

Note that, pm, the last column of Pm, can be computed from the previous pi’s and vm
by the simple update

pm = η−1[vm − βmpm−1]. (36)

Here βm is a scalar computed from the Lanczos Algorithm, while ηm results from the m-th
Gaussian Elimination step on the tridiagonal matrix, i.e.,

λm =
βm
ηm−1

, (37)

ηm = αm − λmβm. (38)

Also from the structure of Lm we have

zm =

[
zm−1
ζm

]
, (39)

in which ζm = −λmζm−1. As a result, xm can be updated at each step as

xm = xm−1 + ζmpm (40)

where pm is defined above.
This brings us to the direct version of Lanczos algorithm for linear systems.

Algorithm 4 D-Lanczos

1: Compute r0 = b−Ax0, ζ1 : = β : = ‖r0‖2, and v1 : = r0/β
2: Set λ1 = β1 = 0, p0 = 0
3: for m = 1, 2, ..., untilconvergence : do
4: Compute w : = Avm − βvm−1 and αm = (w, vm)
5: if m > 1 then
6: compute λm = βm

ηm−1
and ζm = −λmζm−1

7: end if
8: ηm = αm − λmβm
9: pm = η−1m (vm − βmpm−1)

10: xm = xm−1 + ζmpm
11: if xm has converged then
12: Stop
13: end if
14: w : = w − αmvm
15: βm+1 = ‖w‖2, vm+1 = w/βm+1

16: end for

This algorithm computes the solution of the tridiagonal system Tmym = βe1 progres-
sively by using Gaussian elimination without pivoting. However, partial pivoting can also
be implemented at the cost of having to keep an extra vector. In fact, Gaussian elimina-
tion with partial pivoting is sufficient to ensure stability for tridiagonal systems. Observe

10

that the residual vector for this algorithm is in the direction of vm+1 due to equation (30).
Therefore, the residual vectors are orthogonal to each other. Likewise, the vectors pi are
A−orthogonal, or conjugate orthogonal.

A consequence of the above proposition is that a version of the algorithm can be
derived by imposing the orthogonality and conjugacy conditions. This gives the Conjugate
Gradient algorithm which we now derive.

The vector xj+1, the solution at iteration j + 1, can be written as,

xj+1 = xj + αjpj . (41)

Therefore the residual vectors must satisfy the recurrence

rj+1 = rj − αjApj . (42)

If the rj ’s are to be orthogonal, then it is necessary that (rj − αjApj , rj) = 0 and as a
result

αj =
(rj , rj)

(Apj , rj)
(43)

Also, it is known that the next search direction pj+1 is a linear combination of rj+1

and pj , and after rescaling the p vectors appropriately, it follows that

pj+1 = rj+1 + βjpj . (44)

Thus, a first consequence of the above relation is that

(Apj , rj) = (Apj , pj − βj−1pj−1) = (Apj , pj) (45)

because Apj is orthogonal to pj−1. Then, (43) becomes αj = (rj , rj)/(Apj , pj). In
addition, writing that pj+1 as defined by (44) is orthogonal to Apj yields

βj = −(rj+1, Apj)

(pj , Apj)
(46)

βj can also be written as

1

αj

(rj+1, (rj+1 − rj))
(Apj , pj)

=
(rj+1, rj+1)

(rj , rj)
(47)

Putting these together we have the algorithm for Conjugate Gradient.

Algorithm 5 Conjugate Gradient Algorithm

1: Compute r0 := b−Ax0, p0 := r0.
2: for j = 0, 1, ..., until convergence do
3: αj := (rj , rj)/(Apj , pj)
4: xj+1 := xj + αjpj
5: rj+1 := rj − αjApj
6: βj := (rj+1, rj+1)/(rj , rj)
7: pj+1 := rj+1 + βjpj
8: end for

11

3.2 Preconditioning

Efficiency of iterative techniques can be improved by using preconditioning. Precondition-
ing is simply a means of transforming the original linear system into one which has the
same solution, but which is likely to be easier to solve with an iterative solver.

Consider a matrix A that is symmetric and positive definite and assume that a pre-
conditioner M is available. The preconditioner M is a matrix which approximates A in
some yet-undefined sense. It is assumed that M is also Symmetric Positive Definite. From
a practical point of view, the only requirement for M is that it is inexpensive to solve
linear systems Mx = b. This is because the preconditioned algorithms will all require a
linear system solution with the matrix M at each step. Then, for example, the following
preconditioned system could be solved:

M−1Ax = M−1b (48)

or

AM−1u = b (49)

x = M−1u (50)

These two systems are no longer symmetric in general. To preserve symmetry one can
decompose M in its Cholesky factorization, that is:

M = LLT , (51)

Then a simple way to preserve symmetry is to split the preconditioner between left
and right, i.e., to solve

L−1AL−Tu = L−1b, x = L−Tu (52)

which involves a Symmetric Positive Definite matrix. However, it is not necessary
to split the preconditioner in this manner in order to preserve symmetry. Observe that
M−1A is self-adjoint for the M -inner product,

(x, y)M ≡ (Mx, y) = (x,My) (53)

since

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M(M−1A)y) = (x,M−1Ay)M (54)

Therefore, an alternative is to replace the usual Euclidean inner product in the Conju-
gate Gradient (CG) algorithm by the M -inner product. If the CG algorithm is rewritten
for this new inner product, denoting by the original residual and by rj = b−Axj the orig-
inal residual and by zj = M−1rj the residual for the preconditioned system the following
sequence can be written .

Algorithm 6 Preconditioned method of calculating new search direction.

1: αj := (zj , zj)M/(M
−1Apj , pj)M

2: xj+1 := xj + αjpj
3: rj+1 := rj − αjApj andzj+1 := M−1rj+1

4: βj := (zj+1, zj+1)M/(zj , zj)M
5: pj+1 := zj+1 + βjpj

12

Algorithm 7 Preconditioned Conjugate Gradient Algorithm.

1: Compute r0 := b−Ax0, z0 = M−1r0, and p0 := z0
2: for j = 0, 1, ... until convergence do
3: αj := (rj , zj)/(Apj , pj)
4: xj+1 := xj + αjpj
5: rj+1 := rj − αjApj
6: zj+1 := M−1rj+1

7: βj := (rj+1, zj+1)/(rj , zj)
8: pj+1 := zj+1 + βjpj
9: end for

Since (zj , zj)M = (rj , zj) and (M−1Apj , pj)M = (Apj , pj), the M -inner products do
not have to be computed explicitly.

We have the preconditioned iteration for the CG algorithm as follows in Algorithm
7. A host of Preconditioning methods are known in the literature like [Saad, 2003]. ILU
Preconditioning and Incomplete Cholesky being the most prominent. In our implementa-
tions we use Block version of the Incomplete Cholesky Preconditioning and also a novel
algorithm called the Incomplete Poisson Preconditioning.

3.2.1 Incomplete Cholesky Preconditioning

Incomplete Cholesky Preconditioning involves a preconditioner of the variety

M = LLT (55)

where L is lower triangular. It is made ’incomplete’ by dropping off some of the elements.
In our case we simply follow the sparsity pattern of A. So if A has two diagonals on either
side of the main diagonal we make L such that it also has the same structure i.e. two
sub-diagonals.

3.2.2 Incomplete Poisson Preconditioning

Although Incomplete Cholesky Preconditioning is very effective in achieving convergence
for the Conjugate Gradient Method. It is highly sequential within the block. Since in this
study we implement Preconditioned Conjugate Gradient on a Data Parallel Architecture
we also consider a recently suggested method of preconditioning called the Incomplete
Poisson Preconditioning [Ament, Knittel, Weiskopf, and Straβer, 2010].

As we will show later in our results and the authors also hint that there is a price to
pay for this ’parallelism’ in terms of convergence speed. However, our experiments show
that it is still at least as fast(rate of convergence) or comparable to the Block Incomplete
Cholesky version (for a particular grid size) when the number of blocks is the maximum
possible.

We now present a brief discussion as presented by the authors in the original publica-
tion.

While the SpAI and AINV algorithms are reasonable approaches for arbitrary matrices
to find an inverse of the Coefficient Matrix, the authors of this method sought an easier
way for the Poisson equation. For this reason, they developed a heuristic preconditioner
that approximates the inverse of the 5-point Laplacean matrix. Their goal was to find an
algorithm that is as easy to implement as a Jacobi preconditioner and that is also well
suited for GPU processing. They provide an analytical expression for the preconditioner
and show that it satisfies the requirements for convergence in the Preconditioned Conju-
gate Gradient (PCG) method. Secondly, they enforce the sparsity pattern of A on their

13

preconditioner and sketch an informal proof that the condition of the modified system is
improved compared to the original matrix.

Just like SSOR their preconditioner depends on sum decomposition of A into its lower
triangular part L and its diagonal D. The approximation of the inverse then is

M−1 = (I − LD−1)(I −D−1LT) (56)

where L is the lower triangular part of A and D is the diagonal matrix containing diagonal
elements of A. In this expression D−1 can be calculated by the reciprocal operation on the
diagonal of A. Applying a preconditioner to the PCG algorithm requires that the modified
system is still symmetric positive definite, which in turn requires that the preconditioner
is a symmetric real-valued matrix.

(M−1)T = ((I − LD−1)(I −D−1LT)T (57)

= (I −D−1LT)T (I − LD−1)T (58)

= (IT − (D−1LT)T)(IT − (LD−1)T) (59)

= (I − LTT −D−1T)(I −D−1TLT) (60)

= (I − LD−1)(I −D−1LT) (61)

= M−1 (62)

Therefore one can write the preconditioner as,

M = KKT (63)

where

K = I − LD−1 and KT = I −D−1LT . (64)

This shows that PCG Algorithm converges when this preconditioner is applied. Consider-
ing a two-dimensional regular discretization and taking the case of an inner grid cell, the
stencil of the i-th row of A is

rowi(A) = (ay−1, ax−1, a, ax+1, ay+1) (65)

= (−1,−1, 4,−1,−1) (66)

In order to demonstrate that the introduced method is advantageous, they provide a short
abstract as to why the condition of the modified system improves. To make things clearer,
they use a two-dimensional regular discretization and only focus on an inner grid cell. In
this case, the stencil of the i-th row of A is

rowi(A) = (ay−1, ax−1, a, ax+1, ay+1) (67)

= (−1,−1, 4,−1,−1) (68)

Hence, the stencils for L, D−1, and LT

rowi(L) = (−1,−1, 0, 0, 0) (69)

rowi(D
−1) = (0, 0, 0.25, 0, 0) (70)

rowi(L
T) = (0, 0, 0,−1,−1) (71)

In the next step, after performing the operations for (64).

rowi(K) = (0.25, 0.25, 1, 0, 0) (72)

rowi(K
T) = (0, 0, 1, 0.25, 0.25) (73)

14

The final step is the matrix-matrix product KKT , which is the multiplication of a lower
and an upper triangular matrix. Each of the 3 coefficients in rowi(K) hits 3 coefficients in
KT but in different columns. The interleaved arrangement in such a row-column product
introduces new non-zero coefficients in the result. The stencil of the inverse increases to

rowi(M
−1) = (my−1,mx+1,y−1,mx−1,m,mx+1,mx−1,y+1,my+1) (74)

= (0.25, 0.0625, 0.25, 1.125, 0.25, 0.0625, 0.25) (75)

Without going into too much detail here, the stencil enlarges to up to 13 non-zero elements
in three dimensions for each row, which would almost double the computational effort in
a matrix-vector product compared to the 7-point (in 3-D) stencil in the original matrix.
By looking again at the coefficients in rowi(M

−1) it can be observed that the additional
non-zero values are rather small compared to the rest of the coefficients. Furthermore,
this nice property remains true in three dimensions, so they use an incomplete stencil
assuming that these small coefficients only have a minor influence on the condition. They
set them to zero and obtain the following 5-point stencil in two dimensions

rowi(M
−1) = (0.25, 0, 0.25, 1.125, 0.25, 0, 0.25) (76)

Another important property of the incomplete formulation is the fact that symmetry is still
preserved as the cancellation always affects two pair-wise symmetric coefficients namely

(mx+1,y−1,mx−1,y+1) (77)

in two dimensions and

(mx+1,z−1,mx−1,z+1)(mx+1,y−1,mx−1,y+1)(my+1,z−1,my−1,z+1) (78)

in three dimensions. From this it follows that the CG method still converges and hence the
Incomplete Poisson (IP) preconditioner. They provide a heuristic approach to demon-
strate the usefulness of their preconditioner. A perfectly conditioned matrix is the identity
matrix, hence they simply try to evaluate how close this modified (Incomplete Poisson Pre-
conditioned) system reaches this ideal. For this purpose, they calculate AM−1. For an
inner grid cell, this leads to the following not trivially vanishing elements

rowi(AM
−1) =(−0.25, 0.0, 0.0,−0.50,−0.125,−0.50,−0.125, 3.5, (79)

− 0.125,−0.50,−0.125,−0.50,−0.125,−0.50, 0.0, 0.0,−0.25). (80)

They argue that this row represents the whole band in the matrix with 7
2 as the diagonal

element. All elements to the left and right of this tuple are zero. This result still does not
look like the identity but there is another property of the condition number that allows
to multiply the system with an arbitrary scalar value, except zero, because multiplying a
matrix with a scalar does not affect the ratio of the maximum and minimum eigenvalues.
For example, α×AM−1 also scales all of the eigenvalues of AM−1 with α

κ(αAM−1) =
α× λmax
α× λmin

=
λmax
λmin

= κ(AM−1). (81)

Hence by arbitrarily choosing the α to be the constant 2
7 the tuple changes to,

2

7
.rowi(AM

−1) =(−0.071, 0.0, 0.0,−0.142,−0.0357,−0.142,−0.071,−0.0357, 1, (82)

0.0357,−0.071,−0.142,−0.0357,−0.142, 0.0, 0.0,−0.071). (83)

The result shows that the element-wise signed distance to the identity is much smaller than
with the original Poisson system, suggesting a lower condition number. By calculating the

15

product AM−1 and comparing the element-wise distance of this product with the Identity
Matrix they further show that this preconditioner effectively reduces the condition number
of the resulting matrix.

Talking about the parallel properties of this algorithm, they are very well aligned
to the GPU. Since we have to calculate values (in the inverse of the Preconditioning
matrix, M−1) only for the non-zero elements of A. The structure and number of elements
in the preconditioner is the same and hence the method of storage and matrix vector
multiplication will be the same. This means that we can exploit the same amount of
parallelism in the Preconditioning(yk = M−1rk) as in case of Sparse Matrix vector (Ax =
b), since they are identical operations. The degree of parallelism being N . Each row can
be separately computed for the resulting vector Ax or y.

3.3 Deflation

Deflation is an attempt to treat the bad eigenvalues resulting in the preconditioned matrix

M−1Ax = M−1b (84)

M−1A, where M−1 is a symmetric positive definite (SPD) preconditioner and A is the
symmetric positive definite (SPD) coefficient matrix. This operation reduces the conver-
gence iterations for the Preconditioned Conjugate Gradient (PCG) method.

The original linear system

Ax = b (85)

can be solved by employing the splitting

x = (I − P T)x+ P Tx (86)

Simplifying we get

x = (I − P T)x+ P Tx⇔ x = Qb+ P Tx (87)

⇔ Ax = AQb+AP Tx (88)

⇔ b = AQb+ PAx (89)

⇔ Pb = PAx, (90)

where

P := I −AQ,Q := ZE−1ZT , E := ZTAZ. (91)

where
E ∈ Rk×k is the invertible Galerkin Matrix, Q ∈ Rn×n is the correction Matrix, and

P ∈ Rn×n is the deflation matrix.
Also it is given that A is an SPSD coefficient matrix as given in (85) and Z ∈ Rn×k,

with full rank and k < n− d is given. k is the number of columns of Z and is also called
as the ’number of deflation vectors’.

The x at the end of the expression is not necessarily a solution of the original lin-
ear system (85), since it might consist of components of the null space of PA, N (PA).
Therefore this ’deflated’ solution is denoted as x̂ rather than x. The deflated system is
now,

PAx̂ = Pb (92)

16

The Preconditioned deflated version of the Conjugate Gradient Method can now be
presented. The deflated method (92) can be solved using a symmetric positive definite
(SPD) preconditioner, M−1. We therefore now seek a solution to

P̃ Ãˆ̃x = P̃ b̃, (93)

where

Ã := M−
1
2AM−

1
2 , ˆ̃x := M

1
2 x̂, b̃ := M−

1
2 b, (94)

and

P̃ := I − ÃQ̃, Q̃ := Z̃ ˜E−1Z̃T , Ẽ := Z̃T ÃZ̃, (95)

where Z̃ ∈ Rn∗k can be interpreted as a preconditioned deflation-subspace matrix.
The resulting method is called the Deflated Preconditioned Conjugate Gradient (DPCG)
method [Tang, 2008].

Algorithm 8 Deflated Preconditioned Conjugate Gradient Algorithm

1: Select x0. Compute r0 := b−Ax0 and r̂0 = Pr0, Solve My0 = r̂0 and set p0 := y0.
2: for j:=0,..., until convergence do
3: ŵj := PApj

4: αj :=
(r̂j ,yj)
(pj ,ŵj)

5: x̂j+1 := x̂j + αjpj
6: r̂j+1 := r̂j − αjŵj
7: Solve Myj+1 = r̂j+1

8: βj :=
(r̂j+1,yj+1)

(r̂j ,yj)

9: pj+1 := yj+1 + βjpj
10: end for
11: xit := Qb+ P Txj+1

This method is numerically more stable than the method discussed in [Saad, Yeung,

Erhel, and Guyomarc’h, 2000]. It can be seen that P̃ or M
1
2 are never calculated explicitly.

Hence the linear system is often denoted by

M−1PAx̂ = M−1Pb (96)

Some Observations:

• All known properties of Preconditioned Conjugate Gradient (PCG) also hold for
DPCG, where PA can be interpreted as the coefficient matrix A in (48). Moreover
if P = I is taken the algorithm above reduces to the PCG algorithm.

• Careful selection of Deflation vectors is required for this method to prove useful.
Two methods, one based on eigenvector (of M−1A)based subspace for Z and the
other based on an arbitrary choice of the deflation subspace, are worth to mention.

However to calculate the eigenvectors itself could be computationally intensive so an ar-
bitrary choice which closely resembles the part of the eigenspace is the way out. In short
the ideal deflation method should satisfy the following criteria:

• The deflation-subspace matrix Z must be sparse;

• The deflation vectors approximate the eigenspace corresponding to the unfavorable
eigenvalues;

17

• The cost of constructing deflation vectors is relatively low;

• The method has favorable parallel properties;

• The approach can be easily implemented in an existing PCG code.

Subdomain Deflation based choice for Deflation vectors emerges as a close match.

3.3.1 Subdomain Deflation

In Subdomain deflation, the deflation vectors are chosen in an algebraic way. The com-
putational domain is divided into several subdomains, where each subdomain corresponds
to one or more deflation vectors. Consider application of Subdomain deflation to Poisson
Equation with discontinuous coefficients as listed in Equation 1

Now assume that the computational domain, Ω is divided into several subdomains,
Ωj , where each Ωj corresponds to one deflation vector, consisting of ones for grid points
in the interior of the discretized subdomain, Ωhj , and zeroes for other grid points. Then,
subdomain deflation is effective, if each subdomain, Ωj , corresponds to exactly one con-
stant part of the coefficient, ρ. In this case, the subspace spanned by the deflation vectors
is proved to be almost equal to the eigenspace associated with the smallest eigenvalues.

4 GPU for Scientific Computing

GPUs commercially available of the shelf, promise up to 900 gigaflops (single precision)
of compute power. The cost at which this performance is available is a couple of hundred
euros. This makes it an attractive option already compared to setting up or sharing a
cluster that might be hard to get access to or costlier to put up in the first place. Scientific
computing problems could be restructured with some effort to work on the GPUs and it
is not uncommon to get up to 10x speed-up (compared to a sequential implementation
on the CPU) with simple first implementation. Talking about implementation, it has
become a lot easier with the advent of CUDA (Compute Unified Device Architecture)
from NVIDIA, to write C code, that runs on the GPU. Earlier this was not the case.
Before the advent of CUDA, to harness the capabilities of the GPU, C programs had to
be adapted to the shader languages like Cg. The programmer had to understand the way
how a GPU interprets textures and objects in a rendering environment and he had to
explicitly mold the application code as if it were a rendering operation.

4.1 Device Architecture

The GPU is a SIMD processor (Single Instruction Multiple Data). What this means is
that there is an army of processors waiting to crunch the problem computations, all the
processors execute the exact same instructions but they do so in parallel without any
dependence. The result is that if one of them is able to say execute only at a clock rate
of 1 Ghz, and they can do one floating point operation (FLOP) per clock cycle then the
number of flops (FLOP/second) equal the number of processors multiplied by the clock
rate. A GPU has some fixed number of processors within, these are called streaming
multiprocessors (SMs). Each multiprocessor further has eight scalar processors (SPs).
Each of the scalar processors executes a piece of code called a kernel. This is the basic
unit of execution at the level of Scalar Processors. So if there are say 240 (scalar) processors
then they all run the same kernel at the same time (this also depends on the execution
configuration and the kernel itself).

18

4.1.1 Execution Configuration

To run the kernels on the GPU one has to define an execution configuration in terms
of grid of blocks. A grid has blocks arranged like the elements of a matrix. Each block
contains threads arranged like elements in a matrix. Each thread runs the kernel. Before
launching these threads the GPU must be told how many of these threads have to be run.
For example we have a kernel that adds two elements of two different matrices and stores
the sum in the corresponding element of a third matrix. Then if we want all sums to be
done in parallel we would need to launch m×n kernels (if we have architectural provisions
to launch that many threads) if each of the matrices are m× n matrices.

Now once we have decided on a number of kernels we need to divide them amongst
blocks and also calculate how the blocks have to be arranged in a grid (as in Figure 4).

Figure 4: Grids of Blocks with threads

This can be done using variables of the type dim3 provided by NVIDIA CUDA envi-
ronment. The dim3 variables are structures with three individual elements that contain
the number of threads in x, y and z direction. Such an arrangement makes it easier to

19

address individual elements. Threads can be individually addressed by their x, y and z
co-ordinates corresponding to the co-ordinates in the matrix.

Figure 5: GPU Architecture

4.1.2 Execution of Threads

Threads inside a block are grouped into warps. A multiprocessor on the GPU is assigned
some number of blocks. The scheduler that picks up threads for execution, does so in
granularity of a warp. So, if the warp size is say, 32, it will pick 32 threads with consecutive
thread Ids and schedule them for execution in the next cycle.

Each thread executes on one of the scalar processors. The Streaming Multiprocessors
(SMs) are capable of executing a number of warps simultaneously. This number can vary
from 512 up to 1024 on the GPUs depending on the type of card. At the time of issue from
the scheduler the SMs are handed over a number of blocks to execute. These can vary on
the requirement that each thread imposes in terms of registers and shared memory since
they are limited on each multiprocessor.

For example suppose that maximum number of threads that can be scheduled on a
multiprocessor is 768. Further if each warp is composed of 32 threads then we can have
maximum of 24 warps. Now many possible schemes for division could be laid down:

1. 256 threads per block * 3 blocks

2. 128 threads per block * 6 blocks

3. 16 threads per block * 48 blocks

Now each SM has a restriction on the number of blocks that can simultaneously run on it.
So if the maximum number of (active) blocks is say 8 then only the 1st and 2nd schemes
could form a valid execution configuration.

20

4.1.3 Memory Model

Each multiprocessor has a set of memories associated with it. These memories have
different access times. It must be noted that these memories are on the device (the GPU)
and are different from the DRAM available with the CPU. They are:

1. Register Memory

There are fixed number of registers (per block) that must be divided amongst the
number of threads (in a block) that are configured (by the previously discussed
allocation of threads in blocks and grids). Registers are exclusive to each thread.

2. Shared Memory

Shared memory is accessible to all the threads within a block. It is the next best
thing after registers since accessing it is cheaper than the global memory.

3. Texture Memory

Texture memory is read-only and could be read by all the threads across blocks on
a single multiprocessor. It also has a local cache on the MultiProcessor.

4. Global Memory

This memory is the biggest in size and is placed farthest from the threads executing
on the multiprocessors. Its access times compared to the shared memory (access)
latency might be up to 200 times more.

An important consequence of the different access times of the available memories is that
it often becomes important to hide the latency with available computation. Register
usage can also decide how many blocks (consequently how many threads) might execute
in parallel. So suppose if we have 8192 registers and each thread (in a 16×16 block) uses
10 registers then the maximum number of blocks that can execute on a SM is 3 since
10 ∗ 256 = 2560 and 8192

2560 gives 3 (integer) as result. Increasing by only one register per
thread reduces the number of blocks by 1.

Global memory access if done in a regular fashion (regularly spaced or aligned) and if
it is consistent within a warp (all accesses are at equal strides or increments) then the data
can be brought from global memory in a lower number of instructions. This alignment
called coalescing could yield performance benefits when data is neatly aligned. Aligned
Global Memory Access is the key to exploiting the Huge Memory Bandwidth available on
a GPU. More details can be found out in [NVIDIA prog, 2009].

4.2 Language Extensions

NVIDIA provides Language extensions in form of a package called CUDA(Compute Uni-
fied Device Architecture). This package enables programmers to write parallel code for
all the CUDA-enabled GPUs that NVIDIA has to offer.

The availability of CUDA APIs is instrumental in rapidly parallelizing an application
for performance on the GPU. Without getting into the details of how it is mapped to the
Graphics hardware we can say that it allows space to focus on the Computational Aspect
of the problem.

We have used CUDA 2.3 for our implementation on a Tesla C1060 card.

4.3 Methods of reducing code execution times

The Best Practices Guide [NVIDIA best prac, 2009] lists in definite steps (with examples)
how one can achieve speed-up on an NVIDIA GPU card. However the following points
are worth mentioning as they form the core of all optimization on the GPU.

21

Figure 6: Coalesced Memory Accesses in a GPU

• Coalesced Memory Access

• Minimization of Host-Device Memory Transfers

• Use of Shared Memory Wherever Possible

• Minimal or No Thread Divergence

• Enough Blocks to keep all Multi-Processors at work

Other than these it is also possible to fine tune the application for even more speed-up
compared to the host code. Though at some point one has to choose between readability
of the code and the fractional increase in performance. It must also be kept in mind that
newer revisions of hardware can make the clever hacks obsolete or, at least not worth the
effort, in no time. More about how to achieve speedup by using different architectural
provisions could be found out in [NVIDIA best prac, 2009].

5 Previous Work

Graphics cards were very early on [Bolz, Farmer, Grinspun, and Schröoder, 2003] identified
by researchers as suitable for parallel processing in their own right. At that time it was

22

required to write applications in shader languages. The applications had to be adapted
by understanding the graphics pipeline.

With the advent of CUDA things have changed. Primarily because it has made software
development for the GPUs in the domains of Scientific Computing very accessible. The
internal architecture has been abstracted so that it fits the application rather seamlessly.
Many people have already utilized the GPU to their advantage in achieving accelerated
performance for their application. In this section we list a number of efforts in the direction
of solving the system of our interest which is,

Ax = b (97)

The linear system when subjected to Iterative methods for approximating the solution
up to a required accuracy has some challenges when mapped to the GPU. When the matrix
A is sparse the problem is even more tricky to implement on the GPU.

5.1 Solving Linear Systems on the GPU

When subjecting a system of linear equations to an iterative method, in our case Conjugate
Gradient method, some of the basic building blocks become important to optimize. This
can be further verified from the Profiler outputs on the host as well as on the device. We
now discuss the already available body of work for each of these building blocks.

5.1.1 Prefix Scan for calculating sum

In our implementation we often had to sum up the partial products of a matrices’ row
elements and the corresponding elements in the vector. This summing operation could be
done in parallel by assigning threads that sum it up in turns. Such a method is called the
Prefix-Scan based sum operation. [SenGupta, Harris, Zhang, and Owens, 2007] discuss
the Scan based operations and we can borrow from one of the phases of their suggested
solution to perform summing of the partial products. However this method is useful only
when there are many such partial products per row. For our matrix which is a 5-point
Laplacean this method could be of little benefit. However later in the Deflation operation
(ZTx) we utilize this approach since the number of elements is always greater than 16 and
can go upto 512 or more.

The idea is to build a balanced binary tree on the input data and sweep it to and from
the root to compute the prefix sum. A binary tree with n leaves has d = log2n levels, and
each level d has 2d nodes. If we perform one add per node, then we will perform O(n) adds
on a single traversal of the tree. The algorithm consists of two phases: the reduce phase
(also known as the up-sweep phase) and the down-sweep phase. In the reduce phase, we
traverse the tree from leaves to root computing partial sums at internal nodes of the tree,
as shown in Figure 7. This is also known as a parallel reduction, because after this phase,
the root node (the last node in the array) holds the sum of all nodes in the array.

This is followed by a down-sweep phase if one wishes to find the Prefix Sum, however
we can stop at this step and already have the sum of all the elements in the element with
the highest index.

Details can be found out in the GPU Gems article available online [Harris, Sengupta,
and Owens, 2007]. In the same document one can also find methods suggested by the
authors to optimize the scan for the GPU by taking into account memory bank conflicts,
shared memory and provisions for handling arbitrary array sizes (i.e. where n is not a
power of 2).

23

Figure 7: An Illustration of the Up-Sweep, or Reduce, Phase of a Work-Efficient Sum
Scan Algorithm

5.1.2 Sparse Matrix Vector Products- SpMVs

Sparse Matrix Vector Multiplication takes bulk of the time when executing CG method.
Optimizing it becomes the first step in getting performance out of the many core system.
NVIDIA released a study [Bell and Garland, 2008], which they later made available as
the CUSP library, for optimizing Sparse Matrix Vector Multiplication. They try out a
host of different storage formats and also report on which formats deliver the best possible
utilization of GPU resources. They use a hybrid storage format for sparse matrices. It
stores the matrices in a ELLpack-COO hybrid format, wherein the rows with more than
a threshold number of non-zero elements are stored in the COO format. The rows with
less than the threshold are stored in ELLPack format. Details can be found in [Bell and
Garland, 2008]. In this extensive study they compare the performance of the kernels they
have developed for the GPU vis − a, − vis other architectures like STI Cell, and CPUs
like Xeon, Opteron etc. We adopt their idea of storing our Laplacean matrix in the DIA
format and then use the suggested kernel for doing SpMV operations.

In a recent study by [Monakov and Avetisyan, 2009] they suggest a hybrid use of a
blocked method and the ELL-COO format of the storing the sparse matrix. Then they
perform vector multiply in order to extract more performance on both the fronts. Of
course their method relies on an initial sweep on the matrix to find out the number of
non-zero elements and the decision to divide the matrix into two different formats for
storage. They suggest a dynamic programming approach to calculate optimal selection of
blocks and also an heuristic approach based on greedy block selection.

The CUDA library can also be enriched with CUDAPP [Harris, Sengupta, Owens,
Tseng, Zhang, and Davidson, 2009] which provides a routine cudppSparseMatrix, for sparse
matrix vector multiply routine which comes in handy when solving through iterative meth-
ods. To use a method the user first declares a Plan in which he/she specifies the input
output arrays, the number of elements etc.

[M. Baskaran and Bordawekar, 2008] demonstrate improvements over the methods
discussed above ([Bell and Garland, 2008] [Harris, Sengupta, Owens, Tseng, Zhang, and
Davidson, 2009]) by exploiting some of the architectural optimizations to the Sparse
Matrix-Vector Multiplication code. In particular they center the optimization efforts on
the following four points:

• Exploiting Synchronization-Free Parallelism,

• Optimized Thread Mapping,

• Aligned Global Memory Access;

• Data-Reuse.

24

5.2 Conjugate Gradient

[Georgescu and Okuda, 2007] discuss how conjugate gradient methods could be aligned to
the GPU architecture. They also discuss the problems with precision and implementing
preconditioners to accelerate convergence. In particular they state that for double precision
calculations problems having condition numbers less than 105 may converge and give a
speed-up also. They however warn that above a threshold value of the condition number
the Conjugate Gradient Method will not converge. This last observation relates to the
limited double precision performance available on the GPU.

[Buatois, Caumon, and Levy, 2009] discuss their findings on implementing single pre-
cision iterative solvers on the GPU and show that for Jacobi preconditioning and a limited
number of iterations the GPU is able to provide a solution of comparable accuracy but
as the iterations increase the precision drops in comparison to the CPU. They use the
Conjugate Gradient method exploiting some of the techniques like register blocking, vec-
torization and the Block Compressed Row storage(BCRS) to extract parallel performance
on the GPU.

They try to maximize the throughput for the memory transactions by using 4×4 blocks
in the BCRS format. This format later proves beneficial for strip mining operations. Using
such an arrangement complemented with the vector data types available on the GPU (for
example float4 that allows storing 4 32-bit floats to be stored at one index). By making
arrays of such aggregate data types one can access data in chunks thereby saving address
calculation. For e.g. in the case of a 4× 4 block storage as shown in Figure 8, an array of
4 float4’s can be used and accessing all elements is possible with a single address that of
the array.

Figure 8: Sum reduction on a Scalar architecture with shared Memory

Further they suggest that individual elements within an aggregate data type could
be allocated to multiple threads and such a pattern could be followed among the other
elements of this 4 float4 element array. Thereby providing speedups in reduction opera-
tions. An important finding that is indicated in their results is that reordering of the type
Cuthill-McKee did not show any influence on the implementations they executed for the
GPU and the CPU.

5.3 Preconditioning

Techniques that are basically dependent on the Sparse Matrix Vector Multiply discussed
in previous sections have been suggested in literature for accelerating Preconditioning of
Iterative Solvers like GMRES and Conjugate Gradient. [Wang, Klie, Parashar, and Sudan,
2009] use an ILU Block Preconditioner, which has poor convergence qualities but is easier

25

to parallelize, for solving a sparse linear system by the GMRES method. Coefficient matrix

Figure 9: Block ILU preconditioner

A is divided into equal sized sub-matrices which are then locally decomposed using ILU,
as shown in Figure 9. The blocks shown in Figure 9 do not communicate to each other
during the decomposition and also in solving it, this scheme fits well in the data parallel
paradigm. A stream now is a collection of sub-matrices along the main diagonal.

In work published by [Asgasri and Tate, 2009] they discuss how the use of a Chebyshev
polynomial based preconditioner could be utilized for achieving speedups in the Conjugate
Gradient method for solving a linear system. The said preconditioner effectively reduces
the condition number of the coefficient matrix thereby achieving convergence quickly.
It approximates the inverse of the coefficient matrix with linear combinations of matrix-
valued Chebyshev polynomials. This method uses only matrix multiplication and addition
to compute the approximate inverse of the coefficient matrix, which makes it suitable for
parallel platforms. In the implementation described in the paper, they use linear combina-
tions of the first few Chebyshev polynomials to build a preconditioner. The combination
of Chebyshev preconditioner and Krylov subspace linear solver leads to a highly efficient
solver on parallel platforms. It must noted however that Chebyshev preconditioner is
useful only if inner products are very important.

[Ament, Knittel, Weiskopf, and Straβer, 2010] suggest a new kind of preconditioning
called the Incomplete Poisson Preconditioning. We have discussed it previously in Section
3.2.2. This preconditioner introduces some fill-in (other than the normal sparsity pattern of
A) in the multiplication of K with KT . Their experiments suggest that it could be dropped
due to it’s comparatively small effect on the preconditioning process. The convergence
might suffer, however the method then maps well to the GPU. Hence the incomplete
nature of the stencil that emerges gives the method it’s name.

5.4 Precision Improvement

The GPUs can suffer a substantial performance hit if considered for Double Precision
Computing. If an application can deal with the single precision math on the GPU it
is viable. However, if double precision accuracy is desired then the algorithm has to be
balanced and some steps could be done in double precision and others in single precision.

[Baboulin, Buttari, Dongarra, Kurzak, Langou, Langou, Luszczek, and Tomov, 2008]
suggest that it is possible to use double precision calculations for some part of the iterative
method and use single precision for others thereby achieving a trade off that meets precision
criteria and converges as good as the double precision case. At the same time the rate
of convergence is also not affected very much. They use it for for direct and iterative
solution methods for sparse systems where in they pose the problem as the refinement of

26

the solution xi+1 which can be written as:

xi+1 = xi +M(b−Axi), (98)

where M is the preconditioner and approximates S−1. If we use right preconditioning
then the system Ax = b reduces to the following

AMu = b, (99)

x = Mu (100)

Further they suggest calculating M using an iterative method and for the solution of the
original system a Krylov Subspace method is employed. This system of Inner and Outer
Iteration is now ready for Mixed Precision use. The idea here is that a single precision
arithmetic matrix-vector product is used as a fast approximation of the double precision
operator in the inner iterative solver. They have reported the results for a non-symmetric
solver wherein the outer iteration is of a FMGRES and the inner one is a GMRES cycle.

5.5 Other Important Approaches

It is also possible to use multiple GPUs to boost the performance of an application. Mul-
tiple GPUs stacked through the NVIDIA SLI interface or across workstations can collabo-
rate via MPI. [Ament, Knittel, Weiskopf, and Straβer, 2010] use a redundant buffer based
scheme coupled with the availability of overlapping computation with memory transfers
through the use of streams on the GPU. They divide the 3-D domains into tiles and
each GPU handles a subset of the tiles. This necessitates the inter-GPU communication
when the boundary layers are being updated in an iteration. They use synchronization
primitives available on the GPU and the CPU for handling boundary cases.

6 Implementation

For our experiments we use a single core of a quad core Intel CPU (Q9650) running at 3.0
GHz and having 12 Mb of L2 cache. The GPU we use is a Tesla machine with 30 Streaming
Multi-Processors running at 1.3 GHz and a memory bandwidth of 102 GB/sec. We first
wrote the the Deflated Preconditioned CG Method on the host(CPU). An important
consideration while writing the code was to make it modular so that it could be analyzed
and optimized step-by-step. For this the following points were kept in mind.

1. Identifying Kernels of Computation.

2. Organizing code in form of kernels.

3. Prioritized Optimization of Kernels after subjecting the code to the profiler.

On the CPU we have used the Meschach BLAS Library for Dot Products and Saxpys.
The kernels that were hand-coded are

1. Sparse Matrix Vector Multiply Kernel

2. Preconditioning Kernel(s)

3. Deflation Kernels

We (primarily) ran the kernels on grid sizes with 16000 to 260, 000 unknowns. Also
we subjected these to Block sizes varying from 256 to 4, 096 unknowns per block. As a
final step deflation vectors were varied between 256 and 4, 096 as well. After the results
were in line with the expectations which means

27

1. No. of Iterations decrease with Block-IC Preconditioning compared to plain Conju-
gate Gradient,

2. With increasing block sizes the number of Iterations decrease further, and

3. With increasing number of deflation vectors number of iterations further decrease.

We proceeded with implementing the algorithm on the GPU. On the GPU the CUBLAS
library provided some useful functions for saxpy, dot products which we have used.

6.1 SpMV Kernel

Our matrix has a regular pattern that of a 5-point Laplacean Matrix in two dimensions.
So there are 5 diagonals which carry the complete matrix. It is important to mention here
that the matrix represents a grid n× n in size and hence the matrix has N = n× n rows.
The storage format that we choose is called the Diagonal Storage format. All the diagonals
are stored in a 1-D array, starting from the lowest sub-diagonal(with offset −n) followed
by sub-diagonal with offset (-1), then the main diagonal and then the two super-diagonals
with positive offsets. Also an important feature is that they all have the same length.
This kind of uniformity of size makes coalesced access possible. So for example, if say the
sub-diagonal with offset −1 has one element less, then at that position a zero fills in to
make it equal in size to the main diagonal.

Once stored in this way for each row of the matrix we have 5 fetches from the array
holding the 5 diagonals and 5 from the vector. On the GPU we assign one thread to
compute one element of the resulting Matrix-Vector Product. Additional optimizations
include using shared memory and texture memory. The offsets array is accessed by
every thread and hence we store it on the shared memory to optimize the SpMV Kernel.
This gives a very coalesced access pattern since threads in a half warp access contiguous
elements in the array albeit each of those 5 accesses(per thread) are at offsets of n elements.

6.2 Preconditioning Kernel

The preconditioning kernel is the most sequential part of the entire algorithm. We ini-
tially begin with the Block Incomplete Cholesky Preconditioning. The Block Variant of
Incomplete Cholesky Preconditioning basically exposes the parallelism at the block level.
However each block has considerable serial amount of work to be done. This includes
fetching three times block size number of elements from the array holding the precon-
ditioner (this array is stored in a similar fashion as the coefficient matrix A) and also
fetching block size number of elements from the right-hand side vector. The computation
per block is completely serial. A subsequent row needs a value from the previous row.

One technique that we have employed is to break down the steps of preconditioning
into three.

1. Forward Substitution

2. Diagonal Scaling.

3. Back Substitution

The second step of diagonal scaling can be heavily optimized using shared memory. This
is possible since it is inherently parallel with two reads every thread followed by one
multiplication and all the calculations(N) are independent. For the first and the final
steps we can also use shared memory. The trick is to load the elements using a number
of threads(number same as the block size) in parallel and then work on them and store

28

them back in global memory. Later in the development process we used Incomplete Poisson
Preconditioning to maximize benefits of parallelism. It has been discussed earlier in Section
3.2.2.

6.3 Deflation Kernels

For deflation we sub-divide the tasks into a couple of kernels at the outset. Namely,

1. Calculate b = ZTx

2. Calculate Matrix-Vector Product of E−1 with b.

3. Calculate Matrix-Vector Product of AZ with the result of the previous step and
subtract from x.

For the first kernel b = ZTx we have used the parallel sum approach. For the other
two kernels it is useful to tailor the matrix multiplication example and use shared memory
instead. This is better than the cublasSegmv(for some grid sizes) since we do not have
an additional vector scaling and addition as required by cublasSgemv.

The decision to calculate E−1 explicitly is instrumental since it greatly reduces the time
for the iterations. Though the setup time for the algorithm is affected but the overall gain
in the running time of the method more than compensate the costly operation. Although
it is not sparse and we understand that if the number of deflation vectors become very
high then this approach might not be very efficient.

For the calculation of AZ× result of E−1 × b we used the cublasSgemv call. The
final calculation xit = Qb + P Tx can also utilize the kernels discussed here and also the
cublasSgemv. In the later stages of development we optimize the storage of AZ and
re-write the kernels for calculations involving AZ.

7 Optimizations and Results

In this section we list the data resulting from the experiments conducted. We start with
simple Conjugate Gradient Method and successively add Preconditioning and Deflation
to it. First we present results from preliminary versions with minimal to no optimizations
present. Further we apply optimizations and discuss the approaches. In all the results
below we work with a Poisson type Matrix with a 5-point Laplacean stencil. Hence it has
5 diagonals and is a regular sparse matrix.

7.1 Conjugate Gradient - Vanilla Version

As a first step we have implemented Conjugate Gradient(CG) on the CPU as well as on the
GPU. For the GPU we only have one kernel, namely, the Sparse Matrix Vector Product
Kernel. On the host side also we use a similar kernel. Albeit, it runs serially for all rows
one by one. We now provide a brief Code Commentary that outlines our code design.

7.1.1 Code Commentary

We use the Conjugate Gradient iteration as discussed in Algorithm 5. The convergence
condition being that the 2 − norm of the residual at the k−th step with respect to the
original residual r0 is minimized to a tolerance ε or less.

‖ rk ‖2
‖ r0 ‖2

≤ ε. (101)

29

For the the CG code we have kept the tolerance at 10−6. The matrix A is kept in the
form of diagonals and another matrix named offsets notes the offsets of these diagonals
from the main diagonal. Since for a 5−point Laplacean in 2−D we have 5 diagonals and
it is symmetric. So the offsets are −n,−1, 0, 1, n where grid is n×n and the offset for main
diagonal is 0. Even though it is intuitive to use 3 diagonals for storage we use 5 since that
makes the code simpler and on the GPU there is an added advantage of coalesced access
that such a storage pattern provides.

As previously discussed the diagonals are of the same length N = n × n which is the
number of unknowns for an n×n grid. This is useful when accessing these elements in the
GPU since then each thread picks one element from each of the arrays and the memory
access becomes regular. This is explained in a simple example in [Bell and Garland, 2008].

The host code utilizes the Meschach library. It is an optimized BLAS library. The
reason we chose Meschach lies more in ease of use than anything else. An implementation
of a more known library like gotoBLAS could be also interesting to compare. Another
option is to use Intel’s MKL library. All these Libraries provide functions for Dot Products,
Saxpy, scaling and norm operations.

Sparse Matrix-Vector Products were done by summing up the product of elements of
each row(of the matrix) with the corresponding vector element. This was repeated for all
rows of the array inside a for loop.

For the GPU we mostly used CUBLAS as provided by NV IDIA. The dot product
was implemented using the cublasSdot and the saxpy similarly using cublasSaxpy. Also
useful were the cublasScal for doing scaling and cublasSnrm2 for calculation of 2−norm.
We developed three different flavors(versions) for Sparse Matrix Vector Product Kernels
on the GPU

1. Vectorization - we simply copied the kernel from the Host and removed the for loop.
Instead now each row is calculated by a separate thread.

2. Vectorization with the offsets array stored in the Shared Memory.

3. Vectorization with the offsets array and x stored in the Shared Memory.

Putting the offsets array in shared memory gave us a significant performance boost.
Since the offsets array is accessed by every element in every row so it was imperative to
put it in shared memory.

Throughout the inner loop for CG (steps 2 to 8 of Algorithm 5) there is no transfer
of information between the host and the device (except for transferring results of dot-
products from the GPU to the host). On basis of the parameter OPT THREADS the
optimum number of threads [usually 256 but can be 512 for bigger grid sizes] are assigned
first and the block size is calculated as N

OPT THREADS . If the block size is more than that
supported by the device then the number of threads is increased and the number of blocks
is updated accordingly.

We initially tested this implementation with three different storage formats(CSR,DIA
and Matrix-Free). Details about the CSR and DIA format can be found in [Bell and Gar-
land, 2008]. The matrix free format eliminates use of any matrices to store the coefficient
array A. Instead all operations on the matrix can be specifically coded. For e.g. for the
5-point Laplacean matrix the diagonal matrix diag(A) is 4 repeated N times. Similarly
for other diagonals similar rules can be defined and operations can be written without any
storage space for the matrix.

The DIA format gives us the best results in terms of speedup so we performed com-
parison of the SpMV kernels on DIA format only. We chose the DIA structure to move
ahead since CSR is not well suited for our kind of matrix and matrix-free is too specific.

30

As previously mentioned we have largely relied on CUBLAS and shared memory based
optimizations. Although texture memory could be useful when an array is accessed in an
unordered way we have not used it for x since x changes in our application. Texture
memory could be useful for smaller sizes of A but since it cannot be useful for larger grid
sizes we have not used it. We tried it both for storing the coefficient matrix A and the
vector x in separate versions of the code.

7.1.2 Comparisons with GPU versions

In Figure 10 we show a comparison of the Conjugate Gradient Algorithm’s run time on
the Host and Device across three Grid sizes.

1. 128× 128, 16384 unknowns (16,000)

2. 256× 256, 65536 unknowns (65,000)

3. 512× 512, 262144 unknowns (260,000)

4. 1024× 1024, 1048576 unknowns (1,000,000)

5. 2048× 2048, 4194304 unknowns (4,000,000)

6. 4096× 4096, 16777216 unknowns (16,000,000)

�

�

��

��

��

��

��� ��� ���� ��� �	� ����

��
��

��
�

��������	�
������

��������	
����	��
���
���
���
��
��������

����������	
���	��

���������������	��
��������
���������������	��
����������

����
���������

Figure 10: Conjugate Gradient on Host vs Device

Before we delve into the result analysis it is important to talk about divergence on
the GPU. Divergence could be misleading as divergence of the CG method. However
divergence in terms of CUDA means presence of an If − then − else construct. This

31

retards the throughput of the kernel since it forces all the threads in a block to first take
the if path and then take the else path. In our case, suppose each block has 256 threads.
Now since the offset array has five entries in it −n,−1, 0, 1, n five threads are needed to
load it in parallel. However the rest of the 251 threads have nothing to do which wastes
some of the device time. This phenomena is termed as divergence on the GPU. The second
flavor of our tests as listed in 7.1.1 has this kind of divergence in it however the effects
of divergence are more than compensated by the reduction in repeated global memory
access.

Looking at the results in Figure 10, we get a speed-up of around 21 times (for the
largest grid size)for the shared memory kernel which only caches offsets. The version with
the vector x also in the shared memory comes a close second and that is because of the
divergence that such a design has. It has to access some elements of x from the shared
memory and some from the global memory. So the advantage of shared memory is greatly
reduced. For this reason we choose the variant of SpMV kernel that only utilizes shared
memory for storing offsets only.

It must be noted that here for sizes greater than 260k we haven’t run the method up
till convergence as the code stops at 1000 iterations.

7.1.3 Profiler Picture

The SpMV kernel takes the maximum amount of time for the execution as far as GPU
execution is concerned. The shared memory tweak of loading the offsets though has
divergence but it reduces the amount of GPU time SpMV kernel takes by half. In Figure
11 and Figure 12 this can be observed. It can also be seen that as the number of unknowns
increases, more and more time is consumed by these three kernels of SpMV, saxpy and
sdot.

� �� �� �� �� ���

�����

��

��

��������	
���	�

��
�
��

���
	�

��
��

��

����������	
�����������	��	�������	
��	���������	�����������

	
��
	��
	��
�

Figure 11: Conjugate Gradient with basic
kernel

� �� �� �� �� ���

�����

��

��

��������	
���	�

��
�
��

���
	�

��
��

��

����������	
�����������	��	�������	
��	���������	�����������

	
��
	��
	��
�

Figure 12: Conjugate Gradient with shared
memory kernel

From Figure 10 it can be seen that at the size of 16M the speedup seems to become
constant. The reason for this is that the kernels on the GPU become bandwidth-bound.
The CUBLAS calls are taking around 85Gb/s of the available bandwidth. The only
hand-written kernel of SpMV is consuming more than 85 Gb/s. This kernel is at 100%
occupancy. The rest of the calls are to CUBLAS functions and they are also at 100%
occupancy.

32

7.2 Diagonal Preconditioning

Since our matrix for now is a simple 5-point Laplacean matrix (with similar elements
on the diagonal) we did not expect any changes and our results stayed the same. The
preconditioner step only involved scaling the main diagonal by 1

4 which was rather trivial
to implement using a cublasSscal call. On the host-side this is implemented by a scalar-
vector multiplication routine.

7.3 Conjugate Gradient with Preconditioning

7.3.1 Code Commentary

Extending CG with the Incomplete Cholesky Factorization based preconditioning is the
next step in our implementation. For this another kernel comes in place for the operation

zj = M−1rj (102)

where,

M = KKT (103)

and K is the (incomplete) lower Cholesky triangle. In order to keep it ”incomplete”
K follows the sparsity pattern of A. We solve the system KKT zj = rj in three steps in
the following way:

1. Ky = rj Forward Substitution

2. y = y ∗ diag(K) Diagonal Scaling

3. KT zj = y Back Substitution

This step occurs inside the iteration as well, as shown on line number 6 of the Precon-
ditioned Conjugate Gradient Iteration listing in Algorithm 7.

It must be noted that block sizes are always at least double the number of grid points
in one direction. This is important since if they are between the grid dimension in say,
the X direction, and 2× that size then they do not really suit the GPU (multiples of 32,
16 only suit) and if they are less than the grid size in any one dimension they completely
remove the outer most diagonals in A. Recalling that A resembles the 5-point Laplacean
in cases of our interest. This is better explained by a picture given in the Appendix B.2.

We have followed these rules for the host also for a similar comparison. As can be
noticed in Figure 13 preconditioning reduces the number of iterations required for con-
vergence drastically. For grid sizes 4M and above the convergence does not occur within
1000 iterations. However the norm of the result at the 1000th iteration decreases with
bigger preconditioner block sizes. This can be observed in Figure 14

7.3.2 Comparisons with GPU versions

Comparing the CPU version of the code in Figure 15 to 20 with the GPU versions we
see that for smaller grid sizes the GPU version lags behind the CPU. However some gain
is induced for bigger grid sizes. This could be partly explained by the relatively large
block sizes which might become overwhelming for the closest (and the fastest) level of
cache inside the CPU. Also from these figures we can see that as the block sizes increase
(and number of blocks decrease) the CPU gains a bit and this is because the number of
iterations in the for loop is less, so less jumps in the CPU code hence better performance.

The most simple version of the kernel code for preconditioning would have been putting
all the three steps (forward substitution, diagonal scaling and backward substitution) in

33

�
���
���
���
���
���
���
���
	��

�������
�������
������	

��
�
��

���
	�

��
��
��

��

��������	�
��������������������

�����������	
�����	���	����

���������������

����������
����������������

���������
���������������

���������
��������	���	��

��������	

Figure 13: Decreasing iterations across block sizes (CG with Block-IC Preconditioning)

��������

��������

��������

��������

�����	��

�������
�������
�������

��
���

���
�	

��
�

���
���

���
��
���
���

���
��

�
���

��
���
�

����
��
���

��������	�
����

����������	�
��������������������
��������

��������
������

����������
���������������

����������

Figure 14: Norm decreasing with decrease in number of blocks (CG with Block-IC Pre-
conditioning)

34

one kernel but that takes up a lot of registers. So we broke them down in three parts. Out
of these three parts diagonal scaling is embarrassingly parallel so it consumes less than
1% of the total time required for preconditioning but forward substitution and backward
substitution are inherently sequential and not suited for the GPU. However computing
them on the CPU every cycle and then transferring back and forth between the GPU-
CPU is not a good solution either.

Hence as much as Block-IC permits we used shared memory for temporary calculation
of the new values in each block and once the calculations are complete we copy them to
the global memory. This means that for each block of the Block-IC method we store ’size
of block’ number of floats in which we store the result y = K−1rj for the back substitution
and the forward substitution steps. This seems natural since in the implementation of
forward and back substitution y is written at most three times in the whole iteration that
spans across a block, so keeping it in shared memory and writing only the final value
improves performance.

As promising as this approach sounds it fails as soon as block sizes approach 4096
which happens for a grid size 1024×1024 in our experiments. Then we have to come back
to the naive kernel that launches one thread per block that calculates the new vector per
block.

This approach also might loose on bigger grid sizes (if and when we have that much
shared memory) since then a lot of copying will have to be done by a single thread from
shared memory to global memory.

We also tried using as many threads in a block as there were elements in the block and
tried to load all elements in parallel and store them back in parallel but the intermediate
step of calculating all elements of y was done by a single thread. This version also fails for
the same reason as the previous approach does. There can be a maximum of 512 threads
per block so beyond that it is not possible to use this idea of co-operative loading and
writing back.

An even more aggressive version (using shared memory) for the forward and back
substitution steps is to store the matrix K’s three diagonals also in shared memory, though
it becomes unusable even faster than the previous approach.

Preconditioning of the Block-Incomplete Cholesky type is best when there are more
and more blocks that can all be computed in parallel. However as the block sizes increase
the amount of the time that GPU is under-utilized also increases. Since inside the for-
ward/back substitution kernels only one thread works per block which is wasteful for the
GPU.

Figure 15 to 20 show how how speedup slowly crawls up to 2.5 times from a fractional
level for large grid sizes. In these graphs the blue color shows the kernel in which shared
memory can be used for storing the intermediate result y and the green color shows the
naive kernel which has to be used after a certain point since shared memory is limited to
16384 bytes or 4096 single precision floats per block.

7.3.3 Profiler Picture

Preconditioning dominates more than 90% of the execution time (across all grid sizes and
preconditioning block sizes) in on the device versions of the code. This was expected
because of the serial nature of the code. Saxpy, Sdot and SpMV come a close second. On
the host the majority of the time is taken up by the SpMV operation and the Block-IC
Preconditoning.

On the host this percentage rises much more slowly as compared to the device. Since
for the device(GPU) serial code is not suited at all.

35

� ��� ��� ��� ���

��

��

��

����������	
��

��
�
��

���
	�

��
�
�

���������

Figure 15: SpeedUp across block sizes for
16k unknowns

� ��� � ���

���

��

	�

����������	
��

��
�
��

���
	�

��
�
�

�������

Figure 16: SpeedUp across block sizes for
65k unknowns

� ��� �

���

���

��

����������	
��

��
�
��

���
	�

��
�
�

�������

Figure 17: SpeedUp across block sizes for
260k unknowns

� ��� � ���

���

���

���

����������	
��

��
�
��

���
	�

��
�
�

���������

Figure 18: SpeedUp across block sizes for 1M
unknowns

7.4 Conjugate Gradient with Deflation and Preconditioning-Block IC

Deflation is applied to the existing preconditioned iteration. Deflation provides much
more scope for exploiting parallelism and that will be evident with the results discussed
henceforth. First we put the optimized kernels on the device, then we added change the
way we calculate and store AZ. While improving the performance of the code on the GPU
we also gave equal attention to optimization of the CPU code.

7.4.1 Code Commentary

We implemented deflation on the Block Incomplete Cholesky version of the code discussed
in the previous section. Sub-domains were introduced in the grid which could be handled
by separate processors. The Sub-domains have been assigned stripe-wise (for details refer
Appendix B.4) so that in the matrix a set of rows (one domain) could be assigned to one
processor. The new operations required for Deflated Preconditioned Conjugate Gradient
can be written down in separate kernels.

1. Calculation of AZ (happens once).

2. Calculation of E (happens once).

3. Calculation of E−1 from E (happens once).

4. Calculation of m = ZTx (happens every iteration).

36

��� ��� ��� ���

���	

��

�
�

����������	
��

��
�
��

���
	�

��
�
�

���������

Figure 19: SpeedUp across block sizes for 2M
unknowns

� � � �

����

����

���

����������	
��

��
�
��

���
	�

��
�
�

���������

Figure 20: SpeedUp across block sizes for 4M
unknowns

5. Calculation of y = E−1m (happens every iteration).

6. Calculation of result= x−AZy (happens every iteration).

7. Final Update of x, the solution with Qb and P Tx (happens once).

Now AZ, E−1 can be calculated on the CPU itself. Since the setup of the kernel is
not included in our analysis of speedups. This part is common to both the host and the
device kernels.

After we have calculated E−1 the 5th step in the list above is a Dense Matrix Vector
Multiplication. Similarly the 6th step also since we store AZ as a full matrix of dimensions
N × d where N is the number of unknowns (also N = n × n, where n is grid size in one
dimension) and d is the number of deflation vectors.

This limits our experiments to a grid size of a maximum of 512×512 with 4096 domains
since at this size AZ alone requires 4 gigabytes of storage which is a limit for the GPU
which has only 4GB of Global Memory storage. In order to overcome this limitation, later
we store AZ in a format where only 5×N storage is required.

For doing Dense Matrix Vector Multiplication we use the CublasSgemv function. For
the 4th step, ZTx, we write a simple kernel that sums up N/d elements in each thread.

For the final step which involves correcting the solution x. We have to do AZTx which
can again be computed using a CublasSgemv call. Also we have to calculate E−1AZTx
and E−1ZT b.

7.4.2 Comparisons with GPU versions

Figure 21 to 23 present the speedup on three different grid sizes and across three different
numbers of deflation vectors and three different numbers of preconditioning blocks.

Detailed results with Error norms for device and host and the number of iterations are
available in the Appendix C.1.1. A couple of things are worth noting in these results.

• The number of iterations decrease with increasing block size for any number of
deflation vectors.

• Increasing the number of deflation vectors decreases the number iterations required
for convergence.

• The relative error norm is same across the device and the host

37

� � �� �� ��

���

���

����

���������
�
��

���
	�

�	
��
��

���
��
�
��

����������	
�������	��
����������������

��
��
��

��
��

��
��	

�
�
��
��

��
���

���
�

���
��
�

��
��

��
��	

�
�
��
��

��
���

���
�

���
��
�

��
��

��
��	

�
�
��
��

��
���

���
�

���
��
�

Figure 21: Deflated Block-IC Preconditioned Conjugate Gradient (Simple CUDA kernel)
1̃6k unknowns

� �� �� �� ��

���

����

����

���������
�
��

���
	�

�	
��
��

���
��
�
��

����������	
�������	��
����������������

��

��

���

��
��

��
��	

�
�
��
��

��
���

���
�

���
��
�

��
��

��
��	

�
�
��
��

��
���

���
�

���
��
�

��
��

��
��	

�
�
��
��

��
���

���
�

���
��
�

Figure 22: Deflated Block-IC Preconditioned Conjugate Gradient (Simple CUDA kernel)
6̃5k unknowns

� � �� �� �� �� ��

����

����

���������
�
��

���
	�

�	
��
��

���
��
�
��

����������	
�������	��
����������������

��

���

���

��
��

��
��	

�
�
��
��

��
���

���
�

���
��
�

��
��

��
��	

�
�
��
��

��
���

���
�

���
��
�

��
��

��
��	

�
�
��
��

��
���

���
�

���
��
�

Figure 23: Deflated Block-IC Preconditioned Conjugate Gradient (Simple CUDA kernel)
2̃60k unknowns

38

• The Speed-Up is maximum for the largest number of deflation vectors and the small-
est Block Size (largest number of blocks).

The first three observations confirm that the results are correct. The last observation
confirms that as the parallelism increases in the code the usefulness of the GPU appears
in the execution times. They are reduced considerably.

However there is one interesting thing to be noted in the speedups for the grid size
512 × 512 (Figure 23). The maximum speedup is for the number of blocks at 128 and
when the number of blocks increases to 256 the speedup declines.

This has something to do with the hardware we have. We use a Tesla C1060 GPU with
240 scalar processors. They are divided amongst 30 Multiprocessors in groups of 8.The
preconditioning kernel we use now is the naive kernel, in which the Forward and Backward
Substitution kernels form the bulk of the computing time. This remains true for deflated
Preconditioned Conjugate Gradient as well as we will discuss in the Profiler Picture section
that follows. These kernels (forward and backward substitution) launch as many CUDA
blocks (CUDABLOX from hereon for clarity’s sake) as there are preconditioning blocks.
So 128 CUDABLOX are launched when there are 128 preconditioning blocks. Now in this
case we have enough scalar processors to process all of these blocks simultaneously. Since
only one thread calculates the whole preconditioning block in both kernels.

However in case of the 256 blocks we have a limitation that first 240 blocks will be
scheduled and then once they are done the remaining 16 blocks are scheduled. This can
also be verified from the execution times for this particular case. As can be seen in Figure
24 and 25, the execution times rise only on the GPU whereas across block sizes 64 and
128 they are more or less constant. The occupancy in both cases is the same and the
bandwidth is more (50%) for the case when the number of blocks is 128. This couldn’t be
compared in the previous version of the code (Section 7.3) since there we had two different
kernels for different block sizes.

7.4.3 Profiler Picture

At this stage we have 24 (3 grid sizes, 3 preconditioning block sizes, 3 different deflation
vector counts (2 for the last grid size)) different instances of the solution we are trying
to implement so we only display a couple of profiler pictures that make the point clear.
Specifically we discuss the case from the 128×128 matrix for 1024 deflation vectors across
all preconditioning block sizes and for the grid size 512× 512 we do the same.

From Figure 24 we can infer that the calculation of AZ × x is crucial at all precon-
ditioning block sizes however its contribution is shadowed by the preconditioning kernels
(forward substitution and back substitution) as the preconditioning block sizes increases
or the number of preconditioning blocks decreases. This is because each thread on the
GPU (which calculates one complete block) has to work more and more.

Careful examination of figure 25 , which is for grid size 512×512, we can see that from
the number of blocks 128 and 256 there is a slight increase in the preconditioning time
which accounts for the decrease in speedup as shown in the earlier in Section 7.4.2.

7.5 Conjugate Gradient with Deflation and Preconditioning - AZ stor-
age optimized

As seen in the previous two sections the CublasSegmv call for calculating AZ × x is the
second most time consuming kernel after preconditioning (considering forward and back
substitution as one and ignoring the diagonal scaling step since it is inherently parallel).
Keeping the preconditioner same we try to optimize this kernel.

39

�� ��� ����

��

��

��

����������	
�	�
��	�������

��
��

���
�	�

�
��
��

��
���

���
���
���

��
����������	
�����	������������	��	

���������	����	���������

	
��
�������������������
�����������������
���
��������� !��!
����

Figure 24: Conjugate Gradient with Deflation and Block-IC Preconditioning (Simple Ver-
sion) Deflation Vectors=1024

�� ��� ����

���

���

��

����������	
�	�
��	�������

��
��

���
�	�

�
��
��

��
���

���
���
���

��

����������	
�����	������������	��	
���������	����	���������

	
��
�������������������
�����������������
���
��������� !��!

��������� ��!

Figure 25: Conjugate Gradient with Deflation and Block-IC Preconditioning (Simple Ver-
sion) Deflation Vectors=1024

40

� � �� � � � � � � � � � � �
� � �� � � � � � � � � � � �
� � �� � � � � � � � � � � �
� �� �� � � � � � � � � � � �
�� � � �� � � � � � � � � � �
� � � �� � � � � � � � � � �
� � � �� � � � � � � � � � �
� � � �� � � � � � � � � � �
�� � � � �� � � � � � � � � �
�� � � � �� � � � � � � � � �
�� � � � �� � � � � � � � � �
�� � � �� �� � � � � � � � � �
� �� �� � � �� � � � � � � � �
� �� � � � �� � � � � � � � �
� �� � � � �� � � � � � � � �
� �� � � � �� � � � � � � � �
� � �� � � � �� � � � � � � �
� � �� � � � �� � � � � � � �
� � �� � � � �� � � � � � � �
� � �� � � �� �� � � � � � � �
� � � �� �� � � �� � � � � � �
� � � �� � � � �� � � � � � �
� � � �� � � � �� � � � � � �
� � � �� � � � �� � � � � � �
� � � � �� � � � �� � � � � �
� � � � �� � � � �� � � � � �
� � � � �� � � � �� � � � � �
� � � � �� � � �� �� � � � � �
� � � � � �� �� � � �� � � � �
� � � � � �� � � � �� � � � �
� � � � � �� � � � �� � � � �
� � � � � �� � � � �� � � � �
� � � � � � �� � � � �� � � �
� � � � � � �� � � � �� � � �
� � � � � � �� � � � �� � � �
� � � � � � �� � � �� �� � � �
� � � � � � � �� �� � � �� � �
� � � � � � � �� � � � �� � �
� � � � � � � �� � � � �� � �
� � � � � � � �� � � � �� � �
� � � � � � � � �� � � � �� �
� � � � � � � � �� � � � �� �
� � � � � � � � �� � � � �� �
� � � � � � � � �� � � �� �� �
� � � � � � � � � �� �� � � ��
� � � � � � � � � �� � � � ��
� � � � � � � � � �� � � � ��
� � � � � � � � � �� � � � ��

Figure 26: 5 diagonals in AZ. N=64, n=8 and d=16

The reason why this kernel is taking so much time is the order of computations involved.
AZ is an N × d matrix to which a vector of size N is multiplied in this kernel. Now we
examine the structure of AZ in Figure 26.

The blue areas form the diagonals with offsets ±d/n and width N/d per column. The
main diagonal is also N/d wide per column. The green areas form the diagonals with
offsets ±1. So the blue areas have in all N − n elements. The red area has N elements
since N/d× d = N . The green area has d− 1 elements on each side of the main diagonal.

Now to make the storage structure uniform we use a block of 5 ∗ N elements. Out
of which one chunk of N is assigned to the main diagonal. The diagonals (in blue) with
offset ±d/n can be stored in chunks of N each with padding of zeros before(−n/d) or
after(+n/d). For the green areas, i.e. the diagonals with offset ±1, there is padding
required at every element which is a zeros pattern N/d long. This way all diagonals can
occupy N spaces and the data structure can now be used. One of the main reasons, other
than saving space, for storing AZ like this is also that such an arrangement makes it very

41

�������
� � � � � � � � � �� �� �� �� �� �� �� ��
� � � � �� � � � � � � � �� � � � �
�� � � � � � � � � � � � � � � � �

	� ���������� � � � � � � � �� � � � � � � � �

� ���������� �� �� �� �� �� �� �� �� � � � � � � � �

�����������

�����������������������
����������������������

�����������������������
���������������������� �!�"

#������������������������
������������� �!�"

#������������������������
��������������

����$������������������%&�������
��$����$����$��'

(��������������%&���������$����$����$�
�'

�����������
�����������
�����������

Figure 27: AZ stored as 5 diagonals(padding). N=64, n=8 and d=16.

close to how A is stored and hence promises better performance on the GPU.
After reorganization the AZ data structure looks like Figure 27. Given this organiza-

tion of AZ we developed new kernels for AZ × b and AZT × x where b is a d × 1 vector
and x is a N ×1 vector. It is important to note here that AZ× b operation happens every
iteration whereas AZT × x happens once at the end of convergence to correct x.

The kernel for AZ × b is similar to the SpMV kernel we write for A. The kernel for
AZT × x works in 5 calls. One call for every diagonal. Since in this case we have to take
care of a couple of things like,

1. The row offset of the current column being read from AZ,

2. The actual place in the 5∗N array in which we store AZ from where we start reading
(taking into account padding),

3. The offset of the diagonal in the storage array for AZ. This is in multiples of N ;
and

4. The offset where we start writing the results in the output array.

42

� ��� � ���

���

���

����

���������
�
��

���
	�

�	
��
��

���
��
�
��

����������	
�������	��
������������������
�������� ������!����

��
��
��

��
��

��
��	
�
�

��
��

��
���

���
�

���
��
�

Figure 28: Deflated Conjugate Gradient with Block-IC Preconditioning. 128× 128 grid.

� ��� � ��� �

���

����

����

���������
�
��

���
	�

�	
��
��

���
��
�
��

����������	
�������	��
������������������
�������� ������!����

��
��
���

��
��

��
��	
�
�

��
��

��
���

���
�

���
��
�

Figure 29: Deflated Conjugate Gradient with Block-IC Preconditioning. 256× 256 grid.

The kernels after re-organization of AZ have been written for the host side as well.
We now show the comparisons of the two codes running on the host and the device.

7.5.1 Comparisons with GPU versions

With the optimized storage of AZ we reduce the effective number of multiplications by
around two orders of magnitude or more. This is a mixed blessing for the GPU version of
the code since previously (when we had full AZ) more calculations meant more parallelism,
but now that reduces and furthermore due to the smaller size of the AZ matrix it fits better
in the CPU memory (cache). Result being that the GPU gains in speed by 2x whereas
the CPU gains 20x. Effectively the speedups are decimated. Figure 28 to 30 show this
effect.

7.5.2 Profiler Picture

Since we have optimized one of the heavyweights from the previous version of the code as
in Section 7.5. Now the majority of the time is spent in preconditioning and as the grid
size increases preconditioning dominates more and more.

This is visible in Figure 31 to 33. In the following section we will try to address the

43

� ��� � ��� � ��� �

����

����

��	

���������
�
��

���
	�

�	
��
��

���
��
�
��

����������	
�������	��
������������������
�������� ������!����

��
���
���

��
��

��
��	
�
�

��
��

��
���

���
�

���
��
�

Figure 30: Deflated Conjugate Gradient with Block-IC Preconditioning. 512× 512 grid.

�� ��� ��� ��� ��� ����

��

��

��

����������	
�	�
��	�������

��
��

���
�	�

�
��
��

��
���

���
���
���

��

����������	
�����	������������	��	���������	
����	���������

	
����	���������
����
����	���������
�������	

Figure 31: Deflated Preconditioned Conjugate Gradient(AZ storage optimized). Grid Size
(128× 128)

�� ��� ����

���

��

	�

����������	
�	�
��	�������

��
��

���
�	�

�
��
��

��
���

���
���
���

��

����������	
�����	������������	��	
���������	����	���������

�����
���������
����������
���������
�������

Figure 32: Deflated Preconditioned Conjugate Gradient(AZ storage optimized). Grid Size
(256× 256)

44

�� ��� ����

���

���

��

����������	
�	�
��	�������

��
��

���
�	�

�
��
��

��
���

���
���
���

��

����������	
�����	������������	��	
���������	����	���������

	
����	���������
����
����	���������
�������	

Figure 33: Deflated Preconditioned Conjugate Gradient(AZ storage optimized). Grid Size
(512× 512)

problem with sequential nature of Block-IC preconditioning with a new kind of Precondi-
tioning that gives ample scope for parallelism.

7.6 Conjugate Gradient with Deflation and IP Preconditioning - AZ
storage optimized

After optimizing AZ storage most of the time is spent in the preconditioning kernels,
namely the forward and back substitution steps. In order to get a better speedup we
experimented with the IP preconditioning (discussed in Section 3.2.2) approach suggested
by [Ament, Knittel, Weiskopf, and Straβer, 2010].

This preconditioner is inherently parallel since it(M−1) is also composed of 5 diag-
onals. In order to calculate the updated vector y we need to do a sparse matrix vector
multiplication just like we do for Ax. This dramatically affects the run time of the algo-
rithm as we show below in the results.

7.6.1 Comparisons with GPU versions

We made a CPU version for Deflated IP Preconditioned CG with optimizations to AZ
and compared it with an equivalent GPU version written in CUDA. After optimizing the
preconditioning we again get upto an order of magnitude speedups. See Figure 34.

It is also useful to put into perspective the speedups we had with the previous version
that used Block-IC Preconditioning.

From Figure 35 to 37 we can see the improvement in speedup that IP Preconditioning
offers for our problem. Also it is important to compare the number of iterations taken in
the Block-IC variants for convergence to those required for the Incomplete Poisson version
to converge. In Figure 38, 40 and 42 we can see that we pay a small cost for the parallelism
by having a slightly higher iteration count for IP Preconditioning based solution compared
to the highest number of blocks based Block-IC Solution.

Finally if we compare the error norms (Figure 39, 41 and 43) of the solution for all
the cases, they are also comparable between all variants of Block-IC based DPCG and IP
based DPCG.

45

�
�
�
�
�

��
��

��	
���� ��	
���� ��	
����

��
��

��
�

��������	�
�	������������

��������	�
�����
��������	�����
�����	��

��
��	�
��
	�����
��	�������

���������
��	
������
���������
��	
������
���������
��	
������

Figure 34: Deflated Preconditioned Conjugate Gradient with IP Preconditioning across
three grid sizes

� � � � �

���

���

����

���������
�
��

���
	�

�	
��
��

���
��
�
��

����������	
�������	��������	
����
��������������������

��
��
��
��

��
��

��
��	
�
�

��
��

��
���

���
�

���
��
�

Figure 35: Grid Size 128× 128

� � � � � � �

���

����

����

���������
�
��

���
	�

�	
��
��

���
��
�
��

����������	
�������	��������	
����
��������������������

��
��
���
��

��
��

��
��	
�
�

��
��

��
���

���
�

���
��
�

Figure 36: Grid Size 256× 256

46

� � � � � �� ��

����

����

����

���������
�
��

���
	�

�	
��
��

���
��
�
��

����������	
�������	��������	
����
��������������������

��
���
���
��

��
��

��
��	
�
�

��
��

��
���

���
�

���
��
�

Figure 37: Grid Size 512× 512

7.6.2 Profiler Picture

Looking at the profiler output in Figure 44 to 46 now we see that it is dominated by the the
cublasSgemv call for the operation E−1b. for larger number of deflation vectors. However
at smaller number of deflation vectors the execution time is almost evenly distributed.

The important thing that emerges out of these figures is that the kernel for E−1b must
be optimized since it is taking the majority of the time. For smaller number of deflation
vectors however the percentage of time taken for E−1b comes down due to a decrease
in the number of operations involved and the dot product kernels also take a significant
amount of time.

7.7 Conjugate Gradient with Deflation and IP Preconditioning - AZ
storage optimized and optimized Matrix Vector (E−1b) Multiplica-
tion

After optimizing storage of AZ and preconditioning the dominant part of the kernel be-
comes the the matrix vector product E−1b as shown in the results in the Profiler Picture
of previous section 7.6.2. As previously (Section 6.3) discussed this method (of calculating
E−1 explicitly) was chosen for its suitability for the GPU since it could be otherwise be
calculated using the substitution methods which are completely serial.

For optimizing this operation better than with CUBLAS (cublasSgemv) we use the
Magma Library for CUDA version 0.2. The memory throughput of the Magma gemv
function is much better than cublasSgemv. It often (for many matrix sizes) is 2.5 times
faster than CUBLAS.

In addition to this major change we also club some of the existing functions that
involved saxpys and copy/scaling operations on the device involving α and β for calculating
the new search direction and updating the residual vector(see steps 4 and 7 of Algorithm
5). These deliver close to 8 − 9% improvement over all the grid sizes in addition to the
improvment due to the use of MAGMA.

7.7.1 Comparisons with GPU versions

In Figure 47 to 49 we present the results of using the the blas routine gemv from the
MAGMA library. As one can notice the effect is significant when compared to the pre-
vious best version we have that of Incomplete Poisson Preconditioning (with AZ storage

47

� �� �� �� ��

���

���

����

��������	�
���������	��������������

��
�
��

���
	�

�	
��
��

��
��

�
��
�

�����������	��
������
������������	���	��������

�	

��

�

��

Figure 38: Grid Size (128× 128)

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�	

��
��

��
��

��
��
�

��

	�
�

��
	

��
	�

���������	

�
���
���������������������
�����

��
�
��

���
	�

�	
��
��

��
��

�
��
�

�����������	��
������
������������	���	��������

��

��

��

��

Figure 39: Grid Size (128× 128)

� �� �� �� �� �� ��

���

����

����

��������	�
���������	��������������

��
�
��

���
	�

�	
��
��

��
��

�
��
�

�����������	��
������
������������	���	��������

	

��

��

���

Figure 40: Grid Size (256× 256)
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��
�	
��

�
�

��
��

��
��

���������	

�
���
���������������������
�����

��
�
��

���
	�

�	
��
��

��
��

�
��
�

�����������	��
������
������������	���	��������

��

��

��

���

Figure 41: Grid Size (256× 256)

� �� �� �� �� �� ��

����

����

��	�

��������	�
���������	��������������

��
�
��

���
	�

�	
��
��

��
��

�
��
�

�����������	��
������
������������	���	��������

�

��

���

���

Figure 42: Grid Size (512× 512)

��
��

��
��

��
��

��
��

��
��

��
��

��
��
��
��

��
�	

��
	

	�
��

���������	

�
���
���������������������
�����

��
�
��

���
	�

�	
��
��

��
��

�
��
�

�����������	��
������
������������	���	��������

��

��

���

���

Figure 43: Grid Size (512× 512)

48

���

���

��

��

��
��

��
������

���

������

��

	�

��

��

��
�� ��
��

���

������

��

	�

	�

��

��
��

������������	�
	���������	�������	��	���������	
����

������ ��	
 	
��� ����� ��	��
��� �
� ����������� ���� �����	�

��������	
�����������

��������	
�����������

��������	
�����������

Figure 44: Deflated IP Preconditioned Conjugate Gradient. Grid Size (128× 128)

���

��
��
��
��
��

��
������

��

���

�����

��

	�

��

	�

��
�� �� ��

���

���

���

�

�

��

��

	�

��
�� ��

������������	�
	���������	�������	��	���������	
����

������ ��	
 ���� ����������� ����	� ���
��	� �
� 	
���� ���� ��������

��������	
�����������

��������	
������������

��������	
�����������

Figure 45: Deflated IP Preconditioned Conjugate Gradient. Grid Size(256× 256)

49

���

��
��
��
��
����

������

���

���
���

	�

�

��

��

��
�� �� ���

�
�

������

���

	�

�

��

�� ��

������������	�
	���������	�������	��	���������	
����

������ ���	������
 ��� �������� ����
����� ��� ����� ������ ���

��������	
������������

��������	
������������

��������	
�����������

Figure 46: Deflated IP Preconditioned Conjugate Gradient. Grid Size(512× 512)

optimized) and CUBLAS. In some cases the speedup has also doubled. The host version
has been kept the same as was in the previous (Section 7.6) experiment.

7.7.2 Profiler Picture

The MAGMA blas library has levelled the execution times to a large extent. In the Figure
50 through 52 it can be noticed that the E−1b operation execution time now scales with
the number of deflation vectors almost linearly. Also worth noting is that for the biggest
problem size in the Figure 52 for a Grid Size of 512×512 and 4096 deflation vectors we get
the bandwidth for the gemv kernel at 86Gb/s which is substantial since Tesla hardware
supports a maximum of 101 Gb/s of Memory Bandwidth.

8 Experiments with Two Phase Flow Matrix

Till now all the results we have shown had the 5-point Laplacean Matrix as the coefficient
matrix A. However the real intent of this study is to solve the multi-phase flow problems.
By picturing two phases in the coefficient matrix we have a problem that is just a hair
removed from a potential multi-phase/bubbly flow problem.

All that changes are the coefficients in the matrix A. Its structure remains the same.
However since we are picturing fluids with very different densities there is a significant
discontinuity between the coefficients now. As discussed in Section 2.1 we work with a
matrix of the same structure, however with a very different condition number. The two
phase flow matrix in its original form is not invertible. That is a problem if we want to
find a solution to Ax = b. We force invertibility by setting A(N,N) = 2, where N = n×n
and n =grid size in one dimension.

8.1 Conjugate Gradient -Vanilla Version and with Block- IC and Diag-
onal Preconditioning

We ran Conjugate Gradient Algorithm with Block-IC Preconditioning (size of blocks =
2 × n where N = n × n) and Diagonal Preconditioning and record the variation in the

50

�
�
�
�
�
�
�

��� ��� ����

��
��
���

���
	

��

��������	�
�	������������

�����������	
�	�
�������������
�����	����������������������������������

����
	�����	�����
�	
���������� �	
��������

Figure 47: Grid Size(128× 128)

�
�
�
�
�

��
��
��

��� ���� ����

��
��
��
��

��	

��

��������	�
�	������������

�����������	
�	�
�������������
�����	����������������������������������

����
	�����	�����
�	
���������� �	
��������

Figure 48: Grid Size(256× 256)

51

�
�

��
��
��
��

���� ���� ����

��
��
���

���
	

��

��������	�
�	������������

�����������	
�	�
�������������
�����	����������������������������������

����
	�����	�����
	
����������� 	
���������

Figure 49: Grid Size(512× 512)

���

�����
��

��

���

��

��
�� ��

���

���

	���
	�

�

	�

	�

	�
	�

���

���

��
���

��

��

���

	�

	�

	�

������������	�
	���������	�������	��	���������	
����

������ ��	
 ����������� �������� ����
	
���� �
� ����������� ��� ����	�

��������	
�����������

��������	
�����������

��������	
�����������

Figure 50: Deflated (IP) Preconditioned Conjugate Gradient. (AZ storage optimized and
Magma BLAS based gemv) Grid Size (128× 128)

52

���

�����
��

��

��

��
��

��
���� ���

���

��
���

�	�

�	�

��

�

��
��

��
���

���

���

��
���

���

��

��

��

��
��

������������	�
	���������	�������	��	���������	
����

������ ��	
 ����������� ����������� ����	� ���
��������� �
� 	
���� ���� ��������

��������	
�����������

��������	
������������

��������	
�����������

Figure 51: Deflated (IP) Preconditioned Conjugate Gradient. (AZ storage optimized and
Magma BLAS based gemv) Grid Size (256× 256)

���

���
���

��

��

��

��
����

�� ���

�	�

������

���

��

��

��
��

�
���

���

���

���

���

��

���

	�

�
��

������������	�
	���������	�������	��	���������	
����

������ ���	������
 ��� �������� ����
������������ ��� ����������� ������ ����������

��������	
������������

��������	
������������

��������	
�����������

Figure 52: Deflated Preconditioned Conjugate Gradient. (AZ storage optimized and
Magma BLAS based gemv) Grid Size (512× 512)

53

error norm of the solution and the residual norm over multiple iterations (even after
the convergence). What we notice is that the residual norm keeps on falling. This is
not correct at all since, if the norm starts from 102 and falls below 10−6 it is exceeding
machine precision for single-precison floating point operations and that is not possible.
In the graphs that follow from Figure 53 to 57 for Conjugate Gradient with Diagonal
Preconditioning and from Figure 58 to Figure 62 for Conjugate Gradient with Block-IC
Preconditioning we see this phenomenon clearly. The thin vertical blue line in all the
graphs is where convergence is achieved. The solid blue line traces the norm of the error
in the solution and the red line is the norm of the residual. The precision criteria for these
tests was set to 10−5. They have have been run on smaller grids in order to show the
effect in lesser number of iterations. With larger grid sizes (those above 16384 unknowns)
the behavior is similar. The green vertical line shows where machine precision is hit.

These two results prove that even though convergence happens and relative residual
norm reaches a value lower than the expected precision (10−5 in these calculations) it
is a sort of false stop. The residual rises and falls some more times before it becomes
meaningless (seems to become better than machine precision) and the error norm of the
solution which is at a relatively higher value at the time of convergence also comes down
after the observed convergence. This is in line with the work previously done [Tang, 2008].

8.1.1 Comparisons with GPU versions

We first ran the Conjugate Gradient algorithm on the two phase matrix, followed by two
experiments with Diagonal and then Block Incomplete Cholesky Preconditioning. We
get comparable speedups (Figure 63) to Section 7.1.2. However the norm (Figure 64) of
the relative error in the solution remains high due to the ill-conditioning of the original
problem.

For Block Incomplete Cholesky Version we have three different block sizes which re-
sult in three different number of blocks. These are denoted by X DIREC

2 , X DIREC
4 and

X DIREC
8 . Here X DIREC denotes the dimension of the grid in x-direction. For our

experiments we have a square grid hence dimensions are n× n and number of unknowns
N = n × n. Hence n = X DIREC. For e.g. if n = 256 then X DIREC = 256 and
subsequently we have Number of Blocks as 128, 64 and 32.

8.2 Conjugate Gradient with Deflation and Block-IC Preconditioning

In this section and the next one we summarize the speedups for Conjugate Gradient with
Deflation and Preconditioning. Deflation takes toll on the precision condition we fix as
10−6 for the previous tests (without deflation only preconditioning in section 8.1). Result
being that the precision condition has to be scaled down to 10−2 and then the method
seems to converge. For deflation we use the most optimized version that we have had from
the previous results in Section 7.7.

We present the results for calculated norms on three grid sizes 128 × 128, 256 × 256
and 512×512 across three different number of deflation vectors and preconditioning block
sizes in Figure 65. In these results the ratio of the densities of the two mediums is 10,
unlike the previous experiments (Section 8.1) where it was 1000. As can be seen except for
Grid Size 128 × 128 at number of deflation vectors = 1024 we have a peculiar case when
the error norm rises and the solution is more erroneous than the initial guess. Otherwise
the error norm is a between 0 and 1.

More detailed results are available in the Appendix C.2.1. The reason for this behavior
is the deteriorating condition number of A due to the two phase matrix. It is worsened
for the Projection matrix P that has to be constructed for deflation.

54

��������
��������
��������
�������	
�������

��������
��������

� � �� �� �� �� �� �	 �
 ��
�
� �� �� �� �	
�

��
�

��
	

��

��
�

��
�

��
�

��
��

���
�	

��
��
���
��

��
�
���

	�

��������	�
��������

��������	
��	���	�����	
��	��	��������	������	
��������������

���������������������������� �������

Figure 53: Conjugate Gradient with Diag-
onal Preconditioning for Two-Phase Matrix
(Grid Size 8× 8)

��������
��������
��������
��������
�������	
��������
��������
�����
��

��
��

���
�	

��
��
���
��

��
�
���

	�

��������	�
��������

��������	
��	���	�����	
��	��	��������	������	
���������������

������������������������������� ���������

Figure 54: Conjugate Gradient with Diag-
onal Preconditioning for Two-Phase Matrix
(Grid Size 16× 16)

��������
��������
��������
��������
��������
�����	�

��
��

���
�	

��
��
���
��

��
�
���

	�

��������	�
��������

��������	
��	���	�����	
��	��	��������	������	
����������������

���������������
�������������
� �������
�

Figure 55: Conjugate Gradient with Diag-
onal Preconditioning for Two-Phase Matrix
(Grid Size 32× 32)

��������
��������
��������
�������	
��������
�����
��

��
��

���
�	

��
��
���
��

��
�
���

	�

��������	�
��������

��������	
��	���	�����	
��	��	��������	������	
����������������

������������������������������� ���������

Figure 56: Conjugate Gradient with Diag-
onal Preconditioning for Two-Phase Matrix
(Grid Size 64× 64)

��������
��������
��������
�������	
�����
��
�����
�	

��
��

���
�	

��
��
���
��

��
�
���

	�

��������	�
��������

��������	
��	���	�����	
��	��	��������	������	
�����������������

���������������	�������������	� �������	�

Figure 57: Conjugate Gradient with Diag-
onal Preconditioning for Two-Phase Matrix
(Grid Size 128× 128)

55

��������
��������
��������
��������
�������	
�������

��������
��������

��
��
���

�	

��

��
���
��

��
�
���

	�

��������	�
��������

��������	
��	���	�����	
��	��	��������	
������	��������������

��������������������������������� �����������

Figure 58: Conjugate Gradient with Block-
IC Preconditioning for Two-Phase Matrix
(Grid Size 8× 8)

��������
��������
��������
�������	
�������

��������
��������

��
��
���

�	

��

��
���
��

��
�
���

	�

��������	�
��������

��������	
��	���	�����	
��	��	��������	
������	���������������

���������������������������� �������

Figure 59: Conjugate Gradient with Block-
IC Preconditioning for Two-Phase Matrix
(Grid Size 16× 16)

��������
��������
��������
��������
�������	
��������
�����
��

��
��
���

�	

��

��
���
��

��
�
���

	�

��������	�
��������

��������	
��	���	�����	
��	��	��������	
������	����������������

��������������������������������� �����������

Figure 60: Conjugate Gradient with Block-
IC Preconditioning for Two-Phase Matrix
(Grid Size 32× 32)

��������
��������
��������
��������
�������	
��������
�����
��

��
��
���

�	

��

��
���
��

��
�
���

	�

��������	�
��������

��������	
��	���	�����	
��	��	��������	
������	����������������

��������������������������������� �����������

Figure 61: Conjugate Gradient with Block-
IC Preconditioning for Two-Phase Matrix
(Grid Size 64× 64)

��������
��������
��������
��������
�������	
��������
�����
��
�����
��

��
��
���

�	

��

��
���
��

��
�
���

	�

��������	�
��������

��������	
��	���	�����	
��	��	��������	
������	�����������������

������������������������������� ���������

Figure 62: Conjugate Gradient with Block-
IC Preconditioning for Two-Phase Matrix
(Grid Size 128× 128)

56

�

�

��

��

��

��

����� ����� ������ �����	� ��
����

��
��
��

���
�	

�
�

�
��
�	�

���
���

��

�

��������	�
������

��������	
����	��
��
���
����	
������
��	������
����	���
��	���

���������

�����������������
����� !"#$�%&�'�
�����������������
����� !"#$�%&�'�
�����������������
����� !"#$�%&�'�
��� $��(�����
)�����*�+�����(

Figure 63: Speedup across various sizes for different variants

��
��
��
��

��
��

��
��

��
��
��
��

����� ����� ������ �����	� ��
����

��
��
���

��	

�

��
�

��
���
��

���
��
���

�

��������	�
������

��������	
����	��
��
���
����	
������
��	������
����	���
��	���

���������

�����������������
����� !"#$�%&�'�
�����������������
����� !"#$�%&�'�
�����������������
����� !"#$�%&�'�
��� $��(�����
)�����*�+�����(

Figure 64: Relative Error Norm of the Solution ‖Xexact−Xk‖2
‖Xexact‖2 across various sizes for dif-

ferent variants

57

��������
��������
��������
��������
	�������
�����
��
�����
��

������������� ������������� ���������������
��
���

��	

�

��
�

��
���
��

���
��
���

�

��������	�
��������������������

���������	
������������������������
����������������������������������

	���������� ����!���
�������������������	"#�$#%�

��������������� ��� !��"������������������#$%���&�'%���!��"
��������������� ��� !��"������������������#$%���&�'%���!���
��������������� ��� !��"������������������#$%���&�'%���!����
��������������� ��� !�"���"���������������#$%���&�'%���!���
��������������� ��� !�"���"���������������#$%���&�'%���!����
��������������� ��� !�"���"���������������#$%���&�'%���!����
��������������� ��� !��"�������������������#$%���&�'%���!����
��������������� ��� !��"�������������������#$%���&�'%����!�����
��������������� ��� !��"�������������������#$%���&�'%����!���	"

���������	
��	���������������	�	��	
�

Figure 65: Two Phase Matrix with Density Contrast (10 : 1). Relative Error Norm of the

Solution, ‖Xexact−Xk‖2
‖Xk‖2

58

Looking at the Speedup picture (Figure 66) we find that speedups closely resemble the
results in a previous section(7.5) with a simple 5-point Laplacean Matrix.

8.3 Conjugate Gradient with Deflation and IP Preconditioning

Following the setup of Section 8.2 we conduct the test runs for the IP Preconditioner case
and see slightly better speedups attributed to the parallel nature of the preconditioner
(Figure 68). However the relative error norm of the solution at convergence is very high
(comparable to values in Section 8.2).

We present the results for three grid sizes 128 × 128, 256 × 256 and 512 × 512 across
three different number of deflation vectors per grid size in Figure 67. In these results the
ratio of the densities of the two mediums is 100, unlike the previous experimentSection
8.2) where it was 10 and 1000 in the first experiments Section 8.1.

The speedups (Figure 68) closely resemble the speedups from the Section 7.6.
The profiler pictures don’t change much for sections 8.2 and 8.3 since only the matrix

changes and not the methods of computation. The kernel execution times follow similar
pattern as that of the Poisson type Matrix (similar to Sections 7.5 and 7.6).

9 Analysis

In this section we look at the different aspects of our implementations. We try to find
out how much parallelism we exploit and how much bandwidth we are able to utilize
on the GPU. We end this section with a discussion on what might be possibly limiting
the achievable speedup and how far we are from that point. Throughout this section we
analyze the results with a grid size of 512×512 and 4096 deflation vectors and Incomplete
Poisson Preconditioning. Specifically the results from Section 7.7 are used unless otherwise
mentioned.

9.1 Static Analysis

In this section we calculate how many Floating Point Operations (FLOPs) each kernel
does in each run. Also we list out how many memory accesses happen both during load
and stores.

We list them for all the Kernels. In general a few variables can be defined.

• N, Number of Unknowns

• d, Number of Deflation Vectors

• m, Number of Iterations

• n, Grid Dimension

From Table 1 we can find out the number of Operations being performed in one
complete run of the methods we have implemented.

We now elaborate some of the Kernel names:
ZTx, E−1b and AZ × E−1b form the steps of the deflation operation. Forward Sub-

stitution, Diagonal Scaling and Back Substitution form the steps of Block Incomplete
Cholesky Preconditioning. Sdot is the Dot product function as named in BLAS libraries.
We use cublasSdot. Saxpy is the Saxpy Kernel as available in BLAS libraries. We use
cublasSaxpy and also write custom kernels to club saxpy with scaling operations to min-
imize memory transfers. Sscal is the BLAS scaling operation and Snrm is the 2-Norm
operation available in the BLAS libraries.

59

����
����
����
����
����
����
����
����
����

�	
��
����
���� �	
��
����
���� �	
��
����
����

��
��
��

���
�	

�
�

��������	�
��������������������

���������	
������������������������
����������������������������������

	���������� ����!���
�������������������	"#�$#%�

�����	������������� ��������������	��������
���!�" �	�����
�����	������������� ��������������	��������
���!�" �	�����
�����	������������� ��������������	��������
���!�" �	������
�����	������������� ��������������	��������
���!�" �	�����
�����	������������� ��������������	��������
���!�" �	������
�����	������������� ��������������	��������
���!�" �	������
�����	������������� ���������������	��������
���!�" �	������
�����	������������� ���������������	��������
���!�" �	��������
�����	������������� ���������������	��������
���!�" �	������#�

���������	
��	���������������	�	��	
�

Figure 66: SpeedUp Graph. Density Contrast(10:1)

60

��������

��������

��������

��������

��������

	�������

�������

��
��
���

��	

�

��
�

��
���
��

���
��
���

�

���������	
����������������
�������������������������������

	������������������
������������������	� �! "�

������������������ ���
������������������������ �!������	

������������������ ���
������������������������ �!�����	��
������������������ ���
������������������������ �!���������
������������������ ��
		�
��������������������� �!�����	��
������������������ ��
		�
��������������������� �!���������
������������������ ��
		�
��������������������� �!���������
������������������ ���
������������������������� �!���������
������������������ ���
������������������������� �!�����������
������������������ ���
������������������������� �!���������"

���������	
��	���������������	�	��	
�

Figure 67: Two Phase Matrix with Density Contrast (100 : 1). Relative Error Norm of

the Solution ‖Xexact−Xk‖
‖Xk‖

61

�

�

��

��

��

��

��
��
��

���
�	

�
�

���������	
����������������
�������������������������������

	������������������
������������������	� �! "�

����	
������������ �������������	
����	��������	���
�����
����	
������������ �������������	
����	��������	���
�����
����	
������������ �������������	
����	��������	���
������
����	
������������ �������������	
����	��������	���
�����
����	
������������ �������������	
����	��������	���
������
����	
������������ �������������	
����	��������	���
������
����	
������������ ��������������	
����	��������	���
������
����	
������������ ��������������	
����	��������	���
��������
����	
������������ ��������������	
����	��������	���
������ �

���������	
��	���������������	�	��	
�

Figure 68: SpeedUp Graph. Density Contrast(100:1)

62

K
er

n
el

D
at

a
C

o
m

p
u

ta
ti

on
s

W
ri

te
s

M
ax

im
u

m
D

eg
re

e
D

eg
re

e
of

N
u

m
b

er
o
f

C
al

ls
R

ea
d

In
D

on
e

P
er

fo
rm

ed
O

f
P

ar
al

le
li

sm
P

a
ra

ll
el

is
m

in
u

se

S
p

a
rs

e-
M

at
ri

x
6N

9N
N

N
N

m
+

1
V

ec
to

r
P

ro
d

u
ct

Z
T
x

N
N

d
d

d
m

+
2

E
−
1
b

d
(d

+
1
)

d
×
d

d
d

d
m

+
3

(g
em

v
)

A
Z
×
E
−
1
b

5N
+
d

9N
N

N
N

m
+

1

In
co

m
p

le
te

6N
9N

N
N

N
m

+
1

P
oi

ss
on

P
re

co
n

d
it

io
n

in
g

F
or

w
ar

d
4N

3N
N

√
N 2

√
N 2

m
+

1
S

u
b

st
it

u
ti

on

D
ia

go
n

al
2N

N
N

N
N

m
+

1
S

ca
li

n
g

B
ac

k
4N

3N
N

√
N 2

√
N 2

m
+

1
S

u
b

st
it

u
ti

on

A
Z
T
x

6N
5N

d
d

d
1

S
d

ot
N

2N
N

N
−

4m

S
a
x
p
y

2N
2N

N
N

−
3m

S
sc

a
l

N
N

N
N

−
m

S
n

rm
N

2N
N

N
−

m

T
ab

le
1:

K
er

n
el

s
-

C
om

p
u

ta
ti

on
an

d
P

ar
al

le
li

sm

63

Let us take the case of the method implemented in Section 7.7. It is the Deflated
Preconditioned (Incomplete Poisson) Conjugate Gradient method that uses optimized AZ
storage and the gemv routine from MAGMA Blas library. It also has some optimizations
that club certain operations like scaling and saxpy for calculation of β as given in the step
9 of Algorithm 8.

The kernels involved in this variant then are:

• Sparse-Matrix Vector Product

• ZTx

• E−1b(gemv)

• AZ × E−1b

• Sdot

• Saxpy

• Incomplete Poisson Preconditioning

• Snrm

• AZTx

Summing up the FLOPs for m iterations we have

9N(m+1)+N(m+2)+d2(m+3)+9N(m+1)+9N(m+1)+8Nm+6Nm+Nm+2Nm.
(104)

or
45Nm+ d2m+ 29N + 3d2 (105)

So the computational intensity is governed by the first three factors of the expression
in 105. Now let us take a specific case of N = 262144, d = 4096 and m = 49. These
correspond to the experiment discussed in 7.7 with grid size as 512× 512 and the Number
of Deflation Vectors = 4096. It takes the 49 iterations to converge both on the host and
the device. The time on the device is 0.0987 seconds and on the host is 2.237 seconds.
The speedup is 22.7 times.

Now the GPU theoretically(peak throughput) can deliver 933 GFlops/s. The CPU
on the other hand, when talking about one core (which we use in our experiments), can
deliver a peak throughput of 12 GFlops/s. The numbers for NVIDIA are available from
the website which talks about the Tesla C1060 specifications [NVIDIA, 2010] . For Intel
Processors also the number are provided on the website [Intel, 2010].

The computational load as calculated in 105 comes out to be 1.46 GFlops. Dividing
this by the time taken we get 0.65GFlops/s for the CPU and 14.79 GFlops/s for the GPU.

These numbers can be further divided by the peak throughput to understand the
Platform Utilization on the GPU as 1.585% and on the CPU as 5.41%.

9.2 Kernels- Performance

We refer to some of the works that outline how to effectively characterize a kernels’ per-
formance and its ability to scale across new generations of hardware that will have more
processors to facilitate parallel execution. [Nickolls, Buck, Garland, and Skadron, 2008]
and [Ryoo, Rodrigues, Baghsorkhi, Stone, Kirk, and Hwu, 2008] and [Komatitsch, Michéa,
and Erlebacher, 2009] bring about certain methods by which we can find

1. How to find if a kernel is compute bound or bandwidth bound?

64

2. Expected Speedup from an application.

3. Examination of PTX(CUDA assembly) code for finding percentage of code that is
memory or compute intensive.

Also these documents detail important things to keep in mind when designing a kernel
or optimizing it. These documents put to use, in their respective contexts, the Best
Practices guide provided by NVIDIA [NVIDIA best prac, 2009].

The most important factor in a kernels’ effectiveness is its ability to do memory accesses
in the best possible way. To this end a couple of important techniques are instrumental.
This step comes obviously after the point of minimizing memory transfers as much as
possible between the CPU and GPU.

1. coalesced memory access

2. caching

3. minimize divergence

In Table 2 below we list which techniques are being used by the (except CUBLAS)
kernels in the variant of our code in Section 7.7. We also list if there are shared memory
conflicts.

Kernel Characteristics

Method
Coalescing Caching Divergence Shared-Memory Warp

(Shared Memory) Bank Conflicts Serialization

MagmaSgemv Yes Yes No No No

IPPreconditioning Yes Minimal Yes Yes No

SpMV Yes Minimal Yes Yes No

AZE−1b Yes Minimal Yes Yes No

ZTx Yes Yes Yes Yes Yes

saxpy alpha Yes Yes No No No

saxpy beta Yes No No No No

Table 2: Grid of 512×512 points. Number of Deflation Vectors = 4096. With optimizations
applied to AZ storage and calculation, E−1b with MagmaSgemv and other optimizations.

9.3 Bandwidth Utilization

First let us take a look at the bandwidth utilization of the kernels in the most optimized
version (Section 7.7) of the code that we have. This is the Deflated Incomplete Pois-
son Preconditioned Conjugate Gradient Method with optimizations for AZ storage and
calculation and also with the gemv operation from the MAGMA library.

In this version we consider the Grid Size 512 × 512 with the Number of Deflation
Vectors = 4096. In the Figure 69 we list the Memory Throughput of Individual Kernels
and the percentage of time they take of the total execution on the device.

The CUBLAS Kernels are prefixed with Cublas and other kernels have been hand-
coded with exception of the Magma Sgemv which is from the MAGMA blas library. In
this picture (Figure 69) we show kernels that form more than 98% of the total execution
time. The last 2% or so is taken up by transfers from Device to Host and a few calls to
kernels used for correcting x at the end of the iteration by doing x = Qb+P Tx as the last
step of Algorithm 8.

The Tesla system on which we have run all of our tests offers a memory bandwidth
of 101Gb/s. As can be seen the Gemv is utilizing a majority of the available bandwidth

65

� �� �� �� �� ���

��	
��	�

����

�����������������	
�����������
������ ���

�! ���������
"#$%��&

�! ��������
�! �����'(��

#%���������&�

���������	�
�

���������	
���
�	���
����
����
���������������
�����
���������
�
)������*���!	��!�
+�����*���!	��!�
,����*���!	��!�

Figure 69: Bandwidth Break-Up. Grid Size (512 × 512). Number of Deflation Vectors
= 4096. Optimizations applied to AZ storage and calculation. E−1b calculation optimized
with MAGMA Library. Grouping optimizations in Saxpy operations.

66

(85Gb/s). Followed closely by the IP Preconditioning and SpMV Kernels at 72 Gb/s.
These three kernels form 60% of the total execution time. Except for the CUBLAS call
for calculating the 2-Norm of the updated residual (stopping criterion - required to be
checked every iteration) and the call to calculate ZTx all the kernels utilise more than
half of the available bandwidth. The average Memory throughput of this execution is 68
Gb/s.

Table 3 states the numbers shown in the Figure 69 along with the Occupancy of each
of the Kernels.

Kernel Statistics

Method %GPUTime Read Write Overall Occupancy

Throughput Throughput Throughput

MagmaSgemv 44 85.2 0.02 85.4 50%

IPPreconditioning 9.6 66.39 5.75 72.15 100%

SpMV 9.6 66.44 5.76 72.2 100%

AZE−1b 9.4 51.93 6.08 58.02 100%

ZTx 6.6 8.175 1.02 9.19 50%

saxpy alpha 3.2 34.85 34.85 69.7 100%

saxpy beta 2.5 42.64 21.3 63.67 100%

cublas Sdot 8.6 53.88 0.197 54.08 100%

cublas Saxpy 2.9 42.34 21.17 63.52 100%

cublas 2−Norm 1.81 37.69 0.223 37.92 100%

Table 3: Grid of 512×512 points. Number of Deflation Vectors = 4096. With optimizations
applied to AZ storage and calculation, E−1b with Magma Sgemv and other optimizations.

9.4 Discussion on Possible Speedup Limits

Given that two of the kernels seem to be operating at 50% occupany we try to find out if
they can deliver more performance and hence, a possibility of a higher speedup.

The current kernel for ZTx is trying to utilize both shared memory and parallel reduc-
tion in order to achieve its current bandwidth utilization. We have kept as many threads
in the block as are the elements whose sum is required to make one element of the new
vector y resulting from y = ZTx. Since in this kernel N/d elements have to be summed
in chunks to produce d elements where

N = Number of Unknowns, d = Number of Deflation Vectors. (106)

y = d× 1 vector, x = n× 1 vector. (107)

The occupancy varies according to the ratio of N/d but the bandwidth never crosses that
indicated in table 3. The kernel’s occupancy varies with the factor N/d. For N/d above
and equal to 128 (we have values only in multiples of 16) the occupancy is 100%. For the
case under consideration the occupancy is 50% but for a lower number of deflation vectors
(for e.g. 2048) it is 100% (since N/d becomes 128). Even then the bandwidth does not
change. This means that the kernel cannot perform better than this. Trying to comment
out the summing operations to confirm this shows that the maximum gain could be that
of 4% in the speedup since this kernel only takes 7% of the total time and when only made
bandwidth bound it delivers 28Gb/s and takes only 2% of the total time so the speedup
can only increase by 5% for this case(particular grid size and deflation vectors).

Though it will increase the shared memory bank conflicts by a factor of 2 (conflicts
are already happening when 64 threads reduce to one value). So the effects might be

67

mitigated. Shared Memory Bank conflicts can also be overcome by changing the storage
structure of the vector x however this is not useful since this would require changing
many other kernels (which are already performing at 100% occupancy and are bandwidth
limited) and also because this kernel is not the most time consuming kernel in the whoel
operation.

Other than this kernel (y = ZTx) the other place where there is a possibility of
improvement is the MagmaSgemv kernel. Although it is utilizing most of the memory
bandwidth it is still having an occupancy of 50%. A closer look at the occupancy for this
kernel shows that it has an execution configuration of

Grid Size 64× 1× 1 (108)

Block Size 64× 1× 1. (109)

We used the code for double precision gemv posted on the the MAGMA forums which
we change to single precision and verify that it is exactly similar (in execution time and
execution configuration to the library call).

By modifying the number of blocks in the code form 64 to 128 we get an occupancy of
100%. However the bandwidth stays at 80Gb/s. This shows that the kernel is bandwidth-
bound. Since at maximum occupancy we see no change in the bandwidth.

All the other kernels are at 100% occupancy and have simple mathematical operations
(Snrm, Sdot, Saxpy, AZE−1b) so we can safely say that they are bandwidth bound.

More elaborate analysis of Kernels and the cost of Inter-Warp Parallelism based on
Memory Accesses and Computational overlap is possible. [Hong and Kim, 2009] discuss
an analytical model for such analysis. However they do not address the issues with Shared
Memory Bank Conflicts.

9.4.1 Summary

Considering the maximum speedups that we have had over the entire cycle of development
we see a sequence of Ups and downs. In the Figure 70 we try to summarize the time-line
of our development process.

As can be seen the speedup did not increase linearly and there were always algorithmic
changes that suited the Graphical Hardware sometimes and sometimes they did not. The
green line traces how speedup gradually falls. The red line traces the time-line of iterative
improvements that we applied to the method.

[Lee, Kim, Chhugani, Deisher, Kim, Nguyen, Satish, Smelyanskiy, Chennupaty, Ham-
marlund, Singhal, and Dubey, 2010] have recently conducted a study of various kernels
across state-of-the-art CPUs and GPUs and have suggested that a single GPU and a sin-
gle CPU (with 8 cores) have minor speedups on an average case. This kind of analysis
must be possible in the further work that can be done in distributing this problem across
multiple GPUs and CPUs.

10 Future Work and Conclusions

There are many open questions that still need to be answered for accurate simulation of
two phase flows on many-core architectures. These include two important approaches.

1. Try to mathematically optimize or bring close the current model to a more realistic
one.

2. The other approach is that of looking at different architectural and software paradigms
that can aide in a better comparison and/or implementation.

68

�

�

��

��

��

��

��
��

��
���

�

����������	
����������
����������	
��

Figure 70: All Variants of the Two Phase Flow Problem

We list some of the tasks that still need to be done in the first place followed by a short
discussion and then a similar treatment to the second space.

• Multi-GPU versus Multi-CPU implementation,

[Cevahir, Nukada, and Matsuoka, 2009] suggest a domain decomposition approach
for running Conjugate Gradient on Multiple GPUs however they pay a heavy price for
CPU-GPU communication. In an improved approach [Griebel and Zaspel, 2010] recently
announced a Preconditioned Conjugate Gradient method implemented on Multi-GPU for
a similar problem as ours and they utilize the idea of having ghost cells on every GPU.
These ghost cells lie on boundaries of parallel blocks which each GPU computes and are
packed and unpacked on the GPU/CPU during transfers. Also these memory transfers
are overlapped with computation of other kernels on inner data (for e.g. Sparse Matrix
Vector Products).

Also on the CPU side it would be interesting to see how the GPU algorithm fares
when all the cores on a single CPU die are utilized using openMP. A scale-up study where
multiple-GPUs could be compared with multiple CPUs in an MPI based setting could
also be interesting future work. Since openMP is based on the idea of cache-coherence
its scaling to more than 8 cores will also bring about effects of the overhead involved in
keeping the cache up to the mark. Comparing multi-GPU performance to an MPI based
cluster implementation has been conducted in the past [Batenburg, 2010] and that kind
of comparison could be useful in adapting iterative solution techniques for such hardware.

There is also a software engineering paradigm of further study that can be done on the
GPU platform. At present our implementation has used a proprietary language in order
to harness the power of the many core paradigm. However OpenCL is an alternative that
can make this code future proof to some extent and all also scalable to other architectures
that might emerge/evolve from the many-core regime.

In our implementation we have taken some approaches in order for rapidly developing
a working solver that can be extended to accommodate more real-world features. Some of

69

the steps that still need to be incorporated into the model to make it more comprehensive
are:

1. Block domains instead of stripes,

2. More phases (More interfaces),

3. 3D Models; and

4. Increased Accuracy through Mixed Precision.

Block domains could be efficiently implemented by re-ordering the coefficient matrix
A for the deflation operation. This would consume 5% more space on the GPU, however
it would increase the coalescing possibilities manyfold. Block Domains for Deflation have
been used in the background work [Tang, 2008] that forms the basis of this implementation.

In Section 8 we have discussed the effects of adding two very different mediums in our
simulation. Due to two mediums we have an interface layer where discontinuities amongst
the coefficients in the maximum. A next step would be to increase the number of such
interfaces. This can also be extended to irregular shapes of such phases for e.g. in the
shape of bubbles.

At present we have taken a 2-D view of our problem. However a 3D model would be
more interesting and useful for visualizing the results generated.

The GPUs are suited for Single-Precision Arithmetic however future generations (for
e.g. Fermi) seem to be incorporating more double precision crunching power into them.
This is important for having the precision scale up to the number the CPU can do today.
However even with current GPUs it is possible to club two or more 32-bit words to provide
a single 64-bit floating point number. Also it is possible to have some parts of the iteration
performing calculations in double precision and some in single. Such techniques called the
Mixed Precision methods could be used to generate higher precision results on the GPU.
Our work can benefit from such implementation and this could be yet another direction
in which this study can move forward.

Implemented in Present Version

Software Engineering Algorithmic Architectural

Cublas
Block Shared

Incomplete Cholesky Memory
Preconditioning

Magma
Deflation Memory

Coalescing

Meschach
Incomplete Lesser Divergence

Poisson
Preconditioning

Lesser Warp
Serialization

For Future Work

Software Engineering Algorithmic Architectural

OpenCL Block Domains Multi-GPU/Multi-CPU
OpenMP/MPI More Phases Mixed Precision

3-D Models

Table 4: Present and Future

Some important conclusions and results that have come out of this study must be
summarized at this point.

70

1. Deflation becomes attractive for many core systems due to the inherent parallelism

2. Single (FP) Precision based Deflated Preconditioned Conjugate Gradient for Multi-
Phase flows does not have a reliable convergence. It also suffers from a large error.

3. Preconditioning by far remains one of the important bottlenecks while trying to
achieve speedup.

4. Incomplete Poisson Preconditioning coupled with Deflation can give real benefits
when implemented on the GPU for Conjugate Gradient Method.

References

M. Ament, G. Knittel, D. Weiskopf, and W. Straβer. A parallel preconditioned conjugate
gradient solver for the poisson problem on a multi-GPU platform. http://www.vis.uni-
stuttgart.de/ amentmo/docs/ament-pcgip-PDP-2010.pdf, 2010.

A. Asgasri and J. E. Tate. Implementing the Chebyshev Polynomial Preconditioner
for the iterative solution of linear systems on massively parallel graphics processors.
http://www.ele.utoronto.ca/ zeb/publications/, 2009.

M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek,
and S. Tomov. Accelerating scientific computations with mixed precision algorithms.
CoRR, abs/0808.2794, 2008. URL http://dblp.uni-trier.de/db/journals/corr/

corr0808.html. informal publication.

J. Batenburg. Fastra. website, 2010. http://fastra2.ua.ac.be/.

N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on CUDA. Technical
Report NVR-2008-04, NVIDIA Corporation, December 2008.

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröoder. Sparse matrix solvers on
the gpu: conjugate gradients and multigrid. ACM Trans. Graph., 22(3):917–924, 2003.
ISSN 0730-0301.

L. Buatois, G. Caumon, and B. Levy. Concurrent number cruncher: a GPU implemen-
tation of a general sparse linear solver. Int. J. Parallel Emerg. Distrib. Syst., 24(3):
205–223, 2009.

A. Cevahir, A. Nukada, and S. Matsuoka. Fast conjugate gradients with multiple GPUs. In
ICCS ’09: Proceedings of the 9th International Conference on Computational Science,
pages 893–903, Berlin, 2009. Springer-Verlag.

S. Georgescu and H. Okuda. Conjugate gradients on graphic hardware. Under review in
Lecture Notes in Computer Science, 2007.

M. Griebel and P. Zaspel. A multi-gpu accelerated solver for the three-dimensional two-
phase incompressible navier-stokes equations. Computer Science - Research and Devel-
opment, 25(1-2):65–73, 2010.

M. Harris, S. Sengupta, and J. D. Owens. Parallel Prefix Sum (Scan) with CUDA, 2007.

M. Harris, S. Sengupta, J. D. Owens, S. Tseng, Y. Zhang, and A. Davidson. Cudpp.
http://gpgpu.org/developer/cudpp, 2009.

71

S. Hong and H. Kim. An analytical model for a GPU architecture with memory-level and
thread-level parallelism awareness. SIGARCH Comput. Archit. News, 37(3):152–163,
2009. ISSN 0163-5964. doi: http://doi.acm.org/10.1145/1555815.1555775.

Intel. Processor specifications - by family. Website, 2010. http://www.intel.com/

support/processors/sb/cs-023143.htm.

D. Komatitsch, D. Michéa, and G. Erlebacher. Porting a high-order finite-element earth-
quake modeling application to NVIDIA graphics cards using CUDA. J. Parallel Distrib.
Comput., 69(5):451–460, 2009. ISSN 0743-7315. doi: http://dx.doi.org/10.1016/j.jpdc.
2009.01.006.

Victor W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, Anthony D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. Debunking
the 100x GPU vs. CPU myth: an evaluation of throughput computing on CPU and
GPU. SIGARCH Comput. Archit. News, 38(3):451–460, 2010. ISSN 0163-5964. doi:
http://doi.acm.org/10.1145/1816038.1816021.

M. M. Baskaran and R. Bordawekar. Optimizing sparse matrix-
vector multiplication on GPUs. Technical report, IBM Research Di-
vision, NY, USA, December 2008. http://gpgpu.org/2009/04/13/

optimizing-sparse-matrix-vector-multiplication-on-gpus.

A. Monakov and A. Avetisyan. Implementing blocked sparse matrix-vector multiplication
on NVIDIA GPUs. In SAMOS ’09: Proceedings of the 9th International Workshop on
Embedded Computer Systems: Architectures, Modeling, and Simulation, pages 289–297,
Berlin, 2009. Springer-Verlag.

J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming with
CUDA. Queue, 6(2):40–53, 2008. ISSN 1542-7730.

NVIDIA. Tesla processor specifications. Website, 2010. http://www.nvidia.com/

object/product_tesla_c1060_us.html.

NVIDIA best prac. NVIDIA CUDA C Programming Best Practices Guide CUDA Toolkit
v2.3. NVIDIA Corporattion, Santa Clara, 2009.

NVIDIA prog. NVIDIA CUDA Programming Guide v2.2. NVIDIA Corporattion, Santa
Clara, 2009.

S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. W. Hwu.
Optimization principles and application performance evaluation of a multithreaded gpu
using CUDA. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pages 73–82, New York, NY, USA,
2008. ACM. ISBN 978-1-59593-795-7.

Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics; 2 edition, Philadelphia, 2003.

Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h. A deflated version of the conjugate
gradient algorithm. SIAM J. Sci. Comput., 21(5):1909–1926, 2000.

S. SenGupta, M. Harris, Y. Zhang, and J.D. Owens. Scan primitives for GPU computing.
Graphics Hardware, 2007.

Y.M. Tang. Two-Level Preconditioned Conjugate Gradient Methods with Applications to
Bubbly Flow Problems. PhD thesis, Delft Unniveristy Of Technology, 2008.

72

�� �� �� �� �� �� �	 �

� �� �� �� �	 �
 �� ��

�
�
	

�
�
�
�

		 	
 	� 	� 	� 	� 	�
�

�� �� �� �� �� 	� 	� 	�

�� �� �� �� �� �� �	 �

� �� �� �� �	 �
 �� ��

� � 	
 � � � �

Figure 71: 8× 8 grid of unknowns

M. Wang, H. Klie, M. Parashar, and H. Sudan. Solving sparse linear systems on NVIDIA
Tesla GPUs. In ICCS ’09: Proceedings of the 9th International Conference on Compu-
tational Science, pages 864–873, Berlin, 2009. Springer-Verlag.

A How the Appendix is organized

The Appendix has three main parts.

• Important Concepts used in Implementation.

• Detailed Results.

• Actual Implementation in C and CUDA(available only in extended version of this
document).

We try to explain what some of the abstractions like domains, blocks and grids (in the
algorithmic sense not related to CUDA) mean and how we arrange the matrix we work
with to solve Ax = b. Section B deals with this introduction.

In the Following section we present the detailed results for Deflated Preconditioned
Conjugate Gradient for the Poisson Type and Two Phase Matrix.

B Grid, Matrix, Blocks, Domains, Matrices

We pictorially show how the grid is made followed by the matrix and the abstractions of
blocks and domains. These give an idea of how the computation can be divided on the
GPU.

B.1 The Grid

The Grid comprises of n× n elements arranged in the lexicographic order.
We use a 5-point Stencil on it which results in an ordered matrix shown in the next

section.

73

B.2 The Matrix

The matrix (Figure 72)consists of N points where

N = n× n. (110)

As can be seen we have 5 diagonals and the matrix is symmetric. The array offsets in
the CUDA code refers to these diagonals by offsets −2, −1, 0, 1 and 2. The offset −2 for
example begins at row 9 column 1. For the reasons mentioned earlier in the CUDA code
the diagonals are padded with zeros in the beginning (n zeros for diagonal with offset −2
and 1 zero for diagonal with offset −1) or in the end(n zeros for diagonal with offset 2 and
1 zero for the diagonal with offset 1). This results in 5 arrays of length N . It becomes
easier then to multiply the array with a vector of length N .

B.3 Blocks for Incomplete Cholesky

The blocks for IC factorization are always chosen at least larger than n. What it effectively
does it is chop out some elements of the off-diagonals (Figure 72) thereby making them
(blocks) independent of each other in calculation. This is done so that parallelism can be
introduced and further exploited in solving the system.

KKT y = x (111)

where x is known and y is sought.
Like in the example previously shown n is 8 and the block size is 16.

B.4 Domains for Deflation

The domains have been chosen stripe-wise for now on the Grid. We vary the number of
deflation vectors in multiples of 16. This means that in the 8×8 matrix we will work with
4 partitions of 16 rows each. On the device this means that we will have four separate
threads. These threads can work independently. It may be noted that all of these domains
have at least as many unknowns as there are in one row of the grid as shown in Figure 71.

So if we take Figure 71 as an example the maximum number of domains possible is 8.
Since anymore will lead to a domain having less than 8 unknowns and hence less than one
row.

B.5 Coefficients in different types of Matrices

B.5.1 Poisson Type

This is the matrix we use in all the experiments of Section 7. It is based on the 5-point
Laplacean in Two Dimensions. In the Table 5 we show a part of an 8× 8 grids’ resulting
matrix. It has five diagonals.

B.5.2 Two-Phase Matrix

This matrix results when we add two mediums to the grid. Pictured in the Table 6 is a
part of the two phase matrix for an 8× 8 grid. In this case one phase is having three rows
of the 8× 8 grid and the other one is having 4. The remaining row is that of the interface
layer. It can be seen that due to the density contrast between the two mediums (1000 : 1)
there are discontinuities on the diagonals.

74

�������������	
���	�������������
�����������������������������

�������������	
��������������������
�������������������������������

����������������������� �����������
����������������������!��������	��

����������������"������

������������	
�������	
��������
�������������������

�������	
��������
�������

Figure 72: Part of the 64× 64 matrix for 8× 8 grid.N = 64, n = 8, Block-Size=16.

75

4
-1

0
0

0
0

0
0

-1
0

0
0

0
0

0
0

0
0

0
0

-1
4

0
0

0
0

0
0

0
-1

0
0

0
0

0
0

0
0

0
0

0
0

4
-1

0
0

0
0

0
0

-1
0

0
0

0
0

0
0

0
0

0
0

-1
4

-1
0

0
0

0
0

0
-1

0
0

0
0

0
0

0
0

0
0

0
-1

4
-1

0
0

0
0

0
0

-1
0

0
0

0
0

0
0

0
0

0
0

-1
4

-1
0

0
0

0
0

0
-1

0
0

0
0

0
0

0
0

0
0

0
-1

4
-1

0
0

0
0

0
0

-1
0

0
0

0
0

0
0

0
0

0
0

-1
4

-1
0

0
0

0
0

0
-1

0
0

0
0

-1
0

0
0

0
0

0
-1

4
-1

0
0

0
0

0
0

-1
0

0
0

0
-1

0
0

0
0

0
0

-1
4

0
0

0
0

0
0

0
-1

0
0

0
0

-1
0

0
0

0
0

0
0

4
-1

0
0

0
0

0
0

-1
0

0
0

0
-1

0
0

0
0

0
0

-1
4

-1
0

0
0

0
0

0
-1

0
0

0
0

-1
0

0
0

0
0

0
-1

4
-1

0
0

0
0

0
0

0
0

0
0

0
-1

0
0

0
0

0
0

-1
4

-1
0

0
0

0
0

0
0

0
0

0
0

-1
0

0
0

0
0

0
-1

4
-1

0
0

0
0

0
0

0
0

0
0

0
-1

0
0

0
0

0
0

-1
4

-1
0

0
0

0
0

0
0

0
0

0
0

-1
0

0
0

0
0

0
-1

4
-1

0
0

0
0

0
0

0
0

0
0

0
-1

0
0

0
0

0
0

-1
4

0
0

0
0

0
0

0
0

0
0

0
0

-1
0

0
0

0
0

0
0

4
-1

0
0

0
0

0
0

0
0

0
0

0
-1

0
0

0
0

0
0

-1
4

T
a
b

le
5:

G
ri

d
S

iz
e

(8
×

8)
.

P
oi

ss
on

T
y
p

e
M

at
ri

x

76

4
-1

0
0

0
0

0
0

-1
0

0
0

0
0

0
0

0
0

0
0

-1
3

0
0

0
0

0
0

0
-1

0
0

0
0

0
0

0
0

0
0

0
0

1.
50

15
-0

.5
00

5
0

0
0

0
0

0
-0

.0
0
1

0
0

0
0

0
0

0
0

0
0

0
-0

.5
00

5
2.

00
2

-0
.5

00
5

0
0

0
0

0
0

-0
.0

0
1

0
0

0
0

0
0

0
0

0
0

0
-0

.5
00

5
2.

00
2

-0
.5

00
5

0
0

0
0

0
0

-0
.0

0
1

0
0

0
0

0
0

0
0

0
0

0
-0

.5
00

5
2.

00
2

-0
.5

00
5

0
0

0
0

0
0

-0
.0

0
1

0
0

0
0

0
0

0
0

0
0

0
-0

.5
00

5
2.

00
2

-0
.5

0
0
5

0
0

0
0

0
0

-0
.0

0
1

0
0

0
0

0
0

0
0

0
0

0
-0

.5
00

5
2
.0

0
2

-0
.5

0
0
5

0
0

0
0

0
0

-0
.0

0
1

0
0

0
0

-1
0

0
0

0
0

0
-0

.5
0
0
5

2
.0

0
2

-0
.5

0
0
5

0
0

0
0

0
0

-0
.0

0
1

0
0

0
0

-1
0

0
0

0
0

0
-0

.5
0
0
5

1
.5

0
1
5

0
0

0
0

0
0

0
-0

.0
0
1

0
0

0
0

-0
.0

01
0

0
0

0
0

0
0

0
.0

0
3

-0
.0

0
1

0
0

0
0

0
0

-0
.0

0
1

0
0

0
0

-0
.0

01
0

0
0

0
0

0
-0

.0
0
1

0
.0

0
4

-0
.0

0
1

0
0

0
0

0
0

-0
.0

0
1

0
0

0
0

-0
.0

01
0

0
0

0
0

0
-0

.0
0
1

0
.0

0
4

-0
.0

0
1

0
0

0
0

0
0

0
0

0
0

0
-0

.0
01

0
0

0
0

0
0

-0
.0

0
1

0
.0

0
4

-0
.0

0
1

0
0

0
0

0
0

0
0

0
0

0
-0

.0
01

0
0

0
0

0
0

-0
.0

0
1

0
.0

0
4

-0
.0

0
1

0
0

0
0

0
0

0
0

0
0

0
-0

.0
0
1

0
0

0
0

0
0

-0
.0

0
1

0
.0

0
4

-0
.0

0
1

0
0

0
0

0
0

0
0

0
0

0
-0

.0
0
1

0
0

0
0

0
0

-0
.0

0
1

0
.0

0
4

-0
.0

0
1

0
0

0
0

0
0

0
0

0
0

0
-0

.0
0
1

0
0

0
0

0
0

-0
.0

0
1

0
.0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

-0
.0

0
1

0
0

0
0

0
0

0
0
.0

0
3

-0
.0

0
1

0
0

0
0

0
0

0
0

0
0

0
-0

.0
0
1

0
0

0
0

0
0

-0
.0

0
1

0
.0

0
4

T
ab

le
6
:

G
ri

d
S

iz
e

(8
×

8)
.

T
w

o
P

h
as

e
M

at
ri

x
.

W
it

h
D

en
si

ty
C

o
n
tr

a
st

(1
0
00

:
1)

77

�� �� �� �� �� �� �	 �

� �� �� �� �	 �
 �� ��

�
�
	

�
�
�
�

		 	
 	� 	� 	� 	� 	�
�

�� �� �� �� �� 	� 	� 	�

�� �� �� �� �� �� �	 �

� �� �� �� �	 �
 �� ��

� � 	
 � � � �

Figure 73: 4 deflation vectors on a 8× 8 grid

C Detailed Results

C.1 Poisson Type

C.1.1 Deflated CG-with Block Incomplete Cholesky Preconditioning

Tables 74 to 76 show the results for this variant across three different grid sizes.

C.2 Two Phase

C.2.1 Deflated CG-with Block Incomplete Cholesky Preconditioning

Tables 77 to 79 show the results for this variant across three different grid sizes.

78

�������
�	�

�	������
������

���
����� ���
����� ���
�����

�� �� �� �� �� ��
��������	�
��������

������� ��� �� �����! ���! �� ��!��! �� ! � "����"�#��

����$%�� ��!�$%�� ���!$%�� ����$%�� ��!�$%�� ����$%��

&�������
$����������
�	�'������
'(��)*(

�� �� �� �� � �
��������	�
��������

����! �����! �� � � ���� � ������ �� �� "����"�#��

!���$%�� !���$%�� �� �$%�� ����$%�� ����$%�� ����$%��

&�������
$����������
�	�'������
'(��)*(

�� �� �� �� ! �
��������	�
��������

����� ������ ���� � ��� �� ��� �� ���!�� "����"�#��

 ���$%�� ��!�$%�� ��� $%�� ���$%�� ����$%�� ���$%��

&�������
$����������
�	�'������
'(��)*(

�	���)�+�����)����)�,��-�.���/��)���

����!� ������ ��� ��

�� �

��������	�+�����)������.�0���#�

���!� ��!�

��� ��������� �����

�� � ��

��

 ��

!�� �

Figure 74: Grid Size 128× 128. Different Block Sizes and Deflation Vectors.

79

�������
�	�

�	������
������

���
����� ���
����� ���
�����

�� �� �� �� �� ��
��������	�
��������

����� ������ ����!� ���� � ������ ������� "����"�#��

 ���$%�� ���$%�� � �$%�� � �$%�� ���$%�� ���$%��

&�������
$����������
�	�'������
'(��)*(

�� �� �� �� �! �!
��������	�
��������

��� !� ���� ! ���� �� ������� ���!!� ��� !! "����"�#��

 ��!$%�� ��!$%�� ����$%�� ����$%�� ���$%�� ���$%��

&�������
$����������
�	�'������
'(��)*(

�� �� �� �� � �
��������	�
��������

 !����� ����� ���� ������� ��!��� ������ "����"�#��

����$%�� ����$%�� ����$%�� ����$%�� ��� $+�� ��� $%��

&�������
$����������
�	�'������
'(��)*(

����

 ���

� �

 ���� � �!�!�����

� ���� ������ ����!�

�	���)�,�����)����)�-��.�/���0��)���
��������	�,�����)������/�1���#�

 !���� ������ ����

 �� !� ��

Figure 75: Grid Size 256× 256. Different Block Sizes and Deflation Vectors.

80

�������
�	�

�	������
������

���
����� ���
����� ���
�����

�� �� �� �� �� ��
��������	�
��������

������ ������ ������ �!��� ������� ��!�! "����"�#��

����$%�� ���!$%�� ��!�$%�� ��!�$%�� ����$%�� ���!$%��

&�������
$����������
�	�'������
'(��)*(

�� �� �� �� �� ��
��������	�
��������

�!�� � �� ! ������ ��!�� !��� � ��!��� "����"�#��

����$%�� ����$%�� ���!$%�� ���!$%�� �� �$%�� �� �$%��

&�������
$����������
�	�'������
'(��)*(

�	���)�+�����)����)�,��-�.���/��)���
��������	�+�����)������.�0���#�

�!� �� ��

��� �!�!��������

 ����� � � �� �� ��

 ���

����

Figure 76: Grid Size 512× 512. Different Block Sizes and Deflation Vectors.

81

�������
�	�

�	������
������

���
����� ���
����� ���
�����

� � � � � �
��������	�
��������

������� ������� ������ ������ ������� ��� ��! "����"�#��

 � �$%�� �� $%�� � �$%�� ���$%�� � �$%�� � !$%��
������	�
&������
&'��()'

� � � � � �
��������	�
��������

����!�! ������� ����!�� �����!� ����!�� ��� �� "����"�#��

 ���$%�� ��!$%�� ���$%�� ���$%�� ����$*� ���$%��
������	�
&������
&'��()'

� � � � � �
��������	�
��������

��� �� ����� � ��� � ����!� ��� � �� �� "����"�#��

�� �$*� ����$*� ���$%�� ���$%�� �� $%�� ���$%��
������	�
&������
&'��()'

�	���(�+,���#�*��-.�/�����(�����(�-��0�1���2��(���
"3��/4����5���6�3�4�/���������-�������+ ��*��.

��������	�/�����(������1�,���#�

 � �� ��!�!! �����

!� �� !

������������ ����

 ���� � �� ��� �

��!

� �

 ���

Figure 77: Grid Size 128× 128. Different Block Sizes and Deflation Vectors.

82

�������
�	�

�	������
������

���
����� ���
����� ���
�����

� � � � � �
��������	�
��������

������ ����� ����� ������ ����� ������ ���� �!��

����"#�� ����"#�� ���$"#�� ����"#�� ��$�"#�� ��$%"#��
������	�
&������
&'��()'

�����* �����* � � � �
��������	�
��������

����� ����� ����� ����� ������ ������ ���� �!��

����"+�� ����"+�� ����"#�� ��$�"#�� ����"#�� ��%�"#��
������	�
&������
&'��()'

�����* �����* �����* �����* �����* �����*
��������	�
��������

����� ����� ���%�� $���� ����$ ���$�� ���� �!��

����"+�$ ����"+�� ����"+�� ��$�"+�$ ����"+�� ���%"+��
������	�
&������
&'��()'

�	���(�,-���!�#��*.�/�����(�����(�*��0�1���2��(���
 3��/4����5���6�3�4�/���������*�������,���#��.

��������	�/�����(������1�-���!�

��� $� ��

��������%$��%��

���$% ��$� ����

����%���������

���

����

����

Figure 78: Grid Size 256× 256. Different Block Sizes and Deflation Vectors.

83

�������
�	�

�	������
������

���
����� ���
����� ���
�����

� � � � � �
��������	�
��������

������� ������ ��� ������ ������ ����� ������� ��

��!�"#�� ��$�"#�� ���%"#�� !��%"#�� ����"#�� !���"#��
������	�
&������
&'��()'

�����* �����* �����* �����* �����* �����*
��������	�
��������

���!� ���� ����� ����!� ���%� ���� ������� ��

���$"+�� ���$"+�� ��%�"+�� ����"+�� ��%$"+�� ����"+��
������	�
&������
&'��()'

�����* �����* �����* �����* �����* �����*
��������	�
��������

�%�� ����!� �%���� �%��� �%�$�% ���!�% ������� ��

����"+�$ ����"+�� ���%"+�! %���"+�� ��!�"+�! ����"+�!
������	�
&������
&'��()'

�!� ��� ��

��������	�,�����(������-�.��� �

��!�� ���$ ���$�

�	���(�/.��� �#��*0�,�����(�����(�*��1�-���2��(���
�3��,4����5���6�3�4�,���������*�������/���#��0

��!��������!��

����� ����� �����

��%�

����

����

Figure 79: Grid Size 512× 512. Different Block Sizes and Deflation Vectors.

84

